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Abstract

Almost all the vast literature on graph exploration assumes that the graph is static: its topology
does not change during the exploration, except for occasional faults. To date, very little is known on
exploration of dynamic graphs, where the topology is continously changing. The few studies have been
limited to the centralized (or post-mortem) case, assuming complete a priori knowledge of the changes
and the times of their occurrence, and have only considered fully synchronous systems.

In this paper, we start the study of the decentralized (or live) exploration of dynamic graphs, i.e.
when the agents operate in the graph unaware of the location and timing of the changes. We consider
dynamic rings under the standard 1-interval-connected restriction, and investigate the feasibility of their
exploration, in both the fully synchronous and semi-synchronous cases. When exploration is possible we
examine at what cost, focusing on the minimum number of agents capable of exploring the ring. We
establish several results highlighting the impact that anonymity and structural knowledge have on the
feasibility and complexity of the problem.

1 Introduction

1.1 Framework

Graph exploration is an extensively investigated problem, starting from the pioneering work of Shannon [41].
The problem requires a team of mobile computational entities, called agents or robots, capable of moving from
node to neighbouring node, to visit the nodes of the graph, with the requirement that each node is eventually
visited by at least one agent. The exploration is said to be with termination if the agents are required to stop
within finite time upon completing the task, perpetual otherwise. In the vast literature on the subject (e.g.,
see [1,16,17,20,25,29,40]), a huge spectrum of different assumptions have been made and examined e.g. with
regards to: the computational power of the agent(s) (e.g., FSM, Turing, etc.); the structure of the graph
and its properties; the level of topological knowledge available to the agents; whether or not the network
is anonymous (i.e., the nodes lack distinct identifiers); whether the nodes can be marked (e.g., by leaving
a pebble); the level of synchronization and the means of communication (in case of multiple agents); the
presence of faulty nodes and/or faulty links; whether the agents are required to stop within finite time upon
completing the task (exploration with termination) or not (perpetual exploration); etc.

Regardless of their differences, all these investigations share the common assumption that the graph
is static: its topological structure does not change during the exploration. This is true also for those
investigations considering faulty nodes and/or faulty links (e.g., see [6, 15,21,22]).

Dynamic Graphs Recently, within distributed computing, researchers started to investigate situations
where the graph is highly dynamic, that is where the topology changes continuously. This research is
motivated by the rapid development of networked systems where changes in the topology are extensive,
and occur continuously. Such are, for example, the infrastructure-less networks created by wireless mobile
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entities (e.g. vehicles, satellites, robots, or pedestrian smartphones): an edge exists between two entities at a
given time if they are within communication range at that time; hence, the topology changes continuously
as the movements of the entities destroy old connections and create new ones. In these highly dynamic
networks, changes are not anomalies (e.g., faults) but rather integral part of the nature of the system. These
infrastructure-less highly dynamic networks, variously called delay-tolerant, disruptive-tolerant, challenged,
epidemic, opportunistic, have been long and extensively investigated by the engineering community and,
more recently, by distributed computing researchers.

These highly dynamic networks are modelled in a natural way in terms of time-varying graphs (sometimes
called temporal graphs) where the presence of an edge as well as its latency (i.e. the time necessary for
an agent or a message to traverse it) are functions of time; this model has been formally defined in [13],
identifying main classes of systems studied in the literature and their computational relationship. If time is
discrete (e.g., changes occur in rounds), the evolution of these systems can be equivalently described as a
sequence of static graphs, called evolving graph, a model suggested in [31] and formalised in [24].

The study of distributed computations in highly dynamic networks using these models has focused mainly
on problems of information diffusion and reachability (e.g., broadcast, routing, election, consensus, etc) with or
without faults; e.g., see [2,3,5,7,8,10–12,14,19,30,35,36]). Clearly, all these studies make strong assumptions
in order to restrict the universe of the possible topological changes and their temporal occurrence. One such
restriction is by assuming that topological changes are periodic (Class 8 of [13]); this assumption describes in
a natural way systems generated by the movement of entities with periodic routes (e.g., see [9, 26, 27, 33, 37]).
A popular restiction is by assuming that the network is always connected (Class 9 of [13]): at each time
instant, there is a connected spanning subgraph, and the latency is sufficient for an agent movement or a
message transmission; further assuming that such connected spanning subgraph persists for T ≥ 1 time units
defines the extensively studied sub-class of T-interval-connected systems (e.g., see [18,35,36,39]).

Exploration of Dynamic Graphs Returning to the exploration problem, very little is known in the case
of dynamic graphs. On the probabilistic side, there is the early seminal work on random walks [4]. On the
deterministic side, the only studies are on: the complexity of computing a foremost exploration schedule
under the 1-interval-connected assumption [38], this topic has been extended in [23] where several results on
the exploration complexity for specific topologies are given; the computation of an exploration schedule for
rings under the T-interval-connected assumption [34]; and the computation of an exploration schedule for
cactuses under the 1-interval-connected assumption [32]. All these studies are however centralized (or off-line,
or post-mortem); that is, they assume that the exploring agents have complete a priori knowledge of the
topological changes and the times of their occurence.

Little is known on the distributed (or on-line, or live) case, i.e. when the location and timing of the
changes are unknown to the agents. Exploting a reduction technique employed in some the proofs of [23, 34],
it is possible to infer that in the synchronous setting two agents starting in the same initial position, and
unaware of the adversarial schedule, can explore a ring in O(n) rounds. Apart from this basic result, nothing
else is known.

In this paper, we start such an investigation and study the deterministic decentralized exploration of a
dynamic ring under the 1-interval-connected assumption, focusing on the impact that synchrony, anonymity
and topological knowledge have on its computability and complexity.

1.2 Contributions
We examine the problem of exploring 1-interval-connected dynamic rings. That is, we consider a ring network
in which, at each time step, at most one link is missing, the choice being performed by an adversary. We
study under what conditions all nodes can be visited by a team of agents unaware of the choices of the
adversary. When exploration is possible, we examine the cost, in terms of number of agents and time.

We first consider the fully-synchronous systems (Section 3), traditionally assumed in the literature; i.e.,
all agents are active at each time step, We then introduce the notion of semi-synchronous systems (Section
4), where only a subset of agents might be active at each time step (the choice of the subset is made by an
adversary). The semi-synchronous model is common in the context of mobile agents in continuous spaces
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N. Agents Assumptions Exploration and Termination

2 No bounds on n, Anonymous Ring Exploration with Termination impossible (Th. 1)

2 Known upper bound N , Anonymous Ring, Chirality Exploration with Termination in time 3N
2 Known upper bound N , Anonymous Ring, No Chiral-

ity
Exploration with Termination in time 5N

2 No bounds on n, Landmark, Chirality Exploration with Termination in time O(n) (Sec.
3.2.2)

2 No bounds on n, Landmark, No Chirality Exploration with Termination in time O(n log(n))

Figure 1: Results for FSYNC model

Model N. Agents Assumptions Exploration and Termination

(NS) Any Non-Anonymous Ring, Known n Exploration impossible (Th. 8)

(PT)
2

Known n Exploration impossible (Th. 9)
Known Upper Bound N , Chirality Exploration with Termination of one agent in

moves O(N2); Lower Bound of Ω(nN) moves (Th.
11)

3 Known Upper Bound N , No Chirality Exploration with Termination of one agent in
moves O(N2)

(ET)
Any Known upper bound N , Non-Anonymous Ring,

Chirality
Exploration with Termination impossible (Th.
14)

3 Known ring size, No Chirality Exploration with Termination of one agent (Sec.
4.2)

Figure 2: Results for SSYNC models

(e.g., [28]) but has never been studied before for agents moving in graphs. Our main focus is on the impact
that the level of synchrony as well as other factors such as knowledge of the size of the ring, chirality ((i.e.,
common sense of orientation), anonymity, and communication, have on the solvability of the problem.

