
Exploring trees by teams of asynchronous

oblivious robots

Paola Flocchini ∗§ David Ilcinkas † Andrzej Pelc †§ Nicola Santoro ‡§

Abstract

A team of identical, oblivious, mobile agents (robots) has to explore an anonymous un-
oriented tree by visiting all its nodes. Robots start from arbitrary different nodes of the
tree and operate in Look-Compute-Move cycles. At the end, every node must be visited by
at least one robot, and all robots must stop. In one cycle, a robot takes a snapshot of the
current configuration (Look), makes a decision to stay idle or to move to one of its adja-
cent nodes (Compute), and in the latter case makes an instantaneous move to this neighbor
(Move). Cycles are performed asynchronously for each robot. We present an exploration
algorithm for arbitrary n-node trees of maximum degree 3 using O(log n/ log log n) robots,
and we prove that for some such trees Ω(log n/ log log n) robots are necessary to explore
them. We also show that in order to explore some n-node trees of maximum degree 4, Ω(n)
robots are necessary. By contrast we show that in order to explore trees that do not have
non-trivial automorphisms, 4 robots are always sufficient and often necessary.

Keywords: mobile agent, robot, oblivious, asynchronous, tree, exploration

∗SITE, University of Ottawa, Ottawa, ON K1N 6N5, Canada. E-mail: flocchin@site.uottawa.ca
†Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada. E-

mail: ilcinkas@lri.fr, pelc@uqo.ca. This work was done during the stay of David Ilcinkas at the Research
Chair in Distributed Computing of the Université du Québec en Outaouais and at the University of Ottawa, as
a postdoctoral fellow. Andrzej Pelc was partially supported by the Research Chair in Distributed Computing at
the Université du Québec en Outaouais.

‡School of Computer Science, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
E-mail: santoro@scs.carleton.ca

§Partially supported by NSERC Discovery grant.

1

1 Introduction

1.1 The problem and the model

We study the problem of exploration of trees by a team of mobile agents (robots). Consider an
unoriented anonymous tree, i.e., where neither nodes nor links of the tree have any labels. The
robots, initially located at arbitrary different nodes of the tree, have to explore it, by collectively
visiting all nodes. At the end, every node must be visited by at least one robot and all robots
must stop.

We study the exploration problem in a very weak model that makes coordination of robots’
actions particularly hard, as robots cannot communicate directly but have to make decisions
about their moves only by observing the environment. Moreover, they operate asynchronously
and do not have memory of past observations. Each robot operates in Look-Compute-Move
cycles. In one cycle, a robot takes a snapshot of the current configuration (Look), then, based
on the perceived configuration, makes a decision to stay idle or to move to one of its adjacent
nodes (Compute), and in the latter case makes an instantaneous move to this neighbor (Move).
Cycles are performed asynchronously for each robot. This means that the time between Look,
Compute, and Move operations is finite but unbounded, and is decided by the adversary for
each action of each robot. The only constraint is that moves are instantaneous, and hence any
robot performing a Look operation sees all other robots at nodes of the tree and not on edges,
while performing a move. However a robot R may perform a Look operation at some time t,
perceiving robots at some nodes, then Compute a target neighbor at some time t′ > t, and Move
to this neighbor at some later time t′′ > t′ in which some robots are in different nodes from
those previously perceived by R because in the meantime they performed their Move operations.
Hence robots may move based on significantly outdated perceptions, which adds to the difficulty
of exploration. It should be stressed that robots are oblivious, i.e., they do not have any memory
of past observations. Thus the target node (which is either the current position of the robot or
one of its neighbors) is decided by the robot during a Compute operation solely on the basis of
the location of other robots perceived in the previous Look operation. Robots are anonymous
and execute the same deterministic algorithm. They cannot leave any marks at visited nodes,
nor send any messages to other robots.

This model of very weak robots is used by researchers in the study of the coordination and
control of autonomous mobile robots in the two-dimensional plane (e.g., [1, 3, 11, 12, 20, 21,
25, 26, 27, 28]), which we shall term the continuous scenario. The study of the computational
capabilities of these robots when the spacial universe is not the plane but a network or a graph,
a scenario that we shall term discrete, has been recently introduced in [23], where the graph
was a ring. In both scenarios, the research concern is on whether such weak robots are capable
of performing the computational task at hand: in our case, the exploration of an unoriented
anonymous tree. Before we can answer this question, some other factors must be taken under
consideration, in particular those of visibility and of multiplicity.

Analogously to the continuous scenario where the robots can either see the entire space or only

2

within a constant radius, also in the discrete scenario we can distinguish between the unlimited
visibility and the limited visibility case: in the former, a robot performing a Look operation can
view the entire tree; in the latter case, it can only view a constant-radius neighborhood of the
node in which it resides. In this paper we will start the investigation of the problem of tree
exploration considering the simpler case of unlimited visibility. The assumption we make of
unlimited visibility enables us to focus on the other computational weaknesses of the robots, in
particular on the simultaneous presence of obliviousness and asynchrony. As we will see, even
in such a powerful setting (for these otherwise very weak robots), the solution of the problem is
far from simple.

In the continuous case, an important and well studied capability that may be available to
oblivious robots is the multiplicity detection [11, 21, 23, 25, 28]. This is the ability of the robots
to perceive, during the Look operation, if there is one or more robots in a given location. It
should be stressed that, during a Look operation, a robot can only tell if at some node there
are no robots, there is one robot, or there are more than one robots: a robot does not see a
difference between a node occupied by a or b robots, for distinct a, b > 1. In this paper we
assume multiplicity detection, similarly as in [11, 21, 23, 28].

One final precision has to be added, concerning the decisions of robots made during the Compute
action. Every such decision is based on the snapshot obtained during the last Look action.
However it may happen that two or more edges incident to a node v currently occupied by
the deciding robot look identical in this snapshot, i.e., there is an automorphism of the tree
which fixes v, carries empty nodes to empty nodes, occupied nodes to occupied nodes, and
multiplicities to multiplicities, and carries one edge to the other. In this case if the robot decides
to take one of the ports corresponding to these edges, it may take any of the identically looking
ports. We assume the worst-case decision in such cases, i.e., that the actual port among the
identically looking ones is chosen by an adversary. This is a natural worst-case assumption
and it is important in some impossibility arguments: in some cases the adversary may prevent
exploration by directing a robot to an already explored part of the tree, instead of the yet
unexplored part.

1.2 Related Work

Algorithms for graph exploration by mobile agents (robots) have been recently studied by many
authors. Most of the research is concerned with the case of a single robot exploring the graph.
In [2, 7, 8, 14] the robot explores strongly connected directed graphs and it can move only in
the direction from tail to head of an edge, not vice-versa. Many papers, e.g., [15, 16, 17, 24]
study the scenario where the explored graph is undirected and the robot can traverse edges in
both directions. In [15] the authors investigate the problem of how the availability of a map
influences the efficiency of exploration. In some papers, additional restrictions on the moves of
the robot are imposed. It is assumed that the robot has either a restricted tank [6, 9], forcing it
to periodically return to the base for refueling, or that it is tethered, i.e., attached to the base
by a rope or cable of restricted length [17].

3

In the case of anonymous graphs it is impossible to explore arbitrary graphs by a single robot,
if no marking of nodes is allowed and the size of the graph is unknown. (In fact, even the family
of all rings cannot be explored in this case.) Hence the scenario adopted in [7, 8] allows the use
of pebbles which the robot can drop on nodes to recognize already visited ones, and then remove
them and drop in other nodes. The focus is on the minimum number of pebbles allowing efficient
exploration and mapping of arbitrary directed n-node graphs. (In the case of undirected graphs,
one pebble suffices for efficient exploration.) In [8] the authors compare exploration power of one
robot with a constant number of pebbles to that of two cooperating robots, and give an efficient
exploration algorithm for the latter scenario. In [7] it is shown that one pebble is enough if the
robot knows an upper bound on the size of the graph, and Θ(log log n) pebbles are necessary
and sufficient otherwise.

In all the above papers, except [8], exploration is performed by a single robot. Exploration by
many robots has been investigated mostly as a graph optimization problem, in the context when
moves of the robots are centrally coordinated. In [18], approximation algorithms are given for the
collective exploration problem in arbitrary graphs. In [4, 5] the authors construct approximation
algorithms for the collective exploration problem in weighted trees. On the other hand, in [22]
the authors study the problem of distributed collective exploration of trees of unknown topology.
However, the robots performing exploration have memory of all past actions and can directly
communicate with each other.

