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Abstract. It has been recently discovered that oblivious iguanid lizards
can form a periodic sequence of tableaux vivants with some restrictions
on the tableaux. By viewing each tableau as a dance step, a formable se-
quence can be seen as a dance choreography, performable by the lizards.
Interestingly, a complete characterization exists of the dances performable
by all families of oblivious iguanid lizards except for the family of chame-
leons. This gap in knowledge opens the main research question addressed
here: what choreographies can be danced by oblivious chameleons? We
provide a full answer to this question, investigating formable tableaux,
danceable choreographies as well as number of skin colours. We show that,
unlike other lizards, in their feasible dances chameleons can touch and re-
peat steps. Also, they can do this even if they are asynchronous.

1 Introduction

Although the incidence of obliviousness among lizards of the suborder Iguania1 is
still matter of speculation, the body of studies and investigations on what these
oblivious lizards can and cannot do continues to grow. Since oblivious lizards can
decide, based on the observed environment, whether to stay still or to move to a
specific location, it is possible (at least in principle) for a group of lizards of the
same family to arrange themselves into a tableau vivant where all members of the
group stay still. Since forming a specific tableau depends both on the behaviour
of the lizards and on their initial location, the research quest of behaviouralist
engineers has been to determine what behaviours (if any) would allow a group
of oblivious lizards to create a given tableau, to characterize which tableaux can
be formed from a given initial location, and to identify which tableaux cannot
be formed regardless of the behaviour (e.g., see [1, 2, 5–9, 11–13]).

Several factors and conditions have been found to impact on the feasibility of a
certain tableau to be formed (e.g., whether the lizards are affected by narcolepsy,

1 Included in this suborder are iguanas, agamid lizards (such as the bearded dragon),
anoles, and chameleons.
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myopia, etc.). Foremost, whether or not a tableau can be formed depends on the
relationship between the symmetry of the initial position of the lizards and the
symmetricity of the tableau. Another crucial factor is the level of synchroniza-
tion of the group of lizards: Full synchrony of the group allows all members to
act simultaneously, while semi-synchrony allows only those awake to act simul-
taneously. Clearly any reduction in the level of synchrony, up to the complete
absence of any synchrony (asynchrony), reduces the possibilities of behavioural
engineering and thus the tableaux vivants that can be formed.

A recent result has opened new doors to the researchers of oblivious lizards
of the suborder Iguania, especially to those artistically inclined. It has been
shown [4] that, in spite of their obliviousness, a semi-synchronous group of those
lizards can actually form not just a single tableau but a repeating sequence of
distinct tableaux, pausing after each one! Since the tableaux must be formed
in the order specified by the sequence, this means that some form of collective
memory is possible in spite of the individual obliviousness. Clearly, not every
singly formable tableau can be included in a formable sequence; in fact the study
is on determining which repeating sequences of tableaux can be indeed formed.
The artistic excitement generated by the announcement of this result is due to
the fact that a sequence of tableaux vivants can be seen as the choreography of
a dance where the tableaux are the dance steps. Hence the research question is:
What choreographies can be danced by oblivious lizards?

This question has been recently answered [4]: any sequence of tableaux can be
choreographed provided that: (R1) no tableaux is repeated in the sequence, (R2)
in each tableaux the lizards never touch each other, and (R3) the symmetricity of
every tableaux is the same as that of the starting configuration. This completely
and fully characterizes all the choreographies achievable by all the families of
the suborder Iguania with the exception of the family Chamaeleonidae.

In fact, in spite of the sharing of special features with members of different
families of this suborder2, chameleons have specialized cells, chromatophores,
which contain pigments in their cytoplasm, allowing them to change their skin
coloration and pattern (e.g., [10]). By taking advantage of this unique feature,
chameleons are capable of forming colourful tableaux and dances, a feat that
other iguanid lizards are incapable of. But, in addition to adding colours to
a tableaux, are oblivious chameleons capable of forming different tableaux and,
thus, performing more complex and sophisticated dances? In other words, by con-
sidering tableaux and dances irrespective of the chameleons’ colours, the open re-
search question is: What choreographies can be danced by oblivious chameleons?

