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Distributed Minimum Spanning Tree
Maintenance for Transient Node Failures

Paola Flocchini, T. Mesa Enriquez, Linda Pagli, Giuseppe Prencipe, Nicola Santoro

Abstract—In many network applications the computation takes place on the minimum-cost spanning tree (MST ) of the network G;
unfortunately, a single link or node failure disconnects the tree. The ALL NODES REPLACEMENT (ANR) problem is the problem of
precomputing, for each node u in G, the new MST should u fail. This problem has been extensively investigated for serial and parallel
settings, and efficient solutions have been designed for those environments. The situation is surprisingly different in distributed settings.
In fact, no distributed solution exists to date which performs better than the brute-force repeated application of MST construction.
In this paper we consider for the first time the problem of computing all the replacement minimum-cost spanning trees distributively. We
design a solution protocol and we prove that the total amount of communication exchanges taking place is O(n), each exchange using
at most O(n) data items. Hence the total amount of data items communicated during the computation (the data complexity) is O(n2).
We also show how the simpler problem ALL EDGES REPLACEMENT (AER) dealing with single edge failures, can be solved with the
same costs using some existing techniques. Also for the AER problem, efficient solutions exist in the serial and parallel setting but,
prior to this work, no distributed solution other than brute force was known.

Index Terms—Minimum Spanning Tree, Replacement Tree, Node Failure, Distributed Algorithms.

✦

1 INTRODUCTION

1.1 The Framework

In most network applications, the computation takes
place not on the entire network but solely on a spanning
subnet. There are several reasons for this fact; first and
foremost, it is done to reduce the amount of commu-
nication and thus the associated costs; it is done also
for security reasons, e.g. to minimize the exposure of
messages to external eavesdroppers; or when it is not
possible or convenient to maintain the indeces of the dis-
tribution of data around the network and every request
is processed by broadcasting to everybody (Gnutella).
The subnet used is typically a special spanning tree of
the network G; in particular, the minimum-cost spanning
tree (MST ) is used for basic network tasks such as
broadcasting, multicasting, leader election and synchro-
nization. The major drawback of using a MST is the
high vulnerability of its tree structure to link and/or
node failures: a single failure disconnects the spanning
tree, interrupting the message transmission. Hence it is
crucial to update the MST after changes in network
topology. In this paper we update MST after single
node deletions. In a graph G = (V,E), with n nodes
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there are n possible instances of a single node deletions.
Let T be the MST of G. Informally, the ALL NODES

REPLACEMENT (ANR) problem is to update T in each
of the instances of single node deletion. Observe that
this problem is much more difficult than the related
ALL EDGES REPLACEMENT (AER) problem where the
goal is to update T in each of the instances of single
edge deletion. In fact, the deletion of a single node u is
equivalent to the simultaneous deletion of all its deg(u)
incident edges.

The re-computation of the new MST in each instance
is rather expensive. This is particularly true if the re-
computation is done distributively in the network af-
ter a failure; in addition, if the failures in the sys-
tem are mostly temporary, the usefulness of these re-
computations is limited and the rational for affording
their cost becomes questionable. For these reasons, to
solve the ALL NODES REPLACEMENT problem in real-
ity means to pre-compute the n replacement minimum
spanning trees, one for each possible node failure in
the tree [6], [12], [18]; the computed information is then
used only if a node fails, and only as long as the failure
persists. The computational challenge is to be able to
combine work among the n different pre-computations,
so that the the total cost is much less than that incurred
by computing each replacement tree individually. This
problem has been extensively investigated, and efficient
solutions have been developed for both the sequential
and parallel settings (e.g., see [4], [6], [12], [18], [21]).

In this paper we consider the distributed version of
this problem. That is we investigate the ALL NODES

REPLACEMENT problem when the computational entities
are nodes of G themselves, and each can only commu-
nicate by exchanging messages with its neighbours. The
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network itself must pre-compute the n replacement min-
imum spanning trees; the information so obtained is then
stored (distributively) together with the original MST
tree T , and used whenever a node failure is detected; the
original minimum spanning tree T is reactivated once
the network has recovered from the transient fault.