– We first concentrate on fully synchronous systems (FSYNC) examining solvability of the exploration
problem with two agents (after showing that it is unsolvable with one).

For anonymous rings, we establish a computational separation between exploration with termination and
perpetual exploration. More precisely, we prove that perpetual exploration is possible with two agents, even
without knowledge of the ring size, chirality and communication. By contrast, we show that exploration with
termination is impossible without knowledge of (an upperbound on) the ring size; this holds even if the agents
have unique IDs and can communicate when they meet at the same node. We conclude by showing that
knowledge of an upperbound on the ring size is actually sufficient for two agents to explore with termination.

For non-anonymous rings, we show that the presence of a single observably different node (landmark)
allows two agents to solve the exploration problem with global termination without the need of any additional
information.

– We then examine semi-synchronous systems (SSYNC), distinguishing among different transportation
models (described in details later in the paper) depending on what happens to an agent a waiting to traverse
a missing link e, if the agent is inactive when e appears.

If a is not allowed to move (No Simultaneity Model - NS), exploration is impossible with any number
of agents, even with exact knowledge of the ring size, nodes with distinct IDs, agents with communication
ability and common chirality. If a is not allowed to move, but is guaranteed to be eventually active at a
round when the edge is present (Eventual Transport Model - ET)), exploration with global termination is
impossible, with any number of agents, even if an upperbound on the ring size is known, nodes have distinct
IDs, agents communicate and agree on chirality. On the other hand, with exact knowledge of the ring size,
we prove that exploration is possible with three agents even without chirality or communication, and with a
stronger termination condition than perpetual exploration: at least one of the agent terminates within finite
time. Finally, if a is passively transported on e agents it appear (Passive Transport Model - (PT)), we show
that, without chirality, two anonymous robots with finite memory are not sufficient to explore the ring; the
result holds even if there is a distinguished landmark node and the exact network size is known. On the other
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hand, with chirality, two agents with a known upperbound on the ring size can perform the exploration.
All the sufficiency proofs are constructive. A summary of the results is shown in Figures 1 and 2.

2 Model and Basic Limitations

2.1 Model and Terminology

Let R = (v0, . . . vn−1) be a discrete time-varying graph that is never disconnected and whose footprint is a
ring; in other words, R is a synchronous ring where, at any time step t ∈ N , one of its edges might not be
present. Such a dynamic network is known in the literature as a 1-interval connected ring.

The ring is anonymous, that is the nodes have no distinguishable identifiers. Each node vi is connected to
its two neighbours vi−1 and vi+1 via distinctly labeled ports qi− and qi+, respectively (all operations on the
indices are modulo n); the labeling of the ports may not be globally consistent and thus might not provide
an orientation.

Operating in R is a set A = {a0, . . . , am−1} of agents, each provided with memory and computational
capabilities. The agents are anonymous and all execute the same protocol. Any number of agents can reside
at a node at the same time. Initially located at arbitrary nodes, they do not have any explicit communication
mechanism, nor can leave marks on the nodes. The agents are mobile, that is they can move from node to
neighboring node. To move, an agent has to position itself on the port from which it wants to leave and
access to a port is done in mutual exclusion: at every time step, on each port there is at most one agent.

Each agent aj has a consistent private orientation of the ring; that is, it has a function λj which designates
each port either left or right and λj(qi−) = λj(qk−), for all 0 ≤ i, k < n. The orientation of the agents might
not be the same. If all agents agree on the orientation, we say that there is chirality.

The system operates in synchronous time steps, called rounds. Initially, all agents are inactive. Each time
step t ∈ N starts with a non-empty subset A(t) ⊆ A of the agents becoming active. Upon activation, agent
aj ∈ A(t) at node vi performs a sequence of operations: Look, Compute, and (possibly) Move.

• Look: The agent determines its own position within the node (i.e., whether or not is on a port, and if
so on which one), and the position of the other agents (if any) at that node. We call this information a
snapshot. Let myPos ∈ {left, right, nil} indicate the position of aj .

• Compute: Based on the snapshot and the content of its local memory, the agent executes its protocol
(the same for all agents) to determine whether or not to move and, if so, in what direction; the result will
be direction ∈ {left, righ, nil}, where left and right are with respect to its own local orientation. If
myPos ∈ {left, right} and direction 6= myPos, the agent leaves the port. Then, if direction = nil, the
agent becomes inactive. If direction 6= nil, aj attempts to access the appropriate port (if not already
there); if it gains access, it positions itself on the port, otherwise it sets private variable moved = false
and becomes inactive.

• Move: Let the agent be positioned on port qi− (resp., qi+) after computing. If the link between vi and
vi−1 (resp., vi+1) is present in this round, then agent aj will move to vi−1 (resp., vi+1), reach it, set
private variable moved = true, and become inactive. If the link between vi and vi−1 (resp., vi+1) is not
present, then agent aj will remain in the port, set moved = false, and become inactive. In either case,
access to port qi− (resp., qi+) continues to be denied to any other requesting agent during this round.

By definition, the delays are such that all active agents have become inactive by the end of round t; the
system then starts the new round t+ 1.

Notice that, since access to a port is in mutual exclusion, in the same round at most one agent will move
in each direction on the same edge. Also note that two agents moving in opposite directions on the same
edge in the same round might not be able to detect each other.

A major computational factor is the nature of the activation schedule of the agents. If A(t) = A for
all t ∈ N , that is all agents are activated at every time step, the system is said to be fully synchronous
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(FSYNC). Otherwise the system is said to be semi-synchronous (SSYNC); the agents that are not activated
in a round are said to be sleeping in that round; every agent is activated infinitely often.

Observe that in SSYNC it is possible for an agent to be sleeping on a port. This is indeed the case when
an agent a gains access to a port q when the link is not there (thus, it remains on q), and a is not activated
in the next round. What may happen to an agent sleeping on a port gives raise to different models, described
in the following in a decreasing order of computational power (for the agents):

• Passive Transport (PT): If an agent is sleeping on a port at round t and the corresponding edge is
present in that round, the agent is moved to the other endpoint of the edge in round t.

• Eventual Transport (ET): A sleeping agent cannot move. If an agent is sleeping on a port at round t
and it does not exists a t′ > t such that the corresponding edge is missing for any round t′ > t, then
the agent will eventually become active at a round t′′ > t when the corresponding edge is present
(simultaneity condition).

• No Simultaneity (NS): A sleeping agent cannot move. There is no guarantee of simultaneity for an
agent sleeping on a port.

2.2 Basic Limitations

We begin our study by showing simple impossibility results. It is interesting to notice that, without some
knowledge of the size of the ring, or without the asymmetry introduced by a landmark node, exploration
with termination is impossible even in the fully synchronous model, even if the agents have distinct IDs and
are equipped with face to face communication.

Observation 1. The adversary can prevent an agent from leaving the initial node v0, by always removing
the edge over which the agent wants to leave v0.

From this Observation, we immediately get:

Corollary 1. A single agent is not able explore the ring.

Hence at least two agents are needed. In case the two agents start from different locations, obviously they
can only meet by arriving simultaneously at the same node or by one reaching the other while it is still. The
adversary can prevent both occasions from occurring by removing the appropriate edge. That is,

Observation 2. The adversary can prevent two agents starting at different locations from meeting each
other, even if they have unlimited memory, unlimited communication capabilities, and know each other’s ID.

Since the ring is anonymous, if its size is unknown, the only way to detect the termination of exploration
is to meet at least once. Hence, Observation 2 yields:

Theorem 1. There does not exist an explicitly terminating deterministic exploration algorithm of anonymous
rings of unknown size by two agents with unique IDs.

3 Ring Exploration in FSYNC
We consider exploration when the system is fully synchronous, presenting and analyzing protocols that solve
the problem under different assumptions on knowledge of the ring size, anonimity of the nodes, and presence
of chirality. All these solutions do not require the agents to be able to communicate explicitly.

