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Abstract. The study of computing in presence of faulty robots in the
Look-Compute-Move model has been the object of extensive inves-
tigation, typically with the goal of designing algorithms tolerant to as
many faults as possible. In this paper, we initiate a new line of inves-
tigation on the presence of faults, focusing on a rather different issue.
We are interested in understanding the dynamics of a group of robots
when they execute an algorithm designed for a fault-free environment,
in presence of some undetectable crashed robots. We start this investiga-
tion focusing on the classic point-convergence algorithm by Ando et al.
[2] for robots with limited visibility, in a simple setting (which already
presents serious challenges): the robots operate fully synchronously on
a line, and at most two of them are faulty. Interestingly, and perhaps
surprisingly, the presence of faults induces the robots to perform some
form of scattering, rather than point-convergence. In fact, we discover
that they arrange themselves inside the segment delimited by the two
faults in interleaved sequences of equidistant robots.

1 Introduction

Consider a group of robots represented as points, which operate in a continu-
ous space according to the Look-Compute-Move model [16]: when active, a
robot Looks the environment obtaining a snapshot of the positions of the other
visible robots, it Computes a destination point on the basis of such a snap-
shot, and it Moves there. As typically assumed by the model, the robots are
anonymous (i.e., they are identical), autonomous (without central or external
control), oblivious (they have no memory of past activations), disoriented (they
do not agree on a common coordinate systems), silent (they have no means of
explicit communication). These systems of autonomous robots have been exten-
sively investigated under different assumptions on the various model parameters
(different levels of synchrony, level of agreement on the coordinate system, etc.),
and most algorithms in the literature are designed for fault-free groups of robots
(e.g., see [7, 12–15, 17, 19–21]).
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There are several studies that consider the presence of faults: crashes (robots
that are never activated) or byzantine (robots that behave differently than in-
tended). The goal, in these cases, has been to design fault-tolerant algorithms
focusing on the maximum amount of faults that can be tolerated for a solution
to exist in a given model (e.g., see [1, 3–6, 11]). For a detailed account of the
current investigations see [11].

In this paper, we consider a rather different question in presence of faulty
robots that has never been asked before. Given an algorithm designed to achieve
a certain global goal by a group of fault-free robots, what is the behaviour of
the robots in presence of crash faults ? Clearly, in most cases, the original goal
is not achieved, but the theoretical interest is in characterizing the dynamics of
the non-faulty robots induced by the presence of the faulty ones, from arbitrary
initial configurations. Apart from the theoretical curiosity, this approach can be
seen as a first step toward the study of the interaction between heterogeneous
groups of robots operating in the same space, each following a different algorithm.
In fact, the dynamics resulting from the presence of different teams following
different and possibly conflicting rules in the environment is an important area
of investigation that has never been studied.

We start this new line of investigation focusing on the classic point-con-
vergence algorithm by Ando et al. [2] for robots with limited visibility, and
considering one of the simplest possible settings, which already proves to be
challenging: fully synchronous robots (FSynch) moving in a 1-dimensional space
(a line), in presence of at most two faults. In a line, the convergence algorithm
prescribes each robot to move to the center of the leftmost and rightmost visible
robots and, in absence of faults, starting from a configuration where the robots’
“visibility graph” is connected, the robots are guaranteed to converge toward a
point. It is not difficult to see that with a single fault, the robots successfully
converge toward the faulty robot. The presence of multiple faults, however, gives
rise to intricate dynamics, and the analysis of the robots behavior is already quite
complex with just two. The case of more than two faults is left for further study.

Interestingly, and perhaps surprisingly, the presence of faults induces the
robots to perform some form of scattering, rather than gathering. In fact, we
prove that they arrange themselves inside the segment delimited by the two
faults in interleaved sequences composed of equidistant robots. The structure
that they form has a hierarchical nature: robots organize themselves in groups
where a group of some level converges to an equidistant distribution between
the first and the last robots of that group. Moreover, the first and the last
robots of that group belong to a lower level group. Also interesting to note is
the rather different dynamics that arises when moving to the middle between
two robots, depending on the choice of the robots: when considering the closest
neighbours, the result is an equidistant distribution (scattering algorithm of [13]),
when instead selecting the leftmost and rightmost visible robots the result is a
more complex structure of sequences of robots, each converging to an equidistant
distribution. The main difficulty of our analysis is to show that the robots indeed



form this special combination of sequences: the convergence of each sequence is
then derived from a generalization of the result by [13].

Finally observe that the 2-dimensional case has a rather different nature. In
fact, in contrast to the 1-dimensional setting, where any initial configuration
converges toward a pattern, when robots move on the plane oscillations are
possible, even with just two faults. The investigation of this case is left for future
study.

Due to lack of space, most proofs are only sketched. The full version of the
paper can be found in [10].

