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Abstract

Sense of direction refers to a set of global consistency constraints of the local labeling of the
edges of a network. Sense of direction has a large impact on the communication complexity of
many distributed problems. In this paper, we study the impact that sense of direction has on
computability and we focus on anonymous networks. We establish several results. In particular,
we prove that with weak sense of direction, the intuitive knowledge-computability hierarchy
between levels of a priori structural knowledge collapses. A powerful implication is the formal
proof that shortest path routing is possible in anonymous networks with sense of direction. We
prove that weak sense of direction is computationally stronger than topological awareness. We
also consider several fundamental problems; for each, we provide a complete characterization of
the anonymous networks on which it is computable with sense of direction.
c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

A distributed system is a collection of autonomous entities communicating by the
exchange of 6nite sequence of bits (called messages). The communication topology
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of the system can be described as a labeled graph (G; �) where nodes correspond to
the system entities, edges represent pairs of neighboring entities (i.e., entities which
can communicate directly), and the label associated by a node to an incident edges
represents the corresponding port number. If the entities of a system (G; �) do not have
globally unique identi6ers, the system is said to be anonymous.
A central problem in distributed computing is undoubtedly the study of the interplay

between computability (i.e., class of solvable problems) and system structure (i.e.,
speci6c assumptions or limitations of the distributed system in which the computation
has to take place).
A large amount of research has been devoted to the study of computability in anony-

mous systems. Clearly, which problems can be solved in anonymous systems depend
on many factors including the structural properties of G as well as on the amount of
a priori knowledge about G available to the entities. Most of the investigations have
focused on systems with a speci6c topology: rings (e.g., [2,7,23,26]), meshes and tori
[3,22], hypercubes [17], Cayley graphs (e.g., [16]); some results exist also for arbitrary
topologies (e.g., [4,5]).
More recently, Yamashita and Kameda [32] have assumed a diFerent viewpoint: they

considered four problems (leader election, edge election, spanning-tree construction,
topology recognition) and four types of structural information (topological awareness,
size of graph, upper bound on size, no information); then, for each problem and type of
information, they studied the class of graphs on which that problem was solvable with
that type of a priori knowledge. Their characterization did not make any assumption on
the labeling � other than it is a local orientation, i.e., a node assigns distinct labels to
the edges incident to it. On the other hand, it is well known that, if � satis6es the set of
consistency constraints called sense of direction [11], the communication complexity of
several distributed problem is drastically reduced (e.g., see [9,15,19,20,21,28]). Because
of its impact on complexity, a great deal of research has been devoted to the analysis
of properties of SD (e.g., see [6,12,13,14,27,30]).
Little is known on the impact of sense of direction in anonymous networks. Most

of the results are implicit and follow from observing that the existing work on com-
putability in speci;c anonymous networks consider systems with sense of direction
(e.g., hypercubes with the traditional “dimensional” labeling, rings with the “left-right”
orientation, etc.). More recently, it has been shown that, in anonymous networks, the
presence of sense of direction reduces the message complexity of the broadcast and
depth-6rst traversal in any network [10]. In spite of its theoretical importance and
possible practical implications, the fundamental issue of computability in anonymous
networks with sense of direction has never been investigated before. Neither it has
been studied the relationship in anonymous systems between sense of direction and
other forms of structural information (e.g., topological awareness, metric information,
etc.).
In this paper we start to 6ll this gap. We study the problem of computing on

anonymous systems in presence of (weak) sense of direction.
We 6rst focus on the levels of a priori structural knowledge studied in [32]: no

information, upper bound on network size, knowledge of network size, and topological
awareness, as well as a higher level called complete topological knowledge. With
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respects to those levels, there exists an intuitive knowledge-computability hierarchy:
the class of graphs on which a problem is solved with a given level of knowledge
includes those on which the same problem is solved with a lower level of topological
knowledge. Using both the notion of view (introduced in [32]), as well as the novel
notion of surrounding, we prove that

the knowledge-computability hierarchy collapses in anonymous systems with weak
sense of direction.

In fact, we prove the stronger result that for any problem P and any structural
knowledge K, the class WK(P) of anonymous graphs in which with any weak sense
of direction P is always solvable with knowledge K includes the class Wcomplete(P).

We then prove that

weak sense of direction has exactly the same computational power than complete
topological knowledge.

In fact we show that, for any problem P, the class of graphs Dcomplete(P) on which P
can be solved with complete topological knowledge coincides with the class of graphs
W (P) on which P is solvable with weak sense of direction (and no other a priori
structural knowledge).
Besides their theoretical relevance for the understanding of the interplay between

knowledge and computability, the above two results have many important implications.
For example, they formally prove that “with sense of direction you do not need names
for routing”:

in any anonymous network with any weak sense of direction it is possible to do
shortest-path routing.

We then focus on the computability relationship in anonymous networks between
sense of direction and topological awareness. We consider the problems studied in [32]:
leader election, edge election, spanning-tree construction, topology recognition, as well
as the more complex problem of complete topology recognition. First, we characterize
the classes of graphs on which it is possible to solve them with sense of direction. Using
these problems as test cases, we then investigate the relationship between computability
with sense of direction and computability with topological awareness. We prove that

sense of direction is strictly more powerful than topological awareness.

More precisely, for the problem of leader election, edge election and spanning-tree
construction we prove that there exist graphs in which these problems can be solved
with any weak sense of direction; without weak sense of direction, none of these prob-
lems is solvable even in presence of topological awareness. For the election problem,
we provide a complete characterization of this class of graphs in terms of symmetry
and singularity.
A similar result is shown to hold for the complete topology recognition problem; also

in this case we provide a characterization of the class of graphs in which topological
awareness is suKcient to solve the problem.
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The paper is organized as follows. In the next section, we give the basic de6nitions.
In Section 3, we introduce the notion of view and surrounding, and we give some
properties. In Section 4, we analyze the relationship between view and surrounding
and we study the computational power of sense of direction. In Section 5, we analyze
the computational relations between the topological awareness and sense of direction
proving that sense of direction is strictly more powerful than topological awareness.
Finally, in Section 6, we discuss some open problems.

