
Theoretical Computer Science () –

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On the exploration of time-varying networks✩

Paola Flocchini a, Bernard Mans b,∗, Nicola Santoro c

a School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
b Department of Computing, Macquarie University, Sydney, Australia
c School of Computer Science, Carleton University, Ottawa, Canada

a r t i c l e i n f o

Article history:
Received 17 March 2011
Received in revised form 4 December 2011
Accepted 23 October 2012
Communicated by R. Klasing

Keywords:
Time-varying graphs
Exploration
Dynamic networks
Carrier networks
Evolving graphs
Traversal
Mobile networks
Mobile agents
Delay-tolerant networks

a b s t r a c t

We study the computability and complexity of the exploration problem in a class of highly
dynamic networks: carrier graphs, where the edges between sites exist only at some
(unknown) times defined by the periodic movements of mobile carriers among the sites.
These graphs naturally model highly dynamic infrastructure-less networks such as public
transportswith fixed timetables, lowearth orbiting (LEO) satellite systems, security guards’
tours, etc.We focus on the opportunistic exploration of these graphs, that is by an agent that
exploits the movements of the carriers to move in the network.

We establish necessary conditions for the problem to be solved. We also derive lower
bounds on the amount of time required in general, as well as for the carrier graphs defined
by restricted classes of carrier movements.

We then prove that the limitations on computability and complexity we have estab-
lished are indeed tight. In fact we prove that all necessary conditions are also sufficient
and all lower bounds on costs are tight. We do so constructively by presenting two optimal
solution algorithms, one for anonymous systems, and one for those with distinct node IDs.

Crown Copyright© 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

1.1. The framework

Graph exploration is a classical fundamental problem extensively studied since its initial formulation in 1951 by Shannon
[32]. It has various applications in different areas, e.g., finding a path through a maze, or searching a computer network
using a mobile software agent. In these cases, the environment to be explored is usually modelled as a (di)graph, where
a single entity (called agent or robot) starting at a node of the graph, has to visit all the nodes and terminate within fi-
nite time. Different instances of the problem exist depending on a variety of factors, including whether the nodes of the
graph are labelled with unique identifiers or are anonymous, the amount of memory with which the exploring agent is en-
dowed, the amount of a priori knowledge available about the structure of the graph (e.g., it is acyclic) etc. (e.g., see [1,3,6,
15,16,18]). In spite of their differences, all these investigations have something in common: they all assume that the graph
to be explored is connected.

The connectivity assumption unfortunately does not hold for the new generation of networked environments that are
highly dynamic and evolving in time. In these infrastructure-less networks, end-to-end multi-hop paths may not exist, and

✩ This work was partially supported by ARC, ANR Project SHAMAN, by COST Action 295 DYNAMO, and by NSERC. A preliminary and shorter version of
this work was presented at the 20th International Symposium on Algorithms and Computation.
∗ Corresponding author. Tel.: +61 2 98509574; fax: +61 2 98509551.

E-mail addresses: flocchin@eecs.uottawa.ca (P. Flocchini), bernard.mans@mq.edu.au (B. Mans), santoro@scs.carleton.ca (N. Santoro).

0304-3975/$ – see front matter Crown Copyright© 2012 Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.10.029

http://dx.doi.org/10.1016/j.tcs.2012.10.029
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:flocchin@eecs.uottawa.ca
mailto:bernard.mans@mq.edu.au
mailto:santoro@scs.carleton.ca
http://dx.doi.org/10.1016/j.tcs.2012.10.029

2 P. Flocchini et al. / Theoretical Computer Science () –

it is actually possible that, at every instant of time, the network is disconnected. However, communication routes may be
available through time and mobility, and not only basic tasks like routing, but complex communication and computation
services could still be performed. See in this regard the ample literature (mostly from the application/engineering com-
munity) on these highly dynamic systems, variously called delay tolerant, disruption tolerant, challenged, and opportunistic
networks (e.g., [5,8,9,14,19,22,24,25,29–31,33,36,37]). Almost all the existing work in this area focuses on the routing and
the broadcast problems. In these cases, most recent results consider these problems from a probabilistic standpoint: e.g., in
[5,14], where the changes in the graph are regulated by aMarkovian process on the edges. Deterministic solutions to routing
and broadcasting have also been obtained under strong assumptions such as knowing the complete edge schedule ahead of
time, and within a centralized entity (see [8]); intermediate assumptions have also been investigated, such as the fact that
the network is always connected [31].

The highly dynamic features of dynamic networks can be described bymeans of time-varying graphs, that is graphswhere
links between nodes exist only at some times (a priori unknown to the algorithmdesigner). Thus, in these graphs, (also called
evolving graphs or temporal graphs), the set of edges existing at a given time might not form a connected graph (e.g., see
[10–13,17,19,26,28,34]).

In spite of the large amount of the literature and research investigations, no work exists on exploration of such networks,
with the noticeable exception of the study of exploration by randomwalks in dynamic undirected graphs [2]. In that paper, it
is shown that unfortunately, and contrarily to results for connected static undirected graphs, when the graph is modified by
an oblivious adversary, this adversary can devise strategies which force the expected cover time of a simple randomwalk to
be exponential. However the authors prove that a simple max-degree random walk guarantees expected polynomial cover
time regardless of the change made by the adversary, and thus confirm the exploitability of dynamic networks.

Our research interest is on the deterministic exploration of time-varying graphs, on the computability and complexity
aspects of this problem.

1.2. The problem

In this paper,we start the investigation focusing on a particular class of time-varying graphs: the carrier graphs (C-graphs),
where the edges of the graphs are defined by the periodic movements of some mobile entities, called carriers. This class
models naturally infrastructure-less networkswheremobile entities have fixed routes that they traverse regularly. Examples
of such common settings are public transports with fixed timetables, low earth orbiting (LEO) satellite systems, security
guards’ tours, etc. These networks have been investigated in the application/engineering community, with respect to routing
and to the design of carriers’ routes (e.g., see [22,30]) and more specifically for buses [4,36], planes [27] and satellites [35].
The use of such carrier networks allows the creation of a powerful routing system based upon regular contacts. This in turn
allows the development of a wide range of applications, which vary from simply expanding content delivery through the
opportunistic use of computing devices on common carriers (such as buses, trains, planes, etc.), to providing a fully reliable
interplanetary overlay network that bridges smaller local (space) networks automatically without having to manually
schedule dedicated time for routing data [35].

At the basis is the fact that messages, code, and content can travel on a carrier, and can be transmitted to another carrier
when the twomeet (i.e., they are in communication range). This situation can be abstracted in terms of an agent opportunis-
tically transported by a carrier, andmoving from that carrier to an encountered carrier. Our interest is in understanding how
exploration of C-graphs can take place, performed by such an opportunistic agent; in particular we focus on how the peri-
odicity of the carrier routes impacts the complexity of the problem.

We view the system as composed of n sites (or nodes) and k carriers, each periodically moving among a subset of the
sites. The routes of the carriers define the edges of the time-varying graph: a directed edge (or arc) exists from node u to
node v at time t only if there is a carrier that in its route moves from u to v at time t . If all routes have the same period p the
system is called homogeneous, otherwise it is called heterogeneous (and p is the length of the longest route).

In the system enters an explorer agent A that can ride with any carrier along its route, and it can switch to any carrier it
meets while riding. We do not assume that the agent can disembark and wait for a carrier at the site. Such an assumption
would require the sites to have storage capabilities (to hold the agent), and our focus is on solving the problemunderminimal
capabilities. Although for some specific applications itmay be possible for agents towait at a site in order to jump on another
carrier later (e.g., agent associated to human-carried devices in a bus network), in other applications this assumption does
not apply. As an example, consider a static sensor network deployed over a terrain (e.g., at bus stops) to collect local data
(e.g., local traffic); carriers (e.g., buses) endowed with wireless communication capabilities move along the sensors’
locations; a data gathering agent rides on the carriers, when at a sensor location, it collects the sensor’s data, and when
encountering another carrier it can migrate there; the goal is for the agent to collect the data from all sensors.

Exploring a C-graph is the process of A visiting all the nodes and exiting the system within finite time. We study the
computability and the complexity of the exploration problem of C-graphs, CG-Exploration.

1.3. Overview of results

We first investigate the computability of CG-Exploration and establish necessary conditions for the problem to be solvable.
We prove that in anonymous systems (i.e., the nodes have no identifiers) exploration is unsolvable if the agent has no

P. Flocchini et al. / Theoretical Computer Science () – 3

knowledge of (an upper bound on) the size of the largest route; if the nodes have distinct IDs, we show that either n or
an upper-bound on the system period must be known for the problem to be solvable.

These necessary conditions for anonymous systems, summarized in the table below (see Fig. 1), hold even if the routes
are homogeneous (i.e., have the same length), the agent has unlimited memory and knows k (if anonymous, even if they
know n).

ANONYMOUS

Knowledge Solution (Even if)

(bound on) p impossible n, k known; homogeneous
unknown unbounded memory

(bound on) p possible n, k unknown; heterogeneous
known O(log p+ k log k) bits

DISTINCT IDs

Knowledge Solution (Even if)

n and (bound on) p impossible k known; homogeneous
unknown unbounded memory

n possible p, k unknown; heterogeneous
known O(n log n) bits

(bound on) p possible n, k unknown; heterogeneous
known O(log p+ k log k) bits

Fig. 1. Results for the Computability of CG-Explorations.