Our algorithms use as a building block procedure Explore (dir | p1 : s1; p2 : s2; . . . ; pk : sk), where dir
is either left or right , pi is a predicate, and si is a state. In Procedure Explore, the agent performs Look,
then evaluates the predicates p1, . . . , pk in order; As soon as a predicate is satisfied, say pi, the procedure
exits and the agent does a transition to the specified state, say si. If no predicate is satisfied, the agent tries
to Move in the specified direction dir and the procedure is executed again in the next round.

Furthermore, the following variables are maintained by the algorithms:
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• Ttime, Tsteps: the total number of rounds and the successful moves, respectively, since the beginning
of the execution of the algorithm.

• Etime, Esteps: the total number of rounds and the successful moves, respectively, since procedure
Explore has been called.

• Btime: the number of consecutive rounds the agent has been currently waiting in a queue.

In particular, the following predicates are used:

• meeting : both agents are in the node, having performed successful move.

• catches: the agent is in the node after a successful move, the other agent is observed on a port (in your
moving direction).

• catched: the agent is on the port after a failed move, the other agent is observed in the node.

Observe that, in a synchronous system, when predicate catches holds for an agent then catched holds for
the other agent. In the following, we says that the agents catch each other if those predicates hold.

3.1 Known Upper Bound on Ring Size

In this section we study the simple case of exploring the ring when the agents know an upper-bound N ≥ n
on the ring size. We first show how to solve the problem when the agents agree on the ring chirality; we then
show how the two agents can explore the ring even if no such agreement exists, albeit with a higher time
complexity.

3.1.1 With Chirality

If the agents agree on chirality (i.e., on left/right orientation), then they can explore the ring and terminate,
even if they are anonymous. The algorithm is fairly simple: Upon wake-up, an agent explores to the left until
it crosses N edges, or 3N time steps elapsed since the start, or it catches up with the other agent. In the
first two cases, the agent terminates. In the latter case, it continues the exploration changing direction, and
terminates at time 3N .

States: {Init (initial state), Bounce (change direction), Terminate}.
In state Init:

Explore(left | Ttime ≥ 3N ∨ Tsteps ≥ N : Terminate; catches: Bounce)
In state Bounce:

Explore(right | Ttime ≥ 3N : Terminate)

Figure 3: Algorithm KnownNWithChirality

Theorem 2. Algorithm KnownNWithChirality allows two anonymous agents with chirality to explore a
1-interval connected ring and to terminate in time 3N , where N is a known upper-bound on the ring size.

Proof. Termination follows by construction since in all calls to Explore a Ttime ≥ 3N threshold is specified
for termination. It remains to show that at the moment of termination the ring has been explored.

Assume the contrary. If an agent terminates due to the Tsteps threshold being reached, this agent has
explored the whole ring. Observe that (by chirality and construction) in each round either at least one agent
makes progress, or both agents are waiting on the same edge at the opposite endpoints. Note that the latter
case means that the ring has been explored. Hence, at time 3N , the total number of moves by the two agents
is at least 3N ; since only one of them can reverse direction, at least one of them has traveled N edges in one
direction, exploring the ring completely.

6



3.1.2 Without Chirality

Also without chirality, the problem is solvable (with a slightly higher complexity). Note that left and right
now refer to the local orientation of an individual agent.

States: {Init, Bounce, , Forward, Terminate}.
In state Init:

Explore(left | Ttime ≥ 5N : Terminate; Btime = N : Bounce; catches: Bounce; catched: Forward)
In state Bounce:

Explore(right | Ttime ≥ 5N : Terminate)
In state Forward:

Explore(left | Ttime ≥ 5N : Terminate)

Figure 4: Algorithm KnownNNoChirality

Theorem 3. Algorithm KnownNNoChirality allows two anonymous agents without chirality to explore a
1-interval connected ring and to terminate in time 5N − 7, where N is a known upper-bound on the ring size.

Proof. As in Theorem 2, it is sufficient to show that the ring has been explored in the case that both agents
terminate when Ttime = 5N − 7.

First observe that each agent changes direction at most once. This means, that, if the number of moves
by both agents is at least 4N − 7, at least one of them has made N − 1 moves in one direction and has fully
explored the ring. Next, note that the only rounds when no agent makes a move is when they are both
waiting on the same edge at the opposite endpoints. However, as long as the ring has not been explored, this
can happen only once (when they first approach each other from opposite directions), and for at most N
consecutive rounds. Should they be both waiting on the same for a second time, the ring has been already
been explored. Hence, exploration is guaranteed after 5N − 7 rounds.

3.2 No Bounds On Ring Size

We now consider exploring the ring when no upper-bound on its size is available to the agents. Under this
condition, by Theorem 1, it is impossible for two agents to explore an anonymous ring with termination, even
if the agents have unique IDs. Hence, for exploration to occur, either termination must not be required or
the ring must not be anonymous. In the following we consider precisely those two cases. We first show how
perpetual exploration can be performed without any other condition even if the agents are anonymous. We
then consider a ring in which there is a special node, called landmark, different from the others and visible to
the agents; we prove that exploration can be performed with termination, even if the agents are anonymous,
in time O(n) if there is chirality, O(n log n) otherwise.

3.2.1 Perpetual Exploration

We present a protocol, PerpetualExploration, that allows two anonymous agents to perform perpetual
exploration without knowing any bound on the ring size. The basic idea of the algorithm is for each agent to
guess the size of the ring with an initial estimate and move in one direction for a time equal to twice the
estimate; the agent will then double the size estimate, change direction, and repeat this process with the new
guess.

7



States: {Init, Bounce, Reverse, Forward, Terminate}.
In state Init:

N ← 2, dir ← left
Explore(dir; Etime ≥ 2N : Reverse, catches: Bounce, catched:Forward)

In state Reverse:
N ← 2 ∗N , dir ← opposite(dir)
Explore(dir; Etime ≥ 2N : Reverse, catches: Bounce, catched:Forward)

In state Bounce:
Explore(opposite(dir))

In state Forward:
Explore(dir)

Figure 5: Algorithm PerpetualExploration

Theorem 4. Algorithm PerpetualExploration allows two anonymous agents without chirality to explore
a 1-interval connected ring in O(n) time (but never explicitly terminates).

Proof. If the agents catch each other, then they start moving in opposite directions and, in the subsequent
n− 1 moves, (unknown to them) they will explore the whole ring. Consider now the case when the agents
never catch each other. Since N is always doubled after 2N time steps, at time tn ≤ 4n, N ≥ n. If, at that
time, the agents are moving in the same direction, since they do not catch each other and in each time step at
least one of them makes progress, in the next 2N time steps they will explore the ring. If, at that time, the
agents are moving in opposite directions, they will either explore the ring, or get blocked on the same edge. In
the latter case, they reverse direction at time tn + 2N and the ring is explored by time tn + 3N ∈ O(n).

3.2.2 Landmark and Chirality

Consider a ring with a special node v∗, called landmark, identifiable by the agents. When performing a Look
operation at some node v, a flag IsLandmark is set to true if and only if v = v∗. In this subsection we
assume chirality, but no other additional knowledge. We show that two anonymous agents can explore the
ring and terminate.

The basic idea is to explore the ring using the landmark to compute the size and allow termination. In
order to coordinate termination, the agents implicitly “communicate” when they catch each other (by waiting
at the node if not sure whether to terminate, and by leaving it if they already know that the ring is explored).
When the agents catch each other for the first time, they break symmetry and assume different roles. We
assign to them logical names: F for the agent being caught, and B for the one that caught F . These names
do not change afterwards, even though it is possible for F to catch B later on.

Procedure LExplore is very similar to Explore with the following additions:

• Each agent keeps track of whether it is crossing the landmark and in which direction; furthermore,
it tracks its distance from the landmark (since encountering it for the first time). In this way, it can
detect whether it made a full loop around the ring. When it does so for the first time, variable n is set
to the ring size (n is initialized to infinity, all the tests using it while it has this initial value will fail).

• An additional variable Ntime is maintained, tracking the total number of rounds since the agent learned
n.