The repeated application of a distributed MST con-
struction protocol (e.g., [9], [13]) will cost at least O(nm+
n2 logn) messages, where m denotes the number of
edges. Surprisingly, no more efficient distributed solu-
tions exist for this problem, prior to this work. Indeed,
in their work on efficient serial and parallel solutions,
Das and Loui state: “... designing an efficient distributed
algorithm for ANR remains an open problem ...” [6].

1.2 Our Contributions

In this paper we consider the problem of computing
all the replacement minimum-cost spanning trees dis-
tributively, and we efficiently solve both the ALL NODES

REPLACEMENT (ANR) and ALL EDGES REPLACEMENT

(AER) problems.

We design a distributed algorithm for computing all
the replacement MST s of the minimum cost spanning
tree T of the network G, one for each possible node
failure, and we show how to store the computed infor-
mation in order to restore the tree’s connectivity when
the temporary fault occurs.

We prove that the total amount of data items commu-
nicated during the computation (the data complexity) is
O(n2). This communication can be achieved transmitting
only O(n) long messages between neighbours, if the
system so allows; otherwise O(n2) standard messages
suffice. In other words, with this complexity, our pro-
tocol constructs a MST that maintains its minimum-
cost properties even after a single (but arbitrary) node
failure. The communication structure of the algorithm
is surprisingly simple, as it consist of a single broadcast
phase followed by a convergecast phase. The difficulty is
to determine what information is locally needed, which
items of data have to be transmitted in these two phases,
and how the communicated information must be locally
employed. This schema is reminescent of the one used
for computing all the swap-edges of a shortest-path tree
[10], [11], but the similarity is limited to the structure.
In fact, since the failure of a single node u is equivalent
to the simultaneous deletion of all its deg(u) incident
edges, the nature of the problem changes dramatically,
and those approaches can not be used here.

We then consider the simpler ALL EDGES REPLACE-
MENT (AER) problem, where the goal is to update T
whenever a single edge fails. We show that, not surpris-
ingly, AER can be solved with the same complexity as
ANR. Surprisingly, the approaches used for computing
all the swap-edges of a shortest-path tree [10], [11], can
be employed for the AER problem.

1.3 Related Work

Computation of swap links in case of link or node
failures have been studied in the sequential setting for
maintaining several spanning structures. For example,
shortest paths tree have been studied in [1], [17], optimal
tree spanners in [5], minimum diameter spanning trees
in [14], [19]. Distributed algorithms have been devised
for determining swap edges for shortest paths spanning
trees in [10] and [11], and for minimum diameter span-
ning trees in [15].

Let us now turn to minimum-cost spanning trees and
their maintenance in presence of link and node failures.

The ALL NODES REPLACEMENT (ANR) problem was
first studied in a serial environment by Chin and Houck
[4]. A more efficient solution has been developed by Das
and Loui [6], and later improved by Nardelli, Proietti
and Widmayer [18]. When G is planar, improved bounds
have been obtained by Gaibisso, Proietti and Tan [12].
The simpler ALL EDGES REPLACEMENT (AER) is implic-
itly solved by Dixon, Rauch and Tarjan [7]; an improved
solution was later developed by Nardelli, Proietti and
Widmayer [18].

In the parallel setting, Tsin presented an algorithm to
update a MST after a single node deletion [21]; thus,
concurrent use of this algorithm solves ANR in parallel.
A subsequent parallel solution to ANR is obtained by
combining the parallel algorithms presented by Johnson
and Metaxas [16]. A more efficient parallel technique
has been designed by Das and Loui [6]. The simpler
AER problem is efficiently solved by using the parallel
verification algorithm of Dixon and Tarjan [8].

In the distributed setting, the construction of the MST of
a network has received considerable attention. The well
known protocol by Gallager, Humblet and Spira uses
O(m + n logn) messages, where m denotes the number
of edges [13]. This protocol is not only elegant but
also optimal, since Ω(m + n logn) messages are needed
regardless of their size [20]. In fact, all subsequent work
(e.g., [9]) has been dedicated to reducing the time needed
in synchronous executions. To solve AER and ANR, one
may use repeated applications of a distributed MST
construction protocol; this brute-force approach will cost
at least O(nm + n2 logn) messages. The more complex
problem of updating a MST with multiple node and
edge deletions was considered by Cheng, Cimet and
Kumar [3]; however, when used in the ANR and in
the AER problems, their solution would not yield any
improvement over the brute-force approach (it would
actually be worse). Indeed, prior to this work, no efficient
distributed solutions existed for either problems.