We then consider the complexity of CG-Exploration and establish lower bounds on the number ofmoves.We prove that in
general Ω(kp) moves are necessary for homogeneous systems and Ω(kp2) for heterogeneous ones. This lower bound holds
even if A knows n, k, p, and has unlimitedmemory. Notice that the parameter p in the above lower bounds can be arbitrarily
large since the same node can appear in a route arbitrarily many times. A natural question is whether the lower bounds do
change when imposing restrictions on the ‘‘redundancy’’ of the routes. To investigate the impact of the routes’ structure
on the complexity of the problem, we consider C-graphs where all the routes are simple, that is, do not contain self-loops
or multiple arcs. We show that the same type of lower bound holds also for this class; in fact, we establish Ω(kn2) lower
bound for homogeneous and Ω(kn4) lower bound for heterogeneous systems with simple routes. We then further restrict
each route to be circular, that is an arc appears in a route at most once. Even in this case, the general lower bound holds; in
fact, we prove lower bounds of Ω(kn) moves for homogeneous and Ω(kn2) for heterogeneous systems with circular routes.
Interestingly these lower bounds hold even if A has full knowledge of the entire C-graph, and has unlimited memory. We
then prove that the limitations on computability and complexity established so far, are indeed tight. In fact, we prove that all
necessary conditions are also sufficient and all lower bounds on costs are tight. We do so by constructively presenting two
worst case optimal solution algorithms, one for anonymous systems and one for those with IDs. In the case of anonymous
systems, the algorithm solves the problem without requiring any knowledge of n or k; in fact, it only uses the necessary
knowledge of an upper bound B ≥ p on the size of the longest route. The number of moves is O(kB) for homogeneous and
O(kB2) for heterogeneous systems. The cost depends on the accuracy of the upperbound B on p. It is sufficient that the upper
bound B is linear in p for the algorithm to be optimal. In the case of systems with IDs, the algorithm solves the problem
without requiring any knowledge of p or k; in fact it only uses the necessary knowledge of n. The number of moves is O(kp)
and O(kp2) matching the lower bound (see Fig. 2).

System

Routes Homogeneous Heterogeneous
Arbitrary Θ(kp) Θ(kp2)
Simple Θ(kn2) Θ(kn4)

Circular Θ(kn) Θ(kn2)

Fig. 2. Results for the complexity of CG-explorations.

Our optimal solutions are further enhanced by their simplicity and by the use of a limited amount of memory.

2. Model and terminology

2.1. Carrier graphs

The system is composed of a set S of n sites; depending on whether the sites have unique IDs or no identifiers, the
system will be said to be with IDs or anonymous, respectively. In the system operates a set C of k mobile entities called
carriersmoving among the sites. Considering the low density of traffic in applications for Delay-Tolerant Networks, we will

4 P. Flocchini et al. / Theoretical Computer Science () –

assume, w.l.o.g. that |C | = k ≤ n = |S|. Each carrier c has a unique identifier id(c) and an ordered sequence of sites
π(c) = ⟨x0, x1, . . . , xp(c)−1⟩, xi ∈ S, called route; for any integer j we will denote by π(c)[j] the component xi of the route
where i ≡ j mod p(c), and p(c) will be called the period of π(c). A carrier c ∈ C moves cyclically along its route π(c):
at time t , c will move from π(c)[t] to π(c)[t + 1]. In the following, x0 will be called the starting site of c , and the set
S(c) = {x0, x1, . . . , xp(c)−1}, will be called the domain of c; clearly |S(c)| ≤ p(c) (as the same site can be visited several
times along the route).

Each route π(c) =< x0, x1, . . . , xp(c)−1 > defines an arc-labelled multigraph G⃗(c) = (S(c), E⃗(c)), where E⃗(c) = {(xi,
xi+1, i), 0 ≤ i < p(c)}, and the operations on the indices are modulo p(c). If (x, y, t mod p(c)) ∈ E⃗(c), we shall say
that c activates the arc (x, y) at time t . A site z ∈ S is the meeting point (or connection) of carriers a and b at time t if
π(a)[t] = π(b)[t] = z; that is, there exist sites x and y such that, at time t − 1, a activates the arc (x, z) and b activates
the arc (y, z). A route π(c) =< x0, x1, . . . , xp(c)−1 > is simple if G⃗(c) does not contain self loops or multiple arcs; that is
xi ≠ xi+1, for 0 ≤ i < p(c), and if (x, y, i), (x, y, j) ∈ E⃗(c) then i = j.

A simple route π(c) is irredundant (or circular) if G⃗(c) is either a simple cycle or a simple traversal with return from a
root of a tree: in other words, the undirected graph induced by the simple route is either a cycle or a tree. Note that in this
case, |E⃗(c)| = p(c) ≤ 2(n− 1).

We shall denote by R = {π(c) : c ∈ C} the set of the routes of all carriers and, as these routes are periodic, by
p(R) = Max{p(c) : c ∈ C} the maximum period among all the routes of the carriers. When no ambiguity arises, we will
denote p(R) simply as p. The set R defines an arc-labelled multigraph G⃗R = (S, E⃗), where E⃗ = ∪c∈C E⃗(c), called carrier graph
(or, shortly, C-graph).

A concrete walk (or, simply, walk) σ in G⃗R is a (possibly infinite) ordered sequence σ =< e0, e1, e2 . . . > of arcs in E⃗
where ei = (ai, ai+1, i) ∈ E⃗(ci) for some ci ∈ C , 0 ≤ i. To each route π(c) in R corresponds an infinite concrete walk σ(c)
in G⃗R where ei = (π(c)[i], π(c)[i + 1], i) for i ≥ 0. A concrete walk σ is a concrete cover of G⃗R if it includes every site:
∪0≤i≤|σ |+1 {ai} = S.

A set of routes R is feasible if there exists at least one concrete cover of G⃗R starting from any carrier. R is homogeneous if all
routes have the same period: ∀a, b ∈ C, p(a) = p(b); it is heterogeneous otherwise. R is simple (resp. irredundant) if every
route π(c) ∈ R is simple (resp., irredundant). Please note that this is when each route is considered individually: even if all
the routes are simple, the resulting system G⃗R is not necessarily simple (resp., irredundant). We will give several examples
later. With an abuse of notation, the above properties of R will be used also for G⃗R; hence we will accordingly say that G⃗R is
feasible (or homogeneous, simple, etc.).

In summary, when no ambiguity arises, we will denote p(R) simply as p, G⃗R simply as G⃗, and (x, y, t mod p(c)) simply as
(x, y, t).

Examples of C-graphs with arbitrary routes, with simple routes and with circular routes are given in Figs. 3, 4 and 6
respectively.

2.2. Exploring agent and traversal

In the system is injected an external computational entity A called the exploring agent; w.l.o.g., the agent is injected at the
starting site of some carrier at time t = 0. The only two operations it can perform are: move with a carrier, switch carrier.
Agent A can switch from carrier c to carrier c ′ at site y at time t iff it is riding with c at time t and both c and c ′ arrive at y
at time t , that is: iff it is riding with c at time t and ∃ x, x′ ∈ S such that (x, y, t) ∈ E(c) and (x′, y, t) ∈ E(c ′).

Agent A does not necessarily know n, k, or G⃗; when at a site x at time t , A can however determine the identifier id(c) of
each carrier c that arrives at x ∈ S at time t .

The goal of A is to fully explore the systemwithin finite time, that is to visit every site and terminate, exiting the system,
within finite time, regardless of the starting position. We will call this problem CG-Exploration.

An exploration protocolA is an algorithm that specifies the exploring agent’s actions enabling it to traverse C-graphs.More
precisely, let start(G⃗R) = {π(c)[0] : c ∈ C} be the set of starting sites for a C-graph G⃗R, and let C(t, x) = {c ∈ C : π(c)[t] =
x}, be the set of carriers that arrive at x ∈ S at time t ≥ 0. Initially, at time t = 0, A is at a site x ∈ start(G⃗R). If A is at node y
at time t ≥ 0, A specifies action ∈ C(t, x)∪ {halt}: if action= c ∈ C(t, x), Awill move with c to π(c)[t + 1], traversing the
edge (x, π(c)[t + 1], t) ; if action = halt, A will terminate the execution and exit the system. Hence the execution of A in
G⃗R starting from injection site x uniquely defines the (possibly infinite) concrete walk ξ(x) =< e0, e1, e2, · · · > of the arcs
traversed by A starting from x; the walk is infinite if A never executes action= halt, finite otherwise.

Algorithm A solves the CG-Exploration of G⃗R if ∀x ∈ start(G⃗R), ξ(x) is a finite concrete cover of G⃗R; that is, executing A

in G⃗R, A visits all sites of G⃗R and performs action = halt, regardless of the injection site x ∈ start(G⃗R). Clearly, we have the
following property.

Property 2.1. CG-Exploration of G⃗R is possible only if R is feasible.
Hence, in the following, wewill assume that R is feasible and restrict CG-Exploration to the class of feasible C-graphs. Wewill
say that problem CG-Exploration is unsolvable (in a class of C-graphs) if there is no deterministic exploration algorithm that
solves the problem for all feasible C-graphs (in that class).

P. Flocchini et al. / Theoretical Computer Science () – 5

Fig. 3. C-graph of Theorem 3.3 with n = 12, k = 4, p = 6.

The cost measure is the number of moves that the exploring agent A performs. Let M(G⃗R) denote the number of moves
that need to be performed in the worst case by A to solve CG-Exploration in feasible G⃗R. Given a class G of feasible graphs,
let M(G) be the largest M(G⃗R) over all G⃗R ∈ G and let Mhomo(n, k) (resp. Mhetero(n, k)) denote the largest M(G⃗R) in the class
of all feasible homogeneous (resp. heterogeneous) C-graphs G⃗R with n sites and k carriers.

3. Computability and lower bounds

3.1. Knowledge and solvability

The availability of a priori knowledge by A about the system has an immediate impact on the solvability of the problem
CG-Exploration. Consider first anonymous systems: the sites are indistinguishable to the exploring agent a. In this case, the
problem is unsolvable if A has no knowledge of (an upper bound on) the system period.