The very weak robots considered in this paper have been first employed in the discrete scenario
(i.e., graphs) to study the problem of gathering robots in one location [23]. These weak robots
are commonly used by researchers in the study of the coordination and control of autonomous
mobile robots in the continuous scenario (i.e., two-dimensional plane) [1, 3, 10, 11, 12, 13, 20,
21, 25, 27, 28]; for a recent survey see [26]. The continuous scenario was further precised in
various ways. In [10] it was assumed that robots have unbounded memory, while in [1, 3, 11, 12,
13, 21, 25, 27, 28] robots were oblivious, i.e., it was assumed that they do not have any memory
of past observations. Oblivious robots operate in Look-Compute-Move cycles, similar to those
described in our scenario. The main differences are in the amount of synchrony assumed in
the execution of the cycles. In [1, 3, 28] cycles were executed synchronously in rounds by all
active robots, and the adversary could only decide which robots are active in a given cycle. In
[10, 11, 12, 13, 20, 21, 25, 27] they were executed asynchronously: the adversary could interleave
operations arbitrarily, stop robots during the move, and schedule Look operations of some robots
while others were moving. Another difference is in the type of visibility, depending on whether
the robots can see the entire space (unlimited visibility) [1, 10, 11, 12, 13, 20, 25, 27, 28] or only
within a constant radius (limited visibility) [3, 21].

The model for the discrete scenario introduced in [23] and used in this paper is based on the
asynchronous model used in [11, 12, 20, 21, 25, 27]. In particular, it assumes the same character-
istics of the robots (anonymity, obliviousness, multiplicity detection) and the same possibilities
of the adversary concerning interleaving operations performed by various robots. The only dif-
ference is in the execution of Move operations, which has been adapted to the context of graphs:
moves of the robots are executed instantaneously from a node to its neighbor, and hence robots
always see other robots at nodes. Notice that instantaneous movements are assumed by the

4

semi-synchronous and synchronous models in the continuous scenario (e.g., [1, 3, 28]).

Very recently (cf. [19]) we used the discrete scenario introduced in [23] (and also assumed
in the present paper) to study the exploration problem in the ring. By contrast with our
current situation we showed that the minimum number of robots sufficient to explore a n-node
ring is Θ(log n). It should be noted that in this very weak model, the exploration problem is
significantly more difficult than gathering (considered in [23]). This is due to the fact that in
gathering the accomplishment of the task is readily seen in a snapshot: all robots are in one
node. By contrast, in order to complete exploration, robots have to “remember” which nodes
were visited. Since they do not have any memory of past events, this recollection must be coded
in the dynamically changing configurations, and the design of this coding is one of the main
challenges of exploration by oblivious robots.

1.3 Our results

We present an exploration algorithm for arbitrary n-node trees of maximum degree 3 using
O(log n/ log log n) robots, and we prove that for some such trees, namely for complete binary
trees, Ω(log n/ log log n) robots are necessary to explore them. Hence we show that the minimum
number of robots sufficient to explore all n-node trees of maximum degree 3 is Θ(log n/ log log n).
None of the two assumptions used in our positive result can be removed. The assumption about
maximum degree 3 is crucial because we show that in order to explore some n-node trees of
maximum degree 4, Ω(n) robots are necessary. On the other hand, the assumption that the
explored graph is a tree cannot be removed either. Indeed, we showed in [19] that Ω(log n)
robots are necessary to explore some n-node rings. We finally show that the difficulty in tree
exploration comes in fact from the symmetries of the tree. Indeed we show that, in order to
explore trees that do not have any non-trivial automorphisms, 4 robots are always sufficient and
often necessary.

2 Terminology and preliminaries

We consider a n-node anonymous unoriented tree. Some nodes of the tree are occupied by
robots. We will always assume that in an initial configuration of robots there is at most one
robot in each node The number of robots is denoted by k. A complete d-ary tree is a rooted
tree, all of whose internal nodes have d children and all of whose leaves are at the same distance
from the root. Nodes v and w are similar if there exists an automorphism of the tree T which
carries v to w. A tree is rigid if it has no non-trivial automorphisms.

In order to formally define what a robot perceives during a Look action, we introduce the notion
of the view of a rooted tree T occupied by robots, from its root v. This is defined by induction
on the height of the tree T . If T consists only of v then V iew(T, v) = (x, ∅), where x = 0, x = 1,
or x = ∗, if there is 0, 1, or more than 1 robot in v, respectively. If T is of positive height,
let v1, . . . , vm be children of the root v, and let T1, . . . , Tm be subtrees rooted at v1, . . . , vm,
respectively . Then V iew(T, v) = (x, {V iew(T1, v1), . . . , V iew(Tm, vm)}), where x has the same

5

meaning as before. Now, the snapshot taken by a robot located at v is simply V iew(T, v). This
formalism captures two essential assumptions about the perceptions of robots. First, a robot
can distinguish between nodes occupied by 0, 1, or more than 1 robot, but cannot distinguish
between numbers larger than 1 of robots located at the same node. Second, subtrees rooted at
children of a node are not ordered: this is captured by considering the set of respective views,
and not their sequence, in the recursive definition.

Two robots located at nodes v and w are called equivalent, if V iew(T, v) = V iew(T,w). A node
that is not occupied by any robot is called empty. When a node is occupied by more than one
robot, we say that there is a tower in this node. A robot that is not a part of a tower is called
free.

An exploration algorithm is a function whose arguments are views, and whose value for any
given view V iew(T, v) is either v or the equivalence class of one of its neighbors, with respect
to the following equivalence relation ∼: w1 ∼ w2 if there exists an automorphism f of the tree
which fixes v, carries empty nodes to empty nodes, free robots to free robots, towers to towers,
and such that f(w1) = w2. Note that w1 ∼ w2 is equivalent to V iew(T,w1) = V iew(T,w2). If
the equivalence class returned by the algorithm for some view has more than one element then
the choice of the neighbor in this class to which the robot will actually move, belongs to the
adversary. If the value is v, we say that the move of the robot for the given view is the null
move.

We say that exploration of a n-node tree is possible with k robots, if there exists an algorithm
which, starting from any initial configuration of k robots without towers, and for any behavior
of the adversary controling asynchrony and choices between equivalent neighbors, explores the
entire tree and brings all robots to a configuration in which they all remain idle, i.e., there exists
a time t after which all nodes are explored and all subsequent moves of robots are null moves. In
fact, our negative results hold even for this weak (implicit) stopping condition, and our positive
results (algorithms) are valid even with the following stronger (explicit) stopping condition: for
any execution of the algorithm, there exists a time t after which all nodes are explored, and each
robot knows that no non-null move of any robot (including itself) will ever occur. Obviously, if
k = n, the exploration is already accomplished, hence we always assume that k < n.

3 Exploration of trees of maximum degree 3

In this section we prove our main result that the minimum number of robots sufficient to explore
all n-node trees of maximum degree 3 is Θ(log n/ log log n). We first present an algorithm to
explore any such tree with O(log n/ log log n) robots, starting from any initial configuration, and
then show that for complete binary trees, Ω(log n/ log log n) robots are necessary for exploration,
regardless of the initial configuration.

6

3.1 Algorithm Tree-exploration

We start with the following upper bound on the size of the team of robots capable to explore
all n-node trees of maximum degree 3.

Theorem 3.1 There exists a team of O(log n/ log log n) robots that can explore all n-node trees
of maximum degree 3, starting from any initial configuration.

This result is proved by showing an exploration algorithm using O(log n/ log log n) robots.

3.1.1 Overview of the algorithm

The main idea of the algorithm is the following. The entire tree is partitioned into two or three
subtrees, the number of parts depending on the shape of the tree. Parts are explored one after
another by a team of three robots that sequentially visit leaves of this part. Since individual
robots do not have memory, a specially constructed, dynamic configuration of robots, called the
“brain”, keeps track of what has been done so far. More precisely, the brain counts the number
of already visited leaves and indicates the next leaf to be visited. It is also the brain that requires
most of the robots used in the exploration process. The reason why Θ(log n/ log log n) robots
are sufficient for exploration, is that the counting process is efficiently organized. The counting
module of the brain consists of disjoint paths of logarithmic lengths, which are appropriately
marked by groups of robots of bounded size. Paths are of logarithmic lengths because longer
paths cannot be guaranteed to exist in all trees of maximum degree 3. Inside each of these paths
a tower moves, indicating a numerical value by its position in the path. The combination of
these values yields the current value of the number of visited leaves. Since the number of leaves
may be Θ(n), we need a number x of paths, which can produce Θ(n) combinations of values,
i.e., such that (Θ(log n))x = Θ(n). This is the reason of constructing Θ(log n/ log log n) paths
and thus using Θ(log n/ log log n) robots. We show how to construct these paths in any tree of
maximum degree 3, and how to organize the counting process. The latter is complicated by the
asynchronous behavior of the robots. During the switch of the counter from value i to i + 1
robots move in the paths and a snapshot taken during the transition period shows a “blurred”
picture: the old value is already destroyed while the new one is not yet created. This could
confuse the robots and disorganize the process. Thus we use two counters acting together. They
both indicate value i, then one of them keeps this value and the other transits to i + 1. When
this is completed, the first counter transits to i + 1 and so on. This precaution permits to keep
track of the current value during the process of incrementation. During the exploration of one
part of the tree, the brain is located in another part and controls exploration remotely. After
completing the exploration of one part, the brain is moved to the already explored part in order
to let the exploring agents visit the rest of the tree.