2 TERMINOLOGY AND DEFINITIONS

Let G = (V,E) be an undirected graph, with n = |V |
vertices and m = |E| edges, where a non negative real
weight w(e) is associated to each edge e. A subgraph G′ =
(V ′, E′) of G is a graph such that V ′ ⊆ V and E′ ⊆ E.
If V ′ ≡ V and G′ is connected, then G′ is a spanning
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subgraph. A graph G is 2-edge connected if it remains
connected after the removal of any one of its edges; it is
2-node connected if it remains connected after the removal
of any one of its nodes.

Let T = (V,E(T )) be a spanning tree of graph G rooted
in r ∈ V . A spanning tree T = (V,E(T )) is a minimum
spanning tree of G, denoted by MST (G), if the sum of
tree edge weights is minimum over all spanning trees.
A subtree rooted at some node x is denoted by Tx. The
parent of a node x is indicated as parent(x), and the set
of its children as children(x). The ancestors of x in T ,
with the exception of the root, will be denoted as A(x).
The boolean function anc(x, y) is true if and only if node
x is an ancestor of y; the function nca(x, y) returns the
nearest common ancestor of x and y in a given tree, that
is the common ancestor of x and y, whose distance from
x and y is smaller than the distance of any other ancestor.
Let In(x) be the set of non tree edges incident to x.

Consider an edge e = (x, y) ∈ E(T ), with y closer to r;
if such an edge is removed, the tree is then disconnected
in two subtrees: Tx and T \ Tx. A swap edge for e is an
edge e′ = (u, v) ∈ E \ {e}, if any, that re-connects the
two subtrees. It can be easily seen that the MST of the
graph G − e = (V,E \ {e}), called replacement tree, can
be computed by selecting the swap edge of minimum
weight connecting Tx and T \ Tx. Given a node x ∈ G,
we will call the replacement set of x, denoted by RepSetx,
the set of non-tree edges that need to be activated in case
x fails. In the following, the horizontal edges connecting
the same pair of subtrees of a given node x will be called
analogous.

We consider a distributed computing system with com-
munication topology G. Each computational entity x
is located at a node of G, has local processing and
storage capabilities, has a unique label λx(e) from a
totally ordered set associated to each of its incident
edges e, knows the weight of its incident edges, and
can communicate with its neighboring entities by trans-
mission of bounded sequences of bits called messages.
The nodes do not know the topology G, but only their
incident edges with their labels. The communication
time includes processing, queueing, and transmission
delays, and it is finite but otherwise unpredictable. In
other words, the system is asynchronous. All the entities
execute the same set of rules, called distributed algorithm
(e.g., see [20]).

In the following, when no ambiguity arises, we will
use the terms entity, node and vertex as equivalent;
analogously, we will use the terms link, arc and edge
interchangeably.

Let G = (V,E) be a 2-node connected graph, T any
minimum spanning tree of G, and x any node in V ; if x
is removed from T together with all of its incident edges,
the tree disconnects into the subtrees Tx1

, ... , Txk
, where

x1, ..., xk are the children of x.
Let T ′ = T \ {Tx1

, ..., Txk
, {x}}, x0 be the parent of x,

and E′ be the set of non tree edges; we define the set of
upwards edges of x as Ux = {e = (u, v) ∈ E′|u ∈ Txi

, 1 ≤
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Fig. 1. An example of the contraction of G− x.

i ≤ k, v ∈ T ′}; and the set of horizontal edges of x as
Hx = {e = (u, v) ∈ E′|u ∈ Txi

, v ∈ Txj
, 1 ≤ i, j ≤ k, i 6=

j} . For node x, the set of its best upward edges Ux ⊆ Ux is
the set containing the edges of minimum weight (if any)
connecting Txi

, 1 ≤ i ≤ k and T ′; and the set of its best
horizontal edges is the set Hx ⊆ Hx containing the edges
of minimum weight connecting Txi

and Txj
, 1 ≤ i 6= j ≤ k

(if any). In the following, we will use also the notation
U , U , H, and H, when the reference to the removed node
is clear from the context.

