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Abstract16

In this paper we investigate the computational power of a set of mobile robots with limited17

visibility. At each iteration, a robot takes a snapshot of its surroundings, uses the snapshot to18

compute a destination point, and it moves toward its destination. Each robot is punctiform and19

memoryless, it operates in Rm, it has a local reference system independent of the other robots’20

ones, and is activated asynchronously by an adversarial scheduler. Moreover, robots are non-rigid,21

in that they may be stopped by the scheduler at each move before reaching their destination (but22

are guaranteed to travel at least a fixed unknown distance before being stopped).23

We show that despite these strong limitations, it is possible to arrange 3m+ 3k of these weak24

entities in Rm to simulate the behavior of a stronger robot that is rigid (i.e., it always reaches25

its destination) and is endowed with k registers of persistent memory, each of which can store26

a real number. We call this arrangement a TuringMobile. In its simplest form, a TuringMobile27

consisting of only three robots can travel in the plane and store and update a single real number.28

We also prove that this task is impossible with fewer than three robots.29

Among the applications of the TuringMobile, we focused on Near-Gathering (all robots have30

to gather in a small-enough disk) and Pattern Formation (of which Gathering is a special case)31

with limited visibility. Interestingly, our investigation implies that both problems are solvable in32

Euclidean spaces of any dimension, even if the visibility graph of the robots is initially discon-33

nected, provided that a small amount of these robots are arranged to form a TuringMobile. In34

the special case of the plane, a basic TuringMobile of only three robots is sufficient.35
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1 Introduction40

1.1 Framework and Background.41

The investigations of systems of autonomous mobile robots have long moved outside the42

boundaries of the engineering, control, and AI communities. Indeed, the computational and43

complexity issues arising in such systems are important research topics within theoretical44

computer science, especially in distributed computing. In these theoretical investigations,45

the robots are usually viewed as computational entities that live in a metric space, typically46

R2 or R3, in which they can move. Each robot operates in “Look-Compute-Move” (LCM)47

cycles: it observes its surroundings, it computes a destination within the space based on48

what it sees, and it moves toward the destination. The only means of interaction between49

robots are observations and movements: that is, communication is stigmergic. The robots,50

identical and outwardly indistinguishable, are oblivious: when starting a new cycle, a robot51

has no memory of its activities (observations, computations, and moves) from previous cycles52

(“every time is the first time”).53

There have been intensive research efforts on the computational issues arising with54

such robots, and an extensive literature has been produced in particular in regard to55

the important class of Pattern Formation problems [8, 20, 22, 23, 29, 30] as well as for56

Gathering [1, 2, 4, 9, 10, 12, 13, 15, 11, 21, 25] and Scattering [6, 24]; see also [7, 14, 31]. The57

goal of the research has been to understand the minimal assumptions needed for a team58

(or swarm) of such robots to solve a given problem, and to identify the impact that specific59

factors have on feasibility and hence computability.60

The most important factor is the power of the adversarial scheduler that decides when61

each activity of each robot starts and when it ends. The main adversaries (or “environments”)62

considered in the literature are: synchronous, in which the computation cycles of all active63

robots are synchronized, and at each cycle either all (in the fully synchronous case) or a64

subset (in the semi-synchronous case) of the robots are activated, and asynchronous, where65

computation cycles are not synchronized, each activity can take a different and unpredictable66

amount of time, and each robot can be independently activated at each time instant.67

An important factor is whether a robot moving toward a computed destination is68

guaranteed to reach it (rigid robot), or it can be stopped on the way (non-rigid) at a point69

decided by an adversary. In all the above cases, the power of the adversaries is limited by70

some basic fairness assumption. All the existing investigations have concentrated on the71

study of (a-)synchrony, several on the impact of rigidity, some on other relevant factors such72

as agreement on local coordinate systems or on their orientation, etc.; for a review, see [19].73

From a computational point of view, there is another crucial factor: the visibility range74

of the robots, that is, how much of the surrounding space they are able to observe in a Look75

operation. In this regard, two basic settings are considered: unlimited visibility, where the76

robots can see the entire space (and thus all other robots), and limited visibility, when the77

robots have a fixed visibility radius. While the investigations on (a-)synchrony and rigidity78

have concentrated on all aspects of those assumptions, this is not the case with respect to79

visibility. In fact, almost all research has assumed unlimited visibility; few exceptions are the80

algorithms for Convergence [4], Gathering [16, 17, 21], and Near-Gathering [25] when the81

visibility range of the robot is limited. The unlimited visibility assumption clearly greatly82

simplifies the computational universe under investigation; at the same time, it neglects the83

more general and realistic one, which is still largely unknown.84

Let us also stress that, in the existing literature, all results on oblivious robots are for R1
85

and R2; the only exception is the recent result on plane formation in R3 by semi-synchronous86
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rigid robots with unlimited visibility [31]. No results exist for robots in higher dimensions.87

1.2 Contributions.88

In this paper we contribute several constructive insights on the computational universe89

of oblivious robots with limited visibility, especially asynchronous non-rigid ones, in any90

dimension.91

TuringMobile92

The first and main contribution is the design of a “moving Turing Machine” made solely93

of asynchronous oblivious non-rigid robots in Rm with limited visibility, for any m ≥ 2.94

More precisely, we show how to arrange 3m+ 3k identical non-rigid oblivious robots in Rm95

with a visibility radius of V + ε (for any ε > 0) and how to program them so that they can96

collectively behave as a single rigid robot in Rm with k persistent registers and visibility97

radius V would. This team of identical robots is informally called a TuringMobile. We obtain98

this result by using as fundamental construction a basic component, which is able to move in99

