
EFFICIENT PROTOCOLS FOR COMPUTING THE
OPTIMAL SWAP EDGES OF A SHORTEST PATH
TREE

Paola Flocchini,1 Antonio Mesa Enriques,2 Linda Pagli,3 Giuseppe Prencipe,3

and Nicola Santoro4

1 University of Ottawa, Canada, 2 Universidad de la Habana, Cuba, 3 Università di Pisa,
Italy, 4 Carleton University, Canada

Abstract We consider the problem of computing the optimal swap edges of a shortest-path
tree. This theoretical problem arises in practice in systems that offer point-of-
failure shortest-path rerouting service in presence of a single link failure: if the
shortest path is not affected by the failed link, then the message will be delivered
through that path; otherwise, the system will guarantee that, when the message
reaches the node where the failure has occurred, the message will then be re-
routed through the shortest-path to its destination. There exist highly efficient
serial solutions for the problem, but unfortunately because of the structures they
use, there is no known (nor foreseeable) efficient distributed implementation for
them. A distributed protocol exists only for finding swap edges, not necessarily
optimal ones.

We present two simple and efficient distributed algorithms for computing the
optimal swap edges of a shortest-path tree. One algorithm uses messages con-
taining a constant amount of information, while the other is tailored for systems
that allow long messages. The amount of data transferred by the protocols is
the same and depends on on the structure of the shortest-path spanning-tree; it
is no more, and sometimes significantly less, than the cost of constructing the
shortest-path tree.

Keywords: Fault-Tolerant Routing, Point of Failure Rerouting, Shortest Path Spanning Tree,
Weighted Graphs, Distributed Algorithms, Data Complexity

1 Introduction

Consider an undirected graph G = (V, E) with weighted edges. Let Tr be the
shortest-path spanning-tree of G rooted in r ∈ V . The removal of any edge e of Tr

will disconnect Tr into two subtrees. If G is biconnected, there will always be at least
an edge e′ ∈ E(G) \ E(Tr) that would join the two disconnected subtrees forming a
new spanning tree T ′ of G. Any such an edge is called a swap edge for e; let Sr(e)
denote the set of swap edges for e. An optimal swap edge (or bridge) for e = (u, v)
is any swap edge for e such that the distance from u to the source r in the new tree

T ′ is minimized; more precisely, the optimal swap edge for e = (u, v) is the swap
edge e′ = (u′, v′) ∈ Sr(e) such that dT ′(u, r) = dTr

(u, u′) + |(u′, v′)| + dTr
(v′, r)

is minimum.
The (optimal) swap edges problem for a shortest-path tree T (r) is the one of deter-

mining for each edge in Tr an (optimal) swap edge. We are interested in the distributed
solution of the optimal swap edge problem.

The Framework and Previous Work
This problem arises in the context of static fault-tolerant routing; specifically, it

arises within the larger problem of augmenting the information of the shortest-path
routing tables so to make them operate in spite of the fact that, at any time, one link
(not necessarily the same at all time) might be down.

Consider a network where the routing tables contain information enabling shortest-
path routing between any two nodes in the network. In this context, if one wants to
continue to offer shortest-path routing after the failure of an arbitrary single link, a
service called shortest-path rerouting (SR), the amount of additional information that
needs to be stored in the tables might be formidable. This is because the failure of a
single edge can dramatically change all the shortest-path information.

To reduce the amount of communication and of storage, a simple and convenient
alternative is to offer, after the failure of an arbitrary single link, a lower quality service
called point-of-failure rerouting (PR): if the shortest path is not affected by the failed
link, then the message will be delivered through that path; otherwise, the system will
guarantee that, when the message reaches the node where the failure has occurred
(the “point of failure”), the message will then be re-routed to its destination. This
approach has clearly the advantage that there is no need to broadcast a link failure and
its subsequent reactivation (if any).

The amount of storage of the PR approach will depend on what type of information
is being kept at the nodes to do the rerouting.

An efficient solution has been recently presented. In fact Ito et al [6] showed that
the amount of storage can be reduced by precomputing for each possible link failure
a swap edge to replace the failed one, for every possible destination, and storing this
information in the tables. In particular, for each destination, a node stores only one
link in addition to the one in the fault-free shortest-path [6]. Its implementation re-
quires to solve n instances of the swap edges problem, one for each choice of s ∈ V .
A sequential algorithm to solve the swap edge problem has been presented [6]; this
algorithm can possibly be efficiently implemented in a distributed setting.