2 Preliminaries

2.1 Model and Notation

Let X denote a set of identical point-form robots moving on a line, simulta-
neously activated in synchronous time steps according to the Look-Compute-
Move model [16]. The robots have limited visibility. In the Look phase, they
“see” the positions of the robots within their visibility radius V , then they all
Compute a destination point, and they Move to that point. The robots are
oblivious in the sense that the computation at time t solely depends on the
positions of the robots perceived at that step. We assume that two robots, ar-
bitrarily placed, are permanently faulty (i.e., they are stationary and inactive).
Their faulty status, however, is not visible and they appear identical to the oth-
ers. Let X(t) = {x0(t), x1(t), ..., xn(t)} be the set of robots at time t. Let x
denote a robot x ∈ X and x(t) its position at time t with respect to the leftmost
faulty robot. With an abuse of notation x(t) may indicate both the robot itself
and its position at time t. Robots do not necessarily occupy distinct positions.
For instance we might have xi(t) = xj(t) where 0 ≤ i, j ≤ n are two different
indices. Note, however, that non-faulty robots in the same position behave in
the same way and can be considered as a single one. Indeed, when non-faulty
robots end up in the same position, we say that they “merge” and from that
moment on they will be considered as one.

We denote the distance between robots x and y at time t by |x(t) − y(t)|.
We denote by [α, β] the interval of real numbers starting at α ∈ R and ending
at β ∈ R, where α ≤ β. Let N(x(t)) be the set of robots visible by x at time
t, that is: N(x(t)) is the set of robots y such that |x(t)− y(t)| ≤ V . Let r(x(t))
(resp. l(x(t))) denote the rightmost (resp. the leftmost) robot visible by x at
time t. If no robot is visible to the right (resp. to the left), then r(x(t)) = x(t)
(resp. l(x(t)) = x(t)). We say that a configuration of robots X = {x0, x1, ..., xn}
converges to a pattern P = {p0, p1, ..., pn} if for all 0 ≤ i ≤ n, xi(t) → pi as
t→∞.

2.2 Background Results: Point-Convergence and Scattering

Point-convergence [2]. A classical problem for oblivious robots is point-
convergence: the robots, initially placed in arbitrary positions, must converge



toward the same point, not established a-priori. A solution to this problem is
given by the well known algorithm by Ando et al. [2]. The algorithm achieves
convergence to a point, not only in synchronous systems, but also when at each
time step, only a subset of the robots is activated (semi-synchronous scheduler
SSynch), as long as every robot is activated infinitely often. The robots are
initially placed in arbitrary positions in a 2-dimensional space and have limited
visibility. The algorithm prescribes each robot to move toward the centre of the
smallest enclosing circle that contains all the robots up to a certain distance,
guaranteeing any pair of robots to maintain visibility in spite of each others
possible movement.

When the space where the robots can move is a line, the algorithm (Con-
vergence1D) becomes quite simple because the smallest enclosing circle of the
visible robots is the segment delimited by the leftmost and rightmost visible
robots, and a robot moves to occupy the mid-point between them.

Theorem 1. [2] Executing Algorithm Convergence1D in FSynch or SSynch,
the robots converge to a point.

Scattering on a segment [9]. In [9], a classical scattering algorithm for robots
in 1-dimensional systems has been analyzed both in FSynch and SSynch. A
variant of this result (Theorem 3) will be heavily used in this paper. We briefly
describe the main result and its generalization.

Consider a set of oblivious robots X = {x0, x1, ..., xn} on a line, where x0
and xn do not move (equivalently, this can be considered as a segment delimited
by the positions of x0 and xn). Let D = |xn(0) − x0(0)|. In [9], the robots are
assumed to be able to see the closest robot on each side, while x0 and xn know
they are the delimiters of the segment. The algorithm of [9] (Spreading) makes
the robot converge to a configuration where the distance between consecutive
robots tends to D

n by having the extremal robots never move and the others
move to the middle point between the two neighbours.

Theorem 2. [9] Executing Algorithm Spreading in FSynch or in SSynch
on the set of robots R where the first and the last robots do not move, the robots
converge to equidistant positions.

The theorem can be generalized in FSynch to the case when x0 and xn are
not stationary, but are each converging toward a point (resp. x′0 and x′n ). The
proof is technical, but it essentially follows the same lines of the proof of [9], and
can be found in the full version of the paper [10].

Theorem 3. Let X = {x0, x1, ..., xn} where x0(t) → x′0 and xn(t) → x′n as
t → ∞. Executing Algorithm Spreading in FSynch on robots {x1, ..., xn−1},
the robots converge to equidistant positions between x′0 and x′n.

3 Robots’ Dynamics in Presence of Two Faults

It is not difficult to see that, if the configuration contains one faulty robot, the
other robots converge toward it. We then focus on the case when the system



contains two faults and we show that, starting from an arbitrary configuration,
the system converges towards a limit configuration.

For the rest of this paper, we will always denote by x0 (resp. by xn) the
leftmost (resp. the rightmost) faulty robot. Moreover, for simplicity, x0 is con-
sidered to be at position 0 (note that there could be robots initially placed in
negative positions).