R2 while storing and updating a single real number. Interestingly, we show that 3 agents100

are necessary and sufficient to build such a machine. The TuringMobile will then be built101

by arranging multiple copies of this basic component. Notably, the robots that constitute a102

TuringMobile need only be able to compute arithmetic operations and square roots.103

A TuringMobile is a powerful construct that, once deployed in a swarm of robots, can act104

as a rigid leader with persistent memory, allowing the swarm to overcome many handicaps105

imposed by obliviousness, limited visibility, and asynchrony. As examples we present a106

variety of applications in Rm, with m ≥ 2.107

There is a limitation to the use of a TuringMobile when deployed in a swarm of robots.108

Namely, the TuringMobile must be always recognizable (e.g., by its unique shape) so that other109

robots cannot interfere by moving too close to the machine, disrupting its structure. This110

limitation can be overcome when the robots of the TuringMobile are visibly distinguishable111

from the others. However, this requirement is not necessary for all applications, but is only112

required when we want to perfectly simulate a rigid robot with memory.113

We remark that we do not discuss how robots can self-assemble into a TuringMobile. We114

only focus on how the machine can be designed when we can freely arrange some robots. In115

the case of robots with unlimited visibility, a TuringMobile can be self-assembled, provided116

that the initial configuration of the robots is asymmetric. In the case of limited visibility,117

self-assembling a TuringMobile is more delicate. However, we argue that assuming the118

presence of our TuringMobile is analogous to assuming the presence of a certain number of119

distinguished robots: self-assembling a TuringMobile is possible if these distinguished robots120

are all visible to each other and arranged in an asymmetric configuration.121

Applications122

We propose several applications of our TuringMobile. First of all, the TuringMobile can123

explore and search the space. We then show how it can be employed to solve the long-standing124

open problem of (Near-)Gathering with limited visibility in spite of an asynchronous non-125

rigid scheduler and disagreement on the axes, a problem still open without a TuringMobile.126

Interestingly, the presence of the TuringMobile allows Gathering to be done even if the initial127

visibility graph is disconnected (this does not change the fact that there are cases in which128

Gathering is impossible, as remarked in [4, 21]). Finally we show how the arbitrary Pattern129

Formation problem can be solved under the same conditions (asynchrony, limited visibility,130

possibly disconnected visibility graph, etc.).131

CVIT 2016
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The paper is organized as follows: In Section 2 we give formal definitions, introducing132

mobile robots with or without memory as oracle semi-oblivious real RAMs. In Section 3133

we illustrate our implementation of the TuringMobile. In Section 4 we show how to apply134

the TuringMobile to solve fundamental problems. Due to space constraints, the proof of135

correctness of our TuringMobile implementation, several technical parts of the paper, and136

additional figures can be found in the full paper [18].137

2 Definitions and Preliminaries138

2.1 Oracle Semi-Oblivious Real RAMs139

Real random-access machines. A real RAM, as defined by Shamos [26, 28], is a random-140

access machine [3] that can operate on real numbers. That is, instead of just manipulating141

and storing integers, it can handle arbitrary real numbers and do infinite-precision operations142

on them. It has a finite set of internal registers and an infinite ordered sequence of memory143

cells; each register and each memory cell can hold a single real number, which the machine144

can modify by executing its program.2145

A real RAM’s instruction set contains at least the four arithmetic operations, but it may146

also contain k-th roots, trigonometric functions, exponentials, logarithms, and other analytic147

functions, depending on the application. The machine can also compare two real numbers148

and branch depending on which one is larger.149

The initial contents of the memory cells are the input of the machine (we stipulate that150

only finitely many of them contain non-zero values), and their contents when the machine151

halts are its output. So, each program of a real RAM can be viewed as a partial function152

mapping tuples of reals into tuples of reals.153

Oracles and semi-obliviousness. We introduce the oracle semi-oblivious real RAM, which154

is a real RAM with an additional “ASK” instruction. Whenever this instruction is executed,155

the contents of all the memory cells are replaced with new values, which are a function of156

the numbers stored in the registers.157

In other words, the machine can query an external oracle by putting a question in its k158

registers in the form of k real numbers. The oracle then reads the question and writes the159

answer in the machine’s memory cells, erasing all pre-existing data. The term “semi-oblivious”160

comes from the fact that, every time the machine invokes the oracle, it “forgets” everything161

it knows, except for the contents of the registers, which are preserved.3162

I Remark. In spite of their semi-obliviousness, these real RAMs with oracles are at least as163

powerful as Turing Machines with oracles.164

2.2 Mobile Robots as Real RAMs165

Mobile robots. Our oracle semi-oblivious real RAM model can be reinterpreted in the166

realm of mobile robots. A mobile robot is a computational entity that lives in a metric space,167

typically R2 or R3. It can observe its surroundings and move within the space based on what168

it sees. The same space may be populated by several mobile robots and static objects.169

