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Abstract. Continuous cellular automata (or coupled map lattices) are cellular automata where the
state of the cells are real values in [0, 1] and the local transition rule is a real function.

The classical observation medium for cellular automata, whether Boolean or continuous, is the
space-time diagram, where successive rows correspond to successive configurations in time.

In this paper we introduce a different way to visualize the evolution of continuous cellular automata
called Radial Representation and we employ it to observe a particular class of continuous cellular
automata called fuzzy cellular automata (FCA), where the local rule is the “fuzzification” of the
disjunctive normal form that describes the local rule of the corresponding Boolean cellular automata.

Our new visualization method reveals interesting dynamics that are not easily observable with the
space-time diagram. In particular, it allows us to detect the quick emergence of spatial correla-
tions among cells and to observe that all circular FCA from random initial configurations appear to
converge towards an asymptotic periodic behavior. We propose an empirical classification of FCA
based on the length of the observed periodic behavior: interestingly, all the minimum periods that
we observe are of lengths one, two, four, or n (where n is the size of a configuration).

Keywords: Continuous Cellular Automata, Fuzzy Cellular Automata, Visualization of dynamics,
Evolution, Asymptotic Behavior.
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1. Introduction

Boolean cellular automata have been introduced by Von Neumann as models of self-organizing and
reproducing behaviors [22]. The study of their properties and their behavior has interested various dis-
ciplines, as diverse as ecology, biology, and theoretical computer science (e.g., [2, 10, 14, 25]). A one
dimensional Boolean cellular automaton (CA) is constituted by a collection of cells arranged in an ar-
ray. Each cell has a state in {0, 1} which changes at successive discrete steps by the iteration of a local
transition function that depends on the states of the “neighbouring” cells. The global evolution of a CA
is defined by the synchronous update of all states according to the local function applied to each cell.
A configuration of the automaton is a description of all cell values at a given time. Cellular automata
can be bi-infinite or finite with defined boundary conditions. A typical boundary condition consists of
“wrapping around” a finite array (circular CA) or fixing a certain initial size for the array and assuming
all the cells beyond the boundaries to be quiescent (zero background).

Continuous cellular automata (or Coupled Map Lattices) are cellular automata where the states of
the cells are real values in [0, 1], and the local transition rule is a real function. They have have been
introduced by Kaneko as simple models with the features of spatiotemporal chaos, and have now appli-
cations in many different areas like fluid dynamics, biology, chemistry, etc. (for the definition of couple
map lattices and their applications see [12, 13, 23]). A particular type of continuous cellular automata are
Fuzzy cellular automata (FCA) where the local transition rule is obtained by “fuzzifying” the disjunctive
normal form that describes the local function of the corresponding Boolean CA 1. In other words, a FCA
can be seen as a continuous generalization of a Boolean CA, where the behavior at the extreme of the
interval [0, 1] is exactly the same as the behavior of the corresponding Boolean CA; vice-versa, a boolean
CA can be considered a discretized version of the corresponding FCA.

Fuzzy cellular automata have been introduced in [3, 4] as a framework for understanding complex
behaviors. They have been employed for studying the impact that perturbations (e.g. noisy sources, com-
putation errors, mutations, etc.) can have on the evolution of Boolean CA (e.g., see [9]), they have also
been studied in relation to pattern recognition (e.g., see [15, 16]) and as a model to generate interesting
images mimicking nature (e.g. [5, 20]). Moreover, dynamical properties of Fuzzy CA rules have been
analytically studied (e.g., in [8, 18, 19]) to understand the relationship with Boolean cellular automata
and the impact of discretization.

The analytical study of these systems is generally complex; as a consequence visualization plays
an important role in the understanding of their dynamics. Space-time diagrams have been traditionally
used to display the dynamics of one dimensional CA: the top-most row corresponding to the initial
configuration at time t = 0 and rows corresponding to configurations at successive time steps (see, for
example the space-time diagram of two FCA in Figure 1). When visualizing the space-time diagram
of continuous CAs, and in particular of FCAs, the interval [0,1] must be discretized, since only a finite
number of states can obviously be represented. The interval is divided in k ranges and each is assigned
a different colour. It has been shown in [8] that this discretization process could mislead the observer by
showing a totally incorrect dynamics. This is the case, for example, of FCA rule 90 where depending on
the parity of k, totally different behaviors are displayed. In fact, if the fixed point (1

2 ) happens to be the
extreme of a range, the diagram shows an alternation between the two different values around the fixed
point; on the other hand, if the fixed point belongs to a range, the diagram shows a quick convergence to
1not to be confused with a variant of cellular automata, also called Fuzzy cellular automata, where the fuzziness refers to the
fuzzy choice of a deterministic local rule (e.g., see [1])
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(a) FCA 18 (Space-Time) (b) FCA 184 (Space-Time)

Figure 1. The first 300 iteration of two Fuzzy Cellular Automata displayed with the space-time diagram.

an homogeneous configuration. There is another aspect of space-time diagrams that could mislead the
observer: colours can show nice patterns, which allow the observer to differentiate between an extremely
simple dynamics and a more complex one: they however do not give insights into the way a converging
rule behaves towards its attractor.