There are two main difficulties in our algorithm. The first is to break symmetries that can exist
in configurations of robots, in order to let them act independently and reach appropriate target

7

nodes, in particular during the construction of the brain. The second challenge is the construc-
tion and relocation of the brain, as well as organizing its proper functioning by coordinating the
two counters, regardless of the behavior of the adversary that controls asynchrony.

The algorithm is divided into the following phases. Phase 1 consists in moving all robots down
the tree oriented in a specific way, without creating a tower, in order to create a large zone
free of robots. When no robot can move further down, a tower is created to mark the end
of Phase 1. In Phase 2, robots are moved from one part of the tree and create the brain in
another part. If there are local symmetries, a leader is elected and breaks them by relocating
to specific nodes of the tree. This is done to let the robots move independently from one part
of the tree to another and occupy target positions. As a consequence, one part becomes almost
empty, which facilitates its exploration. Phase 2 ends when the brain is at its place, properly
initialized, and there remain only a tower and a free robot in the other part, that will explore
this part. Phase 3 is the actual exploration of the part not containing the brain (or the larger
of the two parts not containing the brain). This is done by visiting its leaves, one similarity
class after another. Inside a similarity class, leaves are explored in a DFS manner, the brain
keeping track of the progress of exploration. This phase ends when the brain indicates that the
exploring robots are at the last leaf of the explored part. In Phase 4 the brain is relocated to
the already explored part, and the exploring robots move to one of the unexplored parts. Again,
Phase 4 ends when all robots are in their places and the brain is properly reinitialized (with the
indication that one part is already explored). Finally, in the remaining phases the rest of the
tree is explored, similarly as in Phase 3. There is a mechanism in the algorithm that enables
robots to see what is the current phase, in order to avoid circular behavior. This is implemented
by a special arrangement of robots, called signal, whose value increments from phase to phase.

3.1.2 Tools and basic properties

Before giving a detailed description of the algorithm we present some concepts that we will
use in this description, and prove their basic properties. Let T be a n-node tree of maximum
degree 3. Consider a team of k robots, where c log n/ log log n ≤ k ≤ 2c log n/ log log n, for an
appropriately chosen constant c, and k ≡ 5 (mod 6). The conditions on the constant c are
explicitly given after the description of the algorithm.

Pieces

For each internal node v, consider the number of nodes in each of the subtrees rooted at neighbors
of v, and let nv be the maximum of these numbers. It is well known that either there exists
exactly one node v for which nv ≤ (n− 1)/2 (the centroid), or there is exactly one edge {v, w},
for which nv = nw = n/2 (the bicentroid). In each case we consider the oriented tree from the
centroid or bicentroid down to the leaves. We will say that the tree is rooted in the centroid or
bicentroid and use the usual notions of parent and children of a node.

Next we define the subtrees of T , called its pieces. If T has a centroid of degree 2 then there are
two pieces T1 and T2 which are rooted at children of the centroid. If T has a centroid of degree

8

3 then there are three pieces T1, T2 and T3 which are rooted at children of the centroid. Finally,
if T has a bicentroid then there are two pieces T1 and T2 which are rooted at nodes of the
bicentroid. Without loss of generality we assume that sizes of T1, T2 and T3 are non-increasing.
Hence (n− 1)/3 ≤ |T1| ≤ n/2 and n/4 ≤ |T2| ≤ n/2. For every piece, we define its weight as the
number of robots located in it. Thus we talk about the heaviest piece, a heavier piece, etc. A
piece Ti is called unique if there is no other piece whose root has the same view as the root of
Ti.

Core zone

A node in a piece is a core node, if the size of the subtree rooted at this node is larger than the
size k of the entire team of robots. The set of core nodes in a piece is called the core zone of the
piece.

Lemma 3.1 In any rooted tree of size x and such that every internal node has at most two
children, the size of the core zone is at least x+1

k+1 − 1.

Proof: Let f(x) denote the minimum size of the core zone in a tree of size x. Thus we have
f(x) = 0, when x ≤ k, and

f(x) = 1 + min
x1+x2=x−1

(f(x1) + f(x2)),

when x > k. We prove the lemma by induction on x. It is true for x = k. Suppose it holds for
k ≤ x′ < x. We prove it for x.

Suppose that x1 ≤ k or x2 ≤ k. Without loss of generality assume x1 ≤ k. We have

f(x) = 1 + f(x2) ≥ 1 + f(x− k − 1) ≥ 1 +
x− k

k + 1
− 1 =

x + 1
k + 1

− 1.

If x1, x2 > k, we have

f(x) = 1 + min
x1+x2=x−1

(f(x1) + f(x2)) ≥ min
x1+x2=x−1

((
x1 + 1
k + 1

− 1) + (
x2 + 1
k + 1

− 1))

≥ 1 +
(x− 1) + 2

k + 1
− 2 ≥ x + 1

k + 1
− 1.

�

Since the size of any of the two largest pieces is at least n/4, Lemma 3.1 implies that the size of
the core zone of any of these pieces is at least n log log n

10c log n .

Descending paths

The basic component of the brain is a descending path. This is a simple path in a piece Q, whose
one extremity is its node closest to the root of Q. It will be called the beginning of the path.
The other extremity will be called its end. The size of such a path is the number of its nodes.
We need sufficiently many pairwise disjoint descending paths, each sufficiently long, for all parts
of the brain. The construction is a part of the proof of the following lemma.

9

Lemma 3.2 For any sufficiently large m, every tree of maximum degree 3 and of size m contains
at least log2 m pairwise disjoint descending paths of size at least 1

4 log m.

Proof: Let m be an integer. Consider a rooted tree U of maximum degree 3 and of size m. It
contains a descending path of size at least log m−2. Take such a path p1 of size blog m−2c with
the beginning at the root of U . In U \p1 there are at most log m pairwise disjoint subtrees whose
union has size at least m− log m. One of these trees must be of size at least (m− log m)/ log m.
It must contain a descending path of size at least log((m− log m)/ log m). Take such a path p2

of size blog((m − log m)/ log m)c. In U \ {p1 ∪ p2} there are at most 2 log m pairwise disjoint
subtrees whose union has size at least m − 2 log m. One of these trees must be of size at least
(m − 2 log m)/(2 log m). Continuing in this way, we construct s = dlog2 me pairwise disjoint
descending paths of size at least

log
m− s log m

s log m
≥ 1

2
log m− log s ≥ 1

2
log m− 4 log log m ≥ 1

4
log m ,

for m sufficiently large. �

The core zone is a tree of maximum degree 3, rooted in the root of the piece and has size
m ≥ n log log n

10c log n . Hence, for sufficiently large n, Lemma 3.2 guarantees the existence of at least
log2 m ≥ log n ≥ 5 log n/ log log n pairwise disjoint descending paths of size at least 1

4 log m ≥
1
8 log n in any of the two largest pieces.

Modules of the brain

The brain consists of four parts: two counters, the semaphore, and the garbage. Descending
paths forming these parts will be situated in the core zone of a piece, each of the paths at
distance at least 3 from the others, in order to allow correct pairing of beginnings and ends.

We now describe the structure of a counter. This is a collection of q ∈ Θ(log n
log log n) pairwise

disjoint descending paths, of sizes L + 1, L + 2, . . . L + q, where L ∈ Θ(log n). We take paths of
different lengths in order to easily distinguish them. Nodes of the ith path are numbered 1 to
L + i (where 1 corresponds to the beginning). Two towers will be placed in the first and third
nodes of each path, thus marking its beginning. Similarly, three towers will be placed at the end
of each path, separated by empty nodes, thus marking its end. Moreover there will be two or
three robots moving from node 7 to node L− 8 of each path. If these robots are located in the
same node (thus forming a tower), their position codes a numerical value. By combining these
values on all paths, we obtain the value of the counter. Since on each path there are L − 14
available positions, the value of the counter is the resulting integer written in base L− 14.

Let q = d2 log n/ log log ne and L1 = 1
10 log n. Take q of the descending paths described in

the proof of Lemma 3.2 (chosen in an arbitrary deterministic way, identical for all robots, and
excluding p1), and in the ith path, where 1 ≤ i ≤ q, take the lower part of size L1 + i. These
will be the descending paths of the first counter. Similarly, let L2 = L1 + q + 1. Take a set of
q descending paths, other than those used for the first counter and other than p1. In the ith
path, where 1 ≤ i ≤ q, take the lower part of size L2 + i. These will be the descending paths of
the second counter.