Theorem 3.1. Let the system be anonymous. CG-Exploration is unsolvable if A has no information on (an upper bound on) the
system period. This result holds even if the system is restricted to be homogeneous, A has unlimited memory and knows both n
and k.

Proof. By contradiction, letA solveCG-Exploration in all anonymous feasible C-graphswithout any information on (an upper
bound on) the system period. Given n and k, let S = {x0, . . . , xn−1} be a set of n anonymous sites, and let π be an arbitrary
sequence of elements of S such that all sites are included. Consider the homogeneous system where k carriers have exactly
the same route π and let G⃗ be the corresponding graph. Without loss of generality, let x0 be the starting site. Consider now
the execution of A by A in G⃗ starting from x0. Since A is correct, the walk ξ(x0) performed by A is a finite concrete cover;
letm be its length. Furthermore, since all carriers have the same route, ξ(x0) is a prefix of the infinite walk σ(c), performed
by each carrier c; more precisely it consists of the first m arcs of σ(c). Let ti denote the first time when xi is visited in this
execution; without loss of generality, let ti < ti+1, 0 ≤ i < n− 2.

Let π∗ denote the sequence of sites in the order they are visited by A in the walk ξ(x0). Let α be the first tn−2 + 1 sites
of π∗, and β be the nextm+ 1− (tn−2 + 1) sites (recall,m is the length of ξ(x0) and thusm+ 1 is that of π∗). Let γ be the
sequence obtained from β by substituting each occurrence of xn−1 with xn−2.

Consider now the homogeneous system where all the k agents have the same route π ′ =< α, γ , β >, and let G⃗′ be the
corresponding graph.

The execution of A in G⃗′ by A with injection site x0 results in A performing a concrete walk ξ ′(x0) which, for the first
m arcs, is identical to ξ(x0) except that each arc of the form (x, xn−1, t) and (xn−1, x, t) has been replaced by (x, xn−2, t) and
(xn−2, x, t), respectively. Because of anonymity of the nodes, A will be unable to distinguish xn−1 and xn−2; furthermore, it
does not know (an upper bound on) the system’s period. Thus A will be unable to distinguish the first m steps of the two
executions; it will therefore stop aftermmoves also in G⃗′. This means that A stops before traversing β; since xn−1 is neither
in α nor in γ , ξ ′(x0) is finite but not a concrete cover of G⃗′, contradicting the correctness of A. �

In other words, in anonymous systems, an upper bound on the system period must be available to A for the problem to be
solvable.

Consider now distinct ID’s systems, i.e. where the sites have distinct identities accessible to Awhen visiting them; in this
case, the problem is unsolvable if A has no knowledge of (an upper bound on) the system period or of the number of sites.

Theorem 3.2. Let the sites have distinct IDs. CG-Exploration is unsolvable if A has no information on either (an upper bound
on) the system period or of the number of sites. This result holds even if the system is homogeneous, and A has unlimited memory
and knows k.

6 P. Flocchini et al. / Theoretical Computer Science () –

Proof. By contradiction, let A solve CG-Exploration in all feasible C-graphs with distinct IDs without any information on
either (an upper bound on) the systemperiod or on the number of sites. Let S = {x0, . . . , xn−1} be a set of n siteswith distinct
IDs, and let π be an arbitrary sequence of elements of S such that all sites are included. Consider now the homogeneous
system where k carriers have exactly the same route π and let G⃗ be the corresponding graph. Without loss of generality, let
x0 be the starting site.

Consider now the execution of A by A in G⃗ starting from x0. Since A is correct, the walk ξ(x0) performed by A is a finite
concrete cover; let m be its length and let π be the corresponding sequence of nodes. Furthermore, since all carriers have
the same route, ξ(x0) is a prefix of the infinite walk σ(c), performed by each carrier c; more precisely it consists of the first
m arcs of σ(c). Consider now the homogeneous system with n + 1 sites, with S ′ = {x0, . . . , xn−1, xn} = S ∪ {xn}, where
all the k carriers have exactly the same route π ′ =< πxn >, and let G⃗′ be the corresponding graph. The execution of A
with injection site x0 will have A perform the walk ξ ′(x0) which, for the first m arcs, is identical to ξ(x0). Since A does not
know the number of sites, it will be unable to distinguish the change: it can neither detect that one node is still missing (n is
unknown) nor guarantee an exhaustive traversal (p is unknown). It will therefore stop aftermmoves also in G⃗′. This means
that A stops before visiting xn; that is, ξ ′(x0) is finite but not a concrete cover, contradicting the correctness of A. �

In other words, when the sites have unique IDs, either n or an upper-bound on the system period must be known for the
problem to be solvable.

3.2. Lower bounds on number of moves

3.2.1. Arbitrary routes
We will first consider the general case, where no assumptions are made on the structure of the system routes, and

establish lower bounds on the number of moves both in homogeneous and heterogeneous systems.

Theorem 3.3. For any n, k, p, with n ≥ 9, n
3 ≥ k ≥ 3, and p ≥ max{k−1, ⌈ n

k−1⌉}, there exists a feasible homogeneous C-graph
G⃗R with n sites, k carriers and period p such that M(G⃗R) ≥ (k− 2)(p+ 1) + ⌊ n

k−1⌋. This result holds even if A knows G⃗R, k and
p, and has unlimited memory.

Proof. Let S = {s0, . . . , sn−1} and C = {c0, . . . , ck−1}. Partition the set S into k − 1 subsets S0, . . . , Sk−2 with |Si| = ⌊ n
k−1⌋

for 0 ≤ i ≤ k − 3 and Sk−2 containing the rest of the elements. From each set Si select a site xi; let X = {x0, . . . , xk−2}. For
each ci, i < k− 1, construct a route π(ci) of period p traversing Si and such that xi is visited only at time t ≡ i mod p; this
can always be done because |Si| ≥ 3, since k ≤ n

3 . Construct for ck−1 a route π(ck−1) of period p traversing X such that it
visits xi at time t ≡ i mod p (it might visit it also at other times). Thus, by construction, carriers ci and ck−1 have only one
meeting point, xi, and only at time t ≡ i mod p, while π(ci) and π(cj) have no meeting points at all, 0 ≤ i ≠ j ≤ k − 2.
See Fig. 3 for an example. The agent Amust hitch a ride with every ci to visit the disjoint sets Si, 0 ≤ i ≤ k− 2; however, A
can enter route π(ci) only at time t ≡ i mod p and, once it enters it, A can leave it only after time p, that is only after the
entire route π(ci) has been traversed. When traversing the last set Si, A could stop as soon as all its |Si| ≥ ⌊ n

k−1⌋ elements
are visited. Additionally A must perform at least k− 2 moves on π(ck−1) to reach each of the other routes. In other words,
Amust perform at least (k− 2)p + ⌊ n

k−1⌋ + (k− 2) moves. �

Costs can be significantly higher in heterogeneous systems as shown by the following.

Theorem 3.4. For any n, k, p, with n ≥ 9, n
3 ≥ k ≥ 3, and p ≥ max{k− 1, ⌈ nk ⌉}, there exists a feasible heterogeneous C-graph

G⃗R with n sites, k carriers and period p such that M(G⃗R) ≥ (k− 2)(p− 1)p+⌊ n−2k−1 ⌋− 1. This result holds even if A knows G⃗R, k
and p, and has unlimited memory.

Proof. Let C = {c0, . . . , ck−1}. Partition the set S into k subsets S0, . . . , Sk−1 with |Si| = ⌊ n−2k−1 ⌋ for 1 ≤ i ≤ k − 1 and S0
containing the rest of the elements. From each set Si (1 ≤ i ≤ k − 1) select a site xi; let X = {x1, . . . , xk−1}. For each ci
(1 ≤ i < k − 1), generate a route π(ci) of length p traversing Si and such that xi is visited only at time t ≡ i mod p; this
can always be done because, since k ≤ n

3 , we have |Si| ≥ 3. Construct for c0 a route π(c0) of period p− 1 traversing S0 ∪ X
such that it visits xi ∈ X only at time t ≡ i mod (p− 1); this can always be done since |S0| + |X | ≥ 2+ k− 1 = k+ 1. In
other words, in the system there is a route of period p− 1, π(c0), and k− 1 routes of period p, π(ci) for 0 < i < k. Let A be
at x0 at time t = 0; it must hitch a ride with every ci (0 < i < k) to traverse the disjoint sets Si; let ti denote the first time
when A hitches a ride with ci. Since ci has connection only with c0, to catch a ride on ci Amust be with c0 when it meets ci
at xi at time ti. To move then to a different carrier cj (i, j ≠ 0), A must first return at xi and hitch a ride on c0. Since c0 is at
xi only when t ≡ i mod (p− 1) while ci is there only when t ≡ i mod p, and since p− 1 and p are coprime, c0 will meet
ci at time t ′ > ti if and only if t ≡ ti mod (p (p − 1)). In other words, to move from π(ci) to another route π(cj) A must
perform at least p(p− 1) moves. Since A must go on all routes, at least (k− 2)p(p− 1) moves must be performed until A
hitches a ride on the last carrier, say cl; A can stop only once the last unvisited sites in π(cl) have been visited, i.e., after at
least ⌊ n−2k−1 ⌋ − 1 additional moves. Therefore the number of moves Amust perform is at least (k− 2)(p− 1)p+ ⌊ n−2k−1 ⌋ − 1,
completing the proof. �

P. Flocchini et al. / Theoretical Computer Science () – 7

Fig. 4. CG of Theorem 3.5 with n = 6, k = 2, m̄ = 3, n̄ = 1, p = 8.