In this paper we propose a new way of visualizing continuous CAs (Radial Representation) and we
show that by observing their dynamics using this representation we can detect properties of their behavior
that were hidden in the space-time diagram. In particular, we observe circular elementary FCA; the radial
representation allows us to discover very quickly spatial correlations between neighbouring cells, which
suggest the main features of the asymptotic behavior of the rule. Based on this new visualization point of
view, we classify their observable behavior. We find that all FCA appear to converge towards asymptotic
periodic behaviors: the only lengths of the periods that we have observed are one, two, four, and n.

The paper is organized as follows: in Section 2 we give definitions and introduce some terminology,
Section 3 briefly outlines some of the existing classifications of cellular automata. In Section 4 we
introduce a new visualization method; in Section 5 we propose a classification based on the lengths of
the periods displayed by the various rules.

2. Notations and Preliminaries

2.1. Definitions

A one dimensional bi-infinite Boolean cellular automaton is a collection of cells arranged in a linear
bi-infinite lattice. Cells have a Boolean values and they synchronously update their values according
to a local rule applied to their neighborhood. A configuration X = (. . . , x−2, x−1, x0, x1, x2, . . .) is a
description of all cell values at a given time. In the case of elementary cellular automata the neighbor-
hood of a cell consists of the cell itself and its left and right neighbours, thus the local rule has the form:
g : {0, 1}3 → {0, 1}. The global dynamics of an elementary one dimensional cellular automata is then
defined by:

B : {0, 1}Z → {0, 1}Z s.t. ∀X ∈ {0, 1}Z,∀i ∈ Z, B(X)i = g(xi−1, xi, xi+1)

A cellular automata is circular if the lattice is finite and the last cell is considered to be neighbour of
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the first. In this case the global function has the following form, where the size of the lattice is n and the
operations on the indices are modulo n:

B : {0, 1}n → {0, 1}n s.t. ∀X ∈ {0, 1}n,∀i ∈ {0, . . . , n− 1}, B(X)i = g(xi−1, xi, xi+1)

In the following we concentrate only on elementary, circular cellular automata. The local rule g :
{0, 1}3 → {0, 1} of an elementary Boolean CA can be also given in tabular form by listing the 8 binary
tuples corresponding to the 8 possible local configurations a cell can detect in its direct neighborhood,
and mapping each tuple to a binary value qi (0 ≤ i ≤ 7):

(000, 001, 010, 011, 100, 101, 110, 111) → (q0, · · · , q7).

The binary representation (q0, · · · , q7) is often converted into the decimal representation
∑

i=1:8 2i−1qi,
and this value is used as the name of the rule. The local rule can also be canonically expressed as a
disjunctive normal form:

g(v1, v2, v3) =
∨

i|qi=1

∧
j=1:3

v
dij

j

where dij is the j-th digit, from left to right, of the binary expression of i, and v0
j (resp. v1

j ) stands
for ¬vj (resp. vj). For example, the canonical expression of rule 18 = 2 + 16, which is expressed
in tabular form as: (000, 001, 010, 011, 100, 101, 110, 111) → (0, 1, 0, 0, 1, 0, 0, 0), is: g(v1, v2, v3) =
(¬v1 ∧ ¬v2 ∧ v3) ∨ (v1 ∧ ¬v2 ∧ ¬v3).

In continuous cellular automaton (also known as Coupled Map Lattices [12]) the states assumed by
the cells are real values in [0, 1] and the local rule is any real function. In the case of one-dimensional,
circular elementary continuous CA the local rule has the form f : [0, 1]3 → [0, 1], and the corresponding
global function is as follows (where the operations on the indices are modulo n):

F : [0, 1]n → [0, 1]n s.t. ∀X ∈ [0, 1]n,∀i ∈ {0, . . . , n− 1}, F (X)i = f(xi−1, xi, xi+1)

A Fuzzy cellular automaton is a particular continuous cellular automata where the local rule is ob-
tained by “fuzzification” of the local rule of a classical Boolean CA. The “fuzzification” consists of a
fuzzy extension of the boolean operators AND, OR, and NOT. Depending on which fuzzy operators are
used different types of Fuzzy cellular automata can be defined. Among the various possible choices, we
consider the following: (a∨ b) is replaced by (a+ b); (a∧ b) by (ab), and (¬a) by (1−a). The resulting
local rule becomes the following real function that generalizes the original function on {0, 1}3, where
l(a, 0) = 1− a and l(a, 1) = a:

f : [0, 1]3 → [0, 1] s.t. , f(v1, v2, v3) =
∑

i=0...7

qi

∏
j=1:3

l(vj , di,j)