A basic drawback of the point-of-failure rerouting service is that, if the failure oc-
curs, the system does not make any guarantee other than message delivery. Although
acceptable in some contexts, this level of service might not be tolerable in general. On
the other hand, the shortest-path rerouting service that always guarantee optimal rout-
ing, is too costly to implement. In a sense, SR and PR are two extreme approaches.

In between there two extreme, there is another type of service, the point-of-failure
shortest-path rerouting (PSR), that has some of the service quality of SR while keep-
ing all the space and communication advantages of PR. In PSR, if the shortest path
is not affected by the failed link, then the message will be delivered through that path;
otherwise, the system will guarantee that, when the message reaches the node where

the failure has occurred, the message will then be re-routed through the shortest-path
to its destination. This improved quality of service can be achieved by precomput-
ing for each possible link failure a optimal swap edge, to replace the failed one, for
each possible destination, and storing this information in the tables. In particular, it is
enough for a node just to know (how to reach) an optimal swap edge for each possible
destination. In other words, PSR can be achieved with the same amount of storage
as PR: for each destination, a node stores only one link in addition to the one in the
fault-free shortest-path.

For its implementation, PSR requires the solution of n instances of the more diffi-
cult optimal swap edges problem, one for each choice of s ∈ V .

The problem of computing all the optimal swap edges for a shortest-path tree has
been attacked by Nardelli, Proietti, and Widmayer [8]. They showed that the problem
can be solved sequentially in O(m · α(m, n)) time, where α(m, n) is the functional
inverse of Ackermann’s function. This bound is achieved using Tarjan’s sophisticated
technique for union-find, which requires the construction of transmuters [10]. Unfor-
tunately, there is currently no efficient distributed implementation of this sequential
technique; since in a distributed network setting the construction of transmuters re-
quires complete global network information at some node, it is doubtful whether this
approach will become feasible at all.

Summarizing, optimal swap edges problem is both an interesting graph-theoretic
problem on its own (studied as such in [8]) and a crucial component to implement a
point-of-failure shortest-path rerouting strategy (described in [6]). Currently, there is
no distributed solution (in [6], the problem is posed but no solution given). Clearly
any such a solution should not add significantly to the overall cost of constructing the
final routing tables. In particular, the computation should not require more messages
(at least in order of magnitude) than those used to construct the shortest-path tree.

Our Contribution
In this paper we present an efficient distributed solution to the optimal swap edges

problem.
Given a shortest-path spanning-tree Tr, the proposed protocol determines at each

node x the optimal swap edge for ex. The algorithm uses O(n∗
r) messages of constant

size, where n∗
r is the size of the transitive closure of Tr \ {r}; observe that 0 ≤ n∗

r ≤
(n − 1)(n − 2)/2.

If longer messages are allowed, the same strategy can be modified to construct a
different algorithm that uses only O(n) such messages.

Providing a uniform comparison between protocols using different sized messages,
the data complexity of a protocol measures the total amount of data exchanged during
the execution; in our context, a node, an edge, a label, a weight, and a distance are
each a unit of data. Both algorithms have an overall data complexity of O(n∗

r).
Notice that this cost is always less, and oftentimes substantially so, than the cost of

constructing a shortest-path spanning-tree. We actually conjecture that such a cost is
optimal.

Further notice that the information assumed available by our algorithms can be ac-
quired during the shortest-path spanning-tree construction, without increasing the or-
der of magnitude of the message and information complexity of that process. Should

this information not be provided, it can be easily acquired with an O(m) data com-
plexity.

The paper is organized as follows. In the next section we introduce some defini-
tions and terminology. The new distributed algorithm for constructing all the optimal
swap edges for a given shortest-path spanning-tree using constant-size messages is de-
scribed and analyzed in Section 3. In Section 4, we present a more efficient algorithm
for systems allowing long messages. The concluding remarks and open problems are
in Section 6.