In other words, by Theorems 3.3 and 3.4, without any restriction on the routes, even if A knows n, k, p, and has unlimited
memory

Mhomo(n, k) = Ω(kp) (1)
Mhetero(n, k) = Ω(kp2). (2)

Notice that the parameter p in the above lowerbounds can be arbitrarily large; in fact a route can be arbitrarily long even
if its domain is small. This however can occur only if the carriers are allowed to go from a site x to a site y an arbitrary amount
of times within the same period. Imposing restrictions on the amount of redundancy in the route the carriers must follow
will clearly have an impact on the number of moves the agent needs to make.

3.2.2. Simple routes
A natural restriction is that each route is simple: the directed graph it describes does not contain self-loops or multi-

edges; that is, π(c)[i] ≠ π(c)[i + 1] and, if π(c)[i] = π(c)[j] for 0 ≤ i < j, then π(c)[i + 1] ≠ π(c)[j + 1]. If a route
π(c) is simple, then p(c) ≤ n(n− 1). Let us stress again that even if all the routes are simple, the resulting system G⃗R is not
necessarily simple.

The routes used in the proof of Theorems 3.3 and 3.4 were not simple. The natural question is whether simplicity of the
routes can lower the cost fundamentally, i.e. to o(kp) ⊆ o(kn2) in case of homogeneous systems, and to o(kp2) ⊆ o(kn4) in
the heterogeneous ones. The answer is unfortunately negative in both cases.

We will first consider the case of homogeneous systems with simple routes.

Theorem 3.5. For any n ≥ 4 and n
2 ≥ k ≥ 2 there exists a feasible simple homogeneous C-graph G⃗R with n sites and k carriers

such that M(G⃗R) > 1
8kn(n− 8). This result holds even if A knows G⃗R and k, and has unlimited memory.

Proof. We will first construct a system satisfying the theorem’s hypothesis. Let C = {c1, . . . , ck}, S = {x0, . . . ,
xm̄−1, y1, y2, . . . , yk, z1, . . . , zn̄}, where m̄ = max{i < n − k: i is prime}, and let n̄ = n − m̄ − k. Consider the set of
indices ι(i, j) defined as follows, where all operations are modulo m̄: for 0 ≤ s ≤ m̄− 2, 0 ≤ r ≤ m̄− 1 and 1 ≤ i ≤ k

ι(i, m̄s+ r) = i+ (s+ 1)r. (3)

For simplicity, in the following we will denote xι(i,j) simply as x(i, j). Finally, let the set of routes be defined as follows:

π(ci) = ⟨µ, δ(i), yi⟩ (4)

where

µ = z1, . . . , zn̄ (5)

and

δ(i) = x(i, 1), x(i, 2), . . . , x(i, m̄2
− m̄). (6)

The system SiHo so defined is clearly homogeneous.

Claim 3.6. In SiHo, for 1 ≤ i ≤ k, π(ci) is simple and p(ci) = p = m̄2
− m̄+ 1+ n̄.

8 P. Flocchini et al. / Theoretical Computer Science () –

Proof. That the value of p(ci) is as stated follows by construction. To prove simplicitywemust show that each arc in the route
appears only once; that is, for all 1 ≤ i ≤ k, 0 ≤ t ′ < t ′′ ≤ p−1, ifπ(ci)[t ′] = π(ci)[t ′′] thenπ(ci)[t ′+1] ≠ π(ci)[t ′′+1]. This
is true by construction for t ′ < n̄ and t ′′ ≥ p− 1; i.e., for the arcs (z1, z2), (z2, z3), . . . , (zn̄, x(i, 1)), (x(i, p− 2), yi), (yi, z1).
Consider now the other values of t ′ and t ′′. Let n̄ ≤ t ′ = m̄s′ + r ′ < m̄s′′ + r ′′ = t ′′ ≤ p − 2 with π(ci)[t ′] = π(ci)[t ′′];
that is

i+ (s′ + 1)r ′ ≡ i+ (s′′ + 1)r ′′ mod m̄. (7)

By contradiction, let π(ci)[t ′ + 1] = π(ci)[t ′′ + 1]; that is

i+ (s′ + 1)(r ′ + 1) ≡ i+ (s′′ + 1)(r ′′ + 1) mod m̄. (8)

But (7) and (8) together imply that s′ ≡ s′′ (mod m̄), which in turn (by (7)) implies that r ′ ≡ r ′′ (mod m̄). However, since m̄
is prime, this can occur only if s′ = s′′ and r ′ = r ′′, i.e. when t ′ = t ′′; a contradiction. �

Claim 3.7. In SiHo, ∀i, j (1 ≤ i < j ≤ k), ci and cj meet only at the nodes of µ; this will happen whenever t ≡ l (mod p),
0 ≤ l ≤ n̄− 1

Proof. By definition, the carriers meet at the nodes of µ only at the time stated by the lemma: µ is the first part of each
route, and the sites in µ are different from all the others. To complete the proof we must show that two carriers will never
meet anywhere else. Since yi is only in route π(ci), carriers never meet there. Let us consider now the xi’s. By contradiction,
let π(ci)[t] = π(cl)[t] for some i, l, t where 1 ≤ i ≠ l ≤ k, n̄ ≤ t ≤ p− 1; in other words, let x(i, t) = x(l, t). The function
ι, by definition, is such that ι(i + 1, t) ≡ ι(i, t) + 1 mod m̄; since m̄ is prime, this means that ι(i, j) ≠ ι(l, j) mod m̄ for
1 ≤ i < l ≤ k and 1 ≤ j ≤ p− 1. Therefore ι(i, t) ≠ ι(l, t) mod m̄; that is x(i, t) ≠ x(l, t): a contradiction. �

By Claims 3.6 and 3.7, the SiHo system is composed of k ≥ 2 simple routes of period p = m̄2
− m̄+ 1− n̄, each with a

distinguished site (the yj’s). The other n− k sites are common to all routes; however the only meeting points in the system
are those in µ and each of them is reached by all carriers simultaneously. Let A start at z1 at time t = 0. Since only ci can
reach yi, to visit all the distinguished sites y1, y2, . . . , yk, A must hitch a ride on all carriers. However, by Claim 3.7 carriers
only connect at the points ofµ, each of them reached by all carriers simultaneously. Thus, to visit yi, Amust hitch a ride on ci
at a site in µ at time t ≡ f mod p for some f ∈ {0, . . . , n̄− 1}. After the visit, Amust return to z1, traverse all of µ hitching
a ride on another carrier and follow that route until the end; only once the last distinguished site has been visited, A could
stop, without returning to z1. In other words, to visit each yi (but the last), A will perform p moves; in the visit of the last
distinguished site A could stop after only p− n̄moves; in other words, A needs to perform at least (k−1)p+p− n̄ = kp− n̄
moves. From Claim 3.6, it follows that

kp− (n̄) = k (m̄2
− m̄+ 1+ n̄)− n̄ > k (m̄2

− m̄).

Observe that, by definition of m̄, we have 1
2 (n− k− 1) ≤ m̄ ≤ n− k− 1; furthermore, by hypothesis k ≤ n

2 . Thus

k

m̄2
− m̄


≥ k


1
4
(n− k− 1)2 −

1
2
(n− k− 1)


=

1
4
k(n− k)2 − k(n− k)+

3
4
k

>
1
4
k(n− k)2 − kn ≥

1
8
n2k− kn

and the theorem holds. �

Let us consider now the case of heterogeneous systems with simple routes.

Theorem 3.8. For any n ≥ 36 and n
6 − 2 ≥ k ≥ 4 there exists a feasible simple heterogeneous C-graph G⃗R with n sites and k

carriers such that

M(G⃗R) ≥
1
16

(k− 3)(n2
− 2n)2.

This result holds even if A knows G⃗R and k, and has unlimited memory.

Proof. To prove this theorem we will first construct a system satisfying the theorem’s hypothesis. Let C = {c0, . . . , ck−1},
m̄ = max{q ≤ 1

2 (n− 3k− 4) : q is prime}, and let n̄ = n− 3k− 4− 2m̄. Observe that, by definition,

m̄ ≥

n̄
2


. (9)

Partition S into six sets: U = {u1, . . . , uk−1}, V = {v1, . . . , vk−2}, W = {w1, . . . , wn̄}, X = {x1, . . . , xm̄}, Y = {y1, . . . , ym̄},
and Z = {z1, . . . , zk−1}. Let the set of indices ι(i, j) be as defined in (3); for simplicity, in the following we will denote xι(i,j)
and yι(i,j) simply as x(i, j) and y(i, j), respectively.

Let the routes R = {π(c0), . . . , π(ck−1)} be defined as follows:

π(ci) =< α(i), γ (i), δ(i), ζ (i) > (10)

P. Flocchini et al. / Theoretical Computer Science () – 9

where

α(i) =

x(0, 1), x(0, 2), . . . , x(0, m̄2

− m̄− ⌈ n̄2⌉) for i = 0,
y(i, 1), y(i, 2), . . . , y(i, m̄2

− m̄− ⌊ n̄2⌋ − i+ 1) for 0 < i < k

γ (i) =


w1, w2, . . . , w⌈ n̄2 ⌉

for i = 0
w
⌈
n̄
2 ⌉+1

, w
⌈
n̄
2 ⌉+2

, . . . , wn̄ for 0 < i < k

δ(i) =

∅ for i ≤ 1
y(i, m̄2

− m̄− ⌊ n̄2⌋ − i+ 2), . . . , y(i, m̄2
− m̄) for 1 < i < k

ζ (i) =


z1, z2, . . . , zk−1 for i = 0
u1, z1, v1, . . . , vk−2 for i = 1
ui, vk−2−i+2, . . . , vk−2, zi, v1, . . . , vk−2−i+1 for 1 < i < k− 1
uk−1, v1, . . . , vk−2, zk−1 for i = k− 1

and all operations on the indices are modulo m̄. The system SiHe so defined has the following properties:

Claim 3.9. In SiHe, for 0 ≤ i ≤ k− 1, π(ci) is simple, and

p(ci) =

m̄2
− m̄+ k− 1 if i = 0

m̄2
− m̄+ k if 0 < i < k.