3.1 Basic Properties

We start with a series of lemmas leading to the proof of two crucial properties:
there exists a time after which the robots preserve their farthest neighbours (The-
orem 4) and when the number of different positions occupied by them becomes
constant (Corollary 1).

Lemma 1 (No Crossing). If x and z are two non-faulty robots and x(t) <
z(t), then x(t+ 1) ≤ z(t+ 1).

Proof. Since x(t) < z(t), we have that r(x(t)) ≤ r(z(t)) and l(x(t)) ≤ l(z(t)) by

definition. It follows that x(t+ 1) = l(x(t))+r(x(t))
2 ≤ l(z(t))+r(z(t))

2 = z(t+ 1). ut

With the next two lemmas we show that all robots, except possibly two,
eventually enter the segment [x0, xn] delimited by the two faulty robots. At
most two robots might perpetually stay outside of it, one to the left of x0 and
one to the right of xn. If this is the case, however, the two outsiders converge to
x0 and xn, respectively.

Lemma 2 (No More Crossing). If x is a non-faulty robot, it will cross at
most a finite number of times with a faulty robot.

Proof. (Sketch) Using Lemma 1, we can show that there is a non-faulty robot
x` (resp. xr) that will stay the leftmost (resp. the rightmost) non-faulty robot
for all t ≥ 0.

We first consider the faulty robot x0. If x`(t) ∈ [x0, xn] for some time t, then
l(x`(t)) = x0, from which x`(t

′) ∈ [x0, xn] for all t′ ≥ t. Otherwise, for all t ≥ 0,
we have x`(t) < x0, l(x`(t)) = x`(t) and r(x`(t)) > x`(t). Thus, x`(t) is strictly
increasing as t → ∞. Therefore, x`(t) → x∗ as t → ∞, for some x∗ ≤ x0. We
can prove that x∗ = x0 by showing that all robots which are to the left of x0 are
attracted by x0. Then, we can prove that all non-faulty robots in the interval
[x`(t), x0] will merge with x` after a finite number of steps. Therefore, all non-
faulty robots in the interval [x`(t), x0] will cross at most a finite number of times
with x0.

A symmetric argument for xn completes the proof. ut

Lemma 3. There is a time t ≥ 0 such that either one of the following two
scenarios happens:
- All robots are inside the line segment [x0, xn] and will stay there for all t′ ≥ t.
- All robots, except for at most two of them (x` and xr), are inside [x0, xn] and
will stay there for all t′ ≥ t. We have that x`(t

′) < x0 and xr(t
′) > xn for all

t′ ≥ t. Moreover, x`(t)→ x0 and xr(t)→ xn as t→∞.



Proof. (Sketch) The proof is similar to the one of Lemma 2. After a finite number
of steps, all non-faulty robots in the interval [x`(t), x0] will merge with x`. Hence,
after a finite number of steps, there is only one robot remaining to the left of
x0 (two robots merging together are considered as a single robot). A symmetric
argument holds for xr. ut

The two dissident robots from the previous lemma are called outsiders. Since
x`(t

′) < x0 and xr(t
′) > xn for all t′ ≥ t, and since x`(t

′)→ x0 and xr(t
′)→ xn

as t → ∞, we can ignore them without loss of generality. For the rest of the
paper, we suppose that all robots are inside [x0, xn] and will stay there for all
t′ ≥ t.

We now show that during the evolution of the system, a robot never loses
visibility of the robots seen in the past.

Lemma 4 (Preserved Visibility). Let y ∈ N(x(t)). For all t′ > t, y ∈
N(x(t′)).

Proof. (Sketch) Let y ∈ N(x(t)). Without loss of generality, y(t) is to the left
of x(t), from which 0 < x(t) − y(t) ≤ V . If both x and y are faulty, they
do not move and the result follows. Otherwise, we write x(t + 1) − y(t + 1) =
l(x(t))+r(x(t))

2 − l(y(t))+r(y(t))
2 , which can be shown to be upper bounded by V . ut

During the execution of the algorithm, robots could cross each other (cross-
ing), they could merge and occupy the same position (merging), and could enter
the visibility range of a robot (inclusion). A size-stable time is when inclusions,
crossings and mergings cease to happen and all robots are inside the segment.

Definition 1 (Size-Stable Time). A time t0 is called a size-stable time if:
for all t ≥ t0, there are no inclusions, mergings or crossings in the system, and
at most one agent stays permanently on each side of the line segment [x0, xn]
converging toward x0 and xn, respectively.

From Lemmas 1 and 2, after a finite number of steps, no two robots are
crossing each others. From Lemma 3, either all robots are inside the line segment
[x0, xn] after a finite number of steps, or at most two robots will stay outside of
the line segment [x0, xn] for all time t ≥ 0. We then get the following corollary.

Corollary 1. For all set of robots X, there exists a size-stable time t0.

Finally, from Lemmas 1, 2 and 4, and Corollary 1, we can conclude that at any
time after a size-stable time t is reached, the farthest left and right neighbours,
namely l(x(t)) and r(x(t)), of any robot x will never change.