2 Definitions and Terminology
Let G = (V, E) be a simple undirected graph, with n = |V | vertices and m = |E|

edges. A subgraph G′ = (V ′, E′) of G is any graph where V ′ ⊆ V and E′ ⊆ E. If
V ′ ≡ V , G′ is a spanning subgraph. A path P = (Vp, Ep) is a subgraph of G, such
that Vp = {v1, . . . , vs}|vi 6= vj , for i 6= j, and (vi, vi+1) ∈ Ep, for 1 ≤ i ≤ s − 1.
If v1 = vs then P is a cycle. A graph G is connected if, for each pair {vi, vj} of its
vertices, there exists a path connecting them. A graph G is biconnected if, after the
removal of anyone of its edges it remains connected. A tree is a connected graph with
no cycles.

A non negative real value called weight (or length) and denoted by |e| is associated
to each edge e in G. Given a path P , the length of the path is the sum of the lengths
of its edges. The distance dG′(x, y) between two vertices x and y in a connected
subgraph G′ of G, is the length of the shortest path from x to y in G′. For simplicity,
in the following we will denote dG(x, y) simply by d(x, y).

For a given vertex r, called source, the shortest path tree (SPT) of r is the spanning
tree Tr rooted at r such that the path in Tr from r to any node v is the shortest possible
one; i.e., ∀x ∈ V dTr

(x, r) = d(x, r).
The removal of any edge e of Tr will disconnect Tr into two subtrees. If G is

biconnected, there will always be at least an edge e′ ∈ E(G)\E(Tr) that will join the
two disconnected subtrees forming a new spanning tree T ′ of G. Any such an edge is
called a swap edge for e; let Sr(e) denote the set of swap edges for e.

An optimal swap edge (or bridge) for e = (u, v) is any swap edge for e such that
the distance from u to the source r in the new tree T ′ is minimized; more precisely,
an optimal swap edge for e = (u, v) is a swap edge e′ = (u′, v′) ∈ Sr(e) such
that dT ′(u, r) = dTr

(u, u′) + |(u′, v′)| + dTr
(v′, r) is minimum. As an example,

consider the biconnected weighted graph G shown in Figure (1.a), and the shortest-
path spanning tree TA rooted shown in Figure in (1.b). It is easy to verify that the
optimal swap edge for (C, A) is (F, B).

The optimal swap edges problem for T (r) is the problem of determining an optimal
swap edge for each edge in Tr.

As already mentioned, a sequential algorithm solving this problem was given in
[8]. We are interested in the distributed solution of the optimal swap edge problem.
We consider a distributed computing system with communication topology G. Each
computational entity x is located at a node of G, has local processing and storage
capabilities, has a distinct label λx(e) from a totally ordered set associated to each of
its incident edges e, knows the weight of its incident edges, and can communicate with
its neighboring entities by transmission of bounded sequence of bits called messages.

C

E

D

H

A

B

F

G

C

E

D

H

A

B

F

G

(b)(a)

1

3

3

6
3

4

1

1 1

1

4
1

4
1

6

Figure 1. (a) A biconnected weighted graph G. (b) The shortest-path spanning tree TA rooted
in A; the dotted edge (F, B) is the optimal swap edge for (C, A).

The communication time includes processing, queueing, and transmission delays, and
it is finite but otherwise unpredictable. In other words, the system is asynchronous.
All the entities execute the same set of rules, called distributed algorithm.

In the following, when no ambiguity arises, we will use the terms entity, node and
vertex as equivalent; analogously, we will use the terms link, arc and edge interchange-
ably.

3 Computing All Optimal Swap Edges
We now present a solution to the problem of distributively computing all optimal

swap edges for a given shortest-path spanning tree Tr.

Basic Properties and Tools
In our algorithm we make use of some known properties of rooted trees. In Tr

each node except the root r has a unique parent, and each edge connects a node to its
parent.

Property 1 The partial order induced by the relation parent has dimension at
most 2.

Consider in fact the labelling α : V → {1, . . . , n}2 defined as follows. Given Tr,
for x ∈ V let α(x) = (a, b), where a is the numbering of x in the preorder traversal1

of Tr; and b is the numbering of x in the inverted preorder traversal of Tr, i.e., when
the order of the visit of the children is inverted. The labels associated to the nodes in
the tree of Figure 1.b are shown in Figure 2.a.