The complete pseudocode is shown in Figure 6. Both agent start going left. If they never meet, they
terminate (see Lemma 1). If they catch each other, the naming is done. After naming, agent F keeps going
left. Agent B moves right until either it completes a loop of the ring or it is blocked for a number of rounds
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States: {Init, Bounce, Return, Forward, Terminate, BComm, FComm}.
In state Init:

LExplore(left | Ntime > 2n: Terminate; catches: Bounce; catched: Forward)
In state Bounce:

LExplore(right | meeting: Terminate; Etime > 2Esteps ∨Ntime > 0: Return)
In state Return:

bounceSteps← Esteps
LExplore(left | Ntime > 3n ∨ catched: Terminate; catches: BComm)

In state Forward:
LExplore(left | Ntime > 5n ∨meeting ∨ catches: Terminate; catched: FComm)

In state BComm:
returnSteps← Esteps
if returnSteps ≤ 2 ∗ bounceSteps then . both must have waited on the same edge

Move (right) . signal the need to terminate
Terminate in the next round

else
Stay for one round in the node
if agent F is in the node then . agent F waited to learn whether to terminate

change state to Bounce and process it (in the same round)
else . agent F left, or tried to leave and is on the port – signalling to terminate

Terminate
In state FComm:

if you know that the ring is explored (n is known) then
Move (left) . signal to B that F knows n
Terminate in the next round

else
Move from the port to the node . i.e. staying at the same node
if agent B is in the node then . this happens next round

Change state to Forward and process it (in the same round)
else . B has left or is on the port

Terminate

Figure 6: Algorithm LandmarkWithChirality

equal to twice the number of edges it has traversed so farm, i.e. predicate Etime > 2Esteps. When one of
these conditions is satisfied, agent B goes left, and it tries to catch up with F .

If they catch up and F has done less than Esteps steps to the left from its old position, then B and F
have waited on the same edge, and hence the ring has been explored; B can detect this, and it “communicates”
the end of exploration to F .

If they do not catch up, for a certain number of rounds, then they will both know that the ring is explored
and they can terminate independently (see Lemma 2).

If they catch up but F has done at least Esteps steps to the left from its old position (B can detect this),
and they both keep executing the algorithm. Note, that F has made progress towards completing a ring loop,
a condition that can be detected because of the landmark. Should such event occur then both F and B will
eventually terminate.

Lemma 1. In Algorithm LandmarkWithChirality, if the agents do not catch each other and stay in the
Init state, then they will explore the ring and terminate by round 7n− 2.

Proof. As the agents are moving in the same direction, but they start from different nodes, in each round at
least one of them makes progress. Since they do not catch each other, the difference between the number of
successful moves by the agents is at most n− 1. Therefore, if by round 5n− 2 no agent has terminated, then
both agents have crossed at least 2n − 1 edges and hence both know n. By construction, in a further 2n
steps, the agents will terminate. If an agent has terminated at round r < 5n− 2, this means that at time
r − 2n this agent knew n, i.e. it has entered the landmark for the second time. As the agents did not catch
each other, the other agent must have already entered the landmark. Since in the subsequent 2n steps the
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agents do not catch each other and together made progress at least 2n times, by round r the other agent will
enter the landmark for the second time, and by round r + 2n it will terminate as well.

Lemma 2. In Algorithm LandmarkWithChirality, if an agent terminates, then the ring has been explored
and the other agent will terminate as well.

Proof. We show the lemma by case analysis on how the agents terminate. According to the algorithm, both
agents terminate at the same time in only the four cases considered below; when this happens the ring has
been explored:

• Agent F , in state Forward, catches agent B in state Return at node w: Consider the node v where B
catched F and changed state to Bounce the last time. The counter-clockwise segment from v to w has
been explored by F , that never changed its direction. Consider now the node z where B changed state
to Return the last time; it is not difficult to see that z must be in the counter-clockwise segment from v
to w; this in turn implies that B has explored the clockwise segment from v to w. Thus the entire ring
has been explored.

• The agents moving in opposite direction meet at a node: The entire ring has clearly been explored.

• Agent F knowing n and signals B to terminate: By construction.

• Agent B signals F to terminate: According to the algorithm when this occurs either B knows n,
or returnSteps < 2 ∗ bounceSteps. If B knows n the lemma trivially holds. Consider the second
condition. When agent B changes its direction, it has been blocked (not necessarily on the same edge)
at least bounceSteps times. Satisfying the test returnSteps < 2 ∗ bounceSteps means F has either
made progress of less then bounceSteps, or it has made one or more whole loops and then less than
bounceSteps. In the first case F has been blocked during one of the rounds when B has been blocked;
this can only happen if they had been blocked on the same edge, i.e. the ring has been explored. In the
latter case, the ring has obviously been explored.

Consider now the cases when one agent terminates first (the case of agents never meeting is handled by
Lemma 1):

• Agent B terminates due to timeout Ntime ≥ 3n: As the agents are moving in the same direction,
the number of successful moves differs by at most n− 1. Since in each time step at least one of them
advances, in less than 3n time steps from the moment when B learned n, F will also learn n and
eventually terminate.

• Agent F terminates due to timeout Ntime ≥ 5n: Since the agents did not cross each other (satisfying
the meeting predicate), at most 2n−1 time units from the moment when F learned n, agent B switches
to state Return. Now the analogous argument as in the previous case applies, and agent B will learn n
with at most 3n additional steps, and eventually terminate.

Theorem 5. Algorithm LandmarkWithChirality allows two anonymous agents with chirality to explore
a 1-interval connected ring with a landmark and to terminate in O(n) time.

Proof. If the agents do not catch each other, the proof follows from Lemma 1. Consider now the case that
the agents catch each other at least once. Also by Lemma 1, we know that the meeting will happen no later
than in round 7n− 3. The crucial observation is that, either the time between two consecutive meetings is
linear in the progress made by agent F , or the agents terminate following the catch.

Let pT imei denote the time between i-th and i+ 1-th catch and let
forwardStepsi be the progress made in that time by agent F . We have:

returnStepsi = bounceStepsi + forwardsStepsi
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Furthermore,
pT imei ≤ 2 ∗ bounceStepsi + returnStepsi + forwardStepsi

Substituting returnSteps into the latter yields

pT imei ≤ 3 ∗ bounceStepsi + 2 ∗ forwardStepsi
If the agents do not terminate after this catch, it must be forwardStepsi > bounceStepsi, hence pT imei ≤
5 ∗ forwardStepsi. This means that by time 5n at the latest since the first catch, agent F will know n and
will terminate in 5n further rounds (if it does not terminate earlier due to some other terminating condition).
The correctness now follows from Lemma 2.

3.2.3 Landmark without Chirality

We first consider and solve the problem when both agents start from the landmark; we then adapt the
algorithm to work when agents start in arbitrary positions.

Starting from the Landmark The pseudocode of Algorithm StartFromLandmarkNoChirality is
in Figure 7. The main difficulty lies in the case when the agents start in opposite directions and never break
the symmetry. Our approach to solve this case is to add an initial phase in which the agents use the event of
waiting on a missing edge to break symmetry, obtain different IDs (of size O(log n)) and then use these IDs
to ensure that, if the agents do not catch each other (or outright explore the ring), then they eventually move
in the same direction for a sufficiently long time so that Algorithm LandmarkWithChirality succeeds.

Let us remark that if the agents somehow catch each other, they establish chirality, and then they can
use Algorithm LandmarkWithChirality which leads to exploration and termination. Therefore, if at
any point the agents catch each other, they enter states Forward and Bounce and proceed with Algorithm
LandmarkWithChirality.

Computing the ID: Each agent tries to compute its ID according to the procedure described below. If an
agent does not succeed in computing its ID then it has explored the ring and it is aware of that.

If an agent does not know the ring size, the first two times it enters in a waiting queue, it immediately
changes direction. Let r1 and r2 be the rounds when this occurs. Let r3 be te time when it entered the
landmark for the first time between times r1 and r2 (0 if it did not enter it at that time interval).