2 Nonetheless, the constant operands in a real RAM’s program cannot be arbitrary real numbers, but
have to be integers.

3 Observe that, in general, the machine cannot salvage its memory by encoding its contents in the registers:
since its instruction set has only analytic functions, it cannot injectively map a tuple of arbitrary real
numbers into a single real number.
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To compute its next destination point, a mobile robot executes a real RAM program170

with input a representation of its local view of the space. After moving, its entire memory is171

erased, but the content of its k registers is preserved. Then it makes a new observation; from172

the observation data and the contents of the registers, it computes another destination point,173

and so on. If k = 0, the mobile robot is said to be oblivious.174

The actual movement of a mobile robot is controlled by an external scheduler. The175

scheduler decides how fast the robot moves toward its destination point, and it may even176

interrupt its movement before the destination point is reached. If the movement is interrupted177

midway, the robot makes the next observation from there and computes a new destination178

point as usual. The robot is not notified that an interruption has occurred, but it may be179

able to infer it from its next observation and the contents of its registers. For fairness, the180

scheduler is only allowed to interrupt a robot after it has covered a distance of at least δ in181

the current movement, where δ is a positive constant. This guarantees, for example, that if182

a robot keeps computing the same destination point, it will reach it in a finite number of183

iterations. If δ =∞, the robot always reaches its destination, and is said to be rigid.184

Mobile robots, revisited. A mobile robot in Rm with k registers can be modeled as an185

oracle semi-oblivious real RAM with 2m+ k + 1 registers, as follows.186

m position registers hold the absolute coordinates of the robot in Rm.187

m destination registers hold the destination point of the robot, expressed in its local188

coordinate system.189

1 timestamp register contains the time of the robot’s last observation.190

k true registers correspond to the registers of the robot.191

As the RAM’s execution starts, it ignores its input, erases all its registers, and executes192

an “ASK” instruction. The oracle then fills the RAM’s memory with the robot’s initial193

position p, the time t of its first observation, and a representation of the geometric entities194

and objects surrounding the robot, as seen from p at time t.195

The RAM first copies p and t in its position registers and timestamp register, respectively.196

Then it executes the program of the mobile robot, using its true registers as the robot’s197

registers and adding m+ 1 to all memory addresses. This effectively makes the RAM ignore198

the values of p and t, which indeed are not supposed to be known to the mobile robot.199

When the robot’s program terminates, the RAM’s memory contains the output, which is200

the next destination point p′, expressed in the robot’s coordinate system. The RAM copies p′201

into its destination registers, and the execution jumps back to the initial “ASK” instruction.202

Now the oracle reads p, p′, and t from the RAM’s registers (it ignores the true registers),203

converts p′ in absolute coordinates (knowing p and the orientation of the local coordinate204

system of the robot) and replies with a new position p′′, a timestamp t′ > t, and observation205

data representing a snapshot taken from p′′ at time t′. To comply with the mobile robot206

model, p′′ must be on the segment pp′, such that either p′′ = p′ or pp′′ ≥ δ. The execution207

then proceeds in the same fashion, indefinitely.208

Note that in this setting the oracle represents the scheduler. The presence of a timestamp209

in the query allows the oracle to model dynamic environments in which several independent210

robots may be moving concurrently (without a timestamp, two observations from the same211

point of view would always be identical).212

Snapshots and limited visibility. In the mobile robot model we consider in this paper,213

an observation is simply an instantaneous snapshot of the environment taken from the robot’s214

position. In turn, each entity and object that the robot can see is modeled as a dimensionless215

point in Rm. A mobile robot has a positive visibility radius V : it can see a point in Rm if216

CVIT 2016
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and only if it is located at distance at most V from its current position. If V =∞, the robot217

is said to have unlimited visibility.218

As we hinted at earlier in this section, a mobile robot has its own local reference system219

in which all the coordinates of the objects in its snapshots are expressed. The origin of a220

robot’s local coordinate system always coincides with the robot’s position (hence it follows221

the robot as it moves), and its orientation and handedness are decided by the scheduler222

(and remain fixed). Different mobile robots may have coordinate systems with a different223

orientation or handedness. (However, when two robots have the same visibility radius, they224

also implicitly have the same unit of distance.)225

So, a snapshot is just a (finite) list of points, each of which is an m-tuple of real numbers.226

Simulating memory and rigidity. The main contribution of this paper, loosely speaking,227

is a technique to turn non-rigid oblivious robots into rigid robots with persistent memory,228

under certain conditions. More precisely, if 3m+ 3k identical non-rigid oblivious robots in229

Rm with a visibility radius of V + ε (for any ε > 0) are arranged in a specific pattern and230

execute a specific algorithm, they can collectively act in the same way as a single rigid robot231

in Rm with k > 0 persistent registers and visibility radius V would. This team of identical232

robots is informally called a TuringMobile.233

We stress that the robots of a TuringMobile are asynchronous, that is, the scheduler234

makes them move at independent arbitrary speeds, and each robot takes the next snapshot235

an arbitrary amount of time after terminating each move. The robots are also anonymous,236

in that they are indistinguishable from each other, and they all execute the same program.237

Although our technique is fairly general and has a plethora of concrete applications238

(some are discussed in Section 4), a “perfect simulation” is achieved only under additional239

conditions on the scheduler or on the environment (see Section 3.2).240

3 Implementing the TuringMobile241

3.1 Basic Implementation242

We will first describe how to construct a basic version of the TuringMobile with just three243

oblivious non-rigid robots in R2. This TuringMobile can remember a single real number244

and rigidly move in the plane by fixed-length steps: its layout is sketched in Figure 1. In245