2. Framework and basic properties

2.1. Labeled graphs

Let G=(V; E) be a graph where nodes correspond to entities and edges correspond
to direct bidirectional communication links between entities. Let E(x) denote the set
of edges incident to node x. Let G denote the set of all graphs.
A path 
 in G is a nonempty sequence of edges [〈x0; x1〉; 〈x1; x2〉; : : : ; 〈xm−1; xm〉],

〈xi; xi+1〉 ∈E(xi), in which the endpoint of one edge is the starting point of the next
edge. A path is a cycle if the starting point x0 coincides with the ending point xm; a
path is simple if it does not contain any cycle. The reverse path of 
, denoted with
N
 is the path belonging to P[xm+1; x1] s.t. N
= [〈xm+1; xm〉; : : : ; 〈x3; x2〉〈x2; x1〉]. For every
x; v∈V , let dG(x; v) denote the distance between x and v, and analogously for each
x∈V and e ∈ E, let dG(x; e) denote the distance between the x and e. Let P[x] denote
the set of all the walks with x∈V as a starting point, let P[x; y] denote the set of
walks starting from node x∈V and ending in node y∈V , and let Pd[x; y] denote the
set of walks of length at most d, that belong to P[x; y].
Given a graph G=(V; E) and a set � of labels, a local edge-labeling (or labeling)

function for x∈V is any function �x :E(x)→� which associates a label l∈� to
each edge e∈E(x). The labeling � of G is the set of local-labeling functions, that
is �= {�x : x∈V}. By (G; �) we shall denote a labeled graph, that is a graph G on
which it is de6ned a labeling �. A labeling � has a symmetric function  if and only
if for each 〈x; y〉 ∈E, �y(〈x; y〉)=  (�x(〈x; y〉)).
Given a labeling � and a node x∈V , let �x :P[x]→�+ be the path-labeling function

de6ned as follows: for every walk 
∈P[x1] starting from x1, �x1 (
)= [�x1 (〈x1; x2〉); : : : ;
�xm(〈xm; xm+1〉)], where 
= [〈x1; x2〉; : : : ; 〈xm; xm+1〉]. Let �(G;�)[x] = {�x(
) : 
∈P[x]},
and �(G;�)[x; y] = {�x(
) : 
∈P[x; y]}. When (G; �) is clear from the context, we will
omit the subscript (G; �) from the notation.

De�nition 1 (LO—local orientation). A labeled graph (G; �) has local orientation iF
∀x∈V;∀e1; e2 ∈E(x), �x(e1)= �x(e2)⇔ e1= e2:

That is, a labeling is a local orientation when each node can distinguish among its
incident edges.
By de6nition of local orientation, two diFerent edges outgoing from x have two

diFerent labels. We can extend this property to walks of arbitrary length as follows:
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Property 1. If � is a local orientation, then for each 
1; 
2 ∈P[x]: 
1= 
2 ⇔�x(
1)=
�x(
2).

Proof. From the de6nition of �x, it immediately follows that 
1= 
2 ⇒�x

(
1)=�x(
2). By contradiction, suppose that there exists 
1; 
2 ∈P[x] such that 
1 
=

2 and �x(
1)=�x(
2). Let y the last node common to both walks (note that, possibly
x=y). It follows that there are two diFerent edges outgoing from y with the same
label; this contradicts the assumption of local orientation.

That is, in systems with local orientation, to diFerent walks starting from the same
node correspond diFerent strings of labels.
Let O denote the set of all labeled graphs with local orientation. Given (G; �)∈O,

let →
(G; �) :V ×�∗ → V be the partial function de6ned as follows: →

(G; �) (v; �)=w⇔ ∃ 
∈
P[v; w]∧�v(
)= �. Note that, by Property 1, →

(G; �) is well de6ned. In the following, the
symbol →

(G; �) will be also used in in6x notation (i.e. v →
(G; �) � shall denote →

(G; �) (v; �)).
Moreover, when (G; �) is clear from the context, we shall denote →

(G; �) with →.

Property 2. For each u∈V , �∈�[u]⇔ (u → �)∈V:

Proof. By de6nition of �[u], �∈�[u] if and only if there exists 
∈P[u; v] for some
v∈V and �u(
)= �. By de6nition of →, 
∈P[u; v] and �x(
)= � if and only if
u → �= v.

2.2. Sense of direction

De�nition 2. Given (G; �), a consistent coding function c for � is any function with
domain �+, such that ∀x; y; z ∈V , ∀
1 ∈P[x; y], 
2 ∈P[x; z]

c(�x(
1)) = c(�x(
2))⇔y = z:

In other words, a consistent coding function maps walks originating from the same
node to the same value (called local name) if and only if they end in the same node.
We have that:

Property 3. If c is consistent in (G; �), then (G; �)∈O.

Proof. Let c be consistent in (G; �). For any node u and any two diFerent arcs
e1=〈u; v〉, e2= 〈u; z〉 incident on the u, by de6nition of �u and of c we have that
c(�u(e1))= c(�u(e1))= c(�u(e2))= c(�u(e2)) if and only if e1= e2.

Property 4. c is consistent in (G; �) if and only if:

∀x ∈ V ∀�; � ∈ �[x] : x→ � = x→ � ⇔ c(�) = c(�): (∗)
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Proof. (⇒) By contradiction, let c be consistent and there exist a node x and two
strings � and �, such that either
(1) x → �= x → � and c(�) 
= c(�), or
(2) x → � 
= x → � and c(�)= c(�).

Case 1: �; �∈�[x] implies that there exist two walks 
1, 
2 ∈P[x; x → �] where
�x(
1)= �, �x(
2)= �. Thus, c(�x(
1))= c(�) 
= c(�)= c(�x(
2)); by consistency of
c, x → � 
= x → � which yields a contradiction.

Case 2: �; �∈�[x] implies that there exist two walks 
1 ∈P[x; x → �] and 
2 ∈
p[x; x → �] such that �x(
1)= � and �x(
2)= �. By consistency of c, c(�)= c(�)
implies x → �= x → � which yields a contradiction.

(⇐) By contradiction suppose that condition (∗) holds and c is not consistent; that
is, there are three nodes x; y; z and two walks 
1 ∈P[x; y], 
2 ∈P[x; z] such that either
(1) c(�x(
1))= c(�x(
2)) and y 
= z, or
(2) c(�x(
1)) 
= c(�x(
2)) and y= z.

Case 1: x → �x(
1)=y 
= z= x → �x(
2). Noting that �x(
1); �x(
2)∈�[x], condi-
tion (∗) implies c(�x(
1)) 
= c(�x(
2)) which yields a contradiction.

Case 2: x → �x(
1)=y= z= x → �x(
2). Noting that �x(
1); �x(
2)∈�[x], condi-
tion (∗) implies c(�x(
1))= c(�x(
2)) which yields a contradiction.

De�nition 3 (WSD—weak sense of direction). Given a labeled graph (G; �) and a
coding function c for �, (G; �) has weak sense of direction c iF c is consistent for �.
Alternatively, we shall say that c is a WSD in (G; �).

2.3. Structural knowledge

We shall adopt the terminology and de6nitions of [32]. An algorithm A for a problem
P must work on any network G using the available information about G, decide whether
it can solve P for G, and solve P correctly if it can. If A determines that it cannot
solve P for G, then it must report this fact.
For a problem P and an algorithm A for P, let S(P; A) denote the set of graphs

for which A can solve P, no matter what the particular instance of the knowledge,
the communication timing among the processors, the edge labeling, and the particular
consistent coding function are.
Given a structural information K, Let ALGK be the set of all algorithms for systems

with local orientation that use the information K, and let ALGW
K be the set of all

algorithms for systems with weak sense of direction that use the knowledge K and
a consistent coding function. We de6ne the set of graphs in which we can correctly
solve a problem P as

DK(P) = {S ∈ S(P; A) :A ∈ ALGK};

WK(P) = {S ∈ S(P; A) :A ∈ ALGW
K}:

By de6nition, we have:
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Property 5. For any problem P and any knowledge K,

DK(P) ⊆ WK(P):

We investigate the computability in anonymous networks with weak sense of direc-
tion with respect to the four levels of structural knowledge studied in [32]:
• No information (noinfo): No network attribute information is available.
• Upper bound on networks size (upbound): A constant upper bound on the number
of nodes in the network is available.