In this paper we fully answer this question by completely characterizing
the sequences of tableaux that can be formed by semi-synchronous oblivious
chameleons irrespective of their colours. We prove that oblivious chameleons
can form any sequence of tableaux even if (i) some tableaux are repeated within
the sequence, (ii) the lizards may touch each other, and (iii) all tableaux do
not necessarily have the same symmetricity, provided that the symmetricity of

2 E.g., the teeth of both agamids and chameleons are borne on the outer rim of their
mouths rather than on the inner side of their jaws, a feature unusual among lizards.
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Fig. 1. (a) A pattern with symmetricity 3. (b) A pattern with symmetricity 6. (c) A
pattern with symmetricity 1.

each tableaux is divisible by that of the starting configuration. In other words,
the formable sequence of tableaux for chameleons do not suffer from restrictions
(R1) and (R2) of the other iguanid lizards, and the restriction (R3) is substan-
tially weaker. We first consider sequences when chameleons can touch but no
tableau is repeated, then those when chameleons cannot touch but tableaux can
be repeated, and finally the class of arbitrary sequences. For each class we de-
termine the minimum number of colours needed to perform a feasible dance,
and present a simple algorithm that allows such a number to suffice (in order
of magnitude). In view of the recent result of [3] showing that asynchronous
oblivious chameleons with a small constant number of colours can simulate any
behaviour of any semi-synchronous oblivious iguanid lizards, it follows that all
our results hold also in the fully asynchronous model. Due to space limitations,
proofs are sketched or omitted.

2 Model and Definitions

Model: Let V = {v1, . . . , vN} be a set of points on a two dimensional plane,
and let size(V ) be the cardinality of V . The smallest circle enclosing the points
in V , denoted by SEC(V ), is the circle of minimum diameter such that every
point of V is either on or in the interior of this circle. The point set V is said to
be symmetric if V can be decomposed into a set of concentric circles centred in
the centre c of SEC(V ), each containing a set of regular q-gons for some q > 1,
divisor of N . The largest q for which this is true is called symmetricity of V
and denoted by q(V ). The set of points in each regular q(V )-gon centred in c,
is called a symmetricity class; the number of classes is denoted by α(V ). If V is
not symmetric then we define q(V ) = 1. Note that, by definition, if the centre
of SEC(V ) is an element of V , then q(V ) = 1 (see Figure 1).

Given a set of distinct colours C = {c1, . . . , ck}, we define a colouring as a
function λ : V → C. We say that λ is proper when λ(x) = λ(y) iff x and y
belong to the same symmetricity class in V . The chromatic symmetricity of V
with respect to λ is the largest q for which V can be partitioned into a set of
concentric regular q-gons where corners of a q-gon share the same color; β(V, λ)
denotes the number of chromatic symmetricity classes of V with respect to λ.
We extend the chromatic symmetricity definition to multi-sets of points (e.g.,
multiple chameleons can be colocated). Let GOLD and OFF be two special colours.
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Let R = {r1, . . . , rn} be a set of chameleons on the plane, each modelled
as a computational unit provided with its own local memory and capable of
performing local computations, and viewed as a point in R

2. We assume that
the chameleons start from distinct points in the plane and the colour of their
skin is OFF, but during the course of the algorithm multiple chameleons may
occupy the same point in R

2. A chameleon coloured OFF will also be referred to
as “uncoloured”. Each chameleon has its own local coordinate system; the local
coordinate systems of the chameleons might not be consistent with each other,
but they all have the same chirality (e.g., a clockwise orientation of the plane).
A chameleon is endowed with sensorial capabilities and it observes the world
by activating its sensors, which return a snapshot of the positions of the other
chameleons in its local coordinate system. The chameleons are identical; they
execute the same protocol; they are autonomous (there is no central control);
they are silent (they have no means of sonic communication to other chameleons).
The skin of a chameleon can assume different colours (from the finite set C).
The chameleons are oblivious (they do not have persistent memory of the past).