Section 3.2, we will show how to combine several copies of this basic machine to obtain a246

full-fledged TuringMobile.247

Position at rest. The elements of the basic TuringMobile are three: a Commander robot,248

a Number robot, and a Reference robot, located in C, N , and R, respectively. These robots249

have the same visibility radius of V + ε, where ε� V , and there is always a disk of radius ε250

containing all three of them. When the machine is “at rest”, ∠NRC is a right angle, the251

distance between C and R is some fixed value d� ε, and the distance between R and N is252

approximately 2d. More precisely, N lies on a segment QQ′ of length λ, where λ� d is some253

fixed value, such that Q has distance 2d− λ/2 from R and Q′ has distance 2d+ λ/2 from R.254

Representing numbers. The distance between the Reference robot and the Number255

robot when the TuringMobile is at rest is a representation of the real number r that256

the machine is currently storing. One possible technique is to encode the number r as257

RN = 2d+ arctan(r) · λ/π and to decode it as r = tan
(
(RN − 2d) · π/λ

)
. However, there258

are also more complicated methods that use only arithmetic functions (see the full paper259

[18]).260
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Figure 1 Basic TuringMobile at rest, not drawn to scale (µ and λ should be smaller)

Movement directions. The Commander’s role is to decide in which direction the machine261

should move next, and to initiate the movement. When the machine is at rest, the Commander262

may choose among three possible final destinations, labeled D1, D2, and D3 in Figure 1.263

The segments CD1, CD2, and CD3 all have the same length µ, with λ� µ� d, and form264

angles of 120◦ with one another, in such a way that D1 is collinear with R and C.265

Around the center of each segment CDi there is a midway triangle τi, drawn in gray in266

Figure 1. This is an isosceles triangle of height λ whose base lies on CDi and has length λ267

as well. When the Commander decides that its final destination is Di, it moves along the268

segment CDi, but it takes a detour in the midway triangle τi, as we will explained shortly.269

Structure of the algorithm. Algorithm 1 is the program that each element of the basic270

TuringMobile executes every time it computes its next destination point.271

Since the robots are anonymous, they first have to determine their roles, i.e., who is the272

Commander, etc. (line 1 of the algorithm). We make the assumption that there exists a disk273

of radius ε containing only the TuringMobile (close to its center) and no other robot. Using274

the fact that the two closest robots must be the Commander and the Reference robot and275

that the two farthest robots must be the Commander and the Number robot, it is then easy276

to determine who is who (these properties will be preserved throughout the execution, as277

proved in the full paper [18]).278

Once it has determined its role, each robot executes a different branch of the algorithm279

(cf. lines 2, 13, and 23). The general idea is that, when the Commander realizes that the280

machine is in its rest position, it decides where to move next, i.e., it chooses a final destination281

Di. This choice is based on the number r stored in the machine’s “memory” (i.e., the number282

encoded by RN), the relative positions of the visible robots external to the machine, and283

also on the application, i.e., the specific program that the TuringMobile is executing.284

When the Commander has decided its final destination Di, the entire machine moves by285

the vector −−→CDi, and the Number robot also updates its distance from the Reference robot to286

represent a different real number r′. Again, this number is computed based on the number r287

the machine was previously representing, the relative positions of the visible robots external288

to the machine, and the specific program: in general, the new distance between N and Q is289

a function f of the old distance. When all this is done, the machine is in its rest position290

again, so the Commander chooses a new destination, and so on, indefinitely.291

CVIT 2016
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Algorithm 1 Basic TuringMobile in R2

1: Identify Commander, Number, Reference (located in C, N , R, respectively)
2: if I am Commander then
3: Compute Virtual Commander C′ (based on R and N) and points Ai, Si, S′i, Bi, Di

4: if I am in C′ then Choose final destination Di and move to Ai

5: else if ∃i ∈ {1, 2, 3} s.t. I am on segment C′Ai but not in Ai then Move to Ai

6: else if ∃i ∈ {1, 2, 3} s.t. I am in Ai then
7: Move to point P on segment SiS

′
i such that PSi = f(NQ)

8: else if ∃i ∈ {1, 2, 3} s.t. I am in triangle AiSiS
′
i but not on segment SiS

′
i then

9: Move to the intersection of segment SiS
′
i with the extension of line AiC

10: else if ∃i ∈ {1, 2, 3} s.t. I am on SiS
′
i and NQ = CSi then Move to Bi

11: else if ∃i ∈ {1, 2, 3} s.t. I am in triangle BiSiS
′
i but not in Bi then Move to Bi

12: else if ∃i ∈ {1, 2, 3} s.t. I am on segment BiDi but not in Di then Move to Di

13: else if I am Number then
14: if CR = d + µ or CR = d′ then
15: Compute Virtual Commander C′ (based on C and R) and points D′i
16: if CR = d + µ and I am not in D′1 then Move to D′1
17: else if CR = d′ and ∠NRC > 90◦ and I am not in D′2 then Move to D′2
18: else if CR = d′ and ∠NRC < 90◦ and I am not in D′3 then Move to D′3
19: else
20: Compute Virtual Commander C′ (based on R and N) and points Si, S′i
21: if ∃i ∈ {1, 2, 3} s.t. C is on segment SiS

′
i then

22: Move to point P on segment QQ′ such that PQ = CSi

23: else if I am Reference then
24: if Commander and Number are not tasked to move (based on the above rules) then
25: γ = circle centered in C with radius d
26: γ′ = circle with diameter CN
27: Move to the intersection of γ and γ′ closest to R