The usual fuzzification of the expression (a ∨ b) would be max{1, (a + b)} so as to ensure that the
result is not larger than 1. Note however, that taking (a + b) for the CA fuzzification does not lead to
values greater than 1 since the maximum possible sum is 1 and occurs for rule 255 which contains the
sum of all the expressions (000, 001, 010, 011, 100, 101, 110, 111) → (1, 1, 1, 1, 1, 1, 1, 1); any other CA
rule is a partial sum and must be bounded by 1.
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Example 1: Fuzzification.
Consider, for example, rule 18 whose canonical Boolean expression is: g(x, y, z) = (¬x ∧ ¬y ∧ z) ∨
(x∧¬y ∧¬z). The fuzzification process for the corresponding FCA yields: f(x, y, z) = [(1− x) · (1−
y) · z] + [x · (1− y) · (1− z)] = (1− y) · (x + z − 2yz).

A configuration of a fuzzy cellular automata at a given time consists of the values assumed by the
cells at that time: we shall indicate with X0 = (x0

0, x
0
1, . . . , x

0
n−1) an initial configuration, and with Xt

a configuration at time t.

Definition 2.1. A fixed point P ∈ [0, 1]N for a FCA with global rule F : [0, 1]n → [0, 1]n is a configu-
ration P such that F (P ) = P .

Definition 2.2. A rule has a (right) shift behavior if there is a time T such that ∀t > T , F (Xt+1) =
F (x0, x1, . . . , xn−1) = (x1, . . . , xn−1, x0).

Definition 2.3. A rule is Temporally Periodic with period p if ∀ε > 0, ∃T such that ∀t > T :

F (Xt) = F (Xt+p)

Definition 2.4. A rule is Spatially Periodic with period p if ∀ε, ∃T such that ∀t > T , ∀i:

xt
i = xt

i+p

Notice that a rule with shifting behavior is temporally periodic with period n; moreover, a spatially
periodic rule with period p with shifting behavior is also temporally periodic with the same period p.

Definition 2.5. A rule is Asymptotically Periodic in time (or Asymptotically Temporally Periodic) with
period p if ∀ε > 0 ∃T such that ∀t > T and ∀i

|xt
i − xt+p

i | < ε

Definition 2.6. A rule is Asymptotically Periodic in space (or Asymptotically Spatially Periodic) with
period q if ∀ε ∃T such that ∀t > T and ∀i

|xt
i − xt

i+q| < ε

A rule which is asymptotically periodic in space with period 1 will be called asymptotically homo-
geneous. A rule which is asymptotically periodic in time with period 1 will be said to be convergent to a
fixed point.

In the following, when a configuration at time t is spatially periodic with smallest period n
m , we shall

indicate it as Xt = (α)m, where α = a1, . . . , a n
m

is the sequence of values corresponding to the smallest
period. For example, a configuration X = (a, b, c, d, a, b, c, d) of a circular CA of size n = 8 is spatially
periodic of minimum period four, and can be indicated as X = (a, b, c, d)2.
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3. Classifications of CA behaviors

The classification of cellular automata has always been considered a fundamental problem. The first
attempt to classify cellular automata has been done by Wolfram in [24] where cellular automata are
grouped according to the observed behavior of their space-time diagram as follows:
- Class 1: automata that evolve to a unique, homogeneous state, after a finite transient,
- Class 2: automata whose evolution leads to a set of separated simple stable or periodic structures
(space-time patterns),
- Class 3: automata whose evolution leads to aperiodic (“chaotic”) space-time patterns,
- Class 4: automata that evolve to complex patterns with propagative localized structures, sometimes
long-lived.

Although not formally precise, this classification captures important distinctions among cellular au-
tomata. Several other criteria for grouping CA have followed: some based on observable behaviors, some
on intrinsic properties of CA rules (e.g., see [6, 7, 11, 21]). Since class membership is undecidable, the
observation of the evolution of a CA starting from (possibly all) initial configurations becomes crucial to
understand its dynamics.

Fuzzy cellular automata have been observed using the classical space-time diagram, where colours
represent intervals of real values. Fuzzy cellular automata in boolean backgrounds have been grouped
according to their observed behavior in [3, 4] and, in particular, according to the level of “spread” of
fuzziness. Essentially the possible observed behaviors are three: 1) Boolean values are destroyed by
Fuzzy values; 2) Fuzzy values are destroyed by Boolean values; 3) Fuzzy and Boolean values co-exist
forming various patterns in the space-time diagram. Circular Fuzzy cellular automata have never been
classified; from the observation of their space-time diagram it is clear that some evolve to a fixed-point,
some present a shifting behavior, while some display “nice” patterns (for some examples of patterns see
Figures 1).

Interestingly, the behavior of Fuzzy cellular automata does not follow the behavior of their boolean
counter-part: in fact, rules belonging to the same Wolfram-class can have, in some cases, an observable
dynamics very different in the Fuzzy version (see Figure 2). In [8] the reasons for such differences are
analytically explained for the case of rule 90.