Each chameleon can freely move in the plane. At any point in time, a chameleon
is either active or inactive. When active, a chameleon executes a Look-Compute-
Move (LCM) cycle. In Look, a chameleon observes the world obtaining the snap-
shot of the positions of all chameleons with respect to its own coordinate system
(since chameleons are viewed as points, it gets the set of their coordinates). In
Compute, the chameleon executes its algorithm, using the snapshot as input. The
result of the computation is a destination point. In Move, the chameleon moves
to the destination (always reaching it); if the destination is the current location,
the chameleon stays still. When inactive, a chameleon is idle. All chameleons are
initially inactive. The amount of time to complete a cycle is assumed to be finite,
and the Look is assumed to be instantaneous.

As mentioned before, each chameleon can colour its skin; the colour is visible
to all the chameleons when they perform their Look and can be updated by the
chameleon during the Compute operation. The colour is persistent; i.e., while the
chameleons are oblivious forgetting all other information from previous cycles,
their colours are not automatically turned off at the end of a cycle.

With respect to the activation schedule of the chameleons and their LCM cy-
cle, we distinguish the fully-synchronous (FSYNC), the semi-synchronous (SSYNC),
and the asynchronous (ASYNC) models. In ASYNC, the chameleons are activated
independently, and the duration of each Compute, Move and inactivity is finite
but unpredictable. As a result, the chameleons do not have a common notion
of time, chameleons can be seen while moving, and computations can be made
based on obsolete observations. On the opposite side of the spectrum, in FSYNC,
the activations of all chameleons can be logically divided into global rounds; in
each round, the chameleons are all activated, obtain the same snapshot, compute
and perform their move. Note that this is computationally equivalent to a fully
synchronized system in which all chameleons are activated simultaneously and
all operations are instantaneous. The SSYNC model is like the fully-synchronous
model where however not all chameleons are necessarily activated in each round.
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(b) (c)(a)

Fig. 2. (a) A pattern consisting of two classes. (b) and (c) show the two possible
kinds of contractions: in (b), the two classes are contracted into just one, where all
chameleons occupy distinct positions; in (c) the two classes are contracted into just
one, where points of multiplicity two are created (the circled dots).

In any case, the activation scheduler is assumed to be fair. We assume the SSYNC
model in this paper and show how to extend the results to the ASYNC model.

Notations: We will describe the global positions of the chameleons using a
fixed coordinate system Z, unknown to the chameleons: ri(t) denotes position
of ri at time t, and d(ri(t), rj(t)) the Euclidean distance between ri(t) and rj(t).
The configuration of the n chameleons on the plane at time t is denoted by
the multi-set Γ (t) = {(ri(t), λ(ri(t))), 1 ≤ i ≤ n} where λ(ri(t)) is the colour
of chameleon ri at time t. Given a configuration Γ (t), we denote by L(Γ (t))
the set of distinct points occupied by the chameleons in the configuration Γ (t),
and by size(Γ (t)) the cardinality of L(Γ (t)). We define q(Γ (t)) = q(L(Γ (t)))
and α(Γ (t)) = α(L(Γ (t))). When no ambiguity arises, we will omit t. Note that
α(V ) = n/q(V ), if there are n points in V .

A tableau or pattern P is a set of distinct points. A pattern Pi is said to
be isomorphic to a pattern Pj , denoted Pi ≡ Pj , if Pj can be obtained by
a combination of translation, rotation and uniform scaling of pattern Pi. Two
patterns that are not isomorphic to each other are said to be distinct. We will
denote the size of a pattern Pi by size(Pi). We say that the chameleons have
formed the pattern P at time t if L(Γ (t)) ≡ P .

Let S =< S0, . . . , Sm−1 > be an ordered sequence of patterns with Si �≡ Si+1,
called choreography. We define α(S) = maxi{α(Si)}. Given P ∈ S, we denote by
μ(P ) the number of occurrences of P in S, and μ(S) = maxi{μ(Si)}. We say that
S has repetitions if μ(S) > 1, and that S has contractions if there is a pattern P in
S such that α(P ) < α(S) (see Fig. 2). A set of chameleons executing an algorithm
A starting from a configuration Γ (t0) is said to form S if, during any possible
execution of A from Γ (t0), there exist times t1, . . . tm, where, ∀0 < j < m,
t0 < tj < tj+1 and L(Γ (tj)) ≡ Sj . A set of chameleons executing A, starting
from a configuration Γ (t0) performs the dance described by the choreography S,
if they repeatedly form S, i.e. if they form S∞ = 〈S0, . . . , Sm−1〉∞.
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3 Fundamental Limitations and Techniques