• Network size (size): The exact number of nodes in the network is available.
• Topological awareness (topology): The topology (i.e., the adjacences matrix) of
(G; �) is available.
We also consider a higher from of knowledge. To formally introduce it, we need

the following de6nition.

De�nition 4 (lg-isomorphism). Given two labeled graphs (G=(V; E); �) and (G′=
(V ′; E′); �′), a bijective function  :V → V ′ is a labeled graph isomorphism for
(G;G′) iF:
(1) 〈u; v〉 ∈E⇔〈 (u);  (v)〉 ∈E′;
(2) �(〈u; v〉)= �′( (u);  (v)〉).

We can now formally de6ne the last form of knowledge considered here:

• Complete network topology (complete): Each node knows a labeled graph, the same
for all nodes, which is lg-isomorphic to G as well as its own isomorphic image in
that graph.

Then, by de6nition, we have the following properties.

Property 6 (Yamashita and Kameda [32]; LO knowledge-computation hierarchy). For
any problem P

Dnoinfo(P) ⊆ Dupbound(P) ⊆ Dsize(P) ⊆ Dtopology(P) ⊆ Dcomplete(P):

Property 7 (WSD knowledge-computation hierarchy). For any problem P

Wnoinfo(P) ⊆ Wupbound(P) ⊆ Wsize(P) ⊆ Wtopology(P) ⊆ Wcomplete(P):

It is interesting to note that the knowledge of a consistent coding function alone,
without the exchange of messages, allows each node to locally derive an upper bound
on the size of the network. In fact, the codomain of any consistent coding function c
must contain at least n diFerent symbols in order to distinguish between the nodes of
the graph. Thus:

Property 8.

Wnoinfo(P) = Wupbound(P):
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Fig. 1. (a), (b), (c) DiFerent graphs with the same consistent coding function c. (d) edge labeling of the
three graphs.

However, the knowledge of a consistent coding function is not su<cient for deriving
locally (i.e., without exchanging messages) neither the topology, nor the exact size of
the network as shown in the following.
For any subgraph G=(V ′; E′) of the labeled graph (G; �), let �|G′ be the restriction

of � on G′, that is �|G′= {�′x : x∈V ∧ �′x(e)= �x(e)∀e∈E}. By de6nition of WSD,
we can easily prove that:

Property 9. Let (G; �) be a labeled graph with WSD c. For any subgraph G′ of G,
(G′; �|G′) is a labeled graph with WSD c.

By Property 9, the three diFerent labeled graphs of Fig. 1 have the same WSD c.
This means that the availability of a consistent coding function, without the exchange
of messages, is not suKcient to derive the size of the network (see graphs (a) and (c)).
It also means that availability of both consistent coding function and exact knowledge
of n, without the exchange of messages, is not suKcient to derive the topology of the
network (graphs (a) and (b)).
The properties of this section can be summarized as follows:

Dnoinfo(P) ⊆ Dupbound(P) ⊆ Dsize(P) ⊆ Dtopology(P) ⊆ Dcomplete(P)⋂∣∣∣
⋂∣∣∣

⋂∣∣∣
⋂∣∣∣

Wnoinfo(P) = Wupbound(P) ⊆ Wsize(P) ⊆ Wtopology(P) ⊆ Wcomplete(P)

3. View and surrounding

3.1. View

A crucial concept when computing on anonymous networks is the one of view,
introduced in [32]. The view T(G;�)(v) of a node v in a labeled graph (G; �) is an
in6nite, labeled, rooted tree, de6ned recursively as follows. T(G;�)(v) has the root x0
corresponding to v. For each vertex vi adjacent to v in G, T(G;�) has a node xi and
an edge from x0 to xi with labels �v(〈v; vi〉) and �vi(〈v; vi〉) at its x0’s and xi’s ends,
respectively. Node xi is now the root of T(G;�)(vi) from vi.



P. Flocchini et al. / Theoretical Computer Science 301 (2003) 355–379 363

In other words, the view T(G;�)(v) of a node v is a rooted subgraph of the universal
cover U induced by the collection of walks P[v] in U .
The formal introduction of the concept of view and the characterization of its

link with computability in anonymous systems is due to Yamashita and Kameda
[31,32]; in particular, they showed that an entity’s view represent all the informa-
tion about the system it can learn by exchanging messages [32]. The relationship
between view and universal cover (a notion originating from algebraic topology) has
been made explicit by Norris [25]. Both notions are being used (sometimes
under diFerent names) in the distributed computing literature (e.g., see [1,2,8,18,
24,25,29]).
In the following, we shall refer to a node of a view by using the sequence of labels

in the shortest path (in the view) from the root to that node. Since a view is a tree,
such a naming in not ambiguous, and shall be called canonical. Thus, in a canonical
naming, node x in view T is x= �, where � is the (unique) sequence of edge labels in
the shortest path in T from the root to x. Throughout the paper we shall exclusively
use canonical naming of the nodes.
Let � be a (6nite) set. Let �∗ be the set of strings of element of � includ-

ing the empty string $, let �d ⊆�∗ be the set of strings of length at most d, and
let �d

(G;�)[x; y] =�(G;�)[x; y]∩�d, and �d
(G;�)[x] =

⋃
y∈ V �d[x; y]. Given �; �∈�∗, let

� · �∈�∗ be the concatenation of the � and �; given a set of strings A let � ·A= {� ·w :
w∈A}. Given a pair of strings 〈�; �〉 and a string %, let % · 〈�; �〉= 〈% · �; % · �〉; given a
set B of pair of strings, let % ·B= {% · 〈�; �〉 : 〈�; �〉 ∈B}.

When no ambiguity arises, we shall denote a view T(G;�)(v) simply by T (v). For any
integer d¿0, let Td(v) denote the d-view of node v, i.e., T (v) truncated to distance d.
Given a labeled graph X , let V(X ), E(X ) and L(X ) denote the vertices, the edges
and the labeling of X , respectively.
By de6nition of view and of canonical naming, the following properties immediately

follow.