10

Another module of the brain is the semaphore consisting of two of the descending paths con-
structed in the proof of Lemma 3.2 (again excluding p1). In each of these paths take the lower
part of distinct constant sizes. The beginning and end of each path is marked similarly as in the
counter. Likewise, there are two or three robots moving in each of these paths, their possible
locations restricted to node 7 and 8 in each path. In each path, if these robots are located in
the same node (thus forming a tower), they code one bit. Thus the semaphore has 4 possible
values 00, 01, 11, 10.

Finally, the garbage is the first descending path p1 constructed in the proof of Lemma 3.2. This
path has the property that its beginning is at the root of the piece. This path has length at
least 1

8 log n, and thus larger than the total number of robots, for sufficiently large n. The role
of the garbage is to store all robots of the brain not used for the counters and the semaphore.
The garbage is filled by putting a tower or a robot every 5 nodes in the path, until all robots
are disposed. Therefore the end of the path is marked similarly as for paths in the counter and
the semaphore, but the beginning is left unmarked.

Ordering of robots

We first define a total order @ on the set of all views. Let V = V iew(T, v) and V ′ =
V iew(T ′, v′). If the height of T is smaller than the height of T ′ then V @ V ′. Otherwise,
if the height of both trees is 0 then (x, ∅) @ (x′, ∅), if x ≤ x′, where 0 < 1 < ∗. If the
height of both trees is positive, the order of views is the lexicographic order on the sequences
(x, V iew(T1, v1), . . . , V iew(Tm, vm)), where views at children are ordered increasingly by induc-
tion.

We now define the following total preorder ≤ on the robots in the rooted tree T . Let R1 and
R2 be two robots located at nodes v1, v2, at distances d1 and d2 from the root. (In the case of
the bicentroid, we consider the distance to its closer extremity.) We let R1≤R2, if and only if,
d1 < d2, or d1 = d2 ∧ V iew(T, v1) @ V iew(T, v2). Note that the equivalence relation induced
by this preorder is exactly the equivalence between robots defined previously. We say that a
robot is larger (smaller) than another one meaning the preorder ≤. A robot not equivalent to
any other is called solitaire.

Lemma 3.3 The number of equivalent robots in any piece is either even or equal to 1.

Proof: Consider an equivalence class of robots restricted to a piece. Call it S. Assume that
|S| ≥ 2. Let v be the least common ancestor of all locations of robots in S. Since equivalent
robots are at the same distance from the root, v must have two children. Let T1 and T2 be
subtrees rooted at these children. Since views of all robots in S are identical, the number of
robots of S in T1 is equal to the number of robots of S in T2. Hence S is of even size. �

It follows from Lemma 3.3 that any unique piece with an odd weight must contain a solitaire.

11

3.1.3 Description of Algorithm Tree-exploration

Phase 1. There is no tower in the snapshot.
Goal: Empty the core zones of all pieces and create one tower in one piece.

We first free the core zones by moving every robot to an empty child, as long as such a child
exists, except for up to two robots that may move from one piece to another. As described below,
these exceptional robots are solitaires. The objective here is to have a unique heaviest piece with
the additional property that it is either of odd weight or completely occupied by robots (i.e.
every node of the piece is occupied by a robot). This is always possible because k ≡ 5 (mod 6).
Indeed, if there are two heaviest pieces, then there must exist a third piece of odd weight, and
thus a solitaire of this piece (whose existence is guaranteed by Lemma 3.3) can move to one of
the heaviest pieces, thus breaking the tie. If there is a unique heaviest piece, but of even weight
and not completely occupied by robots, then there must exist another piece of odd weight, and
thus a solitaire of this piece (whose existence, again, is guaranteed by Lemma 3.3) can move to
the heaviest piece. Note that the case of three heaviest pieces is impossible because k is not
divisible by 3.

As soon as the required properties hold in a piece P and the core zones are empty (except for
possibly one robot in the core zone of P), a tower is created outside the core zone of P by moving
a solitaire to an occupied node in such a way that at least half the robots in P , including a
solitaire, are located outside the subtree rooted at the tower. The latter precaution is taken to
have enough robots to form and subsequently move towers in Phase 2 using the solitaire. The
way this is done will be described in the sequel.

Phase 1 has been clearly identified by the absence of towers in the snapshot. Such an easy
characterization is not available in the subsequent phases, hence we use a gadget called signal
to identify them. A signal is a largest set of at least 4 towers situated on a descending path
inside a piece, such that consecutive towers are separated by two empty nodes. The value of a
signal is x− 1, where x is the number of towers in it. This value will indicate the number of the
current phase.

Phase 2. There is at least one tower and no signal in the snapshot.

In this phase piece P can be recognized as the unique piece where there is a tower outside the
core zone and Q as the largest among pieces other than P (in the case of a tie Q is any piece
with robots in the core zone.) Notice that, at the beginning of Phase 2, the core zone of Q does
not contain any robots. Hence there is room in it for the brain.

Goal: Construct and initialize the brain in the core zone of piece Q, prepare the other pieces for
exploration, and create the signal.

Stage 1.
Goal: Move robots from P in order to construct the brain in Q and prepare P for exploration.

We now describe the way to form towers in P and move them to appropriate places in the

12

descending paths forming the brain in Q. Robots migrate from piece P to piece Q, one or two
robots at a time. The next robot or pair of robots starts its trip from P to Q only after the
previous one is at its place. The aim is to occupy target nodes by towers. Nodes in descending
paths are filled one path after another in a DFS post-order of beginnings of the paths. Thus
a tower occupies a node v only after all robots in the subtree rooted at v are in their target
positions. This rule applies to all descending paths of the brain, except the garbage. The latter is
constructed at the end, after all other parts of the brain are completed. This is possible because
the descending path containing the garbage starts at the root of the piece (path p1 described
in the proof of Lemma 3.2). The above migration of towers is done until there remains only a
single tower and a solitaire in P . This prepares P for exploration.

There are two difficulties in performing this migration, both due to symmetries in configurations
of robots. The first difficulty is to form towers consisting of only two robots in P and the other
is to place such a tower in a specific target node in Q. (We want to restrict the size of towers in
order to be able to create many of them using the available robots).

The essence of the first difficulty is that equivalence classes of robots can be large and thus it
may be difficult to form a single small tower. (For example, if all robots in a piece are equivalent
and occupy the same level, a single small tower cannot be formed without outside help.) We
solve this problem by using a solitaire to break symmetry between two equivalent robots. More
precisely, the solitaire moves to meet one of the equivalent robots thus creating a tower of two
robots. At the same time the other equivalent robot becomes a solitaire.

The essence of the second difficulty is that if there are at least two equivalent target positions
that a tower could occupy, the adversary could break the tower at the time when the tower tries
to go down from the least common ancestor of these target nodes, sending each of the robots
forming the tower to a different target node. We solve this problem by using a solitaire to first
break the symmetry between these target positions. This solitaire, called the guide of the tower,
is placed in one of these positions, thus indicating that the tower should go to the closest of the
equivalent positions. As soon as the tower reaches its target, the solitaire is again available to
break other symmetries, either those encountered when forming towers in P or when placing
them in Q.

Stage 1 ends with the brain constructed in the core zone of piece Q. Moreover, in piece P there
remain only a single tower and a robot without towers in its ancestors.

Stage 2.
Goal: Empty the third piece P ′ (other than P and Q), if it exists.

This is done as follows. A largest robot of P ′, not in the root of P ′ (either a free robot or in a
tower) goes to its parent. When there are no robots outside the root, the robots from the root
of P ′ go to the garbage in Q. This way of merging all robots of P ′ at the root of this piece
prevents accidental creation of a signal. Stage 2 ends when the ending condition of Stage 1 holds
and piece P ′, if it exists, is empty.

13

Stage 3.
Goal: Create the signal.

The signal is created at the bottom of the garbage (without considering towers marking its
end). Towers descend in the garbage one at a time, until two sequences consisting of 4 towers,
each at distance 3 from the preceding one, are created. These two sequences are separated by 5
empty nodes. Since there is no longer sequence of this type in the entire tree, the value of the
newly created signal is 3. This completes Stage 3 and the entire Phase 2. (Note that we use
two sequences forming a signal, rather than just one, in order to be able to move one of these
sequences later on, without destroying the value of the signal. In fact we also need to leave two
additional towers between these sequences, in order to update the value of signal from 3 to 4,
when passing to Phase 4.)

From now on all towers in the entire tree are separated by at least one empty node. Hence if a
tower moves and the adversary breaks it by holding back some of the robots of the tower, this
can be recognized in subsequent snapshots and the moving tower can be reconstructed. Note
that from now on we need not specify the existence of a tower in the snapshot, since the signal
contains towers.

Phase 3. The value of signal is 3.

Let P ′′ be the largest of the pieces other than Q. (We explore this piece first to be able to
relocate the brain into it in Phase 4: the other piece could be too small.)

Goal: Explore P ′′.

