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Abstract. Black hole search (Bhs) is the problem of mapping or ex-
ploring a network where there are dangerous sites (black holes) that
eliminate any incoming searcher without leaving a discernible trace.
Dangerous graph exploration (Dge) extends the Bhs problem to include
dangerous links (black links). In the literature, both problems have only
been studied under the assumption that no faults occur in the network
during the exploration. In this paper, we examine the impact that link
failures can have on the exploration of dangerous graphs. We study the
Dge problem under the following conditions: there are multiple black
holes and black links, the network topology is unknown, the searchers
are initially scattered in arbitrary locations, and the system is totally
asynchronous. In this difficult setting, we assume that links can fail
during the computation. We present an algorithm that solves the Dge in
the presence of such dynamic link failures. Our solution to the problem
works with an optimum number of searchers in a polynomial number of
moves. This is the first result dealing with fault-tolerant computations
in dangerous graphs.

1 Introduction

Network mapping is an important problem that goes all the way back to Claude
Shannon’s building of a physical maze solving machine [20]. Mapping and its
associated problem of exploration, the visiting of every node in a network or
the crossing of every edge, has been a significant focus of research in the mobile
agent model of distributed computing. In the last decade, a significant portion
of that work has focussed on exploration and mapping when the network is not
safe for the agents.

A particular kind of danger is the presence in the network of black holes,
network sites that eliminate agents arriving at them without leaving a discernible
trace. The black hole search (Bhs) problem is the problem of locating such
harmful sites. In order to solve the problem, a team of agents must work together
to find the black holes because some agents must be eliminated in order for
it be detected. The dangerous graph exploration (Dge) problem extends the
Bhs problem to include black links, network links that act in the same way as
black holes, destroying any agent traversing them without leaving a discernible
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trace. In both the Bhs and Dge problems, there are three basic requirements
for solvability and for termination: the safe portion of the network (i.e., the
remaining network once the black links, as well as the black holes and their
incident links are removed) has to be connected; the number k of agents must
be greater that the size f of the frontier (i.e., the links from the safe nodes to the
unsafe portion of the network); information about the number ns of safe nodes
or the size of the frontier must be known. We assume that such requirements
are met.

The Bhs problem was introduced by Dobrev et al. in [10], which focuses on
finding a single black hole in an asynchronous ring network, and there has been
extensive research since then [1–3, 5–9, 11, 13–19, 21]. The Dge problem was
first investigated by Chalopin, Das, and Santoro in [4], where agents scattered
in an anonymous network of unknown topology solved the Dge problem as a
consequence of solving the mobile agent rendezvous problem. The same problem
when the unknown network is not anonymous is examined in [12]. The solution
presented there works in O(nm) agent moves, where n is the number of nodes
and m is the number of links, a cost which is proven to be optimal in [19].

In all existing investigations of the Bhs and Dge problems, it is assumed that
the environment is fault-free—that is, the computation is dangerous by nature,
due to the presence of black holes and black links. What happens if the network
topology is not static or if links could go down while the computation takes
place? None of the existing solutions addresses these questions and none would
tolerate even a single link failure.

The goal of this paper is to start examining the problem of fault-tolerant
exploration of dangerous graphs. In particular, we focus on solving the Dge
problem in presence of dynamic link failures. Dealing with link failures is a first
step towards algorithms for fully dynamic networks, which would also have to
deal with link insertions, node failures or departures, and node insertions. Link
failures are of particular concern because if an adversary can take control of
a link or links in a network—either physically in a wired network or through
attacks such as the wormhole attack in wireless networks—a well-timed link
failure could wreak havoc.

Main Contributions: We consider a rather difficult setting: a network of
arbitrary topology with a multiplicity of black holes and black links. The agents
initially scattered in arbitrary safe locations are unaware of the network topology,
start at arbitrary times, and are totally asynchronous (that is, all their actions
take a finite but arbitrary amount of time). The initial location of the agents
and the timing and duration of their actions are arbitrary, as determined by an
adversary.