Property 10. Given (G=(V; E); �) and u∈V :
1. T 0(u)= (({$}; ∅); ∅);
2. V(T i+1(u))= {$}∪ ⋃

v: 〈u; v〉 ∈ E(�u(〈u; v〉) ·V(T i(v)));
3. E(T i+1(u))= {〈$; �u(〈u; v〉)〉 : 〈u; v〉 ∈E}∪ ⋃

v: 〈u; v〉 ∈ E (�u(〈u; v〉) ·E(T i(v)));

4. L(T i+1(u))�(〈�; �〉)=




l if �= $∧ �= l;

�u→l(〈u → l; u〉) if �= l∧ �= $;

L(T i(u → l))�′(〈�′; �′〉) if �= l · �′∧ �= l · �′:

Example 1. A labeled graph G and its 2-view from node u are shown in Fig. 2; each
node in this view is uniquely identi6ed by the sequence of labels corresponding to the
shortest path from u in the tree.

Note that the labeling of a view is not a local orientation. The following properties
of the views express some simple relationships between nodes, edges and walks in a
canonical view (for the proof, see the appendix).
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Fig. 2. A labeled graph and its 2-view from node u.

Property 11. Let �; �∈VT , and let → denote →
(G; �) .

1. 〈�; �〉 ∈E(Td(u)) i> 〈u → �; u → �〉 ∈E and �= � · �u→�(〈u → �; u → �〉).
2. L(Td(v))�(〈�; � · l〉)= l.
3. �∈�d

(G;�)[u; u → �]⇔ �∈V(Td(u)).
4. �∈�d

G[u]⇔ �∈V(Td(u)).

Proof. (Point 1) By induction on d. The property trivially holds for d=0. Let it hold
for d¿0. Let A= {〈$; �u(e)〉 : e= 〈u; v〉 ∈E}, and B=

⋃
v : 〈u; v〉 ∈ E (�u(〈u; v〉) ·E(Td(v))).

By Property 10.3, E(Td+1(u))=A∪B. Let 〈�; �〉= e∈E(Td+1(u)). If e∈A, then the
thesis trivially holds. If e∈B, then by inductive hypothesis the thesis holds forE(Td(v)).
Thus, because of the de6nition of B, the thesis follows.
(Point 2) By induction on d. The property trivially holds when d=0. Let the prop-

erty hold for d¿0, and let the sets A and B be as in the proof of previous point. If
e∈A, then the thesis follows by Property 10.3. If e∈B, then the thesis follows by
induction.
(Point 3) By induction on d. The property holds when d=0 since �0

(G;�)[u; u] = {$}=
V(T 0(u)). Let the property hold for d¿0: by Property 10.2, �∈V(Td+1(u)) if and
only if 1) �= $, or 2) �= l · �′ where �′∈V(Td(v)) and l= �u(〈u; v〉). In the 6rst
case, �∈�d+1[u; u → $] which proves the thesis. In case 2, by inductive hypothesis,
�d[v; v → �′] if and only if �′∈V(Td(v)). By de6nition of �[v; v → �′], there is a walk
starting from v and ending in v → �′ labeled with �′. But, l is the label of an arc from
u to v; thus, l · �′ is a label in �d+1[u; v → �′]. Thus, noting that u → (l · �′)= v → �′,
the thesis is proved.
(Point 4) This is a special case of the previous point, since u → � is de6ned if and

only if �∈�d[u].

Property 12 (Norris [25]). Let |V |= n.

Tn−1(u) = Tn−1(v) ⇔ ∀d¿0 : Td(u) = Td(v):
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Property 13 (Yamashita and Kameda [32]). Let |V |= n.
1. The cardinality )(G;�) of the set {v :Tn−1(v)=Tn−1(u)} is the same for all u.
2. )(G;�) divides n.
3. For each d; )(G;�) divides #d(G), where #d(G) is the number of vertices in G with

degree d.

The value )(G;�) is called symmetricity of the labeled graph (G; �) in [32].

3.2. Surrounding

We now introduce the concept of surrounding of a node in a labeled graph; this
notion is stronger than the one of view described before. For each �∈�d

(G;�)[u], let
<�=du=�d

(G;�)[u; u
→

(G; �) �] (or <�= when u and d are given).
Given a labeled graph G, the d-surrounding of a node u is a labeled graph G′

informally de6ned as follows. For each node v in G which is at distance at most d
from u, there exists a node v′ in G′ denoted by the sequences of labels corresponding
to the set of walks in G of length at most d starting from u and ending in v. There is
an edge between two nodes v′; w′ in the surrounding iF the exists a sequence denoting
w′ that diFers only in the last label l to one of the sequences denoting v′; in this case
the edge in the surrounding is labeled by l (see Fig. 2). Formally:

De�nition 5 (Surrounding). Given a labeled graph (G=(V; E); �), an integer d¿0,
and node u∈V , the d-surrounding of u is the labeled graph Nd

(G;�)(u) where
1. V(Nd(u))= {<�=du : �∈�d

(G;�)[u]};
2. given � and �, 〈<�=du ; <�=du 〉 ∈E(N (u)) if and only if e= 〈u → �; u → �〉 ∈E and

dG(u; e)6d. The edge e will be called the corresponding edge of 〈<�=du ; <�=du 〉.
3. L(N (u))<�=(〈<�=; <�=〉)= �u→�(〈u → �; u → �〉 (i.e. the label of the corresponding

edge).

Example 2. A labeled graph G and its 2-surrounding from node u are shown in Fig. 3.
Notice the diFerence between the surrounding and the view (shown in Fig. 2).

The following properties on the surrounding of a node in a graph G describe some
relations existing between walks in G and nodes and edges in the surrounding.

Property 14.
1. V(Nd

(G;�)(u)) is a partition of �d
(G;�)[u].

2. 〈<�=; <�=〉 ∈E(Nd(u))⇔ ∃ �′∈ <�=; �′∈ <�= : 〈u → �′; u → �′〉 ∈E, �′= �′· �u→�(〈u → �′;
u → �′〉).

3. |V(Nd(u))|= |{v∈V :dG(u; v)6d}|.
4. |E(Nd(u))|= |{e∈E :dG(u; e)6d}|.

Proof. (Point 1) We 6rst prove that <�=∩ <�= 
= ∅ ⇒ <�== <�=. If %∈ <�=∩ <�=, then there
are two walks 
1 ∈P[u; u → �] and 
2 ∈P[u; u → �] both labeled with %. By Property 1,
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Fig. 3. A labeled graph and its 2-surrounding from node u.

we have that 
1= 
2 which implies u → �= u → �. Thus, by de6nition of <=, <�== <�=.
The thesis now immediately follows from the de6nition of �d[u].
(Point 2) By de6nition of surrounding, 〈<�=; <�=〉 ∈E(Nd(u))⇔ e= 〈u → �; u → �〉 ∈

E ∧dG(u; e)6d. The distance between u and e is less or equal to d if and only if
∃ 
∈Pd−1

G [u; u → �]. Let �′=�u(
) and �′= �′· �u→�(e). The thesis follows noting
that u → �= u → �′ and u → �= u → �′ because of the de6nition of <�= and <�=.
(Point 3) Let f :V(Nd(u)) → {v∈V :dG(u; v)6d} be the following function: f(<�=)

= u → �. In order to prove the thesis, we will prove that f is bijective. First of all
we will prove that f is one-to-one. Let f(<�=)=f(<�=), that is u → �= u → �. By
de6nition of <�=, �∈ <�= and by Point 1, <�== <�=. We will now prove that f is onto. Let
z ∈{v∈V :dG(u; v)6d}. dG(u; z)6d implies that there exists 
∈P[u; z] and |
|6d.
Thus, �=�u(
)∈�d[u] and from Point 1, it follows that <�=∈V (Nd(u)). Moreover,
f(<�=)= u → �= z.
(Point 4) The proof is similar to the one of Point 3.