The computed ID of this agent consists of the interleaved bits of the numerical indices of rounds r1, r2
and r3.

Note that two IDs are equal if and only if their ri’s are equal (the same is not necessarily true if we
constructed the IDs by concatenation).

Moreover, notice that if a round r1 or r2 does not exist, because the agent encountered a missing edge
less than two times, then that agent has looped around the landmark; in this case it enters in the Happy
State (c.f. pseudocode). So it knows the ring size and it can compute an upper bound on termination time of
the other agent.

Using the IDs to decide the direction: The following procedure is used when an agent has computed its ID.
Agents agree on a predetermined subdivision of rounds in phases. Round r belongs to phase j, r ∈ phase(j),
iff r ∈ (

∑j−1
i=0 2i,

∑j−1
i=0 2i + 2j ]. Given the ID, an agent computes a string of bits S(ID) = 10 ◦ (b(ID)) ◦ 0,

where ◦ is the string concatenation and b(ID) is the minimal binary representation of ID. Given a string S we

use (S)i to denote the i− th character of S. Let us define as j the minimum value for which 2j ≥ len(S(ID))

and S(ID) = (0)2
j−len(S(ID)) ◦ S(ID) hold, where len(S) is the lenght of the string S. For each phase j ≥ j

we associate the binary string d(ID, j) = Dup(S(ID), 2(j−j)), where Dup(S, k) is the string obtained from S
by repeating each character k times, e.g. Dup(1010, 2) = 11001100. For each round r ∈ phase(j), with j > j,
the direction of the agent is equal to left if (d(ID, j))r−(

∑j−1
i=0 2i+1) = 0, otherwise it is right.

In our algorithm this procedure is implemented using three functions:

• set(ID): This function takes as parameter the ID of the agent, and it initializes the aforementioned
procedure.
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States: {InitL, Happy, FirstBlockL, AtLandmarkL, Ready, Reverse, Bounce, Return, Forward, Terminate, BComm, FComm}.
In state InitL:

dir ← left, r1 ← 0, r2 ← 0, r3 ← 0
LExplore(dir | n is known: Happy; Btime ≥ 0: FirstBlockL; catches: Bounce, catched: Forward)

In state Happy:
LExplore(dir | Ttime ≥ 32((3dlog(n)e+ 3)5 · n) + 1: Terminate; catches: Bounce; catched: Forward)

In state FirstBlockL:
dir ← right, r1 ← Ttime
LExplore(dir | n is known: Happy, isLandmark: AtLandmarkL; Btime ≥ 0: Ready; catches: Bounce catched:

Forward)
In state AtLandmarkL:

r3 ← Etime
if both agents are at the landmark then

Wait one round
if both agents are at the landmark then

Terminate
LExplore(dir | n is known: Happy, Btime ≥ 0: Ready; catches: Bounce; catched: Forward)

In state Ready:
r2 ← Ttime−max(r1, r3)
Compute your ID by interleaving bits of r1, r2 and r3.
set(ID)
Change to state Reverse and process it

In state Reverse:
dir ←direction(Ttime)
if n is known then

LExplore(dir | Ttime ≥ 32((3dlog(n)e+ 3)5 · n): Terminate; catches: Bounce; catched: Forward)
else

LExplore(dir | switch(Ttime): Reverse; catches: Bounce; catched: Forward)

In state Bounce, Return, Forward, BComm, FComm:
The same as in Algorithm LandmarkWithChirality.

Figure 7: Algorithm StartFromLandmarkNoChirality

1    1     0   0   1     1   0     0  
Phases: 1 2 3 4

1    0    1    00   0
0
0

Rounds:
Direction:

1 2 3 4 5 6 7 ......

......

Figure 8: Directions for an agent with ID = 1 , a round with value 0/1 corresponds to left/right direction
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• direction(Ttime): This function takes as parameter the current round and it returns the direction
according to the aforementioned procedure.

• switch(Ttime): This function takes as parameter the current round and it returns true if direction(Ttime) 6=
direction(Ttime− 1).

Lemma 3. Let us consider two agents with different IDs:{ID, ID′}, with len(ID) ≥ len(ID′). For any
constant c > 0, by round r < 32((len(ID) + 3)c · n) + 1 there has been a sequence of c · n rounds in which the
agents had the same direction. Moreover, by round r, each agent has moved in both directions for a sequence
of rounds of length at least c · n.

Proof. By definition j = dlog(len(ID) + 3)e. Phase j starts at round r < 2log(len(ID)+3)+2 < 4(len(ID) + 3).
Now let us consider d(ID, j) and d(ID′, j). We now show that there exist two indices x, y such that

(d(ID, j))x 6= (d(ID′, j))x and (d(ID, j))y = (d(ID′, j))y. It is easy to verify that y = len(d(ID, j)), by
construction since d(.) always terminate with 0. For the index x we consider two cases:

• ds(ID′, j) = S(ID′): If len(S(ID)) > len(S(ID′)) then x is the index of the first non zero bit of
ds(ID, j). Otherwise, if len(S(ID)) = len(S(ID′)) in this case by assumption ID 6= ID′ therefore
index x exists.

• ds(ID′, j) 6= S(ID′): by construction, ds(ID
′, j) is composed by sequences of equal bits of length at

least 2. Also by construction, the first 3 bits of S(ID) are equal to 101. This means that the substring
101 cannot be contained in ds(ID

′, j), and it is contained in ds(ID, j); this implies that index x exists.

If the agents agree on the direction, they will have the same direction in the round corresponding to index y,
otherwise they will have the same direction in the round corresponding to index x.

In phase j > j, by construction, we have a sequence of rounds where agents have the same direction of
length at least 2j−j . We have 2j−j > c ·n when j > log(len(ID) + 3) + log(c ·n) + 3. We reach the end round

of this phase by r =
∑log(len(ID)+3)+log(c·n)+4

i=0 2i ≤ 32((len(ID) + 3)c · n). The last statement of the lemma
derives directly by the presence of 1 and 0 in each possible S(ID).

Theorem 6. Algorithm StartFromLandmarkNoChirality allows two anonymous agents starting from
the landmark without chirality to explore a 1-interval connected ring with a landmark and to terminate in
O(n log(n)) time.

Proof. First note that if the agents catch each other, by the proof of Theorem 5, they will explore the ring
and terminate in O(n) time since the moment they catch. Hence, in the remainder of the proof we deal with
the case when the agents never catch each other.

Second, if the agents meet at the landmark and terminate from state AtLandmark, they must have bounced
from the same edge and the ring has been explored; this is because they started from the landmark and
returned at the same time while both were blocked exactly once.

Third, observe that, by time 2n+ 1, either an agent knows n (and terminates in O(n log(n)) time from
Happy state, or it knows its own ID. Note that IDs are bound from above by n3, since each ri is at most n,
which implies len(ID) ≤ 3dlog(n)e.

Consider now the case that at time 2n+ 1 an agent (say a) does not know its ID (and hence since time
2n+ 1 knows n), while the other (b) knows its ID but does not know n. Agent b therefore repeatedly switches
its direction in state Reverse, while agent a moves in the same direction. Note that by Lemma 3, by time
32((3dlog(n)e+ 3)5 · n) + 1, agent b has moved to the left and right direction for a sequence of rounds of
length at least 5n, in one of the two both a and b move in the same direction. As at least one agent makes
progress in each of those time steps, while (by assumption) they don’t catch each other, b must have moved
for at least 2n time units. This means that b learns n and eventually terminates as well.