At the beginning of Phase 3 both counters indicate value 0. Piece P ′′ will be explored by the
free robot and the tower that are currently outside Q. They will be called exploring robot
and exploring tower, respectively. These two entities explore leaves of P ′′ one similarity class
after another in increasing order, induced by any total preorder of the nodes, with the following
property: the equivalence classes induced by this preorder are the previously defined similarity
classes. The entities move only if both counters indicate the same value i. Suppose that the
jth class has size sj . Let r be such that i = s1 + · · · + sd + r, with r ≤ sd+1. Hence the brain
indicates that the next leaf to be explored is the rth leaf in the (d + 1)st class. If r = 1, the
exploring robot goes to any leaf of the (d + 1)st class. Otherwise, consider two cases. If r is
even then let u be the leaf where the exploring robot is located. In this case the exploring
tower goes to the (unique) closest leaf in the same similarity class. If r is odd then let v be the
leaf where the exploring tower is located. In this case the exploring robot goes to the leaf w

determined as follows. Let j be the length of the longest sequence of 1’s counted from the right
(least significant bit) of the binary expansion of the integer (r − 3)/2. Order all leaves of the
similarity class of v in any non-decreasing order of distances from v. The leaf w is the 2j+1th
node in this order. Notice that w is the closest leaf from v not yet explored.

Incrementing values of both counters from i to i+1 and moving the exploring robots according to
those increments are complex actions involving relocation of many robots. Due to asynchrony,
snapshots can be taken during these complex actions, potentially disorganizing the process.

14

To ensure correct exploration, we artificially synchronize these actions using the semaphore. Its
values change in the cycle 00, 01, 11, 10, 00, Note that the changes of values of the semaphore
do not need additional synchronization, as each change involves a move of only one robot or
tower. In the case of a move of a tower, the adversary can split the tower by delaying some
of its robots and moving others, hence the value of the corresponding bit is unclear and robots
must decide which value should be set. Nevertheless this is never ambiguous: for example, if
the value of the first bit is 0 and the second is unclear, it must be set to 1 because, when the
first bit is 0, the only possible change of the second bit is from 0 to 1. Other cases are similar.

At the beginning of Phase 3 the semaphore is at 00. This indicates that the first counter has to
modify its value to i + 1, where i is the current value of the second counter. When this is done,
the value of the semaphore changes to 01. This indicates that the second counter has to modify
its value to the current value of the first counter. When this is done, the value of the semaphore
changes to 11. This indicates that the exploring robot or the exploring tower (depending on the
parity of the value shown by the counters) has to move to the neighbor of the leaf it occupies.
When this is done, the value of the semaphore changes to 10. This indicates that the exploring
entity which is in an internal node (i.e., the one that has just moved) has to move to the leaf
indicated by the value of both counters, as explained above. When this is done, the value of the
semaphore changes to 00.

Phase 3 is completed when the semaphore has value 11 and both counters have value f + 1,
where f is the number of leaves in piece P ′′. At this time the value of signal is changed from
3 to 4 (by moving an additional tower down the garbage), thus marking the end of this phase.
Note that, when both counters have value f + 1, all leaves of P ′′ are explored. There are two
cases. If P ′′ = P then at least one path between the root and a leaf of P ′′ has been explored
when P was evacuated. Otherwise, at least one path between the root and a leaf of P ′′ has been
explored when the exploring solitaire came from P to explore P ′′. Hence in both cases all leaves
and at least one path between the root and a leaf have been explored. Since by the description
of the exploration the explored part of P ′′ is connected, this implies that the entire piece has
been explored.

Phase 4. The value of signal is 4.
Goal: Relocate the brain from Q to P ′′ (except when there are only two pieces and Q has few
leaves, in which case exploration of Q is done immediately: see Subcase 2.2).

While the brain is relocated to P ′′, piece Q is emptied and thus ready to be explored. Piece Q

is emptied in reverse order of its filling in Phase 2, i.e., robots that came last to Q leave it first.
We will need the exploring solitaire and tower in piece Q in order to perform exploration during
Phase 5. Hence while towers forming the old brain move from Q to P ′′, the solitaire and the
exploring tower move in the opposite direction. This creates a problem when the tree has a long
path of nodes of degree two, between the old brain and piece P ′′: there is no room to cross on
this path. Hence for this class of trees we will use a particular technique. Consider two cases.

Case 1. There exist nodes v and w outside P ′′ such that the path from the root of P ′′ to each
of them does not contain robots and there exists a path from a tower in Q to the root of P ′′ not

15

containing robots and not containing v or w.

In this case there is no crossing problem. The solitaire and the exploring tower from Q can hide
in v and w to let the towers from Q (that formed the old brain) move to P ′′.

Case 2. There are no nodes v and w as described in Case 1.

Let M be the largest integer such that 10c log M/ log log M ≥ log M .

– Subcase 2.1. The number of leaves in piece Q is larger than M .

Since any tree of maximum degree 3 containing f leaves has height at least log f , the condition
on integer M implies that there exists a descending path in Q, with beginning u, satisfying the
following properties:
(1) it is able to store all towers needed to explore Q, leaving distance 4 between consecutive
towers. (We leave distance 4 not to confuse the sequence of towers with a signal.)
(2) there exist two leaves outside the tree rooted at u.

All towers from Q are moved to the above descending path leaving 3 empty nodes between
consecutive towers, with the following exception. When moving the first five towers, the value
of the signal is recreated using these towers. This is done before moving the second sequence
of the signal created in Phase 2. After moving 2c log M/ log log M towers, all additional towers
from this path are collapsed to one tower. After this compacting the condition of Case 1 holds
because of property (2).

– Subcase 2.2. The number of leaves in piece Q is at most M .

In this case there are so few leaves that we can explore all of them without using a brain. First
we recreate the signal in P with value 4, to record the phase number. Then all robots from Q

go to the leaves. When all leaves are occupied, all robots go towards the root of Q forming a
tower in this root, thus exploring the remaining nodes of Q. At this point the algorithm stops
(explicit stopping condition).

Thus, after a finite number of moves in Case 2, either the exploration is completed (Subcase 2.2)
or the algorithm transits to Case 1. From now on we suppose that the condition of Case 1 holds.

We continue Phase 4 by creating a signal with value 4 in piece P ′′. This is done by moving
towers from the top of the garbage in Q and placing them outside the core zone in P ′′. The path
forming the signal is of bounded length and thus there is enough space outside the core zone
to place it. Moreover we place three additional towers in this path to be able to subsequently
increase the value of the signal up to 7. After this is done we create the new brain in P ′′,
similarly as in Phase 2. In particular, we use the solitaire as a guide to direct the towers coming
from Q to their target positions. Note that all towers and robots in the core zone of Q are alone
in their equivalence classes and thus there is no need to break symmetries using solitaires. When
the counters and the semaphore of the new brain are created in P ′′, all robots from Q, except
the exploring tower and solitaire are moved to the garbage of the new brain. Note that all the
above actions are possible, since the solitaire and towers are able to move between pieces Q and
P ′′ without crossing problems.

16

When there is only the exploring tower and solitaire in Q, the value of signal in P ′′ is incremented
to 5. This ends Phase 4.

Phase 5. The value of signal is 5.
Goal: Explore piece Q and stop if there are only two pieces.

We proceed exactly as in Phase 3, this time exploring piece Q instead of P ′′. When the brain
indicates that all leaves are explored, two situations are possible. If there are only two pieces in
the tree, all nodes are already explored and the algorithm stops (explicit stopping condition). If
there are three pieces, the value of signal is incremented to 6. This ends Phase 5.

Phase 6. The value of signal is 6.
Goal: Reinitialize the brain and relocate the exploring solitaire to the unexplored piece.

Both counters in the brain are reset to 0, the semaphore is reset to 00. The exploring solitaire
moves to the root of the unexplored piece. The value of signal is incremented to 7. This ends
Phase 6.

Phase 7. The value of signal is 7.
Goal: Explore the last piece and stop.

The piece containing only a solitaire is explored (using this solitaire and the tower from Q). This
is done again as in Phase 3. When the brain indicates that all leaves are explored, exploration
is completed and the algorithm stops (explicit stopping condition).

It remains to give the conditions on the constant c such that the number k of robots satisfies
c log n/ log log n ≤ k ≤ 2c log n/ log log n. The constant c should be chosen so that there are suf-
ficiently many robots to form the brain (including the markers of descending paths’ extremities)
and the exploring team. Note that if there are three pieces in the tree, and robots are initially
equally divided among them, only k/3 robots will be used.

3.2 The lower bound on the number of robots

We now prove a lower bound on the number of robots necessary for exploration of complete
binary trees, that matches the upper bound given by Algorithm Tree-exploration.

Theorem 3.2 Ω(log n
log log n) robots are required to explore n-node complete binary trees.