We now introduce the notion of contracted graph, which
will be used in our algorithm. Given a node x, the
contracted graph of G − x is a graph Gx = (Vx, Ex),
with: Vx = {x0, x1, . . . , xk}, where x1, . . . , xk represent
the contraction of each subtree Txi

, 1 ≤ i ≤ k and x0

represents the contraction of T ′; Ex = {(xi, xj)|∃u ∈
Txi

, v ∈ Txj
, 1 ≤ i 6= j ≤ k : (u, v) ∈ Hx} ∪ {(xi, x0)|∃u ∈

Txi
, v ∈ T ′, 1 ≤ i ≤ k : (u, v) ∈ Ux} (see the example

depicted in Figure 1). In the following we will refer to xi

as the representative of Txi
, 0 ≤ i ≤ k; also, we will refer

to (xa, xb) ∈ Ex as the representative of any minimum
weight edge connecting Txa

and Txb
, 0 ≤ a, b ≤ k.

The ALL NODES REPLACEMENT problem is that of
computing all the replacement sets for each possible
node failure, except for the root1. Our algorithm is
described in Section 3.

The ALL EDGES REPLACEMENT problem is that of
finding, given a 2-edge connected graph G and one of its
minimum spanning trees T , the minimum spanning tree
of G− e, for every edge e ∈ T . In Section 6 we describe
a simple solution which can be derived by previous
results.

3 SOLVING THE ANR PROBLEM

In the following, we will focus on the distributed solu-
tion of the ALL NODES REPLACEMENT problem. In par-
ticular, given a 2-node connected graph G, any minimum
spanning tree T of G, and any node x ∈ T , in this section
we will provide a distributed solution to the problem of
computing the replacement set for the failure of node
x ∈ T .

1. Notice that it is possible to compute the replacement set also for
the root by running the algorithm a second time choosing a different
node as the root.
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At an high level, the algorithm consists of a broadcast
phase started by the children of the root, followed by a
convergecast phase started by the leaves. The idea is that
each node x is able to compute its replacement set, when
all its children have already computed their replacement
sets in the converge-cast phase. Node x determines also
a set of edges, useful to compute the replacement sets
for all of its ancestors.

Once node x has computed its replacement set, com-
posed of edges having at least one endpoint in its
subtrees, it sends them back to its children, each to the
root of the proper subtree. In the case node x fails, each
child knows which edges have to be activated in its
subtree.

ALLNODESREPLACEMENT(G,T )

[Phase 1: Broadcast.]

Label(T);
Each child of the root starts the broadcast by sending to its
children a list containing its name and its label;
Each node receiving a list of names from its parent, appends
its name and its label to the received list and forwards it to
its children.

NOTE: From now on, when a node Sends a set of edges
to any other node, we assume that it is sending the labels
assigned to the endpoints of the edges, and computed by
Label(T).

[Phase 2: Convergecast.] \∗ with respect to node x ∗\

A(x) = Set of the ancestors of x in T , with the exception of
the root;
s = |A(x)|;
If I am a LEAF Then

{(MyBestUpj, MyBestHorj), 1 ≤ j ≤ s} =
BestEdgesComp(x,∅,A(x));
Send to my parent the edges in

⋃
j
MyBestUpj and⋃

j
MyBestHorj ;

If I am INTERNAL Then
Wait until all the information computed from all x’s
children are received;
RecAnc = Set of all best upwards and horizontal edges
received for aj , aj ∈ A(x) from x’s children;
RecMe = Set of all best upwards and horizontal edges
received for x from x’s children;
{(MyBestUpj, MyBestHorj), 1 ≤ j ≤ s} =
BestEdgesComp(x,RecAnc,A(x));
If My parent is not r Then

Send to my parent the edges in
⋃

j
MyBestUpj and⋃

j
MyBestHorj .

RepSetx = ComputeRepSet(x,RecMe);
For All Children of x, x1, x2, . . . , xk Do
RepSetxi

= Subset of RepSetx containing edges hav-
ing one endpoint in Txi

;
Send RepSetxi

to xi.