Coordinating movements. Note that it is not possible for all three robots to translate by292 −−→
CDi at the same time, because they are non-rigid and asynchronous. If the scheduler stops293

them at arbitrary points during their movement, after the structure of the machine has been294

destroyed, they will be incapable of recovering all the information they need to resume their295

movement (recall that they are oblivious and they have to compute a destination point from296

scratch every time).297

To prevent this, the robots employ various coordination techniques. First the Commander298

moves to the middle triangle τi, and precisely to its base vertex Ai, as shown in Figure 2(a)299

(cf. line 5 of Algorithm 1). Then it positions itself on the altitude SiS′i, in such a way as300

to indicate the new number r′ that the machine is supposed to represent. That is, the301

Commander picks the point on SiS′i at distance f(NQ) from Si (lines 6 and 7). Even if it302

is stopped by the scheduler before reaching such a point, it can recover its destination by303

drawing a ray from Ai to its current position and intersecting it with SiS′i (lines 8 and 9).304

When the Commander has reached SiS
′
i, it waits to let the Number robot adjust its305

position on the segment QQ′ to match that of the Commander on SiS′i, as in Figure 2(b)306

(lines 21 and 22). This effectively makes the Number robot represent the new number r′.307

Note that the Number robot can do this even if it is stopped by the scheduler several times308

during its march, because the Commander keeps reminding it of the correct value of r′: since309

r′ depends on the old number r, the Number robot would be unable to re-compute r′ after310

it has forgotten r. Once the Number robot has reached the correct position on QQ′, the311

Commander starts moving again (line 10) and finally reaches Di while the other robots wait,312

as in Figure 2(c) (lines 11 and 12).313

When the Commander has reached Di, the Number robot realizes it and makes the314

corresponding move (lines 14–18) while the other two robots wait. The destination point of315

the Number robot is D′i, as shown in Figure 1. Finally, when the Number robot is in D′i, the316

Reference robot realizes it and makes the final move to bring the TuringMobile back into a317

rest position (lines 23–27).318
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Figure 2 Coordinated movement of the Commander and the Number robot

Computing the Virtual Commander. After the Commander has left its rest position319

and is on its way to Di, the TuringMobile loses its initial shape, and identifying the Di’s and320

the midway triangles becomes non-trivial. So, the robots try to guess where the Commander’s321

original rest position may have been by computing a point called the Virtual Commander C ′.322

Assuming that the Reference and Number robots have not moved from their rest positions,323

the Virtual Commander is easily computed: draw the line ` through R perpendicular to RN ;324

then, C ′ is the point on ` at distance d from R that is closest to C. Once we have C ′, we325

can construct the points Di with respect to C ′ (in the same way as we did in Figure 1 with326

respect to C). This technique is used by Algorithm 1 at lines 3 and 20.327

In the special case where the Commander has reached its final destination Di and the328

Reference robot has not moved from its rest position (but perhaps the Number robot has329

moved), the Virtual Commander can also be computed. This situation is recognized because330

the distance between the Commander and the Reference robot is either maximum (i.e., d+µ)331

or minimum (i.e., d′ =
√
d2 + µ2 − dµ), as Figure 1 shows. If the distance is maximum, then332

C must coincide with D1; otherwise, C coincides with D2 (if the angle ∠NRC is obtuse) or333

D3 (if the angle ∠NRC is acute). Since we know the position of R and one of the Di’s, it is334

then easy to determine the other Di’s. This technique is used at line 15.335

The Reference robot’s behavior. To know when it has to start moving, the Reference336

robot executes Algorithm 1 from the perspective of the Commander and the Number robot:337

if neither of them is supposed to move, then the Reference robot starts moving (line 24).338

We have seen that the Number robot can determine its destination D′i solely by looking339

at the positions of C and R, which remain fixed as it moves. For the Reference robot the340

destination point is not as easy to determine, because the distance between C and N varies341

depending on what number is stored in the TuringMobile.342

However, the Reference robot knows that its move must put the TuringMobile in a rest343

position. The condition for this to happen is that its destination point be at distance d from344

C (line 25) and form a right angle with C and N (line 26). There are exactly two such345

points in the plane, but one of them has distance much greater than µ from R, and hence346

the Reference robot will pick the other (line 27).347

As the Reference robot moves toward such a point, all the above conditions must be348

preserved, due to the asynchronous and non-rigid nature of the robots. This is not a trivial349

requirement, and a proof that it is indeed fulfilled is in the full paper [18].350
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3.2 Complete Implementation351

We have shown how to implement a basic component of the TuringMobile in R2 consisting352

of three robots: a Commander, a Number, and a Reference. The basic component is able to353

rigidly move by a fixed distance µ in three fixed directions, 120◦ apart from one another. It354

can also store and update a single real number.355

Planar layout. We can obtain a full-fledged TuringMobile in R2 by putting several tiny356

copies of the basic component side by side. For the machine to work, we stipulate that there357

exists a disk of radius σ that contains all the robots constituting the TuringMobile and no358

extraneous robot, where σ � ε. The distance between two consecutive basic components of359

the TuringMobile is roughly s, where d� s� σ. This makes it easy for the robots to tell360

the basic components apart and determine the role of each robot within its basic component.361

Since a basic component of the TuringMobile is a scalene triangle, which is chiral, all its362

members implicitly agree on a clockwise direction even if they have different handedness.363

Similarly, all robots in the Turing Mobile agree on a “leftmost” basic component, whose364