The final case to consider is when both agents know their IDs, but do not know n. Note that if the agents
have the same values of r1 and r2, they must have covered the whole ring and at least one of them will have
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States: {Init, AtLandmark, FirstBlock, FirstBlockL, AtLandmarkL, Ready, Reverse, Bounce, Return, Forward, Terminate,
BComm, FComm}.
In state Init:

dir ← left, r1 ← 0, r2 ← 0, r3 ← 0
LExplore(dir | n is known: Happy; Btime ≥ 0: FirstBlock; catches: Bounce; catched: Forward)

In state FirstBlock:
dir ← right, r1 ← Ttime
LExplore(dir | n is known: Happy; isLandmark: AtLandmark; Btime ≥ 0: Ready; catches: Bounce; catched:

Forward)
In state AtLandmark:

if both agents are at the landmark then
r1 ← 0, r2 ← 0, r3 ← 0, Ttime← 0
LExplore(dir | n is known: Happy, Btime ≥ 0: FirstBlock; catches: Bounce; catched: Forward)

else
r3 ← Etime
LExplore(dir | n is known: Happy; Btime ≥ 0: Ready; catches: Bounce; catched: Forward)

In state S 6∈ {Init, FirstBlock, AtLandmark}:
The same as in Algorithm StartAtLandmarkNoChirality.

Figure 9: Algorithm LandmarkNoChirality

r3 6= 0. This means that the agents necessarily have different IDs, since if they had the same values of r1 and
r3 6= 0, they would have terminated in AtLandmark state.

Since the IDs are different, by Lemma 3, by round 32((3dlog(n)e + 3)5 · n) + 1 there has been a time
segment of length 5n in which both agents were moving in the same direction. Thus, either they catch each
other, or both learnt n and terminated thereafter.

Arbitrary initial positions Algorithm StartAtLandmarkNoChirality almost works also in the case
of agents starting in arbitrary position. The only failure would be due to the fact that, when the agents meet
in the landmark while establishing r1 and r2, it does not necessarily mean that they have already explored
the ring. The modification to introduce is not to terminate in this case, but to reset and start a new instance
in state InitL, executing algorithm StartAtLandmarkNoChirality, as now the agents are indeed starting
at the landmark. If the agents do not meet at the landmark, then their values of r3 are different and the
algorithm works using the same arguments. The complete pseudocode is in Figure 9. Since this adds at most
O(n) to the overall time, we obtain the following theorem.

Theorem 7. Algorithm LandmarkNoChirality allows two anonymous agents starting in any initial
position and without chirality to explore a 1-interval connected ring with a landmark and to terminate in
O(n log(n)) time.

4 Ring exploration in SSYNC
In this section we investigate the exploration problem when the system is semi-synchronous. The complexity
measure we consider in this case is the total number of edges traversed by the agents. Let us begin by showing
an intuitive result for the weak NS model:

Theorem 8. In the NS model, exploring the ring is impossible with any number of agents, regardless of their
computational capabilities and the orientation of the ring.

Proof. (sketch) Let us consider a ring where all agents start in node v0. Initially, the adversary removes the
“right” edge leading to v−1 and pauses all the agents that, if active, would have moved there. So no agent
leaves v0 in the first round. In the next round, the adversary pauses the agents that (if active) would move
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left and removes the right edge. By continuing this alternating process, the adversary prevents the agents to
explore other nodes besides v0.

Motivated by this impossibility result, we now examine the other SSYNC models.

4.1 Exploration in the PT Model

We begin our investigation of the PT Model by showing that without chirality two agents cannot explore the
ring, even with precise knowledge of the network size and with the presence of a landmark.

To understand this impossibility, consider the behaviour of an agent a, executing a solution algorithm for
a fixed ID and network size, in the following scenario:
Scenario: (i) let u be the starting node of the agent and let u′ be the neighbour of u towards which the
agent initially decided to depart; (ii) whenever a tries to cross an edge different from (u, u′), that edge is
blocked; neither u nor u′ are the landmark, nor does the other agent enter these nodes.

In this scenario, there are two possible behaviours:
- Eventually Fixed Direction: Eventually, the agent decides to wait indefinitely on an edge until it

becomes available
- Perpetual Switching: The agent forever keeps switching direction on blocked edges (with possibly

different timeouts).

Lemma 4. In a ring of at least five nodes, if the algorithms for both agents have Perpetual Switching
behaviour, then the agents cannot explore the ring.

Proof. W.l.o.g. assume that agent a starts at u, going towards u′ and agent b starts at v going towards v′.
The adversary can select u and v in such manner that u, u′, v, v′ and the landmark are all different.

The adversary first makes a active and b passive and lets a travel until it tries to leave {u, u′}. At this
moment, it will block the edge that a is trying to cross until a decides to change direction and enters edge
(u, u′) (possibly from u′). Then, the adversary makes a passive, and activates b. Agent b has been passively
transported to v′ and eventually tries to exit {v, v′}. The adversary blocks the edge via which b tries to exit
until b changes direction and enters (v, v′). At this moment the adversary makes b passive and activates a
(which has passively crossed edge (u, u′) and the initial configuration is repeated. As this can be infinitely
repeated, the agents never manage to exit nodes u, u′, v, v′.

Theorem 9. In the PT model without chirality two anonymous agents with finite memory are not sufficient
to explore a ring. The result holds even if there is a distinguished landmark node and the exact network size
is known to agents.

Proof. W.l.o.g. assume that agent a starts at u, going towards u′ and b starts at v going towards v′. The
adversary can select u and v in such a way that u, u′, v, v′ and the landmark are all different. Since the
agents are anonymous, their algorithms are either both Perpetual Switching, or both Eventually Fixed
Direction. By Lemma 4 in the first case the agents cannot explore the ring; hence it is sufficient to consider
the case of both agents being Eventually Fixed Direction. Let (u∗, u′′), where u∗ ∈ {u, u′} is the edge
on which a would eventually start indefinite waiting if the edges exiting {u, u′} were always blocked, and
let (v∗, v′′) be such an edge for b. Since the agents have no chirality and they never enter u′′ and v′′, the
adversary can choose u, v and an initial orientation of the agents in such a way that u∗ = v′′ and v∗ = u′′.
The adversary starts by making agent b passive and letting agent a be active, but always blocking the edges
leaving {u, u′} until it enters (u, u′) for the last time before starting indefinite wait on (u∗, u′′). Now, it
makes a passive and activates b but always blocking the edges leaving {v, v′} until b starts the indefinite wait
on (v∗, v′′), and now it activates a (b is still active) and blocks edge (u∗, v∗) forever. Since both a and b are
waiting indefinitely, the algorithm will never explore the ring.

As a consequence of Theorem 9, the following algorithms will either use chirality, or will employ three
agents. In the algorithms we present, at least one agent always explicitly terminates, the other agents will
either terminate or will stop moving.
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tSL← 0 . totalStepsLeft
In state Init:

Explore(left | Esteps ≥ N : Terminate, catches: Bounce)
In state Bounce:

if totalStepsLeft = 0 then
tSL←Esteps

else
leftSteps←Esteps
if rightSteps ≥ leftSteps then

Terminate
else

tSL← tSL+ (leftSteps− rightSteps)
if tSL ≥ N then

Terminate
Explore(right | Esteps ≥ N : Terminate, Btime > 0: Reverse)

In state Reverse:
rightSteps←Esteps
Explore(left | Esteps ≥ N : Terminate, catches: Bounce)

Figure 10: Algorithm PTBoundWithChirality

4.1.1 Chirality and Knowledge of an Upper Bound

The algorithm for two agents with chirality and knowledge of an upper bound is given in Figure 10.

Theorem 10. Two agents executing Algorithm PTBoundWithChirality in the PT model with a known
upper bound N on the size of the ring and with chirality will explore the ring using at most O(N2) edge
traversals. Furthermore, one agent explicitly terminates, while the other either terminates or it waits
perpetually on a port.

Proof. First we prove exploration. Note that variable tSL maintains (after the first bounce) the total distance
traveled left from the initial position. Hence, if either Esteps or tSL exceeds N , the ring has been explored.
The only non-trivial case is the termination due to rightSteps ≥ leftSteps] condition.