In this already difficult setting, we allow network links to fail by disappearing
during the computation; the timing, choice, and number of link failures is arbi-
trary, as determined by an adversary. We assume however that any such failure
occurs only when no agent is traversing that link, and that the failures do not
disconnect the safe part of the network (otherwise the Dge problem is clearly
unsolvable).
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The main contribution of this paper is the proof that it is still possible to solve
the Dge problem in spite of such dynamic link failures. Interestingly, this can be
done with the same optimal number f+1 of agents as in the fault-free case. The
proof is constructive. We present a protocol that using f + 1 agents solves this
new Dge with link deletions (Dge-ld) problem. Not surprisingly, the protocol,
based on the fault-free algorithm from [12], is rather complex; interestingly, its
cost is O(nm2) moves, showing that the price of fault-tolerance is at most a
factor O(m) from the optimal cost without faults.

This is the first result about fault-tolerant computations in dangerous graphs.
The rest of the paper is structured as follows. We describe the model and

introduce the terminology in Section 2. We describe the algorithm in detail in
Section 3. Finally, we prove the correctness and analyze the complexity of the
algorithm in Section 4. Some proofs are omitted due to space limitations.

2 Model

We model the network as a simple undirected graph G = (V,E) with n = |V |
vertices or nodes and m = |E| edges or links. The edges incident at a node are
locally labeled with distinct values (port numbers). There is a set A of k = |A|
agents working in G. They all follow the same protocol or algorithm. Each has
a distinct id, its own memory, and can move from node to neighbouring node.
They start scattered in the network at arbitrary times. They move and compute
asynchronously, meaning that all their actions take a finite but unpredictable
amount of time. The initial locations of the agents as well as the timing of their
actions are determined by an adversary.

The agents communicate with each other using shared memory in the form of
whiteboards located at each node. Each node’s whiteboard can be accessed in
fair mutual exclusion by the agents resident on that node. The mutual exclusion
property allows the agents to operate as if the links are first in, first out (FIFO)
and as if the nodes have unique ids. Without loss of generality, we assume that
the links and nodes have these properties.

In the network are sets of black holes and black links, nodes and links that
eliminate agents arriving at or traversing them without leaving a discernible
trace. Let VB ⊂ V be the set of black holes and EB ⊆ E be the set of black links.
All other nodes and links are said to be safe. Let EI = {[u, v] ∈ E : u, v ∈ VB}
be the set of inaccessible links, black or safe, connecting pairs of black holes.
Let FB = {[u, v] ∈ E : u ∈ V \ VB ∧ v ∈ VB} be the set of frontier links,
black or safe, connecting safe nodes to black holes. We can now define the safe
portion of the network as GS = (VS , ES), where VS = V \ VB is the set of
safe nodes and ES = E \ (EB ∪ EI ∪ FB) is the set of safe links. The choice of
the sets VB and EB is made by an adversary; however, the safe portion of the
graph is connected (the problem is otherwise unsolvable). The value nS = |VS |
is known to the agents (otherwise termination is impossible). Additionally, since
at least one agent must survive, the number of agents must be greater than the
number f of links incident on a safe node exploring which an agent will die:
f = |FB |+ 2|EB \ (EI ∪ FB)|; thus we assume that there are k ≥ f + 1 agents.



302 P. Flocchini et al.

In this setting, we allow network links to fail by disappearing during the
computation. An edge failure is locally detectable at an incident node only in
the sense that, if information about that edge (identified by its port number)
is written on the whiteboard, an agent can notice the absence of an edge with
such a port number; if no information is written, it is like the edge never existed.
The timing, choice, and number of link failures is arbitrary, as determined by an
adversary. However, any such failure occurs only when no agent is traversing that
link, and the failures do not disconnect the safe part of the network (otherwise,
the Dge problem is clearly unsolvable). Note that allowing failures during the
execution of the algorithm is not equivalent to removing the links that will fail
before the algorithm starts. Any solution to exploration in a dangerous graph
requires the team of agents to coordinate their search. A link failure during the
execution can severely disrupt this coordination.

The dangerous graph exploration with link deletions (Dge-ld) problem is for
a team of agents to visit every accessible link in a network and, within finite
time, to mark locally all frontier links FB and accessible black links EB \ EI as
dangerous. During the execution of the algorithm, an adversary can delete any
link as long as no agents are traversing it. We say that the problem is solved
if, within finite time, at least one agent survives, all accessible links have been
visited, all frontier links and accessible black links are marked locally as such,
and all surviving agents enter a terminal state.