Theorem 4 (Preserved-farthest-neighbours). Let t be a size-stable time
and x ∈ R be a robot. For all t′ ≥ t, r(x(t′)) = r(x(t)) and l(x(t′)) = l(x(t)).

For the rest of the paper, we suppose that the earliest size-stable time is 0.
Thus, from Corollary 1, for all t ≥ 0, t is a size-stable time.



3.2 Convergence of Mutual Chains

We now define the notion of mutual chain as a set of robots that are mutually
the farthest from each other.

Definition 2 (Mutual Chain). Let 0 ≤ k ≤ n be an integer and t ≥ 0 be
any size-stable time. A mutual chain at time t (or mutual chain for short) is a
configuration C(t) = {x′1(t), x′2(t), ..., x′k(t)} ⊂ X(t) made of k robots such that
for all 1 ≤ i ≤ k−1, l(x′i+1(t)) = x′i(t) and r(x′i(t)) = x′i+1(t) (refer to Figure 1).

If r(xi(t)) = xj(t) and l(xj(t)) = xi(t), we say that xi and xj are mutually
chained at time t or that xi(t) and xj(t) are mutually chained.

x0 x1 x2 x3 x4 x5 x6

visibility range

Fig. 1. A mutual chain of robots C(t) = {x1(t), x2(t), x3(t), x4(t), x5(t)} anchored in
x0 and x6, where the arrows indicate farthest visibility.

The anchors of a mutual chain C(t) = {x′1(t), x2(t), ..., x′k(t)} are the farthest
left neighbour of x′1(t) and the farthest right neighbour of x′k(t).

Definition 3 (Anchors). Given a mutual chain C(t) = {x′1(t), x′2(t), . . . , x′k(t)},
we say that l(x′1(t)) and r(x′k(t)) are the left and right anchors of C(t) (or that
C(t) is anchored at l(x′1(t)) and r(x′k(t))) (refer to Figure 1).

Note that the definition of anchor allows the anchors of a mutual chain to
be part of the mutual chain (refer to Figure 2). The anchors do not have to be

x2 x4

visibility range

x3x1

Fig. 2. Configuration {x1, x2, x3, x4} is a mutual chain. It is anchored at x1 and x4.

faulty robots for this situation to happen. Moreover, the definition of mutual
chain allows a mutual chain to possibly contain only one robot. Indeed, any
robot x forms a mutual chain {x(t)} anchored at l(x(t)) and r(x(t)).

We now prove the formation, during the execution of the algorithm, of a
special unique mutual chain called primary chain. Intuitively, the primary chain
is a mutual chain starting from x0 and ending in xn. We will then introduce a
hierarchical notion of mutual chains with different levels, where chains of some



level are anchored in lower level ones. Moreover, we will show that the robots will
eventually arrange themselves in such a hierarchical structure of mutual chains.

Theorem 5 (Primary Chain). There exists a configuration of robots C1 =
{x′0, x′1, x′2, ..., x′k} ⊆ X such that at any size-stable time t > 0, C1(t) is a mutual
chain anchored at x0 and xn, where x′0 = x0 and x′k = xn. This mutual chain is
called the primary chain of X and it is unique.

Before we prove Theorem 5, we need the following technical lemma (whose
proof can be found in the full version of the paper [10]). Intuitively, when the
distance between two mutually chained robots tends to V (as t→∞), this limit
behaviour propagates to the leftmost and rightmost visible robots.

Lemma 5. Let x′α+1, x
′
α+2 ∈ X such that for all t ≥ 0:

- x′α+1(t) and x′α+2(t) are mutually chained,
- d(t) = x′α+2(t)− x′α+1(t)→ V , as t→∞
- l(x′α+1(t)) 6= x′α+1(t)
- r(x′α+2(t)) 6= x′α+2(t).

Then, r(x′α+2(t))− x′α+2(t)→ V and x′α+1(t)− l(x′α+1(t))→ V , as t→∞.

Proof. (Sketch) The robots x′α+1(t) and x′α+2(t) are mutually chained and x′α+2(t)−
x′α+1(t)→ V , as t→∞. Since x′α+1(t+ 1) always places itself in the middle of
l(x′α+1(t)) and r(x′α+1(t)) = x′α+2(t), we must have that x′α+1(t)− l(x′α+1(t))→
V , as t→∞. The same reasoning applies for r(x′α+2(t)) and x′α+2(t). This can
be formalized using the formal definition of limits. ut

Proof. (Theorem 5)
[Uniqueness] We first explain that if the primary chain exists, then it is

unique. Since x0 = x′0 and xn = x′k are part of the mutual chain, starting at x0,
we get x′1 = r(x0) and x′i+1 = r(x′i) for all 0 ≤ i ≤ k − 1, where x′k = xn. So
each x′i is uniquely defined.