For each x∈V , let nG(x)= maxv∈E d(x; v) be the node eccentricity of x. For each
x∈V , let eG(x)= maxe∈E d(x; e) be the edge eccentricity of x. The following are well
known property of the node and edge eccentricity.

Property 15.
(1) for each v∈V , n(v)6e(v)6n(v) + 1.
(2) for each i¡e(v); {e : d(v; e)6i}⊂{e :d(v; e)6i + 1}.

In the following we shall use the simpler notation N (u) whenever referring to
Ne(u)(u).
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4. Computability and weak sense of direction

4.1. From views to surroundings

To analyze the relationship between view and surrounding, we need the notion of
quotient graph induced by an equivalence relation on the nodes. Traditionally, the
quotient graph G==≡ of (G=(V; E); �) is de6ned as follows: the vertices of G==≡ are
the equivalence classes of ≡, and there is an edge 〈[u]; [v]〉 between the equivalence
classes [u] and [v] (corresponding to nodes u and v) labeled l in G==≡ if and only if
there is an edge 〈u′; v′〉 labeled l in G with u′∈ [u] and v′∈ [v]. Notice that in general
the quotient graph is a multigraph. We will transform the multigraph G==≡ into a graph
G=≡ as follows. For each pair of adjacent nodes x and y in G==≡ replace all the edges
between them with a simple edge whose label is the set of all the labels of the replaced
edges. In the particular case in which all labels in G=≡ contain only one element, we
shall further substitute each set by the element it contains. We shall call the resulting
graphs G=≡ the quotient graphs of G.

De�nition 6 (Quotient graph). Let (G=(V; E); �) be a graph. The quotient graph
G=≡ =((V ′; E′); �′) of G induced by an equivalence relation ≡ is de6ned as follows.
V ′= {[x]≡ : x∈V}, 〈[x]≡; [y]≡〉 ∈E′ if and only if there exists a corresponding edge
〈u; v〉 ∈E for some u∈ [x]≡ and v∈ [y]≡.
Let �∗[x]≡(〈[x]≡; [y]≡〉)= {(�u(〈u; v〉); �vt(〈u; v〉) : 〈u; v〉 ∈E ∧ u∈ [x]≡ ∧ v∈ [y]≡}. If

for all 〈[x]≡; [y]≡〉 ∈E′, �∗[x]≡(〈[x]≡; [y]≡〉)= {(�u(〈u; v〉); �v(〈u; v〉)} (i.e. there is only
one pair of labels), then let �′[x]≡(〈[x]≡; [y]≡〉)= �u(〈u; v〉), and �′[y]≡(〈[x]≡; [y]≡〉)=
�v(〈u; v〉); otherwise �′= �∗.

Example 3. A labeled graph and its quotient are shown in Fig. 4; note that u≡y
and v≡ x. Notice the diFerence between the quotient and the surrounding (shown in
Fig. 3) of the same graph.

De�nition 7. Let f be a function de6ned over the set of nodes; the equivalence relation
≡f between elements v and u of V is de6ned as follows:

v ≡f u⇔f(v) = f(u):

Fig. 4. A labeled graph and its quotient.
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The following lemma states an important relation between views and surroundings
and will be used to understand the computational power of Sense of Direction. We
show that, given a labeled graph (G; �) with sense of direction, the quotient graph
Td(u)=≡c of the view Td(u) induced by the consistent coding function c is equal to
the d-surrounding of u.

Lemma 1. If c is a consistent coding function for (G; �), then Td(u)=≡c=Nd(u).

Proof. Let Td(u)= (T =(VT ; ET ); N�), Td(u)=≡c=(T=c=(Vc; Ec); �′), and Nd(u)=
(N =(VN ; EN ); �′′).

Claim. For each �∈�d
G[u], [�]≡c= <�=.

[�]≡c= <�= if and only if for each �: �∈ [�]≡c ⇔ �∈ <�=. By de6nition of quo-
tient graph, �∈ [�]≡c ⇔ �∈VT ∧ �≡c �. By de6nition of the equivalence relation ≡c,
�≡c �⇔ c(�)= c(�). Thus, �∈ [�]≡c ⇔ �∈VT ∧ c(�)= c(�). By Property 11.3, �∈VT

⇔ �∈�d[u; u → �] and �∈VT ⇔ �∈�d[u; u → �]. By Property 4, c(�)= c(�)⇔
u → �= u → �. Thus, �∈VT ∧ c(�)= c(�)⇔ �∈ <�=, concluding the proof of the claim.
In order to prove the thesis, we must prove that: (1) Vc=VN ; (2) Ec=EN ; (3)

�′= �′′. (1) Vc=VN if and only if A∈Vc ⇔A∈VN . By de6nition of quotient graph,
A∈Vc ⇔A= [�]≡c for some �∈VT . By Property 11.4, �∈VT ⇔ �∈�d[u]. By the
above claim, [�]≡c= <�=. Thus, A∈Vc ⇔A= <�= for some �∈�d[u]. In other words,
by de6nition of d-surrounding, A∈Vc ⇔A∈NT .
(2) Ec=EN if and only if 〈A; B〉 ∈Ec ⇔〈A; B〉 ∈EN . By de6nition of quotient graph,

〈A; B〉 ∈Ec ⇔ ∃ �∈A; �∈B; 〈�; �〉 ∈ET . By Property 11.1, 〈�; �〉 ∈ET ⇔〈u → �; u → �〉
= e∈E, �= � · �u→�(e) and |�|6d. By Property 14.2, ∃ �∈A; �∈B :
〈u → �; u → �〉= e∈E ∧ �= � · �u→�(e)⇔〈A; B〉 ∈EN .