Because of the complex patterns generated by some Fuzzy cellular automata in the space-time di-
agram, some rules were thought to be more complex than others, possibly having chaotic asymptotic
dynamics. The only analytical study of Fuzzy cellular automata has been done by Mingarelli, who con-
ducted a comprehensive analysis of FCA in quiescent backgrounds showing that none of them has a
chaotic dynamics ([17, 18, 19]). No studies have been done for the circular case.

4. Radial Representations

In the following we propose a new way to visualize circular continuous cellular automata.
Let k be the number of cells. Consider a unitary circle with center C divided in k equal sectors cor-

responding to radii r0, . . . rk−1. Each cell of the CA corresponds to a radius ri, its value xi corresponds
to distance xi from C in ri and is represented by a dot in the corresponding position. For example, cells
with value 1 will have a dot in correspondence of the circumference, cells with value 0 will have a dot in
the center, and any value between 0 and 1 will have its representational dot plotted inside the circle. A
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(a) Rule 90 Boolean (b) Rule 90 Fuzzy

(c) Rule 18 Boolean (d) Rule 18 Fuzzy

Figure 2. Two rules that display similar behavior in the Boolean setting and very different in the Fuzzy setting.

configuration of the CA then corresponds to a plotting on the circle of the various distances. When we
connect the dot on radius ri to the ones on the two neighbouring radii ri±1 (the operations on indices are
modulo n) we say that the Radial representation is open, it is closed otherwise. Finally, we also consider
a linear version of the radial representation by arranging the values xi on a line (see Figure 3 for an
example of the three variants).

Figure 3. Radial representations (open, close, and linear) of a random initial configuration.

As opposed to the space-time diagram, with a radial representation we cannot observe the “life” of
a CA in a 2-dimensional picture. In fact, the evolution of a CA corresponds to the time sequence of
the plottings of the configurations. In other words, a radial representation provides a dynamic diagram
where the observer can see the evolution through time in frames where each frame corresponds to a
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global configuration in an instant.

Example 3: Radial Representations of FCA.
Consider FCA rule R110. An example of closed radial representation is given in Figure 4, where

a sequence of configurations of Rule R110 are displayed. In this case the rule reaches quickly to an
homogeneous configuration and already after 20 iterations it is clear that all the dots corresponding to
the FCA’s states are placed on a circle.

(a) Initially (b) After 3 iterations (c) After 20 iterations

Figure 4. Some configurations in the evolution of rules R110 with the closed radial representation

Another, perhaps more interesting, example of radial representations is shown in Figure 5 where
FCA rule R18 is displayed with both the open and the closed radial representations at different times
in the evolution. It is interesting to observe a very quick formation of two curves during the evolution
revealing a spatial correlation between the cells that becomes observable with the space-time diagram
only after a very large number of iterations.

(a) Initially (b) After 5 iterations (c) After 51 iterations (d) After 370 iterations

Figure 5. Some configurations in the evolution of rules R18 with the open and closed radial representations
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5. Experimental Classification of FCA using Radial Representations

In this Section we group elementary circular Fuzzy cellular automata according to their behavior when
observed with the radial representations starting from random initial configuraitons. We observed all 256
elementary CAs; the results below refer to the 90 that are not equivalent under simple transformations
(conjugation, reflection, and combination of conjugation and reflection). We executed each FCA starting
from 50 different random initial configuration for lattices of size 45,90,180. In each initial configuration
X0 = x0

0, x
0
1, . . . , x

0
n−1, the states x0

i are randomly selected in the interval [0,1].
The observation of FCA on a computer obviously involves a discretization of the real values, and the

values that we can observe are only approximations of the actual ones. Moreover, the calculations are all
performed up to a certain decimal digit thus involving rounding and precision errors. In particular, we
work with java doubles and truncate our observations at 16 decimal digits. Note that, due to limitations
of precision, in any simulation rules that are asymptotically periodic (in time or in space) with some
period p will appear to be truly periodic with period p after some initial time.

Period 1 R0, R8, R32, R40, R72, R104, R128, R136

(Quiescent) R160, R168, R24, R36, R152, R164 , R44, R56 R74, R200

Period 1 R6, R9, R22, R25, R26, R30, R33, R35, R37, R38, R41, R45, R54, R57

(Homogeneous) R60, R61, R62, R73, R90, R105, R106, R110, R122, R126 R134, R150, R154 R172.

Period 1 R4, R12, R13, R76, R77, R132, R140, R204, R232

(Heterogeneous) R28 R108, R156

Period 1 for n even R78, R94

(Heterogeneous)

Period 2 R1, R5, R19, R23, R27, R50, R51R178

for all n

Period 2 R18, R29, R58, R146, R184

for n even

Period 4 R46

for n multiple of 4

Period n (Shifts) R2, R10, R15, R34, R42, R130, R138, R162,R170

R3, R7, R11, R14, R43, R142

Table 1. Observed dynamics of Circular Elementary Cellular Automata

In our observations, all rules eventually display periodic behaviors with periods smaller than n,
which leads us to speculate that they all have an asymtotically periodic behavior. Interestingly, the
lengths of the periods that we have observed are only: p = 1, p = 2, p = 4 and p = n. In the rest of
the paper we group the elementary FCAs on the basis of their observed period. As mentioned before,
an asymptotic behavior will necessarily be observed as an exact behavior after a certain time due to
discretization, while the reverse is not necessarily true. We however conjecture that when we observe
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periodicity in a FCA, its asymptotic behavior is indeed periodic. In the following, whenever we say that
a rule “appears to converge” or “seems to be asymtotically periodic” our statements are only based on
empirical observations.