Let Tr[x] denote the subtree of Tr rooted in x. Any node y in the subtree Tr[x]
is said to be a descendant of x. Let Descr(x) be the set of the descendants of x in
Tr; note that, by definition, x ∈ Descr(x). Interestingly, the lexicographic order �
between the labels assigned by α completely characterizes the descendant relationship
in a rooted tree:

1Since the labelling of the incident links is drawn from a totally ordered set, this numbering is unique.

Property 2 A node y is descendant of a node x in Tr if and only if α(y) � α(x).

Property 2 can be easily verified and it is known as a folklore method to check
relationships among nodes in trees.

Furthermore, there exists a simple relationship between swap edges and the descen-
dants.

Property 3 An edge (u, v) ∈ E \ E(Ts) is a swap for ex ∈ E(Ts) if and only if
only one of u and v (but not both) is in Descr(x).

For brevity, we will denote the set Sr(ex) of all swap edges for ex simply by S(x),
and by InS(x) ⊆ S(x) the set of those that are incident on x. The last useful property
states that the swap edges for ex consists only of all the swap edges incident to x and
to its descendants.

Property 4 For all x ∈ V S(x) =
⋃

y∈(Descr(x) InS(y).

Properties 2, 3, and 4 provide a powerful computational tool for determining which
edges are possible candidate for being optimal swap edges. We will now see how to
efficiently use this tool.

The Algorithm
By definition, a node x knows the weight of all its incident links, and can distin-

guish those that are part of Ts from those that are not; of those that are part of Ts, x
can distinguish the one that leads to its parent from those leading to its children.

We assume that each node x knows its distance from r, the distances of its neigh-
bors from r, its own pair α(x), as well the pairs of its neighbors. If not available, this
information can be easily and efficiently acquired.

In the proposed algorithm, each node x computes an optimal swap edge for ex, i.e.,
the swap edge for ex in the shortest path from x to r in E \ {ex}. We shall denote
such an edge as bx and call it the bridge of x. A node x also contributes, if necessary,
to the computation of the bridges of other nodes.

Computing its bridge.
To compute its bridge bx, a node x:

1 It determines which of its incident edges are swaps for ex; i.e., it constructs the
set InS(x). It then sets L(x) = InS(x).

2 If x is not a leaf (and if it does not have the information already),

(a) it requests from each child y a swap edge (if any) for ex that is incident on
a descendent of y, and among all edges satisfying the above, the distance
from y to r using this swap edge instead of ex is minimized.

(b) It waits until it receives a reply from all its children. It adds each received
edge to the set S(x).

3 For each e ∈ L(x), x computes its distance from r using e instead of ex (i.e., in
Tr − {ex} ∪ {e}). It then sorts L(x) so that the corresponding distances are in

1
1

2
2

3

4 4

C

E

D

H

A

B

F

G

(a)

1 1

5 5

2 8
3 2

8 34 4

6 7 7 6

(B, G) 10

(F, C) 6

(F, B) 6 (E, F) 6

(H, G) 8
(G, B) 7
(G, H) 8

(D, B) 7

(G, D) 6

(B, D) 8

(b)

(B, F) 7

(G, D) 5

(F, B) 7

(E, H) 8

(H, E) 6

(F, C) 43

6
3

4

1

1 1

1

4

4
1

31

6
C

E

D

H

A

B

F

G

1(F, C) 5

(F, E) 5
(H, E) 7

(F, B) 5

Figure 2. Computing all the optimal swap edges in the graph G of figure 1 for the SPT rooted
in A. (a) For each node x there is shown α(x). (b) For each node x there are shown: the
distance of x from the root (in the solid box): the elements of L(x), among which bx (in the
dotted box).

non-decreasing order. Let minx be the smallest edge in the sorted L(x); then
bx = minx.

Each node x also contributes to the calculation of the bridge of its predecessors. It
does so as following.

Cooperating with the other nodes.