(3) Let < N�==A and < N�==B. By construction, �∗A(〈A; B〉)= {( N��(〈�; �〉); N��(〈�; �〉)) :
〈�; �〉 ∈ET ∧ �∈A∧ �∈B}. By Property 11.1, 〈�; �〉 ∈ET ⇔〈u → �; u → �〉 ∈E ∧ �=
� · �u→�(〈u → �; u → �〉)∧ |�|6d and by Property 11.2, N��(〈�; �〉)= �u→�(〈u → �;
u → �〉). Thus, �∗A(〈A; B〉)= {(�u→�(〈u → �; u → �〉); �u→�(〈u → �; u → �〉)) : 〈u → �;
u → �〉 ∈E ∧ �= � · �u→�(〈u → �; u → �〉)∧ �∈A∧ �∈B}. By de6nition of quo-
tient graph and of ≡c, �∗A(〈A; B〉)= {(�u→�(〈u → �; u → �〉); �u→�(〈u → �; u → �〉)) :
〈u → �; u → �〉 ∈E ∧ �= � · �u→�(〈u → �; u → �〉)∧ c(�)= c( N�)∧ c(�)= c( N�)}. By
Property 4, �∗A(〈A; B〉)= {(�u→ N�(〈u→ N�; u→ N�〉); �u→ N�(〈u→ N�; u→ N�〉))}. By de6nition of

�′, �′A(〈A; B〉)= N� N�(〈 N�; N�〉)= �u→ N�(u → N�; u → N�), and �′B(〈A; B〉)= N� N�(〈 N�; N�〉)= �u→ N�(u →

N�; u → N�). By de6nition of �′′, �′A(〈A; B〉)= �′′A(〈A; B〉) and �′′B(〈A; B〉)= �′′B(〈A; B〉).

An immediate consequence of the previous lemma is the following corollary.

Corollary 1. For every labeled graph (G; �) with WSD,

Td(u) = Td(v)⇒Nd(u) = Nd(v):



P. Flocchini et al. / Theoretical Computer Science 301 (2003) 355–379 369

The following lemma characterizes the relationship between the surrounding of a
node in a graph and the graph itself.

Lemma 2. Let (G; �) be a connected labeled graph.
(1) there exists a graph isomorphism  for (Ne(u); (G; �)) and  (<$=)= u;
(2) there exists a graph isomorphism for (Ni(u); N i+1(u)) if and only if i¿eG(u).

Proof. (1) Since G connected, we have that from node u it is possible to reach each
other node x. Let pG(u; x) be an arbitrary shortest path in PG[u; x]. Let  : V → VN

s.t.  (x)= <�u(pG(u; x))=. First we shall prove that the function is well de6ned that is:
there corresponds a <�=∈VN to each x∈V . By Property 14.3 and de6nition of N (u),
pG(u; x)∈�e(u)[u]. Thus, by de6nition of surrounding,  (x)∈VN . Now we have to
prove that  is a labeling preserving isomorphism, that is:
(1.0.1)  is one to one;
(1.0.2)  is onto;
(1.0.3)  −1 is s.t.  −1(<�=)= u → �;
(1.1) 〈x; y〉 ∈E⇔〈 (x);  (y)〉 ∈EN ;
(1.2) �x(〈x; y〉)= � (x)(〈 (x);  (y)〉).
(1.0.1) Let  (x)=  (y), that means <�u(p(u; x))== <�u(p(u; y))=. By de6nition of < =,

�e(u)[u; u → �u(p(u; x))]=�e(u)[u; u → �u(p(u; y))]. By Property 14.2, {�e(u)[u; x] :
x∈V} is a partition of �e(u)[u] which implies u → �u(p(u; x))= u → �u(p(u; y)). By
de6nition of →, we have that x=y.
(1.0.2) Let �∈�e(u)[u], this implies that u → �∈V . Thus,  (u → �)= <�=.
(1.0.3)  −1(<�=)= x such that  (x)= <�=). Let x= u → �, then  (x)= <�u(p(u; u →

�))== < N�= s.t. u → �= u → N�. But by de6nition of < = follows that <�== < N�=.
(1.1) By de6nition of EN , 〈 (x);  (y)〉 ∈EN if and only if ∃ 
∈Pe(u)

G [u; u →
�u(p(u; x))] : 
〈u → �u(p(u; x)); u → �u(p(u; y))〉 ∈Pd

G [u]. By (1.0.3), u → �u(p(u; x))
=  −1(<�u(p(u; x))=)=  −1( (x))= x and u → �u(p(u; y))=y. Thus, 〈 (x);  (y)〉 ∈EN

if and only if ∃ 
∈Pe(u)
G [u; x] : 
〈x; y〉 ∈Pd

G [u]. By de6nition of e(u), ∃ 
∈Pe(u)
G [u; x] :


〈x; y〉 ∈Pd
G [u] if and only if 〈x; y〉 ∈E.

(1.2) By (1.1), the corresponding edge of 〈 (x);  (y)〉 is 〈x; y〉. Thus the label of
the two edges are equal by de6nition of surrounding.
(2) (⇒) Note that following the proof of point (1), nothing changes if we substitute

e(u) with e(u)+1. Thus Ne(u)+1(u) is isomorphic to G, and G is isomorphic to Ne(u)(u).
By transitivity, we have that Ne(u)(u) is isomorphic to Ne(u)+1(u).

(⇐) Let M = {e∈E : dG(u; e)= n + 1}. By Property 15.2, |{e : d(u; e)6i}|¡|{e :
d(u; e)6i + 1}|. By Property 14.4, |E(Ni(u))|= |{e : d(u; e)6i}|¡|{e : d(u; e)6i +
1}|= |E(Ni+1(u))|. Thus, Ni(u) is not isomorphic to Ni+1(u).

An immediate consequence of the previous lemma and of Corollary 1 is the following
corollary.

Corollary 2. For any labeled graph (G; �) with WSD

T (u) = T (v) ⇔ N (u) = N (v):
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4.2. Computational power of WSD

We now prove that, with weak sense of direction, the knowledge-computability
hierarchy described in Section 2.3 collapses.

Theorem 1 (Hierarchy collapse). For every A;B∈{noinfo; upbound; size; topology;
complete} and every problem P,

WA(P) = WB(P):

The theorem derives from the following more general result.

Theorem 2. For every knowledge K and for every problem P, WK(P)⊇Wcomplete(P).

Proof. We prove that Wnoinfo ⊇Wcomplete. By Lemma 4 in [32], each processor v can
compute Td(v) for any nonnegative integer d. Note that no knowledge is required to
compute Td(v). With c, each processor can compute Td(v)=≡c and stop whenTd−1(v)=≡c

is isomorphic to Td(v)=≡c . By Lemma 2.2, each processor stops when Td(v)=≡c is equal
to N (v). Moreover, the processors selects <$= that by Lemma 2.1, is isomorphic to itself.

Corollary 3. For each K∈{noinfo; upbound; size; topology} and each problem P,

WK(P) = Wcomplete(P):

Proof. By Property 7 and Theorem 2.

By Theorem 1, it follows that for all K∈{noinfo; upbound; size; topology; complete},
all WK(P) coincide; let W (P) denote such a set.
We can now prove that complete knowledge of the topology and weak sense of

direction have the same computational power.