Proof. That the value of p(ci) is as stated follows by construction. To prove simplicity of p(ci) we must show that, for all
0 ≤ i ≤ k− 1 and 0 ≤ t ′ < t ′′ ≤ p(ci)− 1, if π(ci)[t ′] = π(ci)[t ′′] then π(ci)[t ′ + 1] ≠ π(ci)[t ′′ + 1].

This is true if one or more of π(ci)[t ′], π(ci)[t ′ + 1], π(ci)[t ′′], π(ci)[t ′′ + 1] are in γ (i) or ζ (i). In fact, by definition, all
the sites of γ (i) and ζ (i) (Z , half the elements ofW , and if i > 0 also ui ∈ U) appear in π(ci)without any repetition, i.e., only
once.

Consider now all the other cases. Let i, t ′, t ′′ (0 ≤ i ≤ k−1 and 0 ≤ t ′ < t ′′ < p(ci)−2) be such thatπ(ci)[t ′] = π(ci)[t ′′]
but none of π(ci)[t ′], π(ci)[t ′ + 1], π(ci)[t ′′], π(ci)[t ′′ + 1] are in γ (i) or in ζ (i). Let t ′ = m̄s′ + r ′ and t ′′ = m̄s′′ + r ′′.

Let i > 0 (respectively, i = 0); that is, π(ci)[t ′] = y(i, t ′) = yι(i,t ′) = yi+(s′+1)r ′ and π(ci)[t ′′] = y(i, t ′′) = yι(i,t ′′) =

yi+(s′′+1)r ′′ (respectively, π(ci)[t ′] = x(0, t ′) = xι(0,t ′) = x(s′+1)r ′ and π(ci)[t ′′] = x(0, t ′′) = xι(0,t ′′′) = x(s′′+1)r ′′). Since
π(ci)[t ′] = π(ci)[t ′′] it follows that yi+(s′+1)r ′ = yi+(s′′+1)r ′′ (respectively, x(s′+1)r ′ = x(s′′+1)r ′′); that is,

(s′ + 1)r ′ ≡ (s′′ + 1)r ′′ mod m̄. (11)

By contradiction, let π(ci)[t ′ + 1] = π(ci)[t ′′ + 1]; then

(s′ + 1)(r ′ + 1) ≡ (s′′ + 1)(r ′′ + 1) mod m̄. (12)

But (11) and (12) together imply that s′ ≡ s′′ (mod m̄), which in turn implies that r ′ ≡ r ′′ (mod m̄). However, since m̄ is
prime, this can occur only if s′ = s′′ and r ′ = r ′′, i.e. when t ′ = t ′′; a contradiction. �

Claim 3.10. In SiHe, ∀i, j (1 ≤ i < j ≤ k),

1. ci can meet with c0 only at zi,
2. ci and cj never meet.

Proof. First observe that (1) follows by construction, since zi is the only site in common between π(c0) and π(ci), i > 0.
To complete the proof we must show that any other two carriers, ci and cj (1 ≤ i < j ≤ k), will never meet; that is,
π(ci)[t] ≠ π(ci)[t] for all 0 ≤ t ≤ p− 1, where p = p(ci) = p(cj) = m̄(m̄− 1)+ k (by Claim 3.9).

By contradiction, let π(ci)[t] = π(cj)[t] = s ∈ U ∪ V ∪ Y ∪ Z ∪W for some t < p.
First observe that, by construction, ci visits only a single distinct element of U , ui ≠ uj, and only a single site in Z , zi ≠ zj.
Thus, s /∈ U ∪ Z .
Assume s = vl ∈ V . By construction, π(ci)[t] = vl means that t = m̄(m̄− 1)+ ((i+ l) mod (k− 1)); on the other hand,
π(cj)[t] = vl means by construction that t = m̄(m̄ − 1) + ((j + l) mod (k − 1)). Thus (i + l) ≡ (j + l) mod (k − 1)
implying i ≡ j mod (k− 1); but since i < j ≤ k− 1 it follows that i = j, a contradiction. Hence s /∈ V .
Assume now s ∈ Y . Let t = m̄l+r . By definition,π(ci)[t] = π(cj)[t] ∈ Y means that yι(i,t) = y(i, t) = π(ci)[t] = π(cj)[t] =
y(j, t) = yι(j,t). Thus i+(l+1)r ≡ j+(l+1)r mod m̄, that is i ≡ j mod m̄. This however implies i = j since i < j < k ≤ m̄:
a contradiction. Therefore s /∈ Y .
Finally, assume s = wl ∈ W . By construction, π(ci)[t] = wl implies that t = m̄(m̄ − 1) − ⌊ n̄2⌋ − (i − 1) + l − 2. On
the other hand, π(cj)[t] = wl implies by construction that t = m̄(m̄ − 1) − ⌊ n̄2⌋ − (j − 1) + l − 2. As a consequence,
π(ci)[t] = π(ci)[t] = wl implies i = j, a contradiction. Therefore s /∈ W .
Summarizing, s /∈ U ∪ V ∪ Y ∪ Z ∪W : a contradiction. �

10 P. Flocchini et al. / Theoretical Computer Science () –

Fig. 5. CG of Theorem 3.11 with n = 8, k = 3, p = 6.

Given n ≥ 36 and n
6 − 2 ≥ k ≥ 4, let G⃗R be the simple graph of a SiHe system with those values. By Claims 3.9 and 3.10,

in the SiHe system there is a simple route π(c0) of period q = m̄2
− m̄+ k− 1, and k− 1 simple routes (π(ci), 0 < i < k)

of period p = q+ 1. Each π(ci) with i > 0 has a distinguished site, ui, not present in any other route; furthermore, π(ci) has
no connection with π(cj) for i ≠ j, while it has a unique meeting point, zi, with π(c0).

Let A start at x0 at time t = 0 with c0. Since ui is only in route π(ci), and all ui’s must be visited, A must hitch a ride on
all ci’s.

Let ti be the first time A hitches a ride on ci at zi. Notice that once A is hitching a ride on carrier ci, since route π(ci) has
no connection with π(cj), i ≠ j > 0, to hitch a ride on cj A must first return at zi and hitch a ride on c0. Since p and (p− 1)
are coprime, this can happen only at a time t ′ > ti such that t ′ ≡ ti mod (qr); that is, after at least p(p− 1) moves since A
hitched a ride on ci.

Since A must go on all routes (to visit the u′is), at least (k− 2)p(p− 1) moves must be performed until A hitches a ride
on the last carrier, say cl; then, once the last distinguished site zl has been visited, after at least p − (k − 1) moves, A can
stop. Hence the total number of moves is at least (k− 2) p (p− 1)+ p− k+ 1 > (k− 3) p2 since p > k.

Recall that m̄ is the largest prime number smaller than 1
2 (n− 3k− 4); since k ≤ n

6 − 2, we have m̄ ≥ 1
4 (n− 3k− 4) > n

2 ;
thus

p = m̄2
− m̄+ k >

n2

4
−

1
2
(n− 3k− 4)+ k >

1
4
(n2
− 2n).

Hence the total number of moves is more than

(k− 3) p2 >
1
16

(k− 3)(n2
− 2n)2 = Ω(kn4)

completing the proof. �

3.2.3. Circular routes
A further restriction on a route is to be irredundant (or circular): an arc appears in the route only once. Recall that a simple

route π(c) is irredundant (or circular) if G⃗(c) is either a simple cycle or a simple traversal with return from a root of a tree:
in other words, the undirected graph induced by the simple route is either a cycle or a tree.

By definition, any circular route π(c) is simple, and p(c) ≤ 2(n − 1). The system is irredundant if all the routes are
circular. Let us stress that the fact that the system is irredundant does not imply that the graph G⃗R is irredundant or even
simple.

The graph used in the proof of Theorem 3.5 is simple but not irredundant. The natural question is whether irredundancy
can lower the cost fundamentally, i.e. to o(kp) ⊆ o(kn) for circular homogeneous systems and to o(kp2) ⊆ o(kn2) for circular
heterogeneous ones. The answer is unfortunately negative also in this case, as shown in the following (see Fig. 5).

Theorem 3.11. Let the system be homogeneous. For any n ≥ 4 and n
2 ≥ k ≥ 2 there exists a feasible irredundant simple graph

G⃗R with n sites and k carriers such that

M(G⃗R) ≥ n(k− 1).

This result holds even if A knows G⃗R, n and k, and has unlimited memory.

P. Flocchini et al. / Theoretical Computer Science () – 11

Fig. 6. (i) A circular C-Graph with carriers a, b, c , d, and e; (ii) the corresponding meeting graph. The numbers represent time.

Proof. Consider the systemwhere S = {x0, x1, . . . , xn−k−1, y1, y2, . . . , yk}, C = {c1, . . . , ck}, and the set of routes is defined
as follows:

π(ci) =

< x0, α(1), y1, α(1)−1 > for i = 1
< x0, α(i), β(i), yi, β(i)−1, α(i)−1 > for 1 < i ≤ k

where α(j) = xj, xj+1, xj+2, . . . , xn−k−1, β(j) = x1, x2, . . . , xj−1, and α(j)−1 and β(j)−1 denote the reverse of α(j) and β(j),
respectively. In other words, the system is composed of k circular routes of period p = 2(n− k), each with a distinguished
site (the yj’s); the distinguished sites are reached by the corresponding carriers simultaneously at time t ≡ n − k mod p.
The other n − k − 1 sites are common to all routes; however there is only a single meeting point in the system, x0, and all
carriers reach it simultaneously at time t ≡ 0 mod p. More precisely, for all 1 ≤ i ≠ j ≤ k, ci and cj meet only at x0; this
will happen whenever t ≡ 0 mod p.
Let A start at x0 at time t = 0. To visit yi, A must hitch a ride on ci; this can happen only at x0 at time t ≡ 0 mod p; in
other words, until all yi’s are visited, Amust traverse all k routes (otherwise it will not visit all distinguished sites) returning
to x0; only once the last distinguished site, say yj has been visited, A can avoid returning to x0. Each route, except the last,
takes 2(n− k) moves; in the last, the agent can stop after only n− kmoves, for a total of 2k(n− k)− (n− k) moves. Since
k ≤ n

2 , 2k(n− k)− (n− k) = 2nk− 2k2 − n+ k ≥ (k− 1) n and the theorem follows. �

We are now going to show that the cost can be order of magnitude larger if the system is not homogeneous.