Commander is said to be the Leader of the whole machine.365

Coordinated movements. All the basic components of the TuringMobile are always366

supposed to agree on their next move and proceed in a roughly synchronous way. To achieve367

this, when all the basic components are in a rest position, the Leader decides the next368

direction among the three possible, and executes line 4 of Algorithm 1. Then all the other369

Commanders see where the Leader is going, and copy its movement.370

When all the Commanders are in their respective Ai’s, they execute line 7 of the algorithm,371

and so on. At any time, each robot executes a line of the algorithm only if all its homologous372

robots in the other basic components of the TuringMobile are ready to execute that line or373

have already executed it; otherwise, it waits. When the last Reference robot has completed374

its movement, the machine is in a rest position again, and the coordinated execution repeats375

with the Leader choosing another direction, etc.376

Simulating a non-oblivious rigid robot. Let a program for a rigid robot R in R2 with377

k persistent registers and visibility radius V be given. We want the TuringMobile described378

above to act as R, even though its constituting robots are non-rigid and oblivious.379

Our TuringMobile consists of 2 + k basic components, each dedicated to memorizing and380

updating one real number. These 2 + k numbers are the x coordinate and the y coordinate381

of the destination point of R and the contents of the k registers of R. We will call the first382

two numbers the x variable and the y variable, respectively.383

When the TuringMobile is in a rest position, its x and y variables represent the co-384

ordinates of the destination point of R relative to the Leader of the machine. Whenever385

the TuringMobile moves by µ in some direction, these values are updated by subtracting386

the components of an appropriate vector of length µ from them. Of course, this update387

is computed by the Commanders of the first two basic components of the machine, which388

communicate it to their respective Number robots, as explained in Section 3.1.389

Let P be the destination point of R. Since the TuringMobile can only move by vectors of390

length µ in three possible directions, it may be unable to reach P exactly. So, the Leader391

always plans the next move trying to reduce its distance from P until this distance is at392

most 2σ (this is possible because µ� d� σ).393

When the Leader is close enough to P , it “pretends” to be in P , and the TuringMobile394

executes the program of R to compute the next destination point. Recall that the visibility395

radius of R is V , and that of the robots of the TuringMobile is V + ε. Since σ � ε, each396

member of the TuringMobile can therefore see everything that would be visible to R if it397
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were in P , and compute the output of the program of R independently of the other members.398

The only thing it should do when it executes the program of R is subtract the values of the399

x and y variables to everything it sees in its snapshot, discard whatever has distance greater400

than V from the center, and of course discard the robots of the TuringMobile and replace401

them with a single robot in the center. Then, the robots that are responsible for updating402

the x and y variables add the relative coordinates of the new destination point of R to these403

variables. Similarly, the robots responsible for updating the k registers of R do so.404

Restrictions. The above TuringMobile correctly simulates R under certain conditions.405

The first one is that, if all robots are indistinguishable, then no robot extraneous to the406

TuringMobile may get too close to it (say, within a distance of σ of any of its members). This407

kind of restriction cannot be dispensed with: whatever strategy a team of oblivious robots408

employs to simulate a single non-oblivious robot’s behavior is bound to fail if extraneous409

robots join the team creating ambiguities between its members. Nevertheless, the restriction410

can be removed if the members of a TuringMobile are distinguishable from all other robots.411

Another difficulty comes from the fact that, if the TuringMobile is made of more than one412

basic component and its Commanders are all in their respective Ai’s and ready to update413

the values represented by the machine, they may get their screenshots at different times,414

due to asynchrony. If the environment moves in the meantime, the screenshots they get are415

different, and this may cause the machine to compute an incorrect destination point or put416

inconsistent values in its simulated registers.417

There are several possible solutions to this problem: we will only mention two trivial418

ones. We could assume the Commanders to be synchronous, that is, make the scheduler419

activate them in such a way that all of them take their screenshots at the same time. This420

way, all Commanders get compatible screenshots and compute consistent outputs. Another421

possible solution is to make the TuringMobile operate in an environment where everything422

else is static, i.e., no moving entities are present other than the TuringMobile’s members.423

We stress that these restrictions make sense if a perfect simulation of R is saught. As424

we will see in Section 4, there are several other applications of the TuringMobile technique425

where no such restriction is required.426

Higher dimensions. Let us now generalize the above construction of a planar TuringMobile427

to Rm, for any m ≥ 2. We start with the same TuringMobileM with 2 +k basic components428

laid out on a plane γ ⊂ Rm. Since M has only two basic components for the x and y429

variables, we will add m− 2 basic components to it, positioned as follows.430

Let vectors v1 and v2 be two orthonormal generators of γ, and let us complete {v1, v2} to431

an orthonormal basis {v1, v2, . . . , vm} of Rm. Now, for all i ∈ {3, 4, . . . ,m}, we make a copy432

of the basic component ofM containing the Leader, we translate it by s · vi, and we add it433

to the TuringMobile (s is the same value used in the construction of the planar TuringMobile434

at the beginning of Section 3.2). Note that the Leader of this new TuringMobileM′ is still435

easy to identify, as well as the plane γ whenM′ is at rest.436

Clearly, m basic components allow the machine to record a destination point in Rm, as437

opposed to R2. Additionally, the positions of the basic components with respect to γ give438

the machine an m-dimensional sense of direction (see the full paper [18] for further details).439

I Theorem 1. Under the aforementioned restrictions, a rigid robot in Rm with k persistent440

registers and visibility radius V can be simulated by a team of 3m+ 3k non-rigid oblivious441

robots in Rm with visibility radius V + ε. J442
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4 Applications443