1 As soon as its bridge bx has been computed, x sends it to its parent.

2 If requested by its parent to find the best swap edge feasible with some edge e,
then:

(a) It creates a set L(x, e) by removing from L(x) all the incident links that
are not swap edges for e;

(b) if the link in L(x) sent by child y is not a swap for e, then x removes it
from L(x, e), requests y to send its best swap edge for e, waits to receive
such an edge (or notification that none exists), and adds it to L(x, e)

(c) x sorts L(x, e) and sends the new minx to its parent (it will send NIL if
L(x, e) = ∅).

Note that, because of Properties 2 and 3, to determine if an edge is a swap edge is
sufficient to examine the relationship “descendant”, which in turn is uniquely deter-
mined by the mapping α. Hence, in the following, we shall use the term “feasible for
α(x)” to mean “swap edge for ex” without any loss of precision.

Algorithm All Bridges, reported below, describes the state-event-action set of
rules: it specifies what action must a node perform if in a given state.

Initially, all nodes are in state COMPUTING and start the execution. Each node x
maintains a list L(x) of possible swap edges. Initially L(x) contains all the links
incident on x that are not in the tree.

Algorithm 1 All Bridges (G, Tr) for node x

Input: Children of x in Tr, parent of x in Tr, pair α(x) = (a, b) of labels associated
to x in Tr, neighbors of x in G. edge (u′, v′).

States: S = {COMPUTING, SWAPPED, WAITING}.
COMPUTING

count := 0;
If leaf Then

(mybridge, d) := ChooseMin(a, b);
send (“Choice”,mybridge, d) to parent;
become SWAPPED;

If internal Then
Receiving (“Choice”,edge, distance); * it comes from a child *\
If Feasible(edge, (a, b))Then

count := count + 1;
choice[sender] := (edge, distance);
If count = |children| Then

(mybridge, d) := ChooseMin(a, b);
send (“Choice”,mybridge, d) to parent;
become SWAPPED;

If Not Feasible(edge, (a, b))Then send (“Request”, (a, b)) to sender.
SWAPPED

Receiving (“Request”, (p, q));
(edge, d) = ChooseMin(p, q);
If leaf Then send (“Choice”,edge, d) to parent .
Else

check := 0;
For All y ∈ Children Do

If Not Feasible(swap[y], (p, q))Then
send (“Request”,(p, q)) to y;
check := check + 1;

If check > 0 Then become WAITING .
Else

(edge, d) := ChooseMin(p, q);
send (“Choice”,edge, d) to parent.

WAITING

Receiving (“Choice”,edge, distance);
choice[sender] := (edge, distance);
check := check − 1;
If check = 0 Then

(edge, d) :=ChooseMin(p, q);
send (edge, d) to parent;
become SWAPPED.

To each e = (w, z) ∈ L(x), where w is a descendent of x (possibly, x = w), there
is associated the pair α(z) as well as the distance

d[e] = d(x, w) + |(w, z)| + d(z, r).

The set L(x) is kept sorted w.r.t. the distances. Note that while each node knows its
distance from the root, the distances d[e] must be computed. This can be easily done:
when a swap edge e is transmitted by a child to a parent along (u, v), together with a
distance d, node v will increment the distance by |(u, v)|.

Function ChooseMin(a, b) determines the swap edge with minimum distance in
L(x) that is feasible with (a, b) (for the leaves all the swap edges are feasible), its
output is (e, d), where e is such an edge and d is the distance between x and r using e
as a swap edge. If no such an edge exists, function ChooseMin(a, b) returns NIL.

The Boolean function Feasible(edge, (a, b)) determines whether edge is fea-
sible with the pair of labels (a, b); by definition, if edge = NIL, Feasible is always
TRUE, regardless of (a, b). Let e = (z, w). The feasibility of the swap edge e is
checked by comparing the pair (a, b) with the pair corresponding to w.

It is understood that when sending information about an edge e, as in the “Choice”
messages, this information include the pairs of labels associated to the end nodes of e.