5.1. Periods of Length 1: Fixed Points

5.1.1. Homogeneous Configurations

In the majority of Fuzzy cellular automata rules the observed configurations become homogeneous in
time, suggesting convergence to an homogeneous fixed point. In all cases, it can be easily shown that the
homogeneous configuration reached by each rule is indeed its homogeneous fixed point, i.e., the solution
of F (P ) = P when starting from an homogeneous configuration X0 = (x, x, . . . , x). Fixed points for
all rules starting from homogeneous configurations can be easily calculated (a table containing all of
them can be found in [17]).

Among the rules that reach a quiescent configuration we observe that for rules R0, R8, R32, R40,
R72, R104, R128, R136, R160, R168, R200 this is evident after a very small small number of iterations
(less then 100 when n = 180), while for rules R24, R36, R152, R164 it takes considerable more time for
the rule to stabilize; finally, for rules R44 R56 and R74 the quiescent state is reached extremely slowly.

In our experiments, for several rules the dots quickly arrange in a circle; i.e., the values reach an
homogeneous configuration different from zero (see an example in Figure 4). This is the case of Rules

R6, R9, R22, R25, R26, R30, R33, R35, R37, R38, R41, R45, R54, R57, R60, R61, R62, R73, R90,
R105, R106, R110, R122, R126 R134, R150, R154 R172.

5.1.2. Non-homogeneous Configurations

In the case of rule R204 (f(x, y, z) = y), we have that any inital configuration is a fixed point (∀X ∈
[0, 1]n, F (X) = X). Other rules that appear to have an asymtotic convergence to a non-homogeneous
fixed point after a few iterations are: R4, R12, R13, R76, R77, R132, R140, R232, R28 R108, R156.

(a) FCA 4 (Radial) (b) FCA 10 (Radial)

Figure 6. (a) a fixed point for rule R4 observed after 364 steps (b) a shifting (i.e. rotating) configuration for rule R10,
observed after 364 steps.

Finally, Rules R94 and R78 merit special attention and are separately described below. Both rules
appear to converge to a fixed point, which is homogeneous when the size is odd, while it consists of
a periodic configuration, when the size is even. During the evolution, the radial representations show
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very quickly a spatial correlation between cells through the formation of two co-existing curves with
consecutive values belonging to different curves, eventually stabilizing in two concentric circles (see, for
Example, two moments in the evolution of Rule R78 in Figure 8).

Period 1 (Fixed Points)

f94(x, y, z) x + y − xy + z − 2xz − yz + xyz

n even (a, b)
n
2 with 2a + 2b− ab = 2

n odd (2−
√

2)n

f78(x, y, z) y + z − xz − yz

n even (a, b)
n
2 with a + b = 1

n odd (1
2)n

The Case of Rule R94. Our simulations show that rule R94 reaches fixed points of the type (a, b)
n
2 ,

with 2a + 2b − ab = 2 and a 6= b, suggesting that it is asymptotically periodic both in time and space.
The following Property shows that an exact configuration of this type (which is possibly never reached
by the rule) is indeed a fixed point.

Figure 7. Rule R94 after 5000 iteration with 90 cells.

Property 5.1. Consider rule R94 on a configuration of even size n. Let Xt = (a, b)
n
2 . Configuration Xt

is a fixed point if and only if 2a + 2b− ab = 2.

Proof:
Rule R94 has the following analytical form: f(x, y, z) = x + y − xy + z − 2xz − yz + xyz. Let
a, b, a be three consecutive values in configuration Xt; the only way to obtain a fixed point dynamic with
configuration Xt is when the local function f satisfies the condition f(a, b, a) = b (and f(b, a, b) = a).
We have that f(a, b, a) = a+b−ab+a−2a2−ab+a2b = 2a+b−2ab−2a2 +a2b, thus f(a, b, a) = b
when either a = 0 or 2a + 2b − ab = 2. When 2a + 2b − ab = 2, we also have that f(b, a, b) = b and
thus this condition indeed guarantees that (a, b)

n
2 is a fixed point. When a = 0 it must be f(b, 0, b) = 0,

which is verified only when b ∈ {0, 1}. It is easy to see that the homogeneous configuration (0)n is
repelling, the remaining spatially 2-periodic fixed point (0, 1)

n
2 satisfies also condition 2a+2b−ab = 2.

ut
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On the other hand, if the size of the CA is odd, the two curves merge into a single circle suggesting
asymptotic convergence to an homogeneous fixed point (2 −

√
2)n, which is the only attracting homo-

geneous fixed point of rule R94.