Theorem 3. For every problem P

Dcomplete(P) = W (P):

Proof. Let A be an algorithm that solves P in any labeled graph ∈W (P). We will prove
that it is possible to simulate the behavior of the algorithm A in (G=(V; E); �) doing
only internal computations. Note that not all the labeling � of a network admit a consis-
tent coding function. Thus, in order to show the existence of such a simulation, we have
to provide: (1) a labeling �′, (2) a consistent coding function c for �′. Each processor
v can locally compute its surrounding N (v) and the surrounding of all the other proces-
sors. Let �′x(e)= (N (x); �x(e)) and c(�′

x(
))= c((N (x); l1) · (N (y); l2) · : : : · (N (z); lk))
= <l1 · l2 · : : : · lk =N (x). We will prove that c is a consistent coding function, that is for
every 
1 ∈P[x; y] and 
2 ∈P[x; z]: c(�x(
1))= c(�′

x(
2))⇔y= z. Let �x(
i)= �i for
i=1; 2. By de6nition of surrounding, <�1== <�2=⇔ x → �1= x → �2 ⇔y= z. Then al-
gorithm A must solve the problem P for (G; �′) using the function c. Thus, without
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exchanging any message, each processor can simulate the behavior of A in the local
copy (G; �′) of the network it is running on. Note that the labeling of the graph remains
the same, in fact �′ is the labeling of a local representation of the network.

As a consequence, we have that:

Corollary 4. For every problem P

Dnoinfo(P) ⊆ Dupbound(P) ⊆ Dsize(P) ⊆ Dtopology(P) ⊆ Dcomplete(P) = W (P):

The previous results have many important implications. For example, they formally
prove that in any anonymous network with weak sense of direction it is possible to
do shortest-path routing. Let G denote the set of all graphs.

Corollary 5. W (SHORTEST-PATH)=G

4.3. Graph characterization

In this section, we characterize the graphs on which, with sense of direction, it is pos-
sible to solve the problems studied in [32]: leader election, edge election, spanning-tree
construction, topology recognition, as well as the more complex problem of complete
topology recognition.
We recall the problems studied in [32]:
Leader election problem (ELECT-LEADER): Elect a processor as the leader in the

sense that the elected processor knows that it has been elected and the other
processors knows that they have not.

Edge election problem (ELECT-EDGE): Select a link e= 〈u; v〉 in the sense that each
processors u and v know which port correspond to e and the other processors
know that they are not incident with e.

Spanning tree construction problem (SPANNING-TREE): Compute a spanning tree T
of the network in the sense that each processor can tell which links incident to
it are tree edges.

Topology recognition problem (FIND-TOPOLOGY): Compute on each processor a graph
isomorphic to the network it is running on.

We also consider the following problem:
Complete topology recognition problem (FIND-COMPLETE): Compute on each pro-
cessor a labeled graph lg-isomorphic to the network it is running on; moreover,
each processor select a node in the graph G that is isomorphic to itself.

By de6nition, the following property trivially holds.

Property 16.
(1) Dtopology(FIND-TOPOLOGY)=Wtopology(FIND-TOPOLOGY)=G,
(2) Dcomplete(FIND-COMPLETE)=Wcomplete(FIND-COMPLETE)=G.

We 6rst consider the leader election problem and recall the following result of
[32].
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Theorem 4 (Yamashita and Kameda [32, Theorem 1]). Dtopology(ELECT-LEADER)=
{G : ∀�; (G; �)∈O⇒ )(G;�)= 1}:

Let S (Singular) be the set {G : ∀�; (G; �)∈W⇒ )(G;�)= 1}. In other words, S is
the set of graphs such that their symmetricity is one, for any labeling with WSD.
We can now characterize the class of graphs with sense of direction on which the

leader election problem is solvable.

Theorem 5. W (ELECT-LEADER)=S.

Proof. It follows from Theorem 4 and Corollary 2.

Analogously, for edge election problem we recall the following result.

Theorem 6 (Yamashita and Kameda [32, Theorem 2]). D topology(ELECT-EDGE)={G :∀�;
(G; �)∈O⇒ ()(G;�)62∧ )(G;�)= 2⇒ ∃ u; v∈V :N(G;�)(u)=N(G;�)(v)∧ 〈u; v〉 ∈E(G))}:

Let E (Edge Singular) be the set {G : ∀�; (G; �) ∈ W⇒ ()(G;�)62∧ )(G;�)= 2⇒
∃ u; v∈V : N(G;�)(u)=N(G;�)(v)∧ 〈u; v〉 ∈E(G))}. In other words, E is the set of graphs
which have, for any labeling with WSD, symmetricity less or equal to two; moreover,
if their symmetricity is exactly two, there are at least two adjacent nodes with the same
surrounding. We have that.

Theorem 7. W (ELECT-EDGE)=E.

Proof. It follows from Theorem 7 and from Corollary 2.

We now consider the spanning tree construction problem. From Theorem 3 in [32],
we have that.

Theorem 8. For any (G; �) and any knowledge K, there is an algorithm A to solve
ELECT-EDGE i> there is an algorithm B to solve SPANNING-TREE.

As a consequence of the previous result, we have that.

Theorem 9. W (SPANNING-TREE)=W (ELECT-EDGE).

The topology construction and the complete topology construction problems can be
characterized as follows.

Theorem 10. W (FIND-TOPOLOGY)=W (FIND-COMPLETE)=G.

Proof. It follows from Corollary 3 and Property 16.2.

The following result summarizes the relationship between the above classes of graphs;
moreover, it proves the proper inclusions.
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Fig. 5. The graph G2 in the proof of Theorem 11.

Let T denote the set of all tree networks.

Theorem 11. W (ELECT-LEADER) ⊂ W (ELECT-LEADER) ∪ T ⊂ W (SPANNING-TREE) =
W (ELECT-EDGE)⊂W (FIND-TOPOLOGY)=W (FIND-COMPLETE)=G.

Proof. By the previous theorems all the equalities are proved. Moreover, it is easy to
see that TREE⊆W (SPANNING-TREE). Thus we need only to provide graphs G1, G2 and
G3 such that:
(1) G1 ∈ TREE −W (ELECT-EDGE);
(2) G2 ∈W (SPANNING-TREE)− TREE;
(3) G3 ∈G−W (SPANNING-TREE).
(1) Let G1= ({u; v}; {〈u; v〉}) with labeling � s.t. �u= �v any constant function. It

is easy to see that (G1; �) has sense of direction and )(G;�)= 2. Thus, by Theorem 5,
G1 =∈W (ELECT-EDGE), but G1 ∈ TREE.
(2) Let G2 be the graph shown in Fig. 5. It is easy to see that )(G;�)= 2 and that

the labeled graph has sense of direction. Thus, G2 =∈W (ELECT-LEADER). On the other
hand, by Theorem 3 in [32] and by Corollary 3 it follows G2 ∈W (ELECT-EDGE).

(3) Finally, it is clear that G properly contains W (SPANNING-TREE), since the spanning-
tree problem is unsolvable for rings with sense of direction.

5. Computational relations between sense of direction and topological awareness

At the end of Section 4.2, the equality Dcomplete(P)=W (P) was proven. In this sec-
tion we investigate the relations between Dtopology and W (P). In particular we consider
the problems studied in Section 4.3 Using these problems as test cases, we investigate
the relationship between computability with sense of direction and computability with
topological awareness. With respect to all these problems, we prove that weak sense
of direction is strictly more powerful than topological awareness.
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Fig. 6. A symmetric labeling of the minimum regular identity graph.