3 The Algorithm

We present an algorithm, ExploreDG-LD, that solves the Dge-ld problem. We
start by describing the basic work activities of exploring, verifying, and merging.
We then describe how an agent deals with deletions during its work.

3.1 Overview

In general, algorithm ExploreDG-LD works as follows. The agents build spanning
trees of the safe area starting from their homebases in the exploration process.
The root of each tree contains coordinating information for the agents working on
the same tree. The cautious walk technique is used during exploration to ensure
that only one agent is eliminated per frontier link and at most two agents are
eliminated per black link. The verification process is used to detect when a newly
explored link connects two trees. When two trees are found to be adjacent, they
are merged in the merging process. An agent terminates the algorithm when the
current tree contains nS nodes and there is no verification or exploration work
left. In the absence of link deletions, algorithm ExploreDG-LD is very similar in
structure to the algorithm presented in [12] and solves the traditional fault-free
Dge problem.

Link deletions obviously complicate the entire process, in particular the pro-
cesses of building the trees and connecting them together. Some deletions—such
as the deletion of an unexplored link or an inaccessible link between two black
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holes—have no effect on the execution of the algorithm. On the other hand, the
deletion of a tree link can have a significant effect. The trees that the agents
build out from their homebases provide safe paths through the safe portion of
the network, GS . By eliminating a tree link, the adversary can cut an agent or
agents off from access to the coordinating information at the root of the tree in
which they are working.

In the following, we describe the algorithm from the point of view of an
agent and with the help of Figures 1–7, which show the movement of the agent
from the time it starts on a single work task until it finishes that task. The
square numbers in each of the diagrams refer to the cases where no deletion is
encountered. The circled letters in subsequent diagrams refer to cases where a
deletion is encountered.

3.2 Operations without Deletions

In the absence of link deletions, algorithm ExploreDG-LD solves the traditional
fault-free Dge problem using a logical structure similar to the algorithm pre-
sented in [12], which is however not fault-tolerant. Let us discuss the structure.

When an agent a first wakes up, it enters the initialization phase. It accesses
the whiteboard of its homebase to see if the node has a root marker. If there is
no root marker then agent a creates one. The root marker contains a map of the
tree rooted at the node, as well as all the information needed to find verification
and exploration work in the tree. In fact, every node visited by an agent has the
root marker for the subtree of which it is the root, even if that subtree is only
the node itself. We say that a root marker is active if its node has no parent;
otherwise, we say that a root marker is passive. Only active root markers are
used to coordinate work and, as we will see, a passive root marker only becomes
active because of the deletion of the link to its parent in the tree.

After initialization, the agent enters the main loop of the algorithm and
continues until the termination conditions are met. Each round, the agent looks
for work in the active root marker. If the current node does not have an active
root marker then the agent “grabs” the active root marker by following the
parent pointers at each node until the agent finds it. The agent first looks to see
if there is any verification work in the root marker. If there is no verification work
then it looks for exploration work. Finally, if there no exploration work then it
waits until work arrives, following the active root marker if it moves because of
a merger. We describe the work of the agent starting first with exploration, then
verification, and then merging.

Exploration is the work of exploring every accessible link in the network using
cautious walk. Agent a in tree T with root r, as shown in Figure 1, chooses a
link [u, v] for exploration and takes the tree path from r to u. The agent updates
all the passive root markers along the path noting that [u, v] is being explored.
It then uses the cautious walk technique to test if [u, v] is safe. It marks as
dangerous the port on u leading to [u, v] and then traverses [u, v] to v. If [u, v]
is a black link or v is a black hole then the agent is eliminated as shown in case
1 in Figure 1. The port on u remains marked as dangerous and no other agent
can enter it to be eliminated.
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Fig. 1. Exploration of unexplored link
[u, v] with no deletions. Cases include
encountering a black hole or black link

( 1 ), and successful return to its own

root ( 2 ) (possible movement of r due
to mergers is not shown).
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Fig. 2. Verification of internal link
[u, v] with no deletions. Cases include
the successful verification of the link
( 3 , 4 ).