[Existence] We prove the existence of the primary chain by contradiction.
Let us summarize the steps of the proof. We assume that there does not exist
any mutual chain. 1) We construct a particular configuration, composed by a
forward-chain from x0 connecting each node to its farthest right neighbour until
xn is reached and a backward chain from xn connecting each node to its farthest
left neighbour back to x0. 2) We then show that the two chains converge to
each other, i.e., they converge to a single chain, called right-left chain. This
construction does not directly guarantee that the right-left chain is a mutual
chain. We then show a contradiction, reasoning on the total length of the segment
delimited by x0 and xn. 3) A consequence of the right-left chain not being a
mutual chain is that the total length of the segment between x0 and xn is strictly
smaller than (j+1)V (where j+1 is the number of intervals between consecutive
robots in the chain). 4) On the other hand, each such interval converges to V ,
thus implying that the total length of the segment is a number arbitrarily close
to (j + 1)V (by Lemma 5). The contradiction implies that the right-left chain is
indeed mutual.



1) Construction of forward and backward chains. Let us consider a con-
figuration of robots {x′0(t), x′1(t), ..., x′j+1(t)} ⊆ X(t), called forward chain (refer
to Figure 3), such that: x′0(t) = x′0 = x0, x′i+1(t) = r(x′i(t)) for all 0 ≤ i ≤ j < n,
and x′j+1(t) = x′j+1 = xn.

x0 x′1 x′3 x′4 x′j−2 xnx′j−1 x′jx′2 yj
x′j+1
yj+1

yj−1yj−2x′0
y0

y1
y2 y3 y4

a1 a2 s2 s3a3 a4 s4 sj aj+1ajaj−1

Fig. 3. Illustration of the proof of Theorem 5.

We define another configuration of robots, called backward chain, {y0(t), y1(t),
. . . , yj+1(t)} ⊆ X(t) as follows. Let yj+1(t) = x′j+1(t) and for all 0 ≤ i ≤ j, let
yi(t) = l(yi+1(t)) (refer to Figure 3). Let us call the union of the two chains
right-left chain. We can prove two useful properties about the right-left chain.

Property 1 (Alternation.) For all 1 ≤ i ≤ j + 1, x′i−1(t) < yi(t) ≤ x′i(t).
Property 2 (Starting point.) We have that y0(t) = y0 = x0.

2) Convergence of forward and backward chains to a right-left chain.
Notice that since the forward chain {x′0(t), x′1(t), ..., x′j+1(t)} is not a mutual
chain, there exists an i with 1 ≤ i ≤ j such that x′i−1(t) < yi(t) < x′i(t). For all
1 ≤ i ≤ j+1, let ai(t) = yi(t)−x′i−1(t) and si(t) = x′i(t)−yi(t). Our aim, in the
following, is to prove that x′i(t) and yi(t) get arbitrarily close when t→∞. From
Property 1, we have ai(t) > 0 and si(t) ≥ 0 for all 1 ≤ i ≤ j+1. Moreover, si(t) =
0 if and only if yi(t) = x′i(t). Notice that l(x′i(t − 1)) ≤ x′i−1(t − 1), otherwise
there would be a contradiction with the fact that r(x′i−1(t − 1)) = x′i(t − 1).

Therefore, x′i(t) =
l(x′i(t−1))+r(x′i(t−1))

2 ≤ x′i−1(t−1)+x′i+1(t−1)
2 , from which x′0(t) ≤

0, x′j+1(t) ≤ xn and

x′i(t) ≤ x′i−1(t− 1) +
1

2
(ai(t− 1) + si(t− 1) + ai+1(t− 1) + si+1(t− 1)) (1)

for all 1 ≤ i ≤ j. Moreover, notice that r(yi(t − 1)) ≥ yi+1(t − 1), otherwise
there would be a contradiction with the fact that l(yi+1(t − 1)) = yi(t − 1).

Therefore, yi(t) = l(yi(t−1))+r(yi(t−1))
2 ≥ yi−1(t−1)+yi+1(t−1)

2 , from which y0(t) ≥
0, yj+1(t) ≥ xn and

yi(t) ≥ yi−1(t− 1) +
1

2
(si−1(t− 1) + ai(t− 1) + si(t− 1) + ai+1(t− 1)) (2)

for all 1 ≤ i ≤ j. Since si(t) = x′i(t) − yi(t), by subtracting (2) from (1) we
obtain s0(t) ≤ 0, sj+1(t) ≤ 0 and

si(t) ≤
1

2
(si−1(t− 1) + si+1(t− 1)) (3)



for all 1 ≤ i ≤ j. We are now ready to prove that for all 0 ≤ i ≤ j + 1, si(t)→ 0
as t → ∞, implying that yi(t) → x′i(t) as t → ∞. Notice that we already have
y0(t) = x′0(t) and yj+1(t) = x′j+1(t) by definition. By unfolding (3), we get

si(t) ≤
1

2t

t∑
k=0

(
t

k

)
si−t+2k(0),

where si(t) = 0 for all i ≤ 0 and i ≥ j + 1.
In order to determine the limit of si(t) when t→∞, we need to make a few