Theorem 3.12. Let the system be heterogeneous. For any 0 < ϵ < 1, 2
ϵ
≤ n and 2 ≤ k ≤ ϵ n, there exists a feasible irredundant

graph G⃗R with n sites and k carriers such that

M(G⃗R) >
1
4

(1− ϵ)2 n2 (k− 2) = Ω(n2k).

This result holds even if A knows G⃗R, n and k, and has unlimited memory.

Proof. Consider a system where S = {x0, . . . , xq−2, y1, . . . , yr−1, z1, . . . zk−1}, where r < q, and q and r are coprime,
C = {c0, c1 . . . , ck−1}, and the set of routes is defined as follows:

π(ci) =

< x0, y1, y2, . . . , yr−1 > for i = 0
< α(i), β(i), zi > for 1 ≤ i < k

where α(j) = xj, xj+1, . . . , xq−2, and β(j) = x0, . . . , xj−1. In other words, in the system there is an irredundant route of
period r , π(c0), and k− 1 irredundant routes of period q, π(ci) for 1 ≤ i < k. Each of the latter has a distinguished site (the
zi’s), not present in any other route; furthermore, π(ci) has no connection with π(cj) for i ≠ j. On the other hand, each route
π(ci) has the same meeting point, x0, with π(c0). Let ti denote the first time c0 and ci meet at x0; notice that if i ≠ j then
ti ≢ tj mod (q). Further note that since r and q are coprime, c0 will meet ci at time t if and only if t ≡ ti mod (q r).

Let A start at x0 at time t = 0 with c0. Since zi is only in route π(ci), and all zi’s must be visited, A must hitch a ride on
all ci’s. Notice that once A is hitching a ride on carrier ci, since route π(ci) has no connection with π(cj), i ≠ j, to hitch a ride
on cj A must first return at x0 and hitch a ride on c0. To hitch a ride on ci, A must have been on c0 at x0 at some time t ′ ≡ ti
mod (qr); hitching again a ride on c0 at x0 can happen only at a time t ′ < t ′′ ≡ ti mod (qr); in other words, after at least
qr moves since A hitched a ride on ci. Once on c0 again, to hitch a ride on cj A must continue to move until it reaches x0
at time t ′′ < t ′′′ ≡ tj mod (qr), requiring at least r moves. In other words, to move from a route π(ci) to a different route
π(cj) A must perform at least qr + r moves. Since A must go on all routes (to visit the y′is), at least (k− 2)(qr + r) moves
must be performed until A hitches a ride on the last carrier, say cl; then, once the last distinguished site zl has been visited
after qmoves, A can avoid returning to a0 and stop. Since at time t = 0, x is on x0 and no other carrier is there at that time,

12 P. Flocchini et al. / Theoretical Computer Science () –

at least min ti + 1 ≥ r moves are performed by A before it hitches its first ride on one of the ci’s. Hence the total number of
moves is at least

(k− 2)(qr + r)+ r + q. (13)

We now have to show how to use these facts to prove our theorem for any n and k ≤ ϵ n (0 < ϵ < 1). We will consider
two cases, depending on whether or not n− k is even. Let n− k be even; if we choose r = n−k

2 + 1 and q = n−k
2 + 2, then

n = k+ q+ r − 3, and r and k are coprime; hence the total number of moves is that of Expression (13). Since k ≤ ϵ n, then
n− k ≥ (1− ϵ)n; thus

q r =

n− k
2
+ 1

 
n− k
2
+ 2


=


(1− ϵ)n

2
+ 1

 
(1− ϵ)n

2
+ 2


Let n− k be odd; if we choose r = n−k+3

2 − 1 and q = n−k−3
2 + 1, then n = k+ q+ r − 3, and r and k are coprime. Hence

the total number of moves is that of Expression (13). Since k ≤ ϵ n, then n− k ≥ (1− ϵ)n; it follows that

q r =

n− k+ 3

2
− 1

 
n− k+ 3

2
+ 1


=


(1− ϵ)n+ 3

2
− 1

 
(1− ϵ)n+ 3

2
+ 1


.

That is, regardless of whether n− k is even or odd, q r > ((1−ϵ)n
2)2. Hence the total number of moves is more than

(k− 2) p r >
1
4
(1− ϵ)2(k− 2) n2 (14)

and the theorem holds. �

4. Optimal explorations

In this section, we show that the limitations on computability and complexity presented in the previous section are
tight. In fact we prove that all necessary conditions are also sufficient and all lower bounds on costs are tight. We do so
constructively presenting worst case optimal solution algorithms. An added benefit is that the algorithms are rather simple.

We will first introduce the notion of meeting graph, that will be useful in the description and analysis of our exploration
algorithms.Wewill then describe and analyse two exploration algorithms, one that does not require unique node identifiers
(i.e., the C-graph could be anonymous), and one for the case when distinct site IDs are available.

The meeting graph of a C-graph G⃗ is the undirected graph H(G⃗) = (C, E), where each node corresponds to one of the k
carriers, and there is an arc between two nodes if there is at least a meeting point between the two corresponding carriers.

4.1. Exploration of anonymous C-graphs

We first consider the general problem of exploring any feasible C-graph without making any assumption on the
distinguishability of the nodes. By Theorem 3.1, under these conditions the problem is not solvable if an upper bound on the
periods is not known to A (even if A has unbounded memory and knows n and k).

We now prove that, if such a bound B is known, any feasible C-graph can be explored even if the graph is anonymous,
the system is heterogeneous, the routes are arbitrary, and n and k are unknown to a. The proof is constructive: we present
a simple and efficient exploration algorithm for those conditions.

Since the C-graph is anonymous and n and k are not known, to ensure that no node is left unvisited, the algorithm will
have A explore all domains, according to a simple but effective strategy; the bound Bwill be used to determine termination.

Let us now describe the algorithm, Hitch-a-ride. The exploration strategy used by the algorithm is best described as a
pre-order traversal of a spanning-tree of the meeting graph H , where ‘‘visiting’’ a node of the meeting graph H really consists
of riding with the carrier corresponding to that node for B′ time units, where B′ = B if the set of routes is known to be
homogeneous, B′ = B2 otherwise (the reason for this amount will be apparent later).

More precisely, assume that agent A is riding with c for the first time; it will do so for B′ time units keeping track of all
new carriers encountered (list Encounters). By that time, A has not only visited the domain of c but, as we will show, A has
encountered all carriers that can meet with c (i.e., all the neighbours of c in the meeting graph H).

At this point A has ‘‘visited’’ c inH; it will then continue the traversal ofH moving to an unvisited neighbour; this is done
by A continuing to ride with c until a new carrier c ′ is encountered; c will become the ‘‘parent’’ of c ′. If all neighbours of c
in H have been visited, A will return to its ‘‘parent’’ in the traversal; this is done by A continuing the riding with c until its
parent is encountered. The algorithm terminates when A returns to the starting carrier and the list Encounters is empty.

The formal recursive description of Algorithm Hitch-a-ride is given in Fig. 7, where A starts with carrier c0.

Theorem 4.1. AlgorithmHitch-a-ride correctly explores any feasible C-graph G⃗ in atmost (3k−2)B′ timewhere k is the number
of carriers and B′ is a known (upperbound on the) size of the largest route.

P. Flocchini et al. / Theoretical Computer Science () – 13

Initially: Home = c0; parent(Home) := ∅ Visited := ∅; Encounters := {c0}; N(c0) = ∅;

Hitch-a-ride(c)

if c = Home and |Encounters| = ∅ then
Terminate

else
if c /∈ Visited then
Visit(c)

end-if
c ′ ← Go-to-Next(c)
Hitch-a-ride(c ′)

Visit(c)

MyParent ← parent(c); N(c) := {MyParent}
ride with c for B′ time units, and while riding

if meet carrier c ′ /∈ (Encounters ∩ Visited) then
Encounters := Encounters ∪ {c ′}
N(c) := N(c) ∪ {c ′}

end-if
Visited := Visited ∪ {c}
Encounters := Encounters− {c}

Go-to-Next(c)

if (N(c) ∩ Encounters) ≠ ∅ then
Continue the ride until meet c ′ ∈ (N(c) ∩ Encounters)
parent-of-(c’):= c
return c ′

else
Continue the ride until encounteringMyParent
return MyParent

Fig. 7. Algorithm Hitch-a-ride.

Proof. First observe that, when executing Visit(c), A rides with c for B′ time units, and by definition B′ ≥ B ≥ p(c);
thus, A would visit the entire domain of c . Next observe that, after the execution of Visit(c), N(c) contains the IDs of all
the carriers that have a meeting point with c. In fact, any two routes π(ci) and π(cj) that have a common meeting point
will meet there every pi,j time units, where pi,j is the least common multiple of p(ci) and p(cj). If the set of routes is known
to be homogeneous, by definition ∀i, j B′ = B ≥ pi,j = p(i) = p(j). If instead the set of routes is heterogeneous or it is
homogeneous but it is not known to be so, by definition ∀i, j B′ = B2

≥ p(i) · p(j) ≥ pi,j. Hence by riding B′ time units with
c , Awill encounter all carriers that have a meeting point with c. In other words, after the ‘‘visit’’ of a node in H , A knows all
its neighbours, and which ones have not yet been visited. Thus, Awill correctly perform a pre-order visit of all the nodes of
the spanning tree of H rooted in c0 defined by the relation ‘‘parent-of’’. Since, as observed, the visit of a node in H consists
of a visit of all the nodes in its domain, the theorem holds.