The Case of Rule R78. During the evolution the behavior of the CA is shifting (i.e., the two curves
rotate); however, the CA eventually reaches a spatially periodic fixed point of the form (a, b)

n
2 , with

(a + b) = 1 and a 6= b, suggesting an asymptotically periodic behavior both in time and space. We can
easily verify that (a, b)

n
2 is indeed a fixed point for rule R78 under the condition (a + b) = 1.

(a) Rule 78 during the evolution (b) Rule 78 at the convergence point

Figure 8. Rule R78 with 90 cells observed with Radial representations (a) after 2500 iterations (b) after 14,000 iterations.

Property 5.2. Consider rule R78 on a configuration of even size n. Let Xt = (a, b)
n
2 with a 6= b.

Configuration Xt is a fixed point if and only if a + b = 1.

Proof:
The proof is analogous to the one of property 5.1. Rule R78 has the following analytical form: f(x, y, z) =
y + z−xz− yz. Let a, b, a be three consecutive values in configuration Xt. We have that f(a, b, a) = b
for b + a − a2 − ab = b, which implies that either a + b = 1 or a = 0. In the first case we also have
f(b, a, b) = a, in the second case, we must have that b ∈ {0, 1}. Configuration (0)n is repelling, the
remaining spatially 2-periodic fixed point (0, 1)

n
2 satisfies condition a + b = 1 as well. ut

As for the case of rule R94, rule R78 reaches an homogeneous configuration when starting our simula-
tions from configurations of odd size. The reached configuration (1

2)n is the only attracting homogeneous
fixed point of the rule. Thus, also in this case, the observed behavior suggests an asymptotic convergence
to an homogeneous fixed point.

5.2. Periods of Length Two

Some rules show a periodic behavior of length two for any value of n (the size of the initial configuration),
while some other rules display this periodicity only when n is even while they reach an homogeneous
configuration when n is odd. This is the case of rules where the configuration become spatially periodic
in time and the temporal periodicity is actually given by a shifting behavior.



P. Flocchini, V. Cezar / Radial View of Continuous Cellular Automata 1013

5.2.1. Periodicity for all sizes of the initial configuration.

The simplest rule with obvious periodic behavior is the complement rule R51 (f(x, y, z) = 1−y). Other
rules that quickly show a periodic behavior of length two are R1, R5, R19, R23, R50, R178. Rule R27

also become periodic of length two, but it takes a longer time. For this rule, each configuration in the
period is homogeneous and is the complement of the previous (i.e., Xt = (a)n, Xt+1 = (1 − a)n, . . .).
This happens regardless of the parity of the initial configuration. It is indeed very simple to see that if
Xt = (a)n, the next configuration is its complement. In fact, it comes form the observation that, for rule
R27, whose analytical expression is f(x, y, z) = 1− y − xz + yz we have that f(a, a, a) = (1− a).

5.2.2. Period two for configurations of even size only

The observed periodic behavior of the rules described below (except for rule R29) is actually a shifting
behavior occurring on spatially periodic configurations with period two, which causes the behavior to be
spatially and temporally 2-periodic. Due to this reason, this dynamics is visible only if the configuration
is of even size. Interestingly, if the size is odd, all the rules reach an homogeneous fixed point. From a
pictorial point of view, when the size of the configuration is even, after a few time steps they all display
two co-existing curves with consecutive values belonging to different curves (see, for an example, Figure
10), and they eventually form two concentric rotating circles.

The case of rule R29 is similar in the sense that it also shows spatially periodic configurations of
period two, when n is even, and a temporal behavior of period two; in this case, however, the shift-like
behavior is slightly more complicated since a value xt

i becomes the complement of the neighbour xt−1
i+1

at the previous time step.

Spatially and Temporally periodic Spatially and Temporally periodic

f18 x− xy + z − 2xz − yz + 2xyz f146 x− xy + z − 2xz − yz + 3xyz

n even (a, b)
n
2 with 2a + 2b− 2ab = 1 n even (a, b)

n
2 with 2a + 2b− 3ab = 1

n odd (1−
√

2
2 ) n odd (1

3)n

f58 x− xy + z − xz f184 x− xy + yz

n even (a, b)
n
2 with a + b = 1 n even (a, b)

n
2 , ∀a, b

n odd (1
2)n n odd (a)n, ∀a

Shift of Complement

f29 1− z + yz − xy

n even (a, b)
n
2 ∀a, b

n odd (a)n , ∀a

The Case of Rules R18, R146, R58. When the configuration size of is even, these fuzzy cellular au-
tomata form two co-existing rotating curves that eventually form two concentric circles with consecutive
values belonging to different curves. In other words, the observed configurations become of the form
(a, b)

n
2 with a 6= b (alternating with (b, a)

n
2 ), thus suggesting an asymptotic periodic behavior both in
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space and time (see, for example, three different moments in the evolution of Rule R58). We can show
that, for these rules, an exact configuration Xt = (a, b)

n
2 has indeed a shifting behavior (and thus a

periodic behavior of length two) for a certain relationship between a and b, which depends on the rule.