Example. As an example consider the SPT of the graph of Figure 1, shown in
Figure 2. According to the algorithm, the leaf nodes B, G, H, and E compute their
bridges directly and become SWAPPED. Node F receives swap edges from G and H
and can computes its bridge [(F, C), 4] becoming SWAPPED. Node D receives the
swap edge [(F, C), 5] from its only child F , and this becomes its bridge. Node C
instead receives non feasible edges from both D and E; it then sends to both of them
a request for a feasible edge. Node E does not have edges feasible with C; hence
it sends NIL. As for D, as the swap link it had received from F is not feasible for
C, it will forward the request to F . Since the swap edge known to F ((F, C)) is not
feasible for C, F forwards the request to the leaves G and H . At this point there is a
propagation of swap edges feasible with C. In fact, G sends up [(G, B), 7], H sends
up NIL, F chooses as minimum [(F, B), 5] and returns this information to D which
sends it to C. Receiving NIL from E and [(F, B), 6] from D, node C can conclude
its computation selecting [(F, B), 7] as its bridge.

Analysis
The correctness of Algorithm ALL BRIDGES is established by the following The-

orem.

Theorem 1 In algorithm ALL BRIDGES:

(i) each node u correctly computes bu;

(ii) if so requested by its parent, each node u will determine among the swap edges
incident to its subtree and feasible with α(e) = (p, q), if any, one edge e′ that
minimizes the distance between u and r in Tr − {e} ∪ {e′}.

Proof Removal of eu partitions Tr in two subtrees, one rooted in r the other in u.
By definition, any feasible swap edge, and hence bu, must have an endpoint in each

component. The proof will be by induction on the height h(u) of the subtree of Tr

rooted in u.

Basis. h(u) = 0; i.e., u is a leaf. In this case, one components contains only u, while
the other contains all the other nodes. In other words, the only possible swap
edges are incident on u. Thus, u correctly computes bu, proving (i); it can also
immediately determine the feasibility of any of those links with respect to any
pair of labels, and thus answer correctly any received query, proving (ii).

Induction step. Let the theorem hold for all nodes v with k − 1 ≥ h(v) ≥ 0; we
will now show that it holds for u with h(u) = k. Since u is not a leaf, the
subtree Tr[u] rooted at u contains at least two nodes. Consider the set S(u) of
all feasible swap edges for eu; clearly, if e = (w, z) ∈ S(u) then one of its end
point, say w, is in Tr[u] (and thus a descendent of u), while the other say z, is
not.

Let v be a child of u; then h(v) < k. It follows that, by inductive hypothesis,
when asked by u, v will send to u the edge in Swap(v) that, among those
feasible with eu, minimizes the distance between v and r. We will now show
that this information is sufficient for u to correctly determine its optimal swap
edge bu.

By definition of bridge, bu is the edge e = (w, z) in S(u) that minimizes the
quantity du[e] = d(u, w) + |(w, z)| + d(z, r). By Property 4, the optimal swap
edge is either incident on u or on a strict descendent of u. Clearly u can locally
determine its distance from r for any of its incident swap edges, and determine
the minimum one. If e is not incident on u, it is in the subtree Tr[v] rooted in a
child v of u; furthermore, e is the swap edge in S(v) that, among those feasible
with eu, minimizes the distance between v and r. In other words, once u obtains
from each child v′ the swap edge e′ ∈ S(v′) that, among those feasible with eu,
minimizes the distance between vi and r, u can determine the minimum one.
Since, by inductive hypothesis, every child of u sends this information to u, it
follows that u can correctly determine its optimal swap edge, proving Part (i) of
the Theorem.

To prove Part (ii), it is sufficient to observe that, by Property 3, u can determine
which of its incident swap edges are feasible with a given pair (p, q); further-
more, since the height of its children in Tr is less than k, then by inductive
hypothesis it can obtain from them the “best” swap edge in their subtree feasi-
ble with (p, q). Therefore, u can determine among the swap edges incident to its
subtree and feasible with (p, q), if any, one that minimizes the distance between
u and r, proving Part (ii).

�

Let us now examine the message complexity of the proposed algorithm. Let n∗
r

be the number of edges of the transitive closure of Tr \ {r}; observe that 0 ≤ n∗ ≤
(n − 1)(n − 2)/2.

Theorem 2 The message complexity of Algorithm ALL BRIDGES is at most 2n∗+
n − 1.

Proof Each node, once computed its optimal swap edge, sends a message to its parent,
for a total of n − 1 “Choice” messages. To compute its optimal swap edge, a node x
might send a “Request” message to all its children (if the original information provided
by them is not feasible), which in turn might send to their children (if no feasible
information was received), and so on. Thus, in the worst case, each descendent of x
will receive a “Request” and reply a “Choice” for a total of 2|Desc(x)| messages.