If the agent is not eliminated then it checks to see if v has been previously
visited. If v has not been previously visited then a marks it as visited on its
whiteboard, creates a parent pointer pointing towards u, and creates a root
marker for the subtree rooted at v. It completes the cautious walk by returning
to u and marking the port to [u, v] as explored. It returns from u to r (or wherever
the active root marker is) by grabbing the root marker, adding v to all the
passive root markers along the way, marking [u, v] for verification, and marking
v’s other links for exploration. If v has been previously visited then a completes
the cautious walk and returns to r marking [u, v] for verification in all the root
markers along the way.

A safe return to r is shown as case 2 in Figure 1. Note that because of
merging, which we describe below, the active root marker may have moved. In
this case, the agent continues following the parent pointers up the tree, adding
the information about v to each root marker it passes, until it reaches the active
root marker. Its exploration is then done.

Verification is the work of determining whether every safely explored link is
internal or external to the tree in which the agent is working. If an external link
is found then the agent may try to merge the two trees connected by the link.

We look first at the verification of internal links as shown in Figure 2. Agent a
working in tree T with root r chooses link [u, v] for verification. By construction,
[u, v] can only be marked for verification if u ∈ T and [u, v] has already been
explored. The agent needs to determine if v ∈ T or v /∈ T . If v is in the map
of T ’s active root marker at r then the agent knows that [u, v] is internal and
it does not even have to leave r to complete the verification, which is shown as
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case 3 in Figure 2. Case 3 always occurs for tree links that have been marked
for verification.

If v is not in the map, it could be because v /∈ T or the agent from T that
explored v has not yet returned to the active root marker. For an internal link, it
must be the latter case. Agent a traverses to the root of v’s tree T ′ with root r′

to determine if T ⊆ T ′ (since r may have been merged with r′ during the agent’s
traversal). The agent traverses from r to u, across [u, v], and then from v to r′.
Since we can assume that the links are FIFO and we are looking at internal link
verification, we know that the agent that explored v must reach the active root
marker before a reaches it and a marks the link as internal on its return, which
is shown as case 4 in Figure 2. Agent a’s verification of [u, v] is finished.

Unlike during exploration, agent a does not mark [u, v] as being verified on all
the passive root markers on its traversal from r to u and v to r′, where T ⊆ T ′.
Instead, the agent checks to see if v is in the map of the subtree rooted at each
passive root marker it passes on the path from v to r′. If it is then a marks the
link as internal to that subtree. Otherwise, a does nothing. Note that all the root
markers from r to u already had [u, v] marked for verification by the agent that
explored [u, v] and the same is true for the link [v, u] on the path from r′ to v.
As a result, if a deletion were to create a new tree below the point where both u
and v are in the same subtree, the link would already be marked for verification
again in the new active root marker.

We now look at the verification of external links as show in Figure 3. Agent a
working in tree T with root r chooses link [u, v] for verification. In the external
case, node v belongs to some tree T ′ with root r′, where T �⊆ T ′. The agent
traverses from r to u, across [u, v], and from v to r′ using parent pointers to

find the active root marker in T ′, which is shown as case 5 in Figure 3. Along
the way it marks [v, u] for verification in every root marker, if it is not already
there. The agent must now decide whether to merge T ′ with T . If id(r′) > id(r),
where id() is a function that returns the id of a node’s root marker, it picks up
the active root marker to perform a merger. If id(r′) < id(r), it adds [v, u] to
the links in need of verification, if it is not already there, and begins working in
tree T ′. In either case, agent a’s verification of [u, v] is finished.

Merging is the work of adding one tree to another. Agent a has picked up the
active root marker in tree T ′ with root r′ and it traverses from r′ to v. Along
the way, it reverses the parent pointer to point towards the tree’s new root and
adjusts the maps of the passive root markers along the way to reflect the branch
of the subtree lost by the reversal. It then adds [v, u] as a tree link and traverses
from u to the active root marker, on r or elsewhere due to mergers, adding T ′

and its work information to the root markers along the way, including the active
root marker. The merger is then finished as shown in case 6 in Figure 3.