Note that if agent a stayed at the same place while b bounced off it, reversed direction on a blocked edge
and returned to a, b must have bounced on the same edge on which a had been blocked (otherwise the PT
condition would have ensured passive transport of a). However, in such a case the ring has been explored. If
rightsteps < leftSteps then, since a and b were moving in opposite direction after the last bounce of b, this
could have happened only if a and b crossed each other, i.e. they have explored the ring after the last bounce
of b.

We now have to show that at least one agent terminates. If the adversary keeps an edge perpetually
removed, eventually the algorithm terminates due to condition rightsteps = leftSteps. Moreover, if an agent
is not blocked in its traversal it will eventually do N steps leading to termination. The only possibility that
we need to analyze is if a is blocked on edge e0, b bounces first on edge e0, then on edge ex and, when b
catches on a, it holds that rightSteps < leftSteps. When this happens, both a and b have done at least
one step further to the left. Therefore, reiterating this case we will eventually have tSL > N for one of the
two. If an agent terminates, the other one cannot bounce to the right. Hence, it will either terminate due to
exceeding N left moves, or will be perpetually blocked on a port and the last part of the theorem holds.

Complexity Discussion: Observe that during one Bounce-Reverse phase an agent can do O(N) steps. There
could be at most N of these Bounce-Reverse phases: in each of them the agent has to do an additional step
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left otherwise the termination condition is satisfied. Since the termination check bounds the total number of
left steps by N , this yields O(N2) complexity of Algorithm PTBoundWithChirality.

Theorem 11. Let us consider the PT model with chirality in which two agents know an upper bound N on
the ring size. In any terminating algorithm an agent does at least Ω(N · n) movements.

Proof. Let X denote a continuous set of nodes of size dn/2e containing the initial positions of the agents.
The adversary will block the edges leaving X until the agents try to leave X via the edges on both ends

of X. At that moment, the adversary considers what would the agents do if they found the edge they are
trying to cross blocked indefinitely. If both of them wait indefinitely, the adversary will chose a ring of size
|X| so that both agents wait on the same edge and never terminate (although they have explored the ring).

If one of them (w.l.o.g. a) reverses and crosses to the opposite side of X after a finite number of blocks,
then b will be made passive and a will be active until it crosses to b. Note that this costs O(n) moves and,
when a catches up with b, b has been passively moved. At this moment, X is shifted one position in the
direction of the b’s move, both agents are activated and the process repeats.

Finally, if one agent (w.l.o.g. a) terminates while the total explored size is less then N − 1 (assuming
running on ring of size N), then b will be made passive until a terminates, and then every b’s move will be
blocked, preventing further exploration – the algorithm fails on rings of size N .

Since each cycle costs O(n) and expands the “virtual” (in ring of size N) explored size by 1 (except the
first cycle which explores dn/2e nodes), the total cost is O(Nn).

4.1.2 Landmark with Chirality

The algorithm is essentially a variation of the previous, where an agent terminates also when it loops around
the landmark. The proof follows the same lines of Th. 10.

4.1.3 No Chirality and Knowledge of an Upper Bound

In this case, we employ three agents, two of which will necessarily agree on the direction. The algorithm is
described in Figure 11. An agent always bounces when catching another agent, performing a zig-zag tour. In
doing so, it counts the number of steps it took in each direction, and if these lengths stop increasing (or even
decrease), it terminates. This termination check is done not only when bouncing, but also when encountering
an agent in a node (which might be a passively transported agent).
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d← 0
In state Bounce:

CheckD(Esteps)
Explore(right | Esteps ≥ N : Terminate, meeting : MeetingB, catches: Reverse)

In state Reverse:
if d = 0 then

d←Esteps . Fist time I change state from Bounce to Reverse
else

CheckD(Esteps)

Explore(left | Esteps ≥ N : Terminate, meeting : MeetingR, catches: Bounce)
In state MeetingR:

CheckD(Esteps)
Explore(left | Esteps ≥ N : Terminate, catches: Bounce)

In state MeetingB:
CheckD(Esteps)
Explore(right | Esteps ≥ N : Terminate, catches: Bounce)

In state Init,Bounce:
As in Algorithm PTBoundWithChirality

function CheckD(x)
if d > 0 then

if Esteps ≤ d then
Terminate

else
d←Esteps

Figure 11: Algorithm PTBoundNoChirality

Lemma 5. In Algorithm PTBoundNoChirality, if an agent terminates then the ring has been explored.

Proof. The only non trivial part is the terminating condition [if Esteps ≤ d ] in function CheckD. Let a, b, c
be the tree agents. W.l.o.g we consider the first round after which two agents are going left (a and b), and c is
going right. This has to happen otherwise the agents just keep looping around the ring until one terminates.
Consider the first round r0 in which an agent changed direction on another agent. W.l.o.g. assume b bounced
on a in node x0. Let r be the first round such that c is between a and b (including the position of a and b).
Since a and b were moving in different directions and could not bounce on each other, there was no bounce
between r0 and r. Observe that the area between a and b containing x0 has been explored (let us ignore
in the remainder the area explored by c up to this moment), and from this moment on, there is always the
leftmost agent expanding this area to the left, the rightmost expanding it to the right and the middle agent
traveling between them. Note that the agents can overtake each other (due to passive transport) and change
who is the leftmost/rightmost/middle, however there is always at most one middle one.

Note that as long as the endpoints of the explored area do not cross each other (in which case the ring
has been fully explored), d > Esteps: The check can only be performed on the boundary of the explored area
as in the middle there is only one agent. Condition d ≥ Esteps follows from the fact that d is the length of
the second last crossing and Esteps is the length of the last crossing of this agent. Condition d = Esteps
would mean that the explored area did not meanwhile grow, which, from the PT condition, implies that both
agents on which this agent bounced were blocked on the same edge (otherwise there would have been passive
transport and d would have grown), i.e. the ring is explored.
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Theorem 12. Three anonymous agents performing Algorithm PTBoundNoChirality in the PT model
with a known upper bound on the ring size and no chirality, explore the ring with O(N2) edge traversals. One
agent explicitly terminates, the other either terminates or waits perpetually on a port.

Proof. The correctness of termination derives from Lemma 5. It remains to prove that eventually at least one
agent terminates. Having three agents, at least two will agree on the same direction. We will consider this
direction as global left. It is easy to see that if an edge is perpetually removed, then eventually the agents
terminate: two agents will be positioned at the end point of the missing edge and the third agent terminates
detecting Esteps = d. If an agents is not forced to change direction and the edges are not perpetually
removed, then it will terminate since Esteps > N . Therefore, the adversary has to force the agents to bounce
on each other. But let us notice that, as soon as an agent changes state from Bounce to Reverse, it sets a
distance d; if this distance does not increase at each state change, the agent terminates. This implies that
eventually we will have d > N and termination for Esteps > N .

Complexity Discussion: If an agent does not set d, then it performs at most O(N) steps. If an agent sets
d, its value is at most O(N); there are at most O(N) increases of d, therefore an agent will do at most O(N2)
movements. Since the number of agents is constant, the total sum of movements over all agents is at most
O(N2).

4.2 Exploration in the ET Model

Let us first introduce a simple result on perpetual exploration:

Theorem 13. In the ET model with chirality, two robots are sufficient to explore a ring.

Proof. A trivial perpetual motion adaptation of the Algorithm explained in Section 3.1.1 solves the exploration
in ET.

Given the previous results, a natural question is whether there is an algorithm with at least one agent
terminating, as we have shown for the PT model. Unfortunately the following theorem shows that, without
exact knowledge of the network size, it is impossible to design such an algorithm.

Theorem 14. Let us consider the ET model with chirality where only an upper bound on the ring size is
known. Given any number of agents with finite memory, there does not exist any exploration algorithm where
an agent terminates in a bounded number of rounds, signalling the exploration of the ring. This holds true
even if the ring has a landmark node and/or the agents have distinct IDs.