observations. First of all, the si(t)’s in the summation with i ≤ 0 or i ≥ j + 1
are all equal to zero. In other words, regardless of the value of t, there are at
most j non-zero values in the summation. These j values correspond to the j-
central binomial coefficients. Also note that since the segment delimited by the
two faulty robots has a constant size, the values of the si’s are bounded. Let
C be the value of the largest such si ever occurring. Since the largest binomial
coefficient is the central one (or the central ones for odd values of t), we can

write 0 ≤ si(t) ≤ 1
2t j

(
t
b t
2 c
)
C. Since1

(
t
b t
2 c
)
∼ 2t√

π t
2

, we have

0 ≤ lim
t→∞

si(t) ≤ lim
t→∞

1

2t
j

(
t

b t2c

)
C = lim

t→∞
1

2t
j

2t√
π t2

C = 0,

from which limt→∞ si(t) = 0. We are now ready to derive a contradiction.

3) Length of the segment strictly smaller than (j + 1)V . Since the right-
left chain is not a mutual chain, and x0 and xn are not moving, the distance
between x0 and xn must be strictly smaller than (j + 1)V (otherwise x′j and yj
would necessarily coincide, for all j). So, there exists a real number δ > 0 such
that xn − x0 = (j + 1)V − δ.

4) Distance between x′i(t) and x′i+1(t) tending to V . Let us consider any
sub-chain of the right-left chain for which the x′i and the yi are distinct except
for the extremal ones. More precisely, let α and β be two indices such that
x′α = yα, x′β = yβ and x′i 6= yi for all α < i < β (refer to Figure 4). Notice
that l(x′α+1) = x′α, otherwise this would contradict the fact that l(yα+1) =
x′α. We also have r(yβ−1) = x′β , otherwise this would contradict the fact that
r(x′β−1) = x′β . Therefore, l(x′α+1) = x′α, r(x′α+1) = x′α+2, l(yβ−1) = yβ−2 and
r(yβ−1) = yβ = x′β . This implies that k ≥ i+ 3, otherwise x′α+1 and yβ−1 would
have the same leftmost and rightmost visible robots and they would merge in
one step, which is not possible at a size-stable time. Since there cannot be any
merging, given that l(yα+1) = yα = x′α, we must also have that x′α+2 is not visible
from yα+1 at any time. Therefore, for all t ≥ 0, sα+1(t)+aα+2(t)+sα+2(t) > V .
Since r(x′α+1) = x′α+2, for all t ≥ 0, aα+2(t)+sα+2(t) ≤ V . Together with the fact
that sα+1(t)→ 0 and sα+2(t)→ 0 as t→∞, we get that aα+2(t)→ V as t→∞.

1 We write f(t) ∼ g(t) whenever limt→∞
f(t)
g(t)

= 1.
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Fig. 4. Illustration of the contradiction in the proof of Theorem 5 (propagation of
distance V ). We do not make any assumption about x′α−1 being equal or not to yα−1,
nor about x′β+1 being equal or not to yβ+1.

Therefore, x′α+2(t)−x′α+1(t)→ V as t→∞. Our goal is to apply Lemma 5 and
conclude that x′α+1(t)− x′α → V and x′α+3(t)− x′α+2 → V as t→∞. However,
since x′α+1(t) and x′α+2(t) are not mutual, we cannot apply the lemma directly.
Due to lack of space, we only sketch the idea to circumvent this problem (refer
to [10] for full details). We can prove that there is a robot x′′α+1(t), satisfying
yα+1(t) ≤ x′′α+1(t) ≤ x′α+1(t), that is mutually chained with x′α+2(t). Intuitively,
since yα+1(t) → x′α+1(t) as t → ∞, and since x′′α+1(t) ∈ [yα+1(t), x′α+1(t)],
x′′α+1 behaves the same way x′α+1 does. But since x′′α+1(t) is mutually chained
with x′α+2(t), we can apply Lemma 5. We can repeat the same argument and
show that this propagates to all x′i’s, from which we get that for all 0 ≤ i ≤ j,
x′i+1(t)− x′i → V as t→∞. Therefore, the total distance between x0 and xn is
arbitrarily close to (j+1)V . This contradicts the fact that xn−x0 = (j+1)V −δ.

ut

In the proof of Theorem 5, we showed the existence of a unique mutual chain
called the primary chain. Intuitively, we say that a configuration of robots is a
secondary chain if it is a mutual chain anchored at two robots that belong to
the primary chain. Note that such a configuration is not necessary unique (refer
to Figure 5 for an example). Level-j chains (for j > 2) are defined similarly.

x0 x1 x2 x3 x4 x5

z y1 y2 y3

Visibility range

x6

Fig. 5. An example of a primary chain {x0, x1, . . . x6} with two level-2 chains: {z}
(anchored at x0 and x1) and {y1, y2, y3} (anchored at x3 and x6).

Definition 4 (Secondary Chains and Level-j Chains).
- The primary chain C1 is called level-1 chain.