In this section we discuss some applications of the TuringMobile. We also prove that the444

basic TuringMobile constructed in Section 3.1 is minimal, in the sense that no smaller team445

of oblivious robots can accomplish the same tasks.446

4.1 Exploring the Plane447

The first elementary task a basic TuringMobile in R2 can fulfill is that of exploring the448

plane. The task consists in making all the robots in the TuringMobile see every point in449

the plane in the course of an infinite execution. We first assume that the three members of450

the TuringMobile are the only robots in the plane. Later in this section, we will extend our451

technique to other types of scenarios and more complex tasks.452

I Theorem 2. A basic TuringMobile consisting of three robots in R2 can explore the plane.453

Proof. Recall that a basic TuringMobile can store a single real number r and update it at454

every move as a result of executing a real RAM program with input r. In particular, the455

TuringMobile can count how many times it has moved by simply starting its execution with456

r = 0 and computing r := r + 1 at each move.457

Moreover, the Commander chooses the direction of the next move (in the form of a point458

Di, see Figure 1) by executing another real RAM program with input r. If r is an integer,459

the Commander can therefore compute any Turing-computable function on r, and so it can460

decide to move to D1 the first time, then to D2 twice, then to D3 three times, to D1 four461

times, and so on. This pattern of moves is illustrated in Figure 3, and of course it results in462

the exploration of the plane, because the visibility radius of the robots is much greater than463

the step µ. J464

C

µ

R N

Figure 3 Exploration of the plane by a basic TuringMobile

4.2 Minimality of the Basic TuringMobile465

We can use the previous result to prove indirectly that our basic TuringMobile design is466

minimal, because no team of fewer than three oblivious robots in R2 can explore the plane.467



G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta 23:13

I Theorem 3. If only one or two oblivious identical robots with limited visibility are present468

in R2, they cannot explore the plane, even if the scheduler lets them move synchronously and469

rigidly.470

Proof. Assume that a single oblivious robot is given in R2. Since it always gets the same471

snapshot, it always computes the same destination point in its local coordinate system, and472

so it always translates by the same vector. As a consequence, it just moves along a straight473

ray, and therefore it cannot explore the plane.474

Let two oblivious robots be given, and suppose that their local coordinate systems are475

oriented symmetrically. Whether the robots see each other or not, if they take their snapshots476

simultaneously, they get identical views, and so they compute destination points that are477

symmetric with respect to O. If they keep moving synchronously and rigidly, O remains478

their midpoint. So, if the robots have visibility radius V , they see each other if and only if479

they are in the circle γ of radius V/2 centered in O.480

Let O be the midpoint of the robots’ locations, and consider a Cartesian coordinate481

system with origin O. Without loss of generality, when the robots do not see each other,482

they move by vectors (1, 0) and (−1, 0), respectively. Let ξ be the half-plane y ≥ V , and483

observe that ξ lies completely outside γ.484

It is obvious that the robots cannot explore the entire plane if neither of them ever stops485

in ξ. The first time one of them stops in ξ, it takes a snapshot from there, and starts moving486

parallel to the x axis, thus never seeing the other robot again, and never leaving ξ. Of course,487

following a straight line through ξ is not enough to explore all of it. J488

4.3 Near-Gathering with Limited Visibility489

The exploration technique can be applied to several more complex problems. The first we490

describe is the Near-Gathering problem, in which all robots in the plane must get in the491

same disk of a given radius ε (without colliding) and remain there forever. It does not matter492

if the robots keep moving, as long as there is a disk of radius ε that contains them all.493

It is clear that solving this problem from every initial configuration is not possible, and494

hence some restrictive assumptions have to be made. The usual assumption is that the initial495

visibility graph of the robots be connected [21, 25]. Here we make a different assumption:496

there are three robots that form a basic TuringMobile somewhere in the plane, and each robot497

not in the TuringMobile has distance at least ε from all other robots. (Actually we could498

weaken this assumption much more, but this simple example is good enough to showcase our499

technique.)500

Say that all robots in the plane have a visibility radius of V � ε, and that the TuringMobile501

moves by µ� ε at each step. The TuringMobile starts exploring the plane as above, and502

it stops in a rest position as soon as it finds a robot whose distance from the Commander503

is smaller than V/2 and greater than ε. On the other hand, if a robot is not part of the504

TuringMobile, it waits until it sees a TuringMobile in a rest position at distance smaller than505

V/2. When it does, it moves to a designated area A in the proximity of the Commander.506

Such an area has distance at least 3d from the Commander, so no confusion can arise in507

the identification of the members of the TuringMobile. If several robots are eligible to move508

to A, only one at a time does so: note that the layout of the TuringMobile itself gives an509

implicit total order to the robots around it. Observe that the robots cannot form a second510

TuringMobile while they move to A: in order to do so, two of them would have to move to511

A at the same time and get close enough to a third robot. Once they enter A, the robots512

position themselves on a segment much shorter than d, so they cannot possibly be mistaken513
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for a TuringMobile.514