(a) (b) (c) (d) (e) (f)

Figure 9. Three moments in the evolution of Rule R58 with the Radial and the Bar representations.

For example, in the case of rule R18 the observed configurations become of the form (a, b)
n
2 with

a + b − ab = 1
2 ; indeed the following property shows that for rule R18, Xt = (a, b)

n
2 has a shifting

behavior (and thus a periodic behavior of length two) only when a + b − ab = 1
2 or Xt = (0, 1)

n
2 ,

analogous properties can be shown for the other rules of this class.

Property 5.3. Consider rule R18 on a configuration of even size n. Let Xt = (a, b)
n
2 with a 6= b.

Configuration Xt+1 = (b, a)
n
2 if and only if a + b− ab = 1

2 or a = 0, b = 1.

Proof:
Rule R18 has the following analytical form: f(x, y, z) = x − xy + z − 2xz − yz + 2xyz. Let a, b, a
be three consecutive values in configuration Xt; in order for the global dynamics to be shifting, the
local rule f must verify the condition f(a, b, a) = a (and f(b, a, b) = b). We have that f(a, b, a) =
2a − 2ab − 2a2 + 2a2b, which means that it must be either a + b − ab = 1

2 or a = 0. Condition
a + b − ab = 1

2 verifies also f(b, a, b) = b. If a = 0, solving f(b, 0, b) we have that b must be either
0 or 1. Configuration (0)n is a repelling homogeneous fixed point, so the only two spatially 2-periodic
shifting configurations are (a, b)

n
2 with a + b− ab = 1

2 , and (0, 1)
n
2 . ut

Although configuration (0, 1)
n
2 is also a fixed point for rule R18, we never observe it in our experiments

from random initial configurations, which always appear to converge to (a, b)
n
2 for some a and b such

that a + b− ab = 1
2 .

Analogously to the case of rule R18, it can be shown that a shifting configuration of the form (a, b)
n
2

must verify condition 2a + 2b− 3ab = 1 for rule R146, and condition a + b = 1 for rule R58.

When the configuration size is odd, the radial diagram of these rules still show two co-existing
curves with consecutive values belonging to different curves in all places except for one. The two curves
eventually merge into one and the rule reaches an homogeneous configuration. Thus, our experiments
starting from random configurations suggest asymptotic behavior that becomes homogeneous in space
and converges to a fixed point in time: rule R18 appears to asymptotically converge to (1 −

√
2

2 )n, rule
R146 to (1

3)n, and rule R58 to (1
2)n. It can be easily shown that these are the only attracting homogeneous

fixed points for these rules.
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The Case of Rule R184. Rule R184 has the following analytical form: f(x, y, z) = x − xy + yz.
This rule is special in many ways. First of all, when starting from homogeneous configurations, any
configuration is a fixed point (this is due to the fact that f(a, a, a) = a,∀a). Furthermore, any 2-periodic
configuration gives rise to a periodic behavior (this is due to the fact that f(a, b, a) = a, ∀a, b).

As before, when the size of the CA is even, the radial diagram shows 2 co-existing curves with
consecutive values belonging to different curves thus reaching a spatially and temporally 2-periodic
configuration (a, b)

n
2 (i.e., to two rotating concentric circles, as shown in Figure 10). However, the

values of a and b are not linked to each other. From the experiments it appears that the CA can be
attracted, depending on the initial configuration to various shifting configuration of the type (a, b)

n
2 .

Figure 10. Rule R184 after 5500 iteration with a configuration of 90 cells.

When the size of the FCA is odd the rule reaches, in our simulations, an homogeneous configuration
(a)n, suggesting an asymptotic behavior that converges to a fixed point in time and becomes homoge-
neous in space. The value of a is variable and appears to depend on the initial configuration.

The Case of Rule R29. Also this rule has a unique behavior. When the size of the FCA is even, the
observed rule reaches a spatially 2-periodic configuration of the type (a, b)

n
2 and then alternates with the

shift of its complement (1−b, 1−a)
n
2 still giving rise to a period of length 2. Rule R29 has the following

analytical form: f(x, y, z) = 1− xy − z + yz, which means that f(a, b, a) = 1− a for any values of a
and b. As a consequence (a, b)

n
2 is clearly a spatial and temporal period-2 configuration.

When the size of theF CA is odd the rule reaches a periodic behavior of the type Xt = (a)n, Xt+1 =
(1− a)n, . . .. The value of a varies and depends on the initial configuration.

5.3. Periods of Length 4: Rule R46

There is only one rule in this class: rule R46. During the evolution, we observe the formation of four
co-existing rotating curves that eventually form four concentric circles (see Figure 11). Similarly to the
cases of the rules of the previous subsection, the periodic behavior is due to the shift in time of spatially
4-periodic configurations of the type (a, b, 1 − a, 1 − b)

n
4 , thus the requirement of configurations with

size multiple of 4.