- A configuration of robots C is a secondary chain if it is a mutual chain anchored



at two robots x, x′ ∈ C1, and at least one of x and x′ is non-faulty. We say that
a secondary chain is a level-2 chain.
- A configuration of robots C is a level-j chain if it is a mutual chain anchored
at two robots x and x′ satisfying the following: there exists an index j′ < j such
that either x is part of a level-j′ chain and x′ is part of a level-(j − 1) chain, or
x is part of a level-(j − 1) chain and x′ is part of a level-j′ chain.

The convergence of the primary chain can be proven by observing that the
behaviour of the robots in the primary chain executing our algorithm (Con-
vergence1D) is equivalent to the behavior they would have if they were ex-
ecuting Algorithm Spreading. Once this is established, convergence follows
from Theorem 3. The following lemma shows under what conditions Theorem 3
can be applied to a general mutual chain Y (t) = {y1(t), y2(t), . . . , yk(t)}. More
specifically, suppose that there exists two real numbers y′0 and y′k+1 such that
y0(t) = l(y1(t))→ y′0(t) and yk+1(t) = r(yk(t))→ y′k+1 as t→∞. Then, by exe-
cuting Convergence1D, Y (t) converges towards an equidistant configuration
between y′0(t) and y′k+1(t).

Lemma 6. Let Y (t) = {y1(t), y2(t), . . . , yk(t)} be a mutual chain at a size-stable
time t, anchored in y0(t) = l(y1(t)) and yk+1(t) = r(yk(t)), where y0(t) 6= y1(t)
and yk+1(t) 6= yk(t). Suppose that there exist two numbers y′0 and y′k+1, such that
y0(t)→ y′0 and yk+1(t)→ y′k+1 as t→∞. We have that, for all 0 ≤ i ≤ k + 1,

yi(t)→ y′0 +
|y′k+1 − y′0|
k + 1

i as t→∞.

Therefore, as t→∞, the robots in {y1(t), y2(t), . . . , yk(t)} converge to a config-

uration where the distance between any two consecutive robots is
|y′k+1−y′0|

k+1 .

Proof. Let Z(t) = {z0(t) = y0(t), z1(t), z2(t), . . . , zm(t) = yk+1(t)} be the global
configuration of robots at time t, restricted to the interval [y0(t), yk+1(t)].

By Theorem 4, Y (t) satisfies the following property: for all 1 ≤ i ≤ k and for
all t′ ≥ t, l(yi(t′)) = l(yi(t)) and r(yi(t

′)) = r(yi(t)). Therefore, even if there is a
robot zj(t) ∈ N(yi(t))\Y (t), the presence of zj(t) has no impact on the position
of yi(t+1). Consequently, the positions of the robots in Y (t+1), after executing
Algorithm Convergence1D on Y (t), are uniquely determined by the positions
of the robots in Y (t). Hence, executing Algorithm Convergence1D on Y (t)
produces the same result as executing Algorithm Spreading on Y (t), and thus
the lemma follows from Theorem 3. ut

We now show that the primary chain C1 = {x′0, x′1, x′2, ..., x′k} ⊆ X, where
x′0 = x0 and x′k = xn, converges towards a configuration of equidistant robots
delimited by its anchors x0 and xn.

Theorem 6 (Convergence of the Primary Chain). Let C1 = {x′0, x′1, x′2, ..., x′k}
be the primary chain. We have that x′0 = x0, x′k = xn and for all 0 ≤ i ≤ k,

x′i(t)→
|xn − x0|

k
i as t→∞.



Proof. Since C1 is a mutual chain, the configuration {x′1, x′2, ..., x′k−1} is also a
mutual chain. It is anchored at x′0 and x′k, where x′0 6= x′1 and x′k 6= x′k−1. Since
the anchors x′0 = x0 = 0 and x′k = xn are faulty, they do not move, and the
theorem follows directly from Lemma 6. ut

We now show that every level-j chain converges towards a configuration of
equidistant robots.

Theorem 7 (Convergence of Level-j Chains). Let Cj = {y1, y2, . . . , yk}
be a level-j chain, where j ≥ 1 is an integer. Let t be a size-stable time. Let
y0(t) = l(y1(t)) and yk+1(t) = r(yk(t)). There exist real numbers y′0 and y′k+1

such that y0(t) → y′0 and yk+1(t) → y′k+1 as t → ∞. Moreover, for all 0 ≤ i ≤
k + 1,

yi(t)→ y′0 +
|y′k+1 − y′0|
k + 1

i as t→∞.