Let us now consider the cost of the algorithm. Every time routine visit(c) is executed, A performs B′ moves; since a visit
is performed for each carrier, there will be a total of k · B′ moves. Routine Go-to-Next(c) is used to move from a carrier c to
another c ′ having a meeting point in common. This is achieved by riding with c until c ′ is met; hence its execution costs at
most B′ moves. The routine is executed to move from a carrier to each of its ‘‘children’’, as well as to return to its ‘‘parent’’
in the post-order traversal of the spanning tree of H defined by the relation ‘‘parent-of’’. In other words, it will be executed
precisely 2(k− 1) times for a total cost of at most 2(k− 1)B′ moves. The theorem then follows. �

This proves that the necessary condition for CG-Exploration expressed by Theorem 3.1 is also sufficient. The efficiency of
Algorithm Hitch-a-ride clearly depends on the accuracy of the upperbound B on the size p of the longest route in the
system, as large values of B affect the number of moves linearly in the case of homogeneous systems, and quadratically in
the case of heterogeneous system. However, it is sufficient that the upperbound is linear in p for the algorithm to be optimal.
In fact, from Theorem 4.1 and from the lowerbounds of Theorems 3.3–3.12 we have the following theorem.

Theorem 4.2. Let B = O(p); then Algorithm Hitch-a-ride is asymptotically optimal in the worst case scenario with respect to
the amount of moves. This optimality holds even if (unknowingly) restricted to the class of feasible C-graphswith IDs, and even if
the class is further restricted to be simple or circular (anonymous or not).

It is interesting to note that the amount of memory used by the algorithm is relatively small: O(k log k) bits are used to
keep track of all the carriers and O(log B) bits to count up to B2, for a total of O(log B+ k log k) bits.

14 P. Flocchini et al. / Theoretical Computer Science () –

4.2. Non-anonymous systems

We now consider the case when the nodes have distinct IDs. By Theorem 3.2, under these conditions, either n or an
upperbound on the system period must be available for the exploration to be possible.

If an upperbound on the system period is available, the algorithm presented in the previous section would already solve
the problem; furthermore, by Theorem 4.2, it would do so optimally. Thus, we need to consider only the situation when no
upperbound on the system period is available, and just n is known.

The exploration strategy we propose is based on a post-order traversal of a spanning-tree of the meeting graph H , where
‘‘visiting’’ a node c of themeeting graphH now consists of ridingwith c for an amount of time large enough (1) to visit all the
nodes in its domain, and (2) to meet every carrier that has a meeting point in common with c. In the current setting, unlike
the one considered previously, an upper bound on the size of the domains is not available, making the correct termination
of a visit problematic. To overcome this problem, the agent will perform a sequence of guesses on the largest period p, each
followed by a verification (i.e., a traversal). If the verification fails, a new (larger) guess ismade and a new traversal is started.
The process continues until all n nodes are visited, a detectable situation since nodes have IDs.

Let us describe the strategy more precisely. Call a guess g ample if g ≥ P , where P = p if the graph is (known to be)
homogeneous, P = p2 otherwise. To explain how the process works, assume first that A starts the exploration riding with
c0 with an ample guess g . The algorithm would work as follows. When A is riding with a carrier c for the first time, it will
ride (keeping track of all visited nodes) until either it encounters a new carrier c ′ or it has made g moves. In the first case, c
becomes its ‘‘parent’’ and A starts riding with c ′. In the latter, A has ‘‘visited’’ c , and will return to its parent. Termination
occurs when A has visited n distinct nodes. With a reasoning similar to that used for the algorithm of Section 4.1, it is not
difficult to see that this strategy will allow A to correctly explore the graph.

Observe that this strategy might work even if g is not ample, since termination occurs once A detects that all n nodes
have been visited, and this might happen before all nodes of H have been visited. On the other hand, if the (current) guess is
not ample, then the above exploration strategy might not result in a full traversal, and thus Amight not visit all the nodes.

Not knowing whether the current guess gi is sufficient, A proceeds as follows: it attempts to explore following the post-
order traversal strategy indicated above, but at the first indication that the guess is not large enough, it starts a new traversal
using the current carrier with a new guess gi+1 > gi. We have three situations when the guess is discovered to be not ample:
(1) while returning to its parent, A encounters a new carrier (the route is longer than gi); (2) while returning to its parent,
more than gi time units elapse (the route is longer than gi); (3) the traversal terminates at the starting carrier, but the number
of visited nodes is smaller than n. In these cases the guess is doubled and a new traversal is started.Whenever a new traversal
is started, all variables are reset except for the set Visited containing the already visited nodes.

The formal recursive description of Algorithm Hitch-a-guessing-ride is given in Fig. 8.

Theorem 4.3. Algorithm Hitch-a-guessing-ride correctly explores any feasible C-graph with IDs in O(k · P) time provided the
number of nodes is known.

Proof. Consider the case when A starts the algorithm from carrier c0 with an ample guess g . First observe that, when
executing Go-to-Next(c), A either encounters a new carrier and hitches a ride with it, or it traverses the entire domain of
c (because it rides with it for g ≥ p(c) time units) before returning to its ‘‘parent’’. Moreover, while traversing c , it does
encounter all the carriers it can possibly meet. In fact, any two routes π(ci) and π(cj) that have a common meeting point,
will meet there every pi,j time units, where pi,j is the least commonmultiple of p(ci) and p(cj). If the set of routes is known to
be homogeneous, by definition ∀i, j g ≥ pi,j = p(i) = p(j). If instead the set of routes is heterogeneous or it is homogeneous
but it is not known to be so, by definition ∀i, j g ≥ p(i) · p(j) ≥ pi,j. Hence by riding g time units with c , Awill encounter all
carriers that have a meeting point with c. In other words, when executing Go-to-Next(c), if A does not find new carriers it
‘‘visits’’ a node in H , and all its neighbours but its parent have been visited. Thus, Awill correctly perform a post-order visit
of all the nodes of a spanning tree of H rooted in c0. Hence, with an ample guess g , the visit of a node in H consists in a visit
of all the nodes in its domain.

Let the current guess gi be not ample. This fact could be detected by A becausewhile returning to the parent, A encounters
a new carrier or gi time units elapse without encountering the parent. If this is the case, A will start a new traversal with
the larger guess gi+1. Otherwise, A will return to its starting carrier c and complete its ‘‘visit’’ of c . At this time, if all nodes
have been visited, A will terminate (even if the guess is not ample); otherwise, a new traversal with the larger guess gi+1
is started. That is, if gi is not ample and there are still unvisited nodes, A will start with a larger guess. Since guesses are
doubled at each restart, after at most log P traversals, the guess will be ample.

Let us now consider the cost of the algorithm. First note that the worst case occurs when the algorithm terminates with
an ample guess g . Let us consider such a case. Let g0, g1, . . . , gm = g be the sequence of guesses leading to g and consider
the number of moves performed the first time A uses an ample guess.

Every time routine Go-to-Next(c) is executed A incurs in at most gi moves. Routine Go-to-Next(c) either returns a new
carrier (at most k times) or a ‘‘parent’’ domain through routine backtrack(c) (again at most k times). Routine backtrack(c)
spends at most gi moves every time it is called and it is called for each backtrack (at most k times). So the overall move
complexity is 3gi ·k. Let g0, g1, . . . , gm be the sequence of guesses performed by the algorithm. Since the algorithm correctly
terminates if a guess is ample, only gm can be ample; that is gm−1 < P ≤ gm. Since gi = 2gi−1, then the total number of
moves will be at most

m
i=0 3kgi < 6kgm = O(k · P). �

P. Flocchini et al. / Theoretical Computer Science () – 15

Initially: Home = c0; parent(Home) := Visited := ∅ Encountered := {c0}.

Hitch-a-guessing-ride(c)

if |Visited| = n then
Terminate

else
c′ ← Go-to-Next(c)
Hitch-a-guessing-ride(c′)

Go-to-Next(c) (* returns new carrier or parent *)

MyParent ← parent(c);
ride with c for gi time units, and while riding

let x be the current node, Visited := Visited ∪ x
ifmeet carrier c′ /∈ (Encountered) then

Encountered := Encountered ∪ {c′}
parent(c’):=c
Return(c’)

end-of-ride
if (c = Home) then

if (|Visited| ≠ n) then
Restart(c)

else
Terminate

else
c′ ←Backtrack(c)
Return(c’)

Backtrack(c) (* backtrack unless discover guess is wrong *)

ride with c until meet MyParent
let x be the current node, Visited := Visited ∪ x
ifwhile riding

(encounter c′ /∈ Encountered) or (gi units elapse)
Restart(c)

end-of-ride
return MyParent

Restart(c) (* reset variables except for Visited *)

guess := 2 · guess (** new guess**)
Home := c; parent(Home) := ∅
Encountered := {c}
Hitch-a-guessing-ride(c)

Fig. 8. Algorithm Hitch-a-guessing-ride.

This theorem, together with Theorem 4.1, proves that the necessary condition for CG-Exploration expressed by Theorem 3.2
is also sufficient.

Theorem 4.4. Let B = O(p); then Algorithm Hitch-a-ride is asymptotically optimal in the worst case scenario with respect to
the amount of moves. This optimality holds even if (unknowingly) restricted to the class of simple feasible C-graphswith IDs, and
even if the graphs in the class are further restricted to be circular.