Proof: We consider a n-node complete binary tree of height h. Initially, k nodes of the tree
are occupied by robots and there is at most one robot in each node. During the exploration
robots move, and at any time they occupy some nodes of the tree, forming a configuration. The
configuration corresponding to the tree of height 0 whose unique node hosts k robots is denoted
by the pair (k, ε), where ε is the empty list. Assume now that h > 0. Let i be the number
of robots occupying the root. Then the corresponding configuration is inductively defined as
(i, (Cl, Cr)), where Cl, respectively Cr, is the configuration corresponding to the left, respectively

17

right, subtree of the root. For a given configuration we define its height as h and its number of
robots as k.

We define by induction an equivalence relation ≡ on configurations. Only configurations of the
same height can be equivalent. First we have (k, ε) ≡ (k′, ε) if and only if k = k′. We now define
equivalence of configurations of positive height. Consider two configurations (i, (Cl, Cr)) and
(i′, (C ′

l , C
′
r)) of the same positive height. Then these two configurations are equivalent if and

only if (i = i′) ∧
(
(Cl ≡ C ′

l ∧ Cr ≡ C ′
r) ∨ (Cl ≡ C ′

r ∧ Cr ≡ C ′
l)
)
. Intuitively, two configurations

are equivalent if one can be obtained from the other by switching the left and the right subtrees
at some subset of the internal nodes of the tree. Clearly, two equivalent configurations are
undistinguishable by the robots.

For every integer h, we define a total order 4 on the set of configurations of height h as follows.
For any k and k′, we have (k, ε) 4 (k′, ε) if and only if k ≤ k′. Let C = (i, (Cl, Cr)) and
C ′ = (i′, (C ′

l , C
′
r)) be two configurations of height h ≥ 1. Let k and k′ be their respective

number of robots. Then C 4 C ′ if and only if (k < k′)∨ (k = k′ ∧ i < i′)∨ (k = k′ ∧ i = i′ ∧Cl 4
C ′

l ∧ Cl 6= C ′
l) ∨ (k = k′ ∧ i = i′ ∧ Cl = C ′

l ∧ Cr 4 C ′
r).

Using this order, we define the following transformation ϕ on configurations. We also define ϕ

by induction on the height of the configuration. For any k, we have ϕ((k, ε)) = (k, ε). Let C =
(i, (Cl, Cr)) be an arbitrary configuration of height h ≥ 1. If ϕ(Cl) < ϕ(Cr), then we set ϕ(C) =
(i, (ϕ(Cl), ϕ(Cr))). Otherwise, we set ϕ(C) = (i, (ϕ(Cr), ϕ(Cl))). Clearly, C is equivalent to
ϕ(C). Notice that we have ϕ(C) = ϕ(C ′) if and only if C ≡ C ′. Hence a configuration ϕ(C) is
a canonical representative of the equivalence class of C, for any configuration C.

Let vk,h be the size of the set {ϕ(C)|C is a configuration of k robots and of height h}.

Claim 3.1 For any k ≥ 1 and h ≥ 1, we have vk,h ≤ (h+2)2k−1

2k−1 .

We prove the claim by induction on k. First note that for any integers h ≥ 0 and k ≥ 0, we
have v0,h = 1 and vk,0 = 1. Fix positive integers h and k. If k is odd, then we have

18

vk,h = vk,0 · v0,h−1 · v0,h−1

+ vk−1,0 · v1,h−1 · v0,h−1

+ vk−2,0 ·
(

v2,h−1 · v0,h−1 +
v1,h−1 · (v1,h−1 + 1)

2

)
+ vk−3,0 · (v3,h−1 · v0,h−1 + v2,h−1 · v1,h−1)

+ · · ·

+ v0,0 ·
(
vk,h−1 · v0,h−1 + vk−1,h−1 · v1,h−1 + · · ·+ v k+1

2
,h−1 · v k−1

2
,h−1

)
= 1

+ v1,h−1

+
(

v2,h−1 +
v1,h−1 · (v1,h−1 + 1)

2

)
+ (v3,h−1 + v2,h−1 · v1,h−1)

+ · · ·

+
(
vk,h−1 + vk−1,h−1 · v1,h−1 + · · ·+ v k+1

2
,h−1 · v k−1

2
,h−1

)
.

If k is even, then we have

vk,h =vk,0 · v0,h−1 · v0,h−1

+ vk−1,0 · v1,h−1 · v0,h−1

+ vk−2,0 ·
(

v2,h−1 · v0,h−1 +
v1,h−1 · (v1,h−1 + 1)

2

)
+ vk−3,0 · (v3,h−1 · v0,h−1 + v2,h−1 · v1,h−1)

+ · · ·

+ v0,0 ·

(
vk,h−1 · v0,h−1 + vk−1,h−1 · v1,h−1 + · · ·+

v k
2
,h−1 · (v k

2
,h−1 + 1)

2

)
= 1

+ v1,h−1

+
(

v2,h−1 +
v1,h−1 · (v1,h−1 + 1)

2

)
+ (v3,h−1 + v2,h−1 · v1,h−1)

+ · · ·

+

(
vk,h−1 + vk−1,h−1 · v1,h−1 + · · ·+

v k
2
,h−1 · (v k

2
,h−1 + 1)

2

)
.

Both above equalities follow from counting possible ways of distributing k robots in the root
and in the right and left subtrees, respecting the canonical form of the configurations.

19

For k = 1 and h ≥ 1, we have v1,h = 1 + v1,h−1 and thus v1,h = h + 1. Hence the claim holds for
k = 1 and arbitrary h ≥ 1.

For k = 2 and h ≥ 1, we have v2,h = 1+v2,h−1+
h(h+1)

2 . From h ≥ 1, we get v2,h ≤ v2,h−1+(h+1)2.
This implies v2,h ≤ 1 +

∑h
i=1(i + 1)2 ≤ 1 +

∫ h+1
1 (x + 1)2dx ≤ 1

3(h + 2)3. Thus the claim also
holds for k = 2 and arbitrary h ≥ 1.

For h = 1 and k ≥ 1, we have vk,1 ≤ vk−1,1 + k
2 + 1. This implies vk,1 ≤ (k + 1)(k + 2)/2 ≤

1
2k−132k−1. Thus the claim holds for h = 1 and arbitrary k ≥ 1.

Fix k ≥ 3. Assume that the claim holds for any pair (k′, h) such that 1 ≤ k′ ≤ k− 1 and h ≥ 1.
Fix h ≥ 2. Applying the induction hypothesis in the recurrence formula, we obtain (for k either
odd or even)

vk,h ≤ 1

+ (h + 1)

+
(

1
3
(h + 1)3 + (h + 1)2

)
+
(

1
5
(h + 1)5 +

(h + 1)3+1

3 · 1

)
+ · · ·

+

(
vk,h−1 +

(h + 1)(2k−3)+1

(2k − 3) · 1
+

(h + 1)(2k−5)+3

(2k − 5) · 3
+ · · ·+ (h + 1)(2d

k
2
e−1)+(2b k

2
c−1)

(2dk
2e − 1) · (2bk

2c − 1)

)
.

For any 1 ≤ i ≤ k
2 , we have 1

(2(k−i)−1)·(2i−1) ≤
1

2k−3 . Thus

k/2∑
i=1

1
(2(k − i)− 1) · (2i− 1)

≤ k/2
2k − 3

which in turn is less or equal to 1
2 for k ≥ 3. This implies

vk,h ≤ 1 + (h + 1) +
(

1
3
(h + 1)3 + (h + 1)2

)
+
(

1
5
(h + 1)5 +

1
2
(h + 1)4

)
+ · · ·

+
(

vk,h−1 +
1
2
(h + 1)2k−2

)
≤ 1 + (h + 1) + (h + 1)2 + (h + 1)3 + · · ·+ (h + 1)2k−3 +

(
vk,h−1 +

1
2
(h + 1)2k−2

)
.

In view of h ≥ 2, we get
∑2k−3

i=0 (h + 1)i (h+1)2k−2−1
h ≤ (h+1)2k−2

2 . Therefore

vk,h ≤ vk,h−1 + (h + 1)2k−2 .

This implies

vk,h ≤ vk,1 +
h∑

i=2

(i + 1)2k−2 ≤ 32k−1

2k − 1
+
∫ h+1

2
(x + 1)2k−2dx ≤ (h + 2)2k−1

2k − 1
.

20

This concludes the proof of the claim.