Proof. We proceed by induction on j. By Theorem 6, our statement is true
for j = 1. Suppose that the theorem is true for all integers from 1 to j − 1.
Consider a level-j chain Cj = {y1, y2, . . . , yk} anchored at y0(t) = l(y1(t)) and
yk+1(t) = r(yk(t)), where t is a size-stable time. By Defintion 4, there exists an
index j′ < j such that one of the following two statements is true:
- y0 is part of a level-j′ chain and yk+1 is part of a level-(j − 1) chain, or
- y0 is part of a level-(j − 1) chain and yk+1 is part of a level-j′ chain.
Without loss of generality, suppose that y0 is part of a level-j′ chain and yk+1

is part of a level-(j − 1) chain. By the induction hypothesis, there exist two real
numbers y′0 and y′k+1 such that y0(t) → y′0 and yk+1(t) → yk+1 as t → ∞. The
theorem follows from Lemma 6. ut

The following lemma states that every robot belongs to some level-j chain. To
simplify the presentation, we assume that the faulty robot x0 is part of the level-0
chain {x0} and that the faulty robot xn is part of the level-0 chain {xn}.

Lemma 7. For all size-stable time t and all 0 ≤ i ≤ n, xi(t) ∈ X(t) belongs to
a level-j chain.

Proof. Suppose that the statement is false. Let y1(t) be the leftmost robot that
does not satisfy the statement. We will derive a contradiction. Since the leftmost
robot x0 is faulty, l(y1(t)) belongs to a mutual chain, say C(t) = {x′′1 , x′′2 , ..., x′′m},
where l(y1(t)) = x′′α for some index 1 ≤ α ≤ m. Let Y = {y1, y2, ..., yk} be the
configuration of robots such that (refer to Figure 6): 1) yi(t) = r(yi−1(t)) for all
2 ≤ i ≤ k, 2) r(yk(t)) belongs to a mutual chain, and 3) for all 1 ≤ i ≤ k, yi(t)
does not belong to a mutual chain. Observe that the definition of Y allows k to
be equal to 1 (in such a case, only items 2) and 3) apply). By construction and
by definition of y1(t),{y1(t), y2(t), ..., yk(t)} is not a mutual chain. Therefore, for
the rest of the proof, k ≥ 2. Let {z1, z2, ..., zk} be the configuration of robots
such that zk = yk and zi(t) = l(zi+1(t)) for all 1 ≤ i ≤ k − 1. Using the
same arguments as in the proof of Theorem 5, we get that x′′α ≤ z1 ≤ y1 and
yi−1 < zi ≤ yi for all 2 ≤ i ≤ k. Since {y1(t), y2(t), ..., yk(t)} is not a mutual
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Fig. 6. Illustration of the proof of Lemma 7.

chain, there is an index i such that zi(t) 6= yi(t). Let j be the smallest index
such that zj = yj and zj−1 6= yj−1. Suppose there is an index γ < j − 1 such
that zγ(t) = yγ(t). Therefore, by the definition of j, zi = yi for all 1 ≤ i ≤ γ.
Moreover, x′′α and r(yk) are part of mutual chains. Therefore, by Theorems 6
and 7, x′′α(t) and r(yk)(t) converge to a fixed location as t →∞. Consequently,
we get the same contradiction as in the proof of Theorem 5. Hence, for the rest
of the proof, assume that zi(t) 6= yi(t) for all 1 ≤ i < j − 1.

We have the following property (whose proof can be found in [10]).

Property 1. If, for all 2 ≤ i ≤ j− 1, zi(t) does not belong to any mutual chain,
then z1(t) = l(z2(t)) belongs to a mutual chain.

Consequently, there is an index 1 ≤ i ≤ j − 1 such that zi belongs to a
mutual chain. Let 1 ≤ µ ≤ j − 1 be the largest index such that zµ belongs to
a mutual chain, say W = {w1, w2, ..., wm′}. Let 1 ≤ ν ≤ m′ be the index such
that wν = zµ. We then have another property.

Property 2. zµ+1 < wν+1 < yµ+1.
Proof: Observe that wν+1 = r(wν). We must have that wν+1 ≤ yµ+1 and wν+1 ≥
zµ+1, otherwise there would be a contradiction with the fact that yµ+1 = r(yµ)
and zµ = l(zµ+1), respectively. Moreover, by definition, we know that wν+1 6=
yµ+1 and wν+1 6= zµ+1.

By repeating the argument for proving Property 2, we reach the index ν′ such
that zj−1 < w′ν′ < yj−1. Observe that wν′+1 = r(wν′) ≤ yj and wν′+1 ≥ yj = zj ,
otherwise there would be a contradiction with the facts that yj = r(yj−1) and
zj−1 = l(zj), respectively. However, by the definition of Y , yj is not part of a
mutual chain. We get a contradiction. ut

The following theorem follows directly from Theorems 6 and 7, and Lemma 7.

Theorem 8 (Global Convergence). For all 0 ≤ i ≤ n, |xi(t+ 1)− xi(t)| →
0 as t → ∞. Therefore, X(t) converges towards a fixed configuration C∗ =
{x∗0, x∗1, ..., x∗n} as t → ∞. The configuration C∗ contains a primary chain C1
anchored at x0 and xn. Additionally, there is an integer κ ≥ 1 such that for all
0 ≤ i ≤ n, x∗i belongs to a level-j chain, for some 1 ≤ j ≤ κ. Moreover, every
level-j chain in C∗ is a mutual chain of equidistant robots.
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