Proof. Let us consider two different rings R1 and R2 of size n and n′ respectively, where n < n′ < N . On
ring R2 the adversary places all agents between e0 and en and blocks edges e0 and en at distance n from
each other: In rounds where the agents try to enter at most one of e0 and en, the adversary will block that
edge. In the busy rounds where there are agent entering both e0 and en, it will alternate between making
agents waiting on e0 passive and block edge en and making agents waiting on en passive and blocking e0. On
ring R1 the adversary perpetually removes edge e0 and keeps all agents active except in the busy rounds
(agents trying to enter e0 from both directions) where it alternates sides of e0 on which it is making the
agents passive.

Observe that in such a scenario, the agents cannot distinguish between R1 and R2 and either none
terminates, or at least one agent terminates (in which case the adversary will put then in R2).

Note that the above arguments apply also if the agents have distinct IDs. If there is a landmark, it can
be placed anywhere in R1, and in the corresponding place between e0 and en in R2, R1 and R2 will still look
the same to the agents.

4.2.1 Exploration Algorithm for ET

Algorithm ETBoundNoChirality is a direct adaptation of Algorithm PTBoundNoChirality, the only
differences are that N is set to n− 1 (since from Theorem 14 we know the size needs to be known precisely),
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and the inequality check in CheckD becomes strict: (if Esteps < d). As in the PT model, three agents are
employed, with no chirality assumption.

Theorem 15. Three anonymous agents performing Algorithm ETBoundNoChirality in the ET model
with known ring size and no chirality explore the ring, with one agent explicitly terminating and the other
agents either terminating or waiting perpetually on a port.

Proof. Let us first observe that if an agent terminates, then it terminates correctly. The proof follows the
same steps as the one for Lemma 5. The only difference is that in ET the CheckD requires (if Esteps < d),
thus the part of the proof that uses the PT assumption to handle the case Esteps = d is not needed anymore.

What remains to be shown is that eventually at least one agent terminates. We show this by contradiction.
Let us notice that if an edge is perpetually removed, an agent eventually terminates: two agents will be
positioned at the two ports of the missing edge and the other one will do exactly Esteps = n− 1 steps going
from one endpoint node to the others. If an edge is not perpetually removed then, by construction (the
agents bounce only on other agents, not on timeout on blocked edges) and by the ET condition, an agent
that is waiting on the port of that edge will eventually traverse it. Since the agents terminate if they traverse
n− 1 steps in the same direction, the only possibility left to consider is for the adversary to force the agents
to perpetually catch each other, changing directions without increasing the d value. In such a case there is a
round r∗ after which each agent x reaches a certain stable value dx and it always changes position at the
same points lx and rx; furthermore, there exists a round r ≥ r∗ in which two agents go left and one agent
goes right. In the remainder we assume the execution is in round at least r∗.

Let a, b, c be the agents and let Lxy indicate the event: agent x catches agent y at lx (and changes
direction from left to right); the event Rxy is analogous. Let Dxy : D′x′y′ denote the statement that the
event D′x′y′ is the catching event immediately following Dxy.

Note that the Dxy event can only be followed by an Dxz or Dzx events (here and in the remainder, we
implicitly assume x 6= y 6= z), where D ∈ {L,R} and D is the direction opposite to D. This is so because,
after Dxy, agents x and z were moving in the same direction D, y remained moving in direction D, and
only agents that move in the same direction can catch each other. Hence, the possible sequences of direction
changes of a perpetual schedule can be represented by a binary tree rooted at the initial Dxy event (w.l.o.g.
Lab or Lac), with leaves corresponding to agent termination. We call this tree Catch Tree. The assumption
that the algorithm does not terminate implies that there is an infinite path in this tree. In the remainder of
this proof we will show that there is no such path in the Catch Tree.

First, observe that the agents never meet on a node – that would imply at least one of them performing
the termination check somewhere inside its range, immediately terminating. This means that unlike the
case of Algorithm PTBoundNoChirality we do not have to worry about the agents overtaking each other.
(They can still cross each other without noticing when traveling in opposite direction and crossing the same
edge at the same time.)

Consider now a sequence of events Dxy : Dxz : Dxy. This corresponds to x bouncing off y and z while
those remained stationary. From the ET condition and the fact that y and z are waiting on different edges
(otherwise x would detect d = n− 1 and terminate) we know that eventually either y or z makes progress,
hence this sequence cannot repeat indefinitely and eventually a different event must occur. This can be
represented in the Catch Tree by removing the bottom Dxy (and its whole subtree) and adding an arrow
from its parent to the top Dxy (implying that the same configuration repeats).

Let A, B, C be the ranges (sets of nodes an x agent visits between lx and rx) of agents a, b, c, respectively,
and A,B,C be their complements.

Lemma 6. If the algorithm does not terminate, we have ∀X,Y ∈ {A,B,C}, X 6= Y : X ∩ Y = ∅.
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Figure 12: Left: The agent ranges and events for the case Lac : Rba. Right: the case Lac : Rab.

Proof. The proof is by contradiction. Assume w.l.o.g, A, B such that A ∩B 6= ∅. From this and symmetry,
we may assume la /∈ B. This means Lac is the only way for the agent a to change direction while going left.
Consider the possible next event (consult Figure 12, left). It cannot be Rba: for that rb must be in A, which
combined with la /∈ B implies A ⊂ B. Since from the moment of Lac agent a was moving right, starting
outside B and to the left of it, in order to bounce off b it would need to overtake it, which is impossible.

Hence, Lac must be followed by Rab, which in turn might be followed by Lac or Lca. Lac is the cyclic
case which, as has been discussed above, cannot repeat indefinitely and can therefore be ignored. The only
possible case is Lca, which can only happen if C ⊂ A.

Observe the movement of the agents (see Figure 12, right: From Rab on, b is moving right from ra, while
from Lca on, c is moving right from lc. This means that Rbc is impossible, because c would have had to
overtake b. However, Rcb is also impossible as b cannot get into position at rc without changing direction or
crossing B.

From Lemma 6 it remains to consider the case of pairwise disjoint range complements, as shown in
Figure 13.

lara

lbrb

c a

Lac

Rba

b

0 n− 1the ring

rclc

b ac

Figure 13: The case of Lca : Rba for disjoint range complements.

Lemma 7. If the algorithm never terminates, then Lac cannot be immediately followed by Rba.

Proof. After event Lac, we have that c is moving left from la. After event Rba, agent b is moving left from
rb. The next event is either Lbc or Lcb. However, Lbc is impossible, as for c to reach lb without changing
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direction it would have to cross C. Event Lcb is also impossible, because b would have to overtake c to get
into position to be bounces off.

The following corollary is immediately obtained from Lemma 7 by rotation and symmetry:

Corollary 2. If the algorithm never terminates, then the following sequences are forbidden Lac : Rba,
Lba : Rcb, Lcb : Rac, Rbc : Lab, Rca : Lbc, Rab : Lca.

At some point in the perpetual schedule we should have either Lab or Lac. As can be seen in Figure 14,
any branch of a Catch Tree starting from these configuration leads either to a cycle or to a forbidden sequence
of events, leading to a contradiction with the assumption that the algorithm never terminates.

Lab

Rac Rca

Lba Lcb Lbc

Rbc Rcb Rac

Lab

Lac

Rab Rba

Lca

Figure 14: Catch Trees rooted at Lab and Lac. The red edges denote forbidden sequences, while the dashed
ones depict the loops.

Complexity Discussion: Agents may do a finite but unbounded number of moves before termination:
when two agents are blocked going on opposite directions on two different edges, the third agent goes back
and forth between them. In the ET condition there is no bound on the number of rounds in which this
configuration can be kept.

5 Conclusion

In this paper we started the investigation of the distributed exploration problem for 1-interval-connected
dynamic graphs by focusing on rings in fully synchronous and semi-synchrnous environments. We studied the
impact that structural information and knowledge can have on the solvability of the problem. In particular,
we considered such factors as: knowledge of the exact size of the ring or of an upper bound, agreement on
orientation, anonymity.
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