The first phase of the algorithm begins with labeling
the nodes of T according to the labeling technique
introduced in [2]; such labeling allows the computation
of the nearest common ancestor of any two given nodes
whose labels are known. The labels have O(log n) bits
size, and can be computed sequentially in O(n) time.
In a tree one can collect all the information about the
tree at every node with O(n2) messages, and hence each

Routine BestEdgesComp(x, RecAnc,A(x))

Input: RecAnc is the set of best upwards and best
horizontal edges for x’s ancestors received from the
children of x.
For All Ancestors node aj ∈ A(x) Do
RecUpj = Set of best upwards edges for aj , aj ∈
A(x), contained in RecAnc;
RecHorj = Set of best horizontal edges for aj , aj ∈
A(x), contained in RecAnc;
MyUpj = minw(x,y){(x, y) ∈ In(x)|anc(y, aj) =
true ∨ anc(z, aj) = true, with nca(x, y) = z, z 6=
x ∧ z 6= y};
MyHorj = NoAnalog(aj, {(x, y) ∈
In(x)|nca(x, y) = aj});
If I am INTERNAL Then
MyBestUpj = minw(e){e ∈ RecUpj ∪ MyUpj};
MyBestHorj = NoAnalog(aj, RecHorj∪ MyHorj);

Return
⋃

j{(MyBestUpj, MyBestHorj).

Routine NoAnalog(z, S)

Input: S is the set of edges to check for analogy with
respect to node z.
S = ∅;
{S1, . . . , Sq} = Subsets of S containing analogous
edges with respect to node z;
For 1 ≤ i ≤ q Do
e = Edge with minimum weight in Si;
S = S ∪ e;

S = S ∪ {S \ {S1, . . . , Sq}};
Return S.

node can locally compute the labels with the algorithms
of [2]. Thus we will assume that these labelings are
available when executing the broadcast. Then, this phase
continues by broadcasting these labels, from the root to
the leaves.

After the broadcast phase, the converge-cast phase
starts, from the leaves of T . In particular, each leaf x
first computes locally the best upwards and horizontal
edges among its non-tree incident links, with respect to
all its ancestors node; this task is carried out in routine
BestEdgesComp(). In particular, for each ancestor aj of
x, the sets MyUpj and MyHorj are computed. The first set
contains the non-tree edge incident to x with minimum
weight that is upward for aj (in case more than one exists,
one is chosen arbitrarily). The selection is performed
considering the two possible cases (see the example
depicted in Figure 2): an edge (x, y) is an upward edge
for aj either if y is an ancestor of aj (anc(y, aj) = true)
or if a node z, with z 6= x and z 6= y, is an ancestor
of aj and the nearest common ancestor of both x and
y (nca(x, y) = z). The second set, MyHorj, contains the
edges that are horizontal edges for aj ; it is easy to see
that any non-tree edge (x, y) incident on x such that
aj is the nearest common ancestor of both x and y
(nca(x, y) = aj) is an horizontal edge for aj ; let us denote
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Routine ComputeRepSet(x, RecMe)

Input: RecMe is the set of best upwards and best
horizontal edges for x received from the children of
x.
Let Vx = {x0, x1, . . . , xk} be the representatives nodes
for the contracted graph Gx = (Vx, Ex) of G− x;
Ex = ∅;
For All Children of x, namely x1, x2, . . . , xk Do
Ux(i) = Set of best upwards edges for x received
from xi contained in RecMe;
Hx(i) = Set of best horizontal edges for x received
from xi contained in RecMe;
If Hx(i) 6= ∅ Then

For All Edges (a, b) ∈ Hx(i) Do
Look for 1 ≤ j 6= i ≤ k such that edge (b, a) ∈
Hx(j);
If (xi, xj) 6∈ Ex Then
Ex = Ex ∪ (xi, xj);
Mark (xi, xj) as representing (a, b);

If Ux(i) 6= ∅ Then
(a, b) = Any edge in Ux(i);
Ex = Ex ∪ (xi, x0);
Mark (xi, x0) as representing (a, b);

TGx
= MST of Gx, computed locally at x with any

optimal algorithm (e.g., the one in [18]);
RepSetx = Edges being represented by edges in TGx

;
Return RepSetx.

this set as Sj . Here, a crucial step to bound the size of
the information sent by every node in the converge-cast
phase is to choose for each subset of analogous edges
in S only the edge with minimum weight: this step is
carried out by Routine NoAnalog(). The situation is
depicted in the example reported in Figure 3, where the
horizontal edges (x1, x2), (a, b), (c, d), and (e, f) have all
the same nearest common ancestor x; however, (x1, x2),
(a, b), and (c, d) connect the same pair of subtrees Tx1

and
Tx2

; in this case, x1 and x2 would send to x only edge
(a, b) as best horizontal edge for x. Also, x would receive
edge (e, f) from x3, being the only edge that connects Tx2

and Tx3
. In Section 4, we will show how to determine

locally at x the analogous edges (Lemma 1). As its final
act, x sends

⋃
j(MyUpj and MyHorj) to its parent.