Spatially periodic Shift

f46(x, y, z) y − xy + z − yz

n multiple of four (a, b, c, d)
n
4 with c = 1− a, d = 1− b

n not multiple of four (1
2)n
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Figure 11. Some configurations in the evolution of rules R46 with the Radial representation.

In the following we show that, when the size of the configuration is multiple of four, the four-periodic
configuration (a, b, c, d)

n
4 is a shifting configuration (and thus resulting in a periodic behavior of length

four) only when c = 1− a and d = 1− b).

Property 5.4. Consider rule R46 on a configuration of size n = 4m. Let Xt = (a, b, c, d)m with a 6= b,
then Xt+4 = Xt iff c = 1− a and d = 1− b.

Proof:
The analytical form of rule R46 is f(x, y, z) = y − xy + z − yz. In order for the configuration to be of
the form (a, b, c, d)m, we must have that: f(a, b, c) = c, f(b, c, d) = d and f(c, d, a) = a. Solving the
equations, we have that b − ab + c − bc = c for b = 0 or a + c = 1; c − bc + d − cd = d for c = 0 or
b + d − 1; d − cd + a − da = a for d = 0 or c + a = 1. Thus, the only spatially 4-periodic shifting
configuration (with a 6= b) is Xt = (a, b, 1− a, 1− b)m. ut

When the configuration size is even but not a multiple of four or when it is odd, we observe that the
CA reaches (very slowly) its only homogeneous fixed point (1/2)n, suggesting an asymptotic convergent
behavior (both in time and in space).

5.4. Periods of Length n: Shifts and Double Alternating Shifts

Rules R170 (f(x, y, z) = z) is the perfect shift and the radial representation shows a perfect rotation of
the initial configuration. A shifting behavior after a short transient is displayed also by rules R2, R10,
R34, R42, R130, R138, R162 (Stars). An example of shifting configuration for rule R10 is shown in Figure
6, where the configuration rotates as indicated by the arrows.

Rule R15 (f(x, y, z) = (1−x)) is the complement of a perfect shift: since every configuration is the
complement of the shift of the previous, we observe what we call an Double alternating Shift or a shifting
periodic behavior: every other configuration is shifted by two positions2. The radial representation
clearly shows both the periodic and the shifting nature of the rule. Similar but more complex behavior
have rules R3, R7, R11, R14, R43, R142. In these cases, depending on the initial configuration, and on its
size, the dynamics could differ. Consider, for example, the case of rule R43. For large values of n the
2We have seen another double alternating shift, Rule R29, in subsection 5.2.2.
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rule appears to converge always to a periodic behavior of period n from a random initial configuration;
however, for smaller values of n, under certain circumstances, it could actually become totally Boolean
stabilizing in a Boolean shifting spatially periodic configuration (1100)

n
4 , thus resulting in a temporal

periodic behavior of period four. The detailed analysis of this class of rules is left for subsequent research.

6. Concluding Remarks

In this paper we have described an experimental classification of circular fuzzy cellular automata based
on a new visualization method. The different visualization method has allowed us to observe dynamics
that were not easily detectable with the classical space-time diagram. In particular, it has allowed us to
see the quick emergence of spatial correlation between cells that was not evident from the space time
diagram (compare, for example, snapshots of configurations during the evolution of some rules observed
with the classical space-time diagram, and with the Radial representations in Figure 12).

We have observed that all circular elementary FCA from random initial configurations of size n
display at some point a periodic dynamics with period p ≤ n, and we have grouped them on the basis of
the length of their periods. Interestingly, the only observed periods lengths are one, two, four, and n. In
the most interesting cases we have also analytically verified that the configurations reached by the FCA
in our experiments are indeed periodic points. The empirical observations lead us to conjecture that all
circular elementary rules have an asymptotic periodic behavior of the observed length.

Several problems are now under investigation. First of all we are now conducting a detail study of
each rule to analytically show that the periodic behavior that we observe are indeed asymptotic periodic
behaviors and not simply due to discretization. We are also investigating the reasons for FCA to have
these particular period lengths. The classifications of infinite configurations and configurations in zero
backgrounds are also under investigation. Finally, radial representation has been employed in this paper
to observe FCA only; it would be interesting to see if it can be useful in the observation of other types of
continuous cellular automata
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(a) Rule 18 Space-Time (b) Rule 18 Open Radial (c) Rule 18 Closed Radial

(d) Rule 184 Space-Time (e) Rule 184 Open Radial (f) Rule 184 Closed Radial

(g) Rule 46 Space-Time (h) Rule 46 Open Radial (i) Rule 46 Closed Radial

Figure 12. Rules R18, R184, and R46 visualized with the classical space-time diagram in (a) (d) (g), and a
configurations in their evolution visualized with the Radial representations. In all cases, the configuration has 180
cells.