3.1 Limits

To establish the artistic limits of oblivious chameleons, we first show the follow-
ing:

Lemma 1. If the initial configuration Γ0 has symmetricity q = q(Γ0) then, for
any algorithm, an adversary can ensure that any subsequent configuration Γ ′ has
symmetricity q(Γ ′) = a · q, for some integer a ≥ 1.

Proof. The adversary can decide the coordinate system of each chameleon and
also the activation schedule. First, observe that, if there is a chameleon at the
center of SEC(Γ0), then q = 1 by definition, and thus the lemma holds trivially.
Assume now that that there are no chameleons in the center of SEC(Γ0). Then
the adversary can define the coordinate system of each chameleon ri as follows:
the origin is at the location of ri, and the point of coordinates (1, 0) is at the
center of SEC(Γ0). If the adversary activates all chameleons together in each
round, the chameleons in the same class would always occupy the corners of a
regular q-gon and the symmetricity would be a multiple of q.

Theorem 1. A set of n oblivious chameleons starting from initial configura-
tion Γ (t0), regardless of the number of available colours, cannot perform the
dance S∞ = 〈S0, . . . , Sm−1〉∞ if any of the following holds, where q0 = q(Γ (t0))
and n0 = size(Γ (t0)): (1) q(Si) is a not multiple of q0, for some Si ∈ S, (2)
size(Si) > n0, for some Si ∈ S.
Proof. Part (1) follows from Lemma 1 and from the definition of formed pattern.
For part (2) note that, if two chameleons are co-located in Γ (t0) and they have
the same coordinate system, then they will choose the same point as the next
destination (and the same colour, if they change colour). Thus, if chameleons
that are co-located and have the same colour are always activated together, the
number of distinct points in a configuration can never increase, and (2) holds.

A pattern is feasible from initial configuration Γ (t0) if none of the two forbid-
den conditions stated in the previous theorem hold; furthermore, a choreography
is feasible if it is composed only of feasible patterns. In the following, we will only
consider feasible choreographies and patterns, and when no ambiguity arises, we
shall omit the term feasible.

3.2 Techniques

It is straightforward that the chameleons can agree on a total ordering of the
classes in any Si ∈ S. Also, since they agree on chirality, it follows that in a given
Γ (t) the chameleons can agree on a total ordering of the classes in L(Γ (t)).

Lemma 2. In any configuration Γ , the chameleons can elect a leader class
among the α(Γ ) classes.

In addition to this observation, we will make use of four techniques.
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Identification. The first technique that we will use in the following is based on
an idea introduced in [4], and is used to identify the pattern of the choreography
that the chameleons are currently forming.

Given a choreography S, each element Si ∈ S, 1 ≤ i ≤ m, is mapped to a
real number F (Si) using an appropriate injective function3 F : S �→ R. This
mapping is employed to allow the oblivious chameleons to distinguish which
pattern of the sequence they are currently forming. More precisely: A special
class of chameleons, the leaders (denoted by the set Rl) and whose identification
will be detailed in the following sections, move to create a special configuration,
named Ratio(F (Si)), such that the circle Q = SEC(Γ \ Rl) (i.e., the smallest
circle enclosing all non-leaders) has a radius that is 1/F (Si) times the distance
of any leader chameleon to the center of this circle Q (refer to Figure 3). Since
function F () is injective, once Ratio(F (Si)) has been created, all chameleons
can uniquely agree on the pattern Si that is being currently formed.

Expansion. The expansion process starts when we want to bring the chameleons
from a configuration Γ (colored or uncolored) to an uncoloured configuration Γ ′

such that β(Γ, λ) = α(Γ ′) and the number of concentric circles is precisely α(Γ ′).
Let Cir1, . . . , Cirα be the concentric circles populated by chameleons in Γ .