Each internal node x waits to receive the sets com-
puted by all of its children; then, it splits this set into
two subsets: RecAnc, containing all best upwards and
horizontal edges computed from x’s children for nodes
in A(x); and RecMe, containing all best upwards and
horizontal edges computed from its children for x. Then,
as done by the leaves, it invokes BestEdgesComp().
The computation of sets MyUpj and MyHorj is performed
as detailed for the leaves; now, x further compares the
edges in MyUpj and MyHorj with the edges contained in
RecAnc: in particular, x computes the best horizontal
and upwards edges for each of its ancestors aj ∈ A(x)
by comparing the edges received from its children and
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Fig. 2. The two cases considered in the computation
of MyUpj and MyHorj performed by leaf x in routine
BestEdgesComp().
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Fig. 3. Selection of the horizontal edges for x in algorithm
BestEdgesComp(), when executed by x.

the one it just computed and placed in MyUpj and MyHorj.
Also here, Routine NoAnalog() is invoked to purge the
set of best horizontal edge to send to aj from possible
analogous edges.

We here note that, the best horizontal and upwards
edges that x computes for its parent (i.e., node a1) are
final: in fact, by the way the converge-cast phase is
constructed, any upward edge for parent(x) must have
one end-point in Tx, and the other one in T \ Tparent(x);
all these edges have been considered by the nodes in
Tx; similarly, this holds for the horizontal edges for
parent(x). In contrast, the horizontal and upwards edges
computed by x for all its other ancestors can only be
considerate as candidate best.
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Fig. 4. The upwards and horizontal edges sent to x by its
children x1, x2, x3 used for the computation of the replace-
ment set for x. Here, Ux(1) = w, Ux(2) = z, and Ux(3) =
y; hence, Ux = {w, y, z}. Also, Hx(1) = {(a, b), (c, d)},
Hx(2) = {(d, c), (e, f)}, and Hx(3) = {(b, a), (f, e)};
hence, Hx = {(a, b)(c, d)(d, c)(e, f)(b, a)(f, e)}.

Then, the internal node x uses the information re-
ceived in RecMe from its children to compute, locally,
the contracted graph of G− x, Gx = (Vx, Ex). From [18]
we know that the MST of graph G−x can be computed
through the computation of the MST of the contracted
graph; we use the technique of [18] to compute the MST
of G−x and then the replacement set for x. These oper-
ations are carried out in Routine ComputeRepSet(). In
particular, each node in Vx is a representative node for
the parent of x, x0, and for the children of x, {x1, . . . , xk}.
Then, the set Ex is computed from RecMe, as follows.
Let Ux(i) and Hx(i) be the set of best upwards and
horizontal edges for x received from the i-th children of
x (clearly, both Ux(i) and Hx(i) are subsets of RecMe). If
(a, b) is any edge in Hx(i), then the edge (b, a) must be
part of Hx(j), for some 1 ≤ j 6= i ≤ k (see the example
depicted in Figure 4). Then, there exist an edge between
nodes xi and xj in Gx. If (a, b) is any edge in Ux(i),
there exist an edge between nodes xi and x0 in Gx. After
Gx has been locally computed, node x can compute its
MST , by executing any optimal sequential algorithm
(as the one in [18]). Note that the computation of Gx

and its MST is entirely performed locally at x, with no
exchange of additional messages.

4 CORRECTNESS AND COMPLEXITY

4.1 Basic properties

We first introduce some properties needed to show how
a node x can locally efficiently perform the operations
in Routine BestEdgesComp().

In order for a node to decide if the other endpoint of
an incident edge is its ancestor it is sufficient to check
the information collected in the broadcast phase.
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Fig. 5. Proof of Lemma 1.

Property 1. Given e = (x, y) ∈ In(x), anc(y, x) can be
checked locally at node x after the broadcast phase, and no
additional communication is needed.