Since each node, except the root, must compute its optimal swap edge, this process
will require at most

∑

x6=r

2|Desc(x)| =
∑

x

2(|Ance(x)| − 1) = 2n∗
r ,

where Ance(x) denotes the set of ancestors of x. �

A node, an edge, a label, a weight, and a distance are all unit of data. To evaluate
the overall data complexity of the algorithm we need to consider the message size;
since each message contains only a constant number of units of information, we have:

Theorem 3 The data complexity of the distributed Algorithm ALL BRIDGES is
O(n∗

r).

Observe that the data complexity needed by our algorithm to compute all the opti-
mal swap edges of a shortest-path spanning-tree is no more (and very often dramati-
cally less) than the one of computing the shortest-path spanning-tree itself [3, 4, 2].

4 An O(n) Messages Algorithm
In this section, we discuss how the algorithm of Section 3 can be modified in order

to reduce the message complexity to O(n) in case that longer messages are allowed.
The overall information complexity of the new algorithm remains of O(n∗

r).
The idea is now that each node simultaneously computes the “best” feasible swap

edges, not only for itself, but also for all its ancestors in the SPT . The modified al-
gorithm will be described only at high level. It consists simply of a broadcast phase
started by the children of the root, followed by a convergecast phase started by the
leaves.

Theorem 4 Each node u 6= r:

(i) correctly computes bu;

(ii) determines for each ancestor v 6= r the best swap edge feasible with α(v), if
any.

Proof First observe that, as a result of the broadcast, every node will receive the pair
associated to each of its ancestors (except r); hence it can determine feasibility, for

Algorithm 2 All Bridges-2

[Broadcast.]

1 Each child x of the root starts the broadcast by sending a list containing α(x) to
its children.

2 Each node y, adds α(y) to the received list and sends it to its children.

[Convergecast.]

1 Each leaf z first computes its own bridge. It then computes the best feasible
swap edge for each of its ancestors, and sends the list of those edges to its
parent (if different from r).

2 An internal node y waits until it receives the list of best swap edges from each of
its children. Based on the received information and on InS(y), it computes its
bridge by. It also computes the best feasible swap edge for each of its ancestors,
and sends the list of those edges to its parent (if different from r).

each ancestor, of any available set of swap edges. The proof is by induction on the
height h(u) of the subtree of Tr rooted in u.

Basis. h(u) = 0; i.e., u is a leaf. In this case, one components contains only u, while
the other contains all the other nodes. In other words, the only possible swap
edges are incident on u. Thus, u correctly computes bu, proving (i); it can also
immediately determine the feasibility of any of those links with respect to any
pair of labels, and thus answer correctly any received query, proving (ii).

Induction step. Let the theorem hold for all nodes x with k − 1 ≥ h(x) ≥ 0; we
will now show that it holds for u with h(u) = k. By inductive hypothesis, it
receives from each child y the best feasible swap edge for each ancestor of y,
including u itself. Hence, based on these lists and on the locally available set
InSwap(u), u can correctly determine its optimal swap edge, as well as its best
feasible swap edge for each of its ancestors.

�

The functioning of the Algorithm All Bridges-2 can be followed in the example
of Figure 2.b and in particular through the convergecast, starting from the two leaves
G and H . After Phase 1, G and H know their ancestors, namely: F, D, C. Node
G computes its bridge as ((G, D), 5), and the minimum swap edge for each of its
ancestor, namely: ((G, D), 5) for F , ((G, D), 5) for D and ((G, B), 7) for C, and
sends these values to F . Similarly H computes its bridge as ((H, E), 6), and the
minimum swap edge for each ancestor, namely: ((H, E), 6) for F , ((H, E), 6) for D
and NIL for C, and sends these values to F . F computes its optimal swap edge as
the minimum among its incident edges, that is, ((F, C), 4), the edge coming from G,
(G, D), having now distance 6, and the edge coming from H , (H, E), having now

distance 7. Hence it selects ((F, C), 4), as bridge and computes the minimum feasible
swap edge for each of its ancestor, namely: ((F, C), 4) for D, and ((F, B), 5) for
C, and sends these values to F . D selects as bridge the edge coming from F , with
distance incremented by 1, that is ((F, C), 5), and sends ((F, B), 6) for C. C can
finally selects its bridge, considering the information coming from D and that coming
from E which is NIL, as ((F, B), 7).