Starting from the inside to the outside, for each circle Ciri that contains multiple
(chromatic) classes, we expand Ciri by moving one class at a time, in an ordered
fashion, to a slightly bigger circle, until all classes on Ciri have been separated on
different circles, each containing a single class. We now uncolor the chameleons on
these circles, and expand Ciri+1. This process will be denoted by Expansion(Γ ).

Lemma 3. Let Γ be a coloured configuration, with coloring function λ, that has
β(Γ, λ) coloured classes. Expansion(Γ ) creates an uncoloured configuration Γ ′

with α(Γ ′) = β(Γ, λ).

Contraction. Let the chameleons start from an uncoloured configuration Γ
with α(Γ ) = α classes, each class located on a different circle. Let Si be any
pattern in S. If α(Si) < α, then we can activate the contraction process, as
described below. Let Cir1, . . . , Cirα be the concentric circles in Γ populated
by chameleons, and δ = �α/α(Si). Contraction is achieved by collapsing con-
secutive groups of δ circles, from the outside to the inside, until there are only
α(Si) circles populated by chameleons. For the smallest circle Ci containing a
single class, all chameleon on circles from Ciri+1 to Cirδ+i rotate, one group
at the time, so that there are no co-radial chameleons; Now, again one group
at the time, these chameleons collapse on Ciri. We iterate this process until we
obtain a new configuration Γ ′ that has exactly α(Si) populated circles. In the
following, we will denote this process by Contraction(Γ, Si), with α(Γ ) = α
and α(Si) < α. We define as density of the contraction the maximum number of
classes on the same circle at the end of this process, and we denote it by ψ(Γ, Si).

3 Note that F (Si) �= F (Sj) whenever i �= j, even if Si and Sj are isomorphic.
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Lemma 4. Let Γ be an uncoloured configuration with α(Γ ) = α and let P be
a pattern with α(P ) < α. Contraction(Γ, P ) creates a coloured configuration
Γ ′ having exactly α(P ) concentric circles populated by chameleons.

Pattern Formation. Given any pattern Si belonging to a feasible choreogra-
phy, we can use a combination of expansion and contraction to obtain a backbone
of Si, which is defined as a configuration that contains exactly α(Si) populated
concentric circles and on each circle Ciri, the number of chameleons is a multiple
of the symmetricity of Si. An incomplete backbone is a backbone with one circle
missing (i.e. with only α(Si)− 1 circles).

Let Γi be either a complete or incomplete backbone of Si, and let Si be the
pattern in S to be formed. In the first phase of the pattern formation process,
for every two classes of Si that are on the same circle, the corresponding circles
of Γi are merged, after an appropriate rotation so that no chameleons collide.
After this process, the number of populated circles in Γi is equal to the number
of populated circles in Si; the circles of Γi are moved so as to coincide with the
circles of Si. We can assume the populated circle of Si with the smallest radius
already coincides with the populated circle of Γi with the smallest radius. The
next lemma follows from the total ordering of classes, colours, and populated
circles of both Γi and Γ ′.

Lemma 5. Starting from a backbone Γi of a given pattern Si ∈ S, the chameleons
can always reach a new configuration Γ ′, where (i) the radius of the i-th populated
circle in Γ ′ equals the radius of the i-th populated circle of Si; and (ii) the number of
chameleons on the i-th populated circle on Γ ′ is a multiple of the number of points
on the i-th circle on Si.

Let us call the Γ ′ of previous lemma the skeleton of Si; again, we will say that
the skeleton of Si is complete or incomplete depending on whether the backbone
of Si was complete or incomplete. Once the chameleons have formed the skeleton
of Si, the second phase of the pattern formation process consists in the actual
formation of Si. For those circles of the skeleton that contain more chameleons
than the corresponding circle of Si, the chameleons on these circles are assigned
different colours, one per class, using a routineAssigncoloursToClasses(Si).
Now, the positions of the chameleons having the smallest colour on Cir1 deter-
mine the final positions to be occupied by all chameleons in order to successfully
form Si (this follows from chirality, and total ordering of the colours). Once, the
final positions have been determined, the chameleons reach them, one class at a
time, moving within each circle ordered according to the colouring (multiplici-
ties can be formed if required). At this point, all chameleon but the leaders have
reached their final positions; let us call this configuration almost final.