Proof: The property derives from the fact that, after
the broadcast phase, x knows all of its ancestors, and if
y does not belong to the list of ancestors the function is
false.

The nearest common ancestor of pairs of nodes x, y ∈ T ,
nca(x, y), is also used in Routine BestEdgesComp(). In
order to be able to compute the nca() function, we make
use of the labeling of the nodes defined in the first phase
of the algorithm; given any node x ∈ T , let l(x) denote
its label. Directly from [2], we have the following:

Theorem 1 ([2]). Given any pair of nodes a ∈ T and b ∈ T ,
if any node x ∈ T locally knows the values of l(a) and l(b),
then nca(a, b) can be locally computed at x, and no additional
communication is needed.

The last open issue is how to detect the analogy
between two horizontal edges; this is used in Routine
NoAnalog() (refer to Figure 5).

Lemma 1. Let (a, b) and (c, d) be two edges such that a ∈ Tx,
c ∈ Tx, and nca(a, b) = nca(c, d) = z. These edges are
analogous if nca(b, d) = y, y 6= z. Furthermore, if x locally
has the values of l(a), l(b), l(c), and l(d), then x can locally
check the analogy condition, and no communication is needed.

Proof: Since (a, b) and (c, d) have the same nca, z,
we have that either nca(b, d) = z, or nca(b, d) = y, y 6=
z, with z an ancestor of y. The latter case means that
nodes c and d belong to the same subtree of z, hence
they are analogous. Finally, by Theorem 1 and since by
hypothesis x locally has the values of l(a), l(b), l(c), and
l(d), the analogy condition can be checked locally at x,
and the lemma follows

The proof of Lemma 1 can be followed also observ-
ing Figure 3: (x1, x2) and (c, d) are analogous, since
nca(x1, x2) = nca(c, d) = x, and nca(x1, c) = x1 6= x.
In contrast, (x1, x2) and (e, f) are not analogous: in fact,
nca(x2, f) = x.
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4.2 Analysis

We now prove the correctness of algorithm
ALLNODESREPLACEMENT(G, T ). We have:

Theorem 2. In algorithm ANR(G,T) each node z 6= r:

(i) correctly computes the best upwards edge and the best
horizontal edges for its parent;

(ii) determines for each ancestor a ∈ A(z), with a 6=
parent(z) and z 6= r, the best candidate upward edges
and the best horizontal edges for a.

Proof: First observe that, as result of the broadcast
phase, every node receives the label of all of its ancestors.
The proof is by induction on the height h(z) of the
subtree Tz .

Basis. h(z) = 0; i.e., z is a leaf.
In this case, by Routine BestEdgesComp(),
Property 1 and Theorem 1, z can locally deter-
mine, for all of its ancestors with the exception
of the root, the best upwards edge (if any) and
the best horizontal edges (if any), among its
incident edges, for its parent, thus proving (i).
Also, it can locally compute the best candidate
upwards edge (if any) and the best horizontal
edges (if any), among its incident edges, for all
of its other ancestors, with the exception of r,
thus proving (ii).

Induction step.
Let the theorem hold for all nodes z with
0 ≤ h(z) ≤ n − 1; we will now show that it
holds for any z, with h(z) = n. By inductive
hypothesis, node z receives from children zi the
best candidate upwards an the best horizontal
edges for itself and for all the other ancestors;
the collection of this information from all of its
children forms the sets Uz and H (these two
sets are used in Routine ComputeRepSet() to
compute the MST of Gz).
By the note highlighted in Algorithm
ALLNODESREPLACEMENT(G, T ), by Routine
BestEdgesComp(), Property 1 and
Theorem 1, node z can thus locally determine,
based on the sets of edges received from
its children, the best upwards edge and the
best horizontal edges for its parent (case
INTERNAL in Routine BestEdgesComp()),
thus proving (i). Analogously, z can locally
compute the best candidate upwards and
horizontal edges for all the other ancestors,
with the except of the root.

Theorem 3. Algorithm ALLNODESREPLACEMENT(G, T )
correctly solves the ALL NODES REPLACEMENT problem.

Proof: We need to prove that, at the end of the execu-
tion of the algorithm, each node z correctly computes its
replacement set RepSetz: clearly, this needs to be proven
only for internal nodes in T .