The proof follows from Theorem 4.3 and from the lowerbounds of Theorems 3.3–3.12.
Finally, notice that the amount of memory used by the algorithm is rather small: O(n log n) bits to keep track of all the

visited nodes.

5. Concluding remarks

Developing algorithms for the exploration of highly dynamic graphs (i.e., where the network is disconnected at all times,
and end-to-end travel can only exist through time and mobility) is crucial for wireless and mobile applications. The only
known algorithms proposed in the literature, using random walks, have highlighted the difficulty of the task. In this paper,
we have provided the first known deterministic results for the exploration of highly dynamic graphs. Although our study is
limited to periodically varying graphs, this model naturally encapsulates real world networks for which no solutions existed
yet. The attractiveness of our optimal solutions is further enhanced by their simplicity.

Let us stress that ourmodel generalizes the simpler model where carrier nodesmove in a free space, transfer of the agent
can occur when carriers meet (i.e., they are within communication range), and the exploration is complete when all carriers
have been visited. Clearly our solutions solve the problem also in this simpler model.

An interesting open problem is whether simple, yet effective, solutions also exist for other important problems
(e.g., dissemination [11] and routing [12]) and general models (non-periodic).

16 P. Flocchini et al. / Theoretical Computer Science () –

Since the preliminary announcement of the results of this paper [21], the exploration problem in carrier networks
has been further investigated. In particular, exploration with waiting, i.e., when the agent has the additional capability of
waiting at the sites, has been studied in [20,23]; the presence of dangerous sites (e.g., black holes) [20] has been considered.
Moreover, our model has been extended by adding stochastic processes [7].

Acknowledgements

We would like to thank David Ilcinkas for the helpful comments, and the anonymous referees for their useful remarks
that helped improving the quality of the paper.

References

[1] S. Albers, M.R. Henzinger, Exploring unknown environments, SIAM Journal on Computing 29 (4) (2000) 1164–1188.
[2] C. Avin, M. Koucký, Z. Lotker, How to explore a fast-changing world (cover time of a simple random walk on evolving graphs), in: Proceedings of the

35th International Colloquium on Automata, Languages and Programming, ICALP, 2008, pp. 121–132.
[3] B. Awerbuch, M. Betke, M. Singh, Piecemeal graph learning by a mobile robot, Information and Computation 152 (2) (1999) 155–172.
[4] A. Balasubramanian, Y. Zhou, B. Croft, B.N. Levine, A. Venkataramani, Web search from a bus, in: Proceedings of the 2nd ACMWorkshop on Challenged

Networks, CHANTS, 2007, pp. 59–66.
[5] H. Baumann, P. Crescenzi, P. Fraigniaud, Parsimonious flooding in dynamic graphs, in: Proceedings of the 28th ACM Symposium on Principles of

Distributed Computing, PODC, 2009, pp. 260–269.
[6] M. A. Bender, A. Fernández, D. Ron, A. Sahai, S.P. Vadhan, The power of a pebble: exploring andmapping directed graphs, Information and Computation

176 (1) (2002) 1–21.
[7] B. Brejová, S. Dobrev, R. Královic, T. Vinar, Routing in carrier-basedmobile networks, in: Proceedings of the 18th International Colloquiumon Structural

Information and Communication Complexity, SIROCCO, 2011, pp. 222–233.
[8] B. Bui Xuan, A. Ferreira, A. Jarry, Computing shortest, fastest, and foremost journeys in dynamic networks, International Journal of Foundations of

Computer Science 14 (2) (2003) 267–285.
[9] J. Burgess, B. Gallagher, D. Jensen, B.N. Levine, MaxProp: routing for vehicle-based disruption-tolerant networks, in: Proceedings of the 25th IEEE

Conference on Computer Communications, INFOCOM, 2006, pp. 1–11.
[10] A. Casteigts, S. Chaumette, A. Ferreira, Characterizing topological assumptions of distributed algorithms in dynamic networks, in: Proceedings of the

16th Intl. Conference on Structural Information and Communication Complexity, SIROCCO, 2009, pp. 126–140.
[11] A. Casteigts, P. Flocchini, B. Mans, N. Santoro, Deterministic computations in time-varying graphs: broadcasting under unstructured mobility, in:

Proceedings of the 6th IFIP International Conference on Theoretical Computer Science, TCS, 2010, pp. 111–124.
[12] A. Casteigts, P. Flocchini, B. Mans, N. Santoro, Measuring temporal lags in delay-tolerant networks, in: Proceedings of the 25th IEEE International

Parallel & Distributed Processing Symposium, IPDPS, 2011, pp. 209–218.
[13] A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro, Time-varying graphs and dynamic networks, International Journal of Parallel, Emergent and

Distributed Systems 27 (5) (2012) 387–408.
[14] A.E.F. Clementi, C. Macci, A. Monti, F. Pasquale, R. Silvestri, Flooding time of edge-Markovian evolving graphs, SIAM Journal of Discrete Mathematics,

SIAMDM 24 (4) (2010) 1694–1712.
[15] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, D. Peleg, Label-guided graph exploration by a finite automaton, ACM Transactions on Algorithms 4 (4)

(2008).
[16] X. Deng, C.H. Papadimitriou, Exploring an unknown graph, Journal of Graph Theory 32 (3) (1999) 265–297.
[17] F. De Pellegrini, D. Miorandi, I. Carreras, I. Chlamtac, A graph-based model for disconnected ad hoc networks, in: Proceedings of the 26th IEEE

Conference on Computer Communications, INFOCOM, 2007, pp. 373–381.
[18] A. Dessmark, A. Pelc, Optimal graph exploration without good maps, Theoretical Computer Science 326 (1–3) (2004) 343–362.
[19] A. Ferreira, Building a reference combinatorial model for MANETs, IEEE Network 18 (5) (2004) 24–29.
[20] P. Flocchini, M. Kellett, P. Mason, N. Santoro, Searching for black holes in subways, Theory of Computing Systems 50 (1) (2012) 158–184.
[21] P. Flocchini, B. Mans, N. Santoro, Exploration of periodically varying graphs, in: 20th International Symposium on Algorithms and Computation, ISAAC,

2009, pp. 534–543.
[22] S. Guo, S. Keshav, Fair and efficient scheduling in data ferrying networks, in: Proceedings of the 3rd ACM International Conference on Emerging

Networking Experiments and Technologies, CoNext, 2007, pp. 1–12.
[23] D. Ilcinkas, A.M. Wade, On the power of waiting when exploring public transportation systems, in: Proceedings of the 15th International Conference

On Principles Of Distributed Systems, OPODIS, 2011, pp. 451–464.
[24] P. Jacquet, B. Mans, G. Rodolakis, Information propagation speed in mobile and delay tolerant networks, IEEE Transactions on Information Theory 56

(10) (2010) 5001–5015.
[25] S. Jain, K. Fall, R. Patra, Routing in a delay tolerant network, in: Proceedings of the 2004 ACM Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communications, SIGCOMM, 2004, pp. 145–158.
[26] D. Kempe, J. Kleinberg, A. Kumar, Connectivity and inference problems for temporal networks, Journal of Computer and System Sciences 64 (4) (2002)

820–842.
[27] A. Keränen, J. Ott, DTN over areal carriers, in: Proceedings of the 4th ACMWorkshop on Challenged Networks, CHANTS, 2009, pp. 67–76.
[28] V. Kostakos, Temporal graphs, Physica A 388 (6) (2009) 1007–1023.
[29] A. Lindgren, A. Doria, O. Schelen, Probabilistic routing in intermittently connected networks, in: Proceedings of the 1st International Workshop on

Service Assurance with Partial and Intermittent Resources, SAPIR, 2004, pp. 239–254.
[30] C. Liu, J. Wu, Scalable routing in cyclic mobile networks, IEEE Transactions on Parallel and Distributed Systems 20 (9) (2009) 1325–1338.
[31] R. O’Dell, R. Wattenhofer, Information dissemination in highly dynamic graphs, in: Proceedings of the 3rd ACM Workshop on Foundations of Mobile

Computing, DIALM-POMC, 2005, pp. 104–110.
[32] CL.E. Shannon, Presentation of a maze-solving machine, in: Proc. 8th Conf. of the Josiah Macy Jr. Found. (Cybernetics), 1951, pp. 173–180.
[33] T. Spyropoulos, K. Psounis, C.S. Raghavendra, Spray and wait: an efficient routing scheme for intermittently connected mobile networks, in:

Proceedings of the ACM SIGCOMMWorkshop on Delay-Tolerant Networking, 2005, pp. 252–259.
[34] J. Tang, S. Scellato, M. Musolesi, C. Mascolo, V. Latora, Small-world behavior in time-varying graphs, Physical Review E 81 (5) (2010) 055101(R).
[35] S.Wang, J.L. Torgerson, J. Schoolcraft, Y. Brenman, The deep impact network experiment operations centermonitor and control system, in: Proceedings

of the 3rd IEEE international Conference on Space Mission Challenges for information Technology, 2009, pp. 34–40.
[36] X. Zhang, J. Kurose, B.N. Levine, D. Towsley, H. Zhang, Study of a bus-based disruption-tolerant network: mobility modeling and impact on routing,

in: Proceedings of the 13th annual ACM International Conference on Mobile Computing and Networking, MOBICOM, 2007, pp. 195–206.
[37] Z. Zhang, Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: overview and challenges, IEEE Communication

Surveys & Tutorials 8 (1) (2006) 24–36.

	On the exploration of time-varying networks
	Introduction
	The framework
	The problem
	Overview of results

	Model and terminology
	Carrier graphs
	Exploring agent and traversal

	Computability and lower bounds
	Knowledge and solvability
	Lower bounds on number of moves
	Arbitrary routes
	Simple routes
	Circular routes

	Optimal explorations
	Exploration of anonymous C-graphs
	Non-anonymous systems

	Concluding remarks
	Acknowledgements
	References