Let us now analyze the complexity of the algorithm:

Theorem 5

The message complexity of Algorithm ALL BRIDGES-2 is exactly 2(n − 1 − δ(r)),
where δ(r) is the degree of r.

Proof In the broadcast phase, every node except the root and its children receives a
message. In the convergecast phase, every node except the root and its children sends
a message. �

Theorem 6 The data complexity of Algorithm ALL BRIDGES-2 is exactly 2n∗
r.

Proof In the broadcast phase, every node (except the root and its children) receives
the labels of all its ancestors. In the convergecast phase, every node (except the root
and its children) sends a swap edge for each of its ancestors. �

5 Concluding Remarks
In this paper we have presented simple and efficient distributed algorithms for com-

puting the optimal swap edges of a shortest-path tree. One algorithm uses messages
containing a constant amount of information, while the other is tailored for systems
that allow long messages. Both algorithms exchange a quantity of information which
is no more, and often significantly so, than that required to construct the shortest-path
spanning-tree; also, they require information that can be acquired, with no increase in
order of magnitude, during the shortest-path spanning-tree construction.

Among the possible development of this study, we mention that would be interest-
ing to study how to recover from multiple link failures, following the same strategy of
storing in the routing tables the information useful for finding alternative paths. The
problem appears much more complex. In addition, the size of the routing tables is
limited [9], hence the additional information to store in order to compute alternative
paths in presence of faults must be also be small.

The proposed algorithms allow for the efficient construction of point-of-failure
shortest-path rerouting service. To do so, the proposed computation must be carried
out for the n shortest path trees, each having as root a different vertex of the graph.
In this regards, an interesting open problem is whether it is possible to achieve the
same goal in a more efficient way than by performing n independent computations.
For example, it is known that the constructions of all-pairs shortest-paths can be done
more efficiently than n independent constructions of a single shortest-path spanning-
tree (e.g., [1]); the research question is whether something similar holds also in this
context.

Acknowledgments
Part of this work was carried out while the the first and last authors were visited by

the others at the University of Ottawa and at Carleton University. This work was sup-
ported in part by the Natural Sciences and Engineering Research Council of Canada,
and by “Progetto ALINWEB: Algoritmica per Internet e per il Web”, MIUR Pro-
grammi di Ricerca Scientifica di Rilevante Interesse Nazionale.

References
[1] Y. Afek, M. Ricklin Sparser: a paradigm for running distributed algorithms. Journal of

Algorithms, 14:316-328, 1993.

[2] B. Awerbuch, R. Gallager A new distributed algorithm to find breadth first search trees.
IEEE Transactions on Information Theory, 33:315–322, 1987.

[3] K. M. Chandy, J. Misra Distributed computation on graphs: shortest path algorithms. Com-
munication of ACM, 25:833–837, 1982.

[4] G. N. Frederikson A distributed shortest path algorithm for planar networks. Information
and Computation, 86:140-159, 1990.

[5] P. Humblet. Another adaptive distributed shortest path algorithm. IEEE/ACM Transactions
on Communications, 39(6):995–1003, 1991.

[6] H. Ito, K. Iwama, Y. Okabe, T. Yoshihiro Polynomial-time computable backup tables for
shortest-path routing. Proc. of 10th Colloquium on Structural Information and Communi-
cation Complexity (SIROCCO 2003), 163–177, 2003.

[7] P. Narvaez, K.Y. Siu, H.Y. Teng New dynamic algorithms for shortest path tree computation
IEEE Transactions on Networking, 8:735–746, 2000.

[8] E. Nardelli, G. Proietti, P. Widmayer Swapping a failing edge of a single source shortest
paths tree is good and fast. Algoritmica, 35:56–74, 2003.

[9] L. L. Peterson, B. S. Davie. Computer Networks: A Systems Approach, 3rd Edition. Morgan
Kaufmann, 2003.

[10] R. E.Tarjan Application of path compression on balanced trees. Journal of ACM, 26:690–
715, 1979.