The final step is to have the leaders to reach their final positions. Notice that,
if the skeleton was complete, then the configuration without the leaders already
forms Si; thus, the leaders will just occupy positions occupied by another class
on the outermost populated circle. Otherwise, the skeleton of Si is missing one
class in order to complete Si; thus, the leaders will occupy these missing final
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Fig. 3. The configuration Ratio(r), where the gray dots represent the leader
chameleons. The small circle is Q (refer to Section 3.2).

positions, ending the pattern formation process. We will denote this process by
PatternFormation(Γi, Si), where Γi is a backbone configuration of Si.

Lemma 6. Starting from a skeleton Γ ′
i of a given pattern Si ∈ S, the chameleons

can always form Si.

4 Contraction-Free Choreographies (with Repetitions)

In this section, we consider sequences of patterns where a pattern may appear
more than once in the sequence; however, all patterns have the same number
of classes; i.e., ∀i, j, α(Si) = α(Sj) = α. We first provide a lower bound on the
number of colours, k necessary to perform a choreography in this setting.

Theorem 2. Given a contraction-free choreography S with α classes, the chore-
ography described by S can be performed only if the number of available colors
k ≥ μ(Pi)

1
α , ∀Pi ∈ S, where μ(Pi) is the number of occurrences of Pi in S.

Proof. Due to the oblivious nature of the chameleons, it is necessary to distin-
guish between different occurrences of the same pattern. This means that, since
chameleons in the same equivalence class behave in the same way, and a pattern
Pi has α classes, using exactly l colours it is possible to distinguish lα repetitions.
Hence, with less than μ(Pi)

1
α distinct colours it is impossible to assign μ(Pi) dif-

ferent proper colourings for Pi so to distinguish the different occurrences.

We now show an algorithm that can form all feasible contraction-free sequences
using almost the minimum number of colours. The protocol is outlined in Fig-
ure 4, where each step is assumed to be completed before the next one takes
place. The chameleons start from an arbitrary initial uncoloured configuration I
with size(I) = n. The α(I) = α different classes in I can be lexicographically or-
dered by the chameleons; the first step of the algorithm is to have the chameleons
in the smallest class to become leaders. The leaders colour themselves GOLD, and
during the entire algorithm they will always maintain this special colour.

The leaders place themselves in the appropriate position so to create a
Ratio(F (Si)) configuration, as described in Section 3.2. When Ratio(F (Si))
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has been completed, the chameleons know that Si is the next element of the
sequence to be formed. At this point, they perform an expansion to obtain a
backbone of Si. The chameleons then invoke AssigncoloursToPatterns(S),
to determine which new colour each should take next. This subroutine assigns
colours to the points of each Si so that each repetition in S of the same pattern
P become distinct, with the condition that in each colouring, the elements of
the same class are given the same colour. This assignment can be easily done
because colours and classes are totally ordered. When this process is completed,
PatternFormation() can be invoked, and Si is formed.

Protocol RepeatedCoreography

/* Si is the next pattern to be formed, 1 ≤ i ≤ m */
1. If no chameleons have GOLD colour, elect the leaders Rl, and colour them GOLD

2. Create a Ratio(F (Si)) configuration Γ
3. Expansion(Γ \Rl) creating configuration Γ
4. AssigncoloursToPatterns(S)
5. PatternFormation(Γ

′
, Si)

Fig. 4. The protocol to execute contraction-free choreographs

Theorem 3. Any contraction-free choreography S can be performed by a group

of chameleons with k = μ(S) 1
α(S)−1 + 1 colours.

Proof. By Lemma 2, a class can be unambiguously selected as leaders. According
to the RepeatedCoreography protocol, the leaders get coloured GOLD that
will never change during the dance: this class acts as coordinator for the entire
algorithm. To start the formation of a pattern, the leaders create aRatio(F (Si))
configuration which, by construction, unambiguously identifies what is the next
pattern to be performed. Since each P consists of α classes, and GOLD is re-
served only for the leaders, μ(P ) repetitions of P ∈ S can be distinguished using

μ(P )
1

α−1 +1 colours for the classes. Since distinct patterns in S can be coloured

independently of each other, for the entire process μ(S) 1
α−1 + 1 colours suffice.