Once the eligible robots have positioned themselves in A, the TuringMobile resumes its515

exploration of the plane, and the robots in A copy all its movements. Now, if the total516

number of robots in the plane is known, the TuringMobile can stop as soon as all of them517

have joined it. Otherwise, the machine simply keeps exploring the plane forever, eventually518

collecting all robots. In both cases, the Near-Gathering problem is solved.519

4.4 Pattern Formation with Limited Visibility520

Suppose the robots are exactly n, and they are tasked to form a given pattern consisting of a521

multiset of n points: this is the Pattern Formation problem, which becomes the Gathering522

problem in the special case in which the points are all coincident. For this problem, it does523

not matter where the pattern is formed, nor does its orientation or scale.524

Again, the Pattern Formation problem is unsolvable from some initial configurations, so525

we make the same assumptions as with the Near-Gathering problem. The algorithm starts526

by solving the Near-Gathering problem as before. The only difference is that now there is a527

second tiny area B, attached to A (and still far enough from the TuringMobile), which the528

robots avoid when they join A. This is because this second area will be used to form the529

pattern.530

Since n is known, the TuringMobile knows when it has to interrupt the exploration of the531

plane because all robots have already been found. At this point, the robots switch algorithm:532

one by one, they move to B and form the pattern. This task is made possible by the presence533

of the TuringMobile, which gives an implicit order to all robots, and also unambiguously534

defines an embedding of the pattern in B. So, each robot is implicitly assigned one point in535

B, and it moves there when its turn comes.536

If n = 3 or n = 4, there are uninteresting ad-hoc algorithms to do this: so, let us assume537

that n ≥ 5. The first to move are the robots in A: this part is easy, because they all lie on a538

small segment, which already gives them a total order. The robots only have to be careful539

enough not to collide with other robots before reaching their final positions.540

When this part is done, there are at least two robots in B, all of which have distance541

much smaller than d from each other. Then the members of the TuringMobile join B as well,542

in order from the closest to the farthest. Each of them chooses a position in B based on the543

robots already there and the remnants of the TuringMobile. Moreover, the members of the544

TuringMobile that have not started moving to B yet cannot be mistaken for robots in B,545

because they are at a greater distance from all others (and vice versa).546

Note that, when the last robot leaves the TuringMobile and joins B, it is able to find its547

final location because there are already at least four robots there, which provide a reference548

frame for the pattern to be formed. When this last robot has taken position in B, the pattern549

is formed.550

4.5 Higher Dimensions551

Everything we said in this section pertained to robots in the plane. However, we can552

generalize all our results to robots in Rm, for m ≥ 2. Recall that, at the end of Section 3.2,553

we have described a TuringMobile for robots in Rm, which can move within a specific plane554

γ exactly as a bidimensional TuringMobile, but can also move back and forth by µ in all555

other directions orthogonal to γ.556

Now, extending our results to Rm actually boils down to exploring the space with a557

TuringMobile: once we can do this, we can easily adapt our techniques for the Near-Gathering558
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and the Pattern Formation problem, with negligible changes.559

There are several ways a TuringMobile can explore Rm: we will only give an example.560

Consider the exploration of the plane described at the beginning of this section, and let Pi561

be the point reached by the Commander after its ith move along the spiral-like path depicted562

in Figure 3 (P0 is the initial position of the Commander).563

Our m-dimensional TuringMobile starts exploring γ as if it were R2. Whenever it visits564

a Pi for the first time, it goes back to P0. From P0, it keeps making moves orthogonal to565

γ until it has seen all points in Rm whose projection on γ is P0 and whose distance from566

P0 is at most i. Then it goes back to P0, moves to P1, and repeats the same pattern of567

moves in the section of Rm whose projection on γ is P1. It then does the same thing with568

P2, etc. When it reaches Pi+1 (for the first time), it goes back to P0, and proceeds in the569

same fashion. By doing so, it explores the entire space Rm.570

Note that this algorithm only requires the TuringMobile to count how many moves it has571

made since the beginning of the execution: thus, the machine only has to memorize a single572

integer. The direction of the next move according to the above pattern is then obviously573

Turing-computable given the move counter.574

5 Conclusions575

We have introduced the TuringMobile as a special configuration of oblivious non-rigid robots576

that can simulate a rigid robot with memory. We have also applied the TuringMobile to577

some typical robot problems in the context of limited visibility, showing that the assumption578

of connectedness of the initial visibility graph can be dropped if a unique TuringMobile is579

present in the system. Our results hold not only in the plane, but also in Euclidean spaces580

of higher dimensions.581

The simplest version of the TuringMobile (Section 3.1) consists of only three robots,582

and is the smallest possible configuration with these characteristics (Theorems 2 and 3).583

Our generalized TuringMobile (Section 3.2), which works in Rm and simulates k registers of584

memory, consists of 3m+ 3k robots (Theorem 1). We believe we can decrease this number585

to m+ k + 3 by putting all the Number robots in the same basic component and adopting a586

more complicated technique to move them. However, minimizing the number of robots in a587

general TuringMobile is left as an open problem.588

Our basic TuringMobile design works if the robots have the same radius of visibility,589

because that allows them to implicitly agree on a unit of distance. We could remove this590

assumption and let each of them have a different visibility radius, but we would have to add591

a fourth robot to the TuringMobile for it to work (as well as keep the TuringMobile small592

compared to all these radii).593

Recall that, in order to encode and decode arbitrary real numbers we used the α function594

and its inverse, which in turn are computed using the arctan and the tan functions. However,595

using transcendental functions is not essential: we could achieve a similar result by using596

only comparisons and arithmetic operations. The only downside would be that such a real597

RAM program would not run in a constant number of machine steps, but in a number of598

steps proportional to the value of the number to encode or decode. With this technique, we599

would be able to dispense with the trigonometric functions altogether, and have our robots600

use only arithmetic operations and square roots to compute their destination points.601
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