A reader familiar with the technique used in [12] would note two crucial
differences: unlike [12], in ExploreDG-LD every node visited by an agent has a
root marker, and there are no restrictions on the number of verifying agents for
the same tree. Precisely these two factors enable the agents to cope with link
failures and in particular to avoid deadlocks.
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Fig. 3. Verification of external link [u, v] and merging across link [v, u] with no

deletions. Cases include successfully verifying the link is external ( 5 ), and successfully

merging the two trees ( 6 ) (possible movement of r or r′ due to mergers is not shown).

3.3 Operations with Deletions

There are certain types of deletion that an agent never encounters or which have
very little effect on the agent. For instance, the deletion of an inaccessible link
or the deletion of a link between two unvisited nodes would have no effect on
the agent’s execution of the algorithm. The deletion of a known non-tree link is
worth noting in the agent’s map if it passes by it, but it does not have an effect
on the actions taken by the agent. As a result, we are only concerned with the
deletion of a tree link or of a link being explored or verified. When we discover
such a deletion, we work around it while taking steps to repair the damage. The
actions taken often depend more on what was deleted than on the work being
performed by the agents, so many of the deletion handling cases overlap. We
look at the actions taken by the agent in each case and note any task specific
differences.

As a consequence of how we have defined work—the exploration or verification
of a link or the merging of one root marker with another—it is only possible
for an agent to encounter two deletions during a single piece of work. It can
encounter a single deletion either on its way away or back towards the root of
its own tree. It can only encounter two deletions if it encounters one on the way
away from the root of its own tree and another on the way back. If an agent is
unable to return to its own root, it simply starts working wherever it is. The
cases presented below take into account both possibilities, one deletion or two,
where necessary. In each case, we describe what the agent does when its work is
“interrupted” by a deletion.

The cases cover the following work. Let r, r′, and r′′ be the roots of trees
T , T ′, and T ′′, respectively. For exploration, an agent a is exploring link [u, v],
where u ∈ T . For internal verification, an agent a is verifying link [u, v], where
u ∈ T , v ∈ T ′, and T ⊆ T ′. For external verification, an agent a is verifying link
[u, v], where u ∈ T , v ∈ T ′, and T �= T ′. For merging, an agent a is merging
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Fig. 4. Exploration of unexplored link
[u, v] with one deletion. Cases include

the deletion of a tree link ( A , D )
and the deletion of the unexplored link,

( B , C ).
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Fig. 5. Verification of internal link
[u, v] with one deletion. Cases include

the deletion of a tree link ( A , D ,

E ), and the deletion of the unverified

link ( B ).

across link [v, u], where v ∈ T ′ or v ∈ T ′′ depending on the number of deletions,
u ∈ T , T ′′ ⊂ T ′, and T �= T ′. Let [x, y] be a tree link on the path from the root
to the link being worked on, where x is closest to the root and y is closest to the
link.

Case A in Figures 4 to 6 applies to an exploring or verifying agent that finds
a tree link [x, y] deleted on the path from r to u. The agent returns from x to
the active root marker deleting the subtree rooted in x from the map of every
root marker along the way. The agent then looks for new work.

Case B in Figures 4 to 6 applies to an exploring or verifying agent that finds
that the link [u, v] it is meant to explore or verify has been deleted. The agent
returns from u to the active root marker marking the deletion on the map of
every root marker along the way. The agent then looks for new work.

Case C in Figure 4 applies to an exploring agent that finds that [u, v] has
been deleted after it has traversed it during the first step of its cautious walk. If
v is a new node, the agent creates a root marker and begins working in the new
tree rooted at v. If v has already been visited, the agent traverses from v to the
active root marker in v’s tree. The agent then looks for new work.

Case D in Figures 4 and 7 applies to an exploring agent that finds a tree
link [y, x] deleted on the path to r. The agent starts working for the new active
root marker at y.

Case E in Figures 5 and 6 applies to a verifying agent that finds a tree link
[y, x] deleted on the path from v to the root of v’s tree. If id(y) > id(r) then the
agent picks up y’s root marker and merges it. If id(y) < id(r) then the agent
adds [v, u] to the links to be verified, if it is not already there, and starts working
for the new active root marker at y.
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Fig. 6. Verification of external link [u, v] and merging across link [v, u] with one

deletion. Cases for verifying ( A , B , E ) and merging ( F , G , H ) include the

deletion of a tree link ( A , E , F , H ) and deletion of the unverified link, ( B , G ).