By Theorem 2, node z correctly computes Uz and Hz ,
that are used in Routine ComputeRepSet() to compute
the MST of Gz , TGz

; by construction, each edge in TGz

represents a non-tree edge that is in the replacement set
of z, and the theorem follows.

In the following theorem, we will establish the data
complexity required by the algorithm.

Theorem 4. The data complexity of algorithm
ALLNODESREPLACEMENT(G, T ) is O(n2).

Proof: In the broadcast phase, every node except the
root receives the label of all its ancestors. In the converge-
cast phase, every node z sends a message containing
information on

∑s

j=1(dj) edges, where dj is the degree
of ancestor aj ∈ A(z); in fact, one upwards edge and up
to d−1 horizontal edges are sent from from z for each of
its ancestors. Hence, z sends out information on at most
2n − 1 edges. Summing up over all n nodes in T , we
have that the overall data complexity is O(n2).

The message complexity of Theorem 4 may seem quite
high; however we note that, as mentioned in Section 1.3,
the optimal protocol to compute the MST already takes
O(m + n logn) messages [13], and the proposed algo-
rithm is better than the simple algorithm consisting in
reconstructing the tree at each node.

Finally, note that the communication can be achieved
with O(n) messages if the system allowed the transmis-
sion of long messages (i.e., containig O(n) data items);
otherwise O(n2) short messages suffice.

5 ROUTING WITH THE PRE-COMPUTED DATA

Let us now address the problem of how the routing
tables are organized and how the information stored
there must be used in presence of failure of a node; let
x ∈ T be the node that fails.

The routing table at node x contains, for each desti-
nation r, the neighbor y in the shortest path from x to
r (as determined in the MST of G, Tr). Let x1, . . . , xk

be the children of x in Tr; as its final act, Algorithm
ALLNODESREPLACEMENT((G, T )) terminates leaving in
the children of x the edges to activate in case of failure
of x, that is the set RepSetxi

. This information is stored
as well in the routing table of xi, and will be indicated
as RT [xi, r].rep in the following.

Consider now a message M with destination r arriv-
ing to one of the children of x, xi, where however x has
just failed. The following steps are performed in this case
(all the operations are relative to Tr):

1) the replacement set for x, RepSetxi
, is retrieved by

xi from RT [xi, r].rep;
2) xi activates the edge in RepSetxi

whose one end-
point is xi;

3) xi starts a broadcast phase, sending RSxi
down in

the subtree Txi
;

a) in this phase, the nodes reached by this mes-
sage that discover to be incident to one edge
e ∈ RSxi

activate this edge;
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4) xi sends M on the edge it activated;

a) when a node descendant of xi receives M , it
forwards it along the edge it activated.

b) when a non-descendant node of xi receives
M , it forwards it towards r according to the
standard routing table information.

Note that a node in T that receives M realizes to be a
non-descendant node of xi from the fact that it does not
have any edge active.

This activation phase requires a data complexity of
order O(dx−1×n), since at most dx−1 edges have to reach
O(n) nodes.

6 SOLVING THE AER PROBLEM

The ALL EDGES REPLACEMENT problem can be solved
distributively by applying one of the algorithmic shells
of [11], where the input tree is now an MST of G, instead
of a shortest-path tree, and where the best swap edge e′ for
e is the one leading to the minimal total weight; hence,
this function can be computed locally by each node by
simply summing the weight of e′ and subtracting the
weight of e from the total MST ’s weight. The data
complexity is then the same as in [11] amounting to
O(n∗

r), where n∗

r is the number of edges of the transitive
closure of T \ {r} and 0 ≤ n∗

r ≤ (n− 1)(n− 2)/2, which
is O(n2). Also in this case, the communication can be
achieved with the exchange of O(n) long messages, if
the system so allows; otherwise, O(n2) short messages
suffice.

7 CONCLUDING REMARKS

The proposed protocols allow the nodes to find all the
replacement minimum-cost spanning trees, one for each
possible node or link failure. Considering the amount
of information that must be computed, the total cost is
surprisingly low, (O(n2) data complexity). Furthermore,
the overall communication structure of the protocol is
relatively simple: a broadcast followed by a converge-
cast.

An interesting open problem is to determine whether
or not it is possible to improve the O(n2) upper bound
on the data complexity of the problem.
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