5.1. Elections and spanning-tree construction

With respect to the problems of leader election, edge election and spanning-tree
construction, we prove that weak sense of direction is strictly more powerful than
topological awareness. We prove that there exist graphs in which these problems can
be solved with any weak sense of direction; without weak sense of direction, none of
these problems is solvable even in presence of topological awareness.

De�nition 8. A labeled graph (G=(V; E); �) is completely symmetric if and only if
all views are equal, that is )(G;�)= |V |.

The following lemma gives a necessary and suKcient condition or a graph to be
completely symmetric.

Lemma 3 (Flocchini [12]). A labeled graph (G; �) is completely symmetric if and
only if G is d-regular for some d and � is a symmetric local labeling using d labels.

Consider the labeled graph of Fig. 6, we have that:

Property 17. The labeled minimum identity graph (I; 2) shown in Fig. 6 is completely
symmetric.

Proof. The labeling 2 is symmetric with the following function  :  (1)= 2,  (2)= 1
and  (3)= 3. Moreover, 2 uses only 3 labels, namely 1, 2, and 3. By Lemma 3, we
have that the graph is completely symmetric.
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The following theorem shows that the problem of leader election, edge election and
spanning-tree construction are not solvable in (I; 2) without weak sense of direction,
even in presence of topological awareness.

Theorem 12. Let P ∈{ELECT-EDGE, ELECT-LEADER, SPANNING-TREE}.
I =∈ Dtopology(P):

Proof. Let 2 be the labeling of I de6ned in Property 17. By de6nition of ), )(I)¿
)(I;2)= 12. By Theorem 2 in [32], if G ∈Dtopology(ELECT-EDGE), then )(G)62. Thus,
I =∈Dtopology(ELECT-EDGE).
By Theorem 3 in [32], Dtopology(ELECT-LEADER)⊂Dtopology(ELECT-EDGE). Thus, I =∈

Dtopology(ELECT-LEADER):

However, as consequences of Theorem 5, these problems can be solved with any
weak sense of direction.

Corollary 6. Let P ∈{ELECT-EDGE; ELECT-LEADER; SPANNING-TREE}.
I ∈ W (P):

Proof. We have to prove that for each labeling � of I that is a sense of direction,
the symmetry is 1. Note that, if a function is a lg-isomorphism, then it is also an
isomorphism. In the identity graph there are no isomorphisms; hence, there are no lg-
isomorphisms. By Lemma 2, two nodes with the same surrounding are lg-isomorphic.
Thus, there are no nodes with the same surrounding. By Corollary 2, there are no
nodes with the same view. Thus, by de6nition of symmetry, )(I;�)= 1. By Theorems 5,
7 and 11, the thesis follows.

Corollary 7. Let P ∈{ELECT-EDGE; ELECT-LEADER; SPANNING-TREE}.
I ∈ W (P)− Dtopology(P):

Wenow consider the class of all the graphsW(ELECT-LEADER)−Dtopology(ELECT-LEADER)
and we provide a complete characterization of this class in terms of symmetry and sin-
gularity. Recall that W denote the set of all labeled graphs with weak sense of direction
and S= {G :∀�; (G; �)∈W⇒ )(G;�)= 1}. Let B be {G :∃ � : (G; �) ∈ O⇒ )(G;�)¿2}).
Note that all identity graphs belong to S. From Theorems 4 and 5 we have the

following.

Theorem 13.

B ∩S = W (ELECT-LEADER)− Dtopology(ELECT-LEADER):

5.2. Complete topology reconstruction

In this section, we consider the complete topology recognition problem. Also for this
problem, we prove that sense of direction is strictly more powerful than



376 P. Flocchini et al. / Theoretical Computer Science 301 (2003) 355–379

Fig. 7. A completely symmetric labeled graph.

topological awareness, and characterize the class of graphs in which topological aware-
ness is suKcient to solve the problem.
Consider the labeled graph (H; %) of Fig. 7.
By Theorem 2, we have that the topology recognition problem can be solved in H

with any weak sense of direction.

Theorem 14. H∈W (FIND-COMPLETE).

However, it cannot be solved in (H; %) even in presence of topological awareness.
The following theorem shows a necessary and suKcient condition on the structure and
the labeling of a graph so that topological awareness is suKcient to derive complete
knowledge of the topology.

Theorem 15. G ∈Dtopology(FIND-COMPLETE) if and only if for all labelings �, �′, and
all u; v∈V :

T(G;�)(u) = T(G;�′)(v) ⇒ N(G;�)(u) = N(G;�′)(v):

Proof. (⇒) By contradiction suppose that exists �, �′, u and v such that T(G;�)(u)=
T(G;�′)(v) and N(G;�)(u) 
=N(G;�′)(V ). Processors with the same view must behave in the
same way by Lemma 5 in [32], thus if u correctly compute N(G;�)(u), then v wrongly
compute as its neighborhood N(G;�)(u).
(⇐) The TOPOLOGY knowledge provides each processor with a graph G isomorphic

to the network it is running on. Processor u uses the standard algorithm to compute
T(G;�)(u). Then, u labels the graph G with the labeling �′ in such a way that there is a
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node v′ in (G; �′) for which T(G;�′)(v)=T(G;�)(u). By hypothesis, N(G′ ;�′)(v)=N(G;�)(u)
and processor u can locally compute N(G;�)(u) looking at the labeled graph (G; �′).

We can show that:

Property 18. The labeled graph (H; %) shown in Fig. 7 is completely symmetric.

Thus, the following easily follows from the above two results.

Theorem 16. H =∈Dtopology(FIND-COMPLETE).

Corollary 8. H ∈W (FIND-COMPLETE)− Dtopology(FIND-COMPLETE).

6. Concluding remarks

In this paper, we have studied the impact that sense of direction has on computabil-
ity in anonymous networks and we have established several results about the impact
that diFerent levels of knowledge have on computability. Some of these results have
powerful implications; one of such implication is, for example, the formal proof that,
with sense of direction, shortest path routing is possible in anonymous networks. We
have also considered several fundamental problems, and provided a complete charac-
terization of the anonymous networks on which they are computable with sense of
direction. Finally, we have shown that sense of direction is computationally stronger
than topological awareness for a basic set of problems.
The characterizations, as well as the results on the relation between sense of direc-

tion and topological awareness, hold even if the coding function is unknown to the
processors. In other words, the presence of sense of direction, without the knowledge of
the speci6c coding function, would be suKcient for deriving the results of Sections 4.2
and 5. In fact, the processors need to know the coding function only when computing
the surrounding to obtain complete knowledge of the topology.
It is apparent from the results presented here that, informally, the presence of sense

of direction in a labeled graph lowers the symmetry of the network. The precise rela-
tionship between symmetries and sense of direction has been studied in details in [12].
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