Let us consider a complete binary tree of height h, and a team of k robots able to explore
it. As an adversary, we decide that all robots act synchronously, i.e., they all look at the
same time, compute at the same time and finally move at the same time. Hence, for any
configuration, the notion of the next configuration is well defined, and thus a specific sequence
S of configurations, starting from the initial one, is defined. Using the equivalence relation ≡, a
corresponding sequence S′ of classes of configurations is defined. After completing exploration,
the robots have to remain idle. Consider the first configuration in the sequence S such that
all robots decide not to move after performing the Look operation in this configuration. For
the purpose of contradiction, assume that this particular configuration is not among the first
vk,h configurations in S. Then, in the sequence S′, some equivalence class appears twice, say
in positions i and j > i. Notice that, if two configurations C1 and C2 are equivalent then the
next configuration after C1 is equivalent to the next configuration after C2. This enables us to
properly define the next class of configurations for a given class. Hence, after the j-th step of
the synchronous execution, the sequence S′ becomes periodic. Thus, it is impossible that the
robots enter a configuration in which all of them decides to remain idle. This is a contradiction.
Hence, the robots stop after at most vk,h steps. During each synchronous step, at most k new
nodes are explored. Hence, at most k · vk,h ≤ (h + 2)2k nodes are explored by the robots before
they stop. Since all nodes must be explored, this implies (h + 2)2k ≥ n. Since n = 2h+1 − 1, we
can conclude that Ω(log n

log log n) robots are needed to explore the complete binary tree of size n,
regardless of the initial configuration. �

4 Exploring trees of larger degrees

In this section we show that the assumption about maximum degree 3 used in Section 3 is crucial
for the validity of the upper bound. Indeed we prove that there are arbitrarily large trees of
maximum degree 4 whose exploration requires Ω(n) robots.

Theorem 4.1 Exploration of any n-node complete 3-ary tree requires Ω(n) robots.

Proof: Let T be a complete 3-ary tree of size n. Consider the following adversary. Two robots
act simultaneously if they have the same view. Otherwise, they act sequentially. This means
that each robot in turn completely executes its cycle Look-Compute-Move before the next robot
proceeds with its own complete cycle. This also implies that whenever two robots form a tower,
they will stay together forever. It further means that the number of entities (free robot or tower)
is non-increasing.

Consider a group of three leaves having the same parent u. If at least two of these leaves are
empty, then the choice of the actual leaf visited by a robot deciding to explore an empty leaf is
made by the adversary. Its choice is the following: whenever it is possible, choose an already
explored leaf. Thus the algorithm is forced to place an entity in the first two leaves and keep
them there until a third entity is able to explore the third leaf. Therefore there exists a time

21

t when these three leaves are occupied. There are only two types of entities: free robots and
towers. Thus among the three entities occupying the three leaves under consideration, there
are at least two entities of the same type. From this time on, either these entities remain idle
forever or they are forced to merge into one, when moving to the parent u (since they have the
same view). Hence, when a group of three leaves is explored, the number of entities available to
explore the rest of the tree decreases by at least one. Since a complete 3-ary tree of size n ≥ 4
has at least n/6 groups of three leaves with a common parent, a team of robots succeeding in
exploring this tree must contain at least n/6 robots. �

5 Exploration of rigid trees

We finally consider exploration of trees that do not have any non-trivial automorphisms. Sur-
prisingly, it turns out that any such tree can be explored by only 4 robots. This shows that
the difficulty in tree exploration is mainly due to symmetries existing in the tree. (This is also
somehow confirmed by the fact that the lower bound in Section 3 was shown for the complete
binary trees, which have a lot of symmetries). We also show that the bound of 4 robots is tight
for the class of rigid trees.

5.1 Algorithm Rigid-tree-exploration

We first define the following total order � on the set of all rooted rigid trees. For any such trees
T and T ′, if the height of T is smaller than the height of T ′ then T � T ′. For trees of the same
height h the order is defined by induction on h. There is only one rooted rigid tree of height 0
and of height 1. Suppose that all trees of height h′ < h are ordered, and consider trees T and T ′

of height h. Let v1, . . . , vk be children of the root of T , and v′
1, . . . , v

′
m children of the root of T ′,

such that subtrees T1, . . . , Tk and T ′
1, . . . , T

′
m rooted at those nodes are in increasing order �.

Then T � T ′ if and only if the sequence (T1, . . . , Tk) precedes (T ′
1, . . . , T

′
m) in the lexicographic

order induced by �.

Let T be any rigid tree. The tree T has either a central node v or a central edge e. In the
first case root the tree at v and in the second case root the tree at the extremity of e whose
corresponding rooted tree precedes the other in order �. Arrange subtrees rooted at children
of any internal node in increasing order �. This induces a unique order of leaves of T . Call
this order canonical, and let 1, . . . , t be the enumeration of leaves of T in the canonical order.
Hence each robot taking a snapshot of the tree at any time, perceives the same canonical order
of leaves of the tree.

The idea of the algorithm is the following. First the four robots occupy nodes forming a con-
nected component containing leaf 1, then the robot from the neighbor of leaf 1 creates a tower
in leaf 1. This tower is a signal to start exploration, which is done by visiting leaves in the
canonical order by the two remaining robots. In the algorithm we use the notion of the robot
closest to a given node. Ties are broken using order � as follows: of two robots situated at

22

nodes v and w equidistant from u we choose the one that is in the earlier of the subtrees rooted
at the children of the lowest common ancestor of v and w.

Algorithm Rigid-tree-exploration

Phase 1. There is no tower in the snapshot.
Let a1 denote leaf 1 and a2 its unique neighbor. If there is no robot in a1 then the robot closest
to a1 goes toward a1. If there is a robot in a1 but no robot in a2 then the robot closest to a2

among robots outside a1 goes toward a2. If there are robots in a1 and a2 but no robot in other
neighbors of a2 then for the two remaining robots R3 and R4, let xi denote the distance of
robot Ri from the closest neighbor bi of a2 other than a1. The robot Ri for which this distance
is smaller goes toward bi (ties are broken as above). If there are three robots in a2, a1 and in
another neighbor of a2 but the fourth robot is not a neighbor of any of them then this fourth
robot goes toward the closest robot among the three. Finally, if all four robots form a connected
component containing a1 then the robot from a2 goes to a1 and creates a tower.

Phase 2. There is a tower in the snapshot.
If there is no free robot in a leaf, the robot closest to leaf 2 goes toward this leaf.
If there is exactly one free robot in leaf i then the other robot goes toward leaf i + 1.
If there are free robots in leaves i and i + 1, and i + 1 is not the largest number of a leaf then
the robot from i goes toward i + 2.
If there are free robots in leaves i and i + 1, and i + 1 is the largest number of a leaf then all
robots stop (explicit stopping condition).

Lemma 5.1 Algorithm Rigid-tree-exploration is correct for any rigid tree with n ≥ 7 nodes.

Proof: Consider the exploration of a rigid tree T . (Note that the smallest rigid tree with more
than 4 nodes has in fact at least 7 nodes). Algorithm Rigid-tree-exploration has the property
that at any time, at most one robot moves, for any execution of the algorithm. The fact that
the algorithm stops at some time τ and that all leaves are explored at time τ follows from the
formulation. It remains to show that all internal nodes are also explored at time τ . Notice that
for any leaf i there is a (not necessarily simple) path Pi from leaf 1 to leaf i, all of whose nodes
are explored at time τ . Consider any internal node v and let Tv be the subtree rooted at v. If
leaf 1 is not in Tv then v must be on path Pi, for any leaf i in Tv. If leaf 1 is in Tv and v is not
the root of T then there exists a leaf i outside Tv and v must be on path Pi, for any such leaf.
Finally, if v is the root of T then consider the child w of v, such that leaf 1 is in the subtree
rooted at w. Let i be a leaf outside this subtree. Then v must be on path Pi. It follows that v

is explored at time τ , which concludes the proof. �

Theorem 5.1 Any rigid tree with n ≥ 7 nodes can be explored by 4 robots, starting from any
initial configuration.

23

5.2 Impossibility of exploration with 3 robots

We finally show that the size four of the team of robots used in Algorithm Rigid-tree-exploration
cannot be decreased, except for very particular rigid trees.

Theorem 5.2 Four robots are required to explore any rigid tree with at least four leaves.

Proof: Let T be a tree with at least four leaves. First assume that at least two nodes of T are
of degree at least 3. Let v and v′ be two nodes of degree at least three such that the nodes of the
path from v to v′ (if any) are of degree 2. Let T1 and T2 be two of the connected components
of T r {v} not containing v′. Similarly, let T ′

1 and T ′
2 be two of the connected components of

T r {v′} not containing v. If T has only one node u of degree at least 3, then this node has
degree at least 4. We then set v = v′ = u and we define T1, T2, T

′
1 and T ′

2 as four different
connected components of T r {u}.

For the purpose of contradiction, let us consider a team of three robots able to explore (with
stop) the tree T . Fix an initial configuration C0. We consider an adversary that is sequential
except for two situations. More precisely, each robot in turn completely executes its cycle Look-
Compute-Move before the next robot proceeds with its own complete cycle. However, there are
two exceptions. First, if a robot R1 is in a tower with exactly one other robot R2, executes the
Compute operation based on its view of this configuration, and decides to move to a neighboring
node occupied by the third robot R3, then the adversary makes the robot R2 act together with
R1 so that both robots R1 and R2 move to the position of R3. Second, when all robots are at
the same node, the adversary is synchronous, i.e., it never breaks the tower formed by the three
robots. This adversary defines a sequence S = (C0, C1, C2, · · ·) of configurations starting from
the initial configuration C0.