5 Repetition-Free Choreographies (with Contractions)

In this section, we handle the case when the patterns in S might not have the
same number of equivalent classes (i.e. there could be contractions); however
there are no patterns that appear more than once in S.

We assume that the initial configuration I is such that size(I) = n, and that
∀i, n ≥ size(Si). We first give a lower bound on the number k of colours necessary
for the chameleons to be able to perform a choreography in this setting.

Theorem 4. Given a repetition-free choreography S, the dance described by S
can be performed only if the number of available colors k ≥ maxS(S)

minS(S) , where

maxS(S) = max{size(Pi)}, and minS (S) = min{size(Pi)}.
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Proof. Let Smax be a pattern in S such that size(Smax) = maxS(S), and let
Smin be a pattern in S such that size(Smin) = minS (S). By contradiction, let
us assume k is smaller than the bound in the theorem and there is an algorithm
that performs S using k colors. In particular, the algorithm correctly forms Smin.
Since n ≥ maxS (S) > k ·minS (S), it follows from the pigeon-hole principle that
there are points occupied by more than k chameleons (which cannot all have
distinct colors). Any two chameleons that are colocated and have the same color
may not be separated by a deterministic algorithm. Thus, in any subsequent
configuration, the chameleons may occupy at most k · minS (S) < maxS (S).
This implies that Smax may not be formed and the theorem follows.

We now prove that we can form all feasible repetition-free sequences by using
almost the minimum number of colours (see Figure 5). In contrast with the
previous case, the colours are not necessary to distinguish among patterns in the
sequence, but among chameleons from different classes that happen to contract
to points of multiplicity, and thus need to break the contraction at a later time.

Protocol ContractedCoreography

/* Si is the next pattern to be formed, 1 ≤ i ≤ m */
1. If no chameleons have GOLD colour, elect the leaders Rl, and colour them GOLD

2. Create a Ratio(F (Si)) configuration Γ
3. Call Expansion(Γ \Rl) creating configuration Γ
4. Call Contraction(Γ \Rl, Si) creating a backbone Γ ′

5. PatternFormation(Γ ′, Si)

Fig. 5. The protocol to execute repetition-free choreographs

The chameleons start by electing the leaders, colouring them GOLD, and having
them form configurationRatio(F (Si)). Then, the chameleons start an expansion
process that brings them into a configuration with α equivalence classes each in
a different circle (Section 3.2) and with the colours of all chameleons except the
leaders being OFF. When all non-leaders are OFF, they perform a contraction to
create the backbone of Si, and the PatternFormation() starts.

Theorem 5. Any non-repeating choreography S can be performed by chameleons

with maxS(S)
minS(S) + 1 colours.

6 Arbitrary Choreographies

We now have all the necessary tools to solve the most general case when S can
contain both repetitions and contractions. The algorithm has the same structure
of ContractedCoreography. The only crucial difference is in the function
used in AssigncoloursToClasses(). While in ContractedCoreography

colours were assigned only to the contracting classes, the function now deter-
mines how to assign colours, from a minimal set, to classes when forming a
specific occurrence of P in S so as to distinguish different repetitions as well as
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contracting classes. The optimal number of colours k∗(S), although difficult to
express in a closed formula, is easily computable and easily bounded:

1 + μ(S) 1
α(S)−1

⌈
maxS (S)
minS (S)

⌉
≥ k∗(S) ≥ Max

{
μ(S) 1

α(S) ,

⌈
maxS(S)
minS (S)

⌉}

7 Asynchronous Chameleons

The results we have presented so far have been established for SSYNC chameleons.
However, as recently shown in [3], any result for SSYNC iguanid lizards can be
achieved by ASYNC chameleons with a constant number of colours. This means
that the results of the previous section still hold in ASYNC with just an increase
in the multiplicative constant of the number of colours. In particular:

Theorem 6. Oblivious ASYNC chameleons with O(k∗(S)) colours can perform
any sequence of tableaux provided that the symmetricity of each tableau divides
that of the starting configuration.
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