Since the algorithm is supposed to be correct, the sequence S is finite: there exists an integer
f ≥ 0 such that all robots remain idle in the configuration Cf . This configuration contains a
tower because otherwise the algorithm would fail to explore the tree starting from the legitimate
initial configuration Cf . Since C0 does not contain towers, we can define the unique index i

such that Ci does not contain towers but all configurations Cj , for i < j ≤ f , contain a tower.
From now on, we consider Ci as the new initial configuration. This means that the tree must
be explored completely during the sequence S′ = (Ci, Ci+1, · · · , Cf). By the correctness of the
algorithm we have f > i + 1. It follows from the definition of S′ and of the adversary that
during the sequence S′ a tower of two robots can move only to a node occupied by a robot,
hence forming a tower of three robots.

By definition of i, the configuration Ci+1 contains a tower of two robots and the third robot
R is located at some different node. At this point, at least two of the four subtrees under
consideration are completely unexplored. Assume that R explores one of these unexplored
subtrees, say T1, before possibly joining (or being joined by) the two other robots, thus forming
a tower of three robots. Robot R has to visit node v before entering T1. Since the tower of two
robots cannot move without the presence of R at its neighbor, this latter robot has to leave T1,
either to join the tower or to explore the remaining unexplored subtree by itself. To do that,

24

it has to visit again node v. Since the configuration is exactly the same as the one just before
entering T1, robot R acts in the same way, i.e., reenters T1. This means that the exploration
cannot be finished.

Thus we can assume that R joins the two other robots before exploring any of the subtrees that
are unexplored in configuration Ci+1. From now on, the three robots act simultaneously and
the tower has still to explore at least two subtrees. Assume that it explores first T1. Then the
same argument applies: the tower visits node v before entering T1, and then each time the tower
tries to exit T1, it visits v and thus reenters T1. Hence, one subtree remains unexplored. This
contradicts the assumption that there exists a successfull team of three robots, and concludes
the proof of the theorem. �

Remark. The assumption in Theorem 5.2, concerning the number of leaves, cannot be removed.
Indeed, it can be proved that any rigid tree with at most three leaves can be explored by three
robots (but not by two robots).

6 Conclusion

In this paper we studied exploration of trees by teams of robots with contrasting strengths and
weaknesses: unlimited visibility on one side and obliviousness and asynchrony on the other.
The assumption we made of unlimited visibility has enabled us to focus on overcoming the other
computational weaknesses of the robots in the design of our exploration algorithms, in particular
the simultaneous presence of obliviousness and asynchrony. A natural next research step would
be the investigation of the limited visibility case. Observe that in the case of visibility limited,
e.g., to the immediate neighborhood of the robot, exploration is not generally possible. It is in
fact easy to construct trees and place the robots in such a way that (1) initially they are all
isolated (i.e., they have no other robots in their neighborhood), and (2) because of obliviousness,
each robot will either never move or move forever back and forth across the same edge. Hence a
limited visibility scenario could only work for some subset of initial configurations. Another line
of research would be to equip robots with very small (e.g., constant) memory of past events and
study how this additional power influences feasibility of exploration with limited or unlimited
visibility. Finally, it would be interesting to extend our study to the case of arbitrary graphs.

25

References

[1] N. Agmon, D. Peleg, Fault-tolerant gathering algorithms for autonomous mobile robots,
SIAM J. Comput. 36 (2006), 56-82.

[2] S. Albers and M. R. Henzinger, Exploring unknown environments, SIAM Journal on Com-
puting 29 (2000), 1164-1188.

[3] H. Ando, Y. Oasa, I. Suzuki, M. Yamashita, Distributed memoryless point convergence al-
gorithm for mobile robots with limited visibility, IEEE Trans. on Robotics and Automation
15 (1999), 818-828.

[4] I. Averbakh and O. Berman, A heuristic with worst-case analysis for minimax routing of
two traveling salesmen on a tree, Discr. Appl. Mathematics 68 (1996), 17-32.

[5] I. Averbakh and O. Berman, (p−1)/(p+1)-approximate algorithms for p-traveling salesmen
problems on a tree with minmax objective, Discr. Appl. Mathematics 75 (1997), 201-216.

[6] B. Awerbuch, M. Betke, R. Rivest and M. Singh, Piecemeal graph learning by a mobile
robot, Proc. 8th Conf. on Comput. Learning Theory (1995), 321-328.

[7] M.A. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan, The power of a pebble:
Exploring and mapping directed graphs, Proc. 30th Ann. Symp. on Theory of Computing
(STOC 1998), 269-278.

[8] M.A. Bender and D. Slonim, The power of team exploration: Two robots can learn unla-
beled directed graphs, Proc. 35th Ann. Symp. on Foundations of Computer Science (FOCS
1994), 75-85.

[9] M. Betke, R. Rivest and M. Singh, Piecemeal learning of an unknown environment, Machine
Learning 18 (1995), 231-254.

[10] M. Cieliebak, Gathering non-oblivious mobile robots, Proc. 6th Latin American Symposium
on Theoretical Informatics (LATIN 2004), 577-588.

[11] M. Cieliebak, P. Flocchini, G. Prencipe, N. Santoro, Solving the robots gathering problem,
Proc. 30th International Colloquium on Automata, Languages and Programming (ICALP
2003), LNCS 2719, 1181-1196.

[12] R. Cohen and D. Peleg, Convergence Properties of the Gravitational Algorithm in Asyn-
chronous Robot Systems, Proc. 14th European Symposium on Algorithms (ESA 2004),
LNCS 3221, 228-239.

[13] J. Czyzowicz, L. Gasieniec, A. Pelc, Gathering few fat mobile robots in the plane, Proc.
10th International Conference on Principles of Distributed Systems (OPODIS’2006), LNCS
4288, 744-753.

[14] X. Deng and C. H. Papadimitriou, Exploring an unknown graph, Journal of Graph Theory
32 (1999), 265-297.

26

[15] A. Dessmark and A. Pelc, Optimal graph exploration without good maps, Proc. 10th Eu-
ropean Symposium on Algorithms (ESA 2002), LNCS 2461, 374-386.

[16] K. Diks, P. Fraigniaud, E. Kranakis and A. Pelc, Tree exploration with little memory, Proc.
13th Ann. ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), 588-597.

[17] C.A. Duncan, S.G. Kobourov and V.S.A. Kumar, Optimal constrained graph exploration,
Proc. 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA 2001), 807-814.

[18] G. N. Frederickson, M. S. Hecht and C. E. Kim, Approximation algorithms for some routing
problems. SIAM J. on Computing 7 (1978), 178-193.

[19] P. Flocchini, D. Ilcinkas, A. Pelc, N. Santoro, Computing without communicating: Ring
exploration by asynchronous oblivious robots, Proc. 11th International Conference on Prin-
ciples of Distributed Systems (OPODIS 2007).

[20] P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer. Hard tasks for weak robot. Proc.
10th International Symposium on Algorithm and Computation (ISAAC 1999), LNCS 1741,
93-102.

[21] P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer, Gathering of asynchronous robots with
limited visibility. Theoretical Computer Science 337 (2005) 147-168.

[22] P. Fraigniaud, L. Gasieniec, D. Kowalski, A. Pelc, Collective tree exploration, Proc. Latin
American Theoretical Informatics (LATIN 2004), LNCS 2976, 141-151.

[23] R. Klasing, E. Markou, A. Pelc, Gathering asynchronous oblivious mobile robots in a ring,
Proc. 17th International Symposium on Algorithms and Computation (ISAAC 2006), LNCS
4288, 744-753.

[24] P. Panaite and A. Pelc, Exploring unknown undirected graphs, Journal of Algorithms 33
(1999), 281-295.

[25] G. Prencipe, On the feasibility of gathering by autonomous mobile robots. Proc. 12th
International Colloquium on Structural Information and Communication Complexity
(SIROCCO 2005), LNCS 3499, 246-261.

[26] G. Prencipe, N. Santoro. Distributed algorithms for mobile robots. Proc. 5th IFIP Interna-
tional Conference on Theoretical Computer Science (TCS 2006), 47-62.

[27] S. Souissi, X. Défago and M. Yamashita. Gathering asynchronous mobile robots with inac-
curate compasses. In Proc. 10th Int. Conf. on Principles of Distributed Systems (OPODIS
2006), LNCS 4305, 333–349.

[28] I. Suzuki, M. Yamashita, Distributed anonymous mobile robots: formation of geometric
patterns. SIAM J. Comput. 28 (1999) 1347-1363.

27