Case F in Figures 6 and 7 applies to a merging agent that finds a tree link
[x, y] deleted on the path to v. The agent deletes the subtree rooted in y from
the now active root marker on x and starts working there.

Case G in Figures 6 and 7 applies to a merging agent that finds the link
[v, u] deleted. The agent starts working for the active root marker at v.

Case H in Figures 6 and 7 applies to a merging agent that finds a tree link
[y, x] deleted on the path from u to r. The agent starts working for the new
active root marker at y.

4 Correctness and Complexity

4.1 Absence of Failures

We first prove that, in absence of failures, algorithm ExploreDG-LD is a correct
solution to the Dge problem. The proof follows a series of lemmas.

Lemma 1. In the absence of deletions, an agent that is verifying will finish
verifying within finite time.

Lemma 2. In the absence of deletions, an agent that is exploring will finish
exploring within finite time.

From Lemmas 1 and 2 it follows that:

Lemma 3. In the absence of deletions, at any time, there is at least one agent
alive that is not waiting.

Lemma 4. In the absence of deletions, every link in E\EI is eventually explored
and those in GS are also verified.
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Fig. 7. Agent encounters second deletion during exploration, verification, or merging.
Cases include, for returning exploring and verifying agents, the deletion of a tree link

( D ), and, for merging agents, the deletion of tree links ( F , H ) and the deletion of

the verified link ( G ).

Lemma 5. In the absence of deletions, the tree of a verifying agent that becomes
an exploring agent is merged within finite time.

Proof. When a verifying agent verifies an external link and finds the tree on the
other side has a lower id than its own tree, it starts working for that tree. Let
a2 be the verifying agent from tree T2 with root r2 that is verifying edge [v2, u1]
between T2 and T1 and has arrived on root r1. Let id(r1) < id(r2). Since T1 has
a lower id root marker, a2 marks the edge it was verifying, but in the opposite
direction, [u1, v2], for verification in T1’s root marker, and then starts working
there. Without loss of generality, assume that all other agents are currently
working on exploration and there are no other links to be verified. Agent a2
immediately chooses to verify [u1, v2] and returns to r2. Since T2 has a higher id
root marker, agent a2 picks it up and returns to r1 to merge T2’s root marker
with T1’s. Hence the lemma follows.

While it is possible that other agents are already trying to merge the two trees,
we know that the mergers are only performed by agents from lower id trees,
so we still have a finite number of mergers that can take place and no cycle of
mergers can emerge.

We can now prove the following.

Theorem 1. Algorithm ExploreDG-LD correctly solves the Dge problem in the
absence of failures.

4.2 Dynamic Link Failures

We now prove that algorithm ExploreDG-LD is also a correct solution to the
Dge-ld problem. That is
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Theorem 2. Algorithm ExploreDG-LD correctly and within finite time solves
the Dge-ld problem by constructing a rooted spanning tree of GS, marking all
safe edges as such, and marking all ports in GS leading to a black hole or to
a black edge as dangerous. The total number of moves by the agents is at most
O(k2 · nS + nS ·m+ k · nS ·D).

To prove the theorem, we prove the correctness of algorithm ExploreDG-LD
by showing that, while deletions can slow the algorithm, they cannot stop the
algorithm from making progress.

We start by noting that because of our use of cautious walk, a team size of
k = f + 1, where f = |FB | + 2|EB \ (EI ∪ FB)| is the number of links incident
on safe nodes whose traversal will cause an agent to be teliminated, and the
assumption that deletions do not eliminate agents, we can say that at any time,
there is always one agent alive.

We next look at work that is aborted as the result of deletion. We say that
a work task—exploration, verification, or merging—is aborted if the agent is
unable to reach the link being explored, verified, or merged over, respectively.

Lemma 6. Within finite time, an agent completes aborted work.

Note that in the case of exploration and verification, the active root marker may
have moved farther away due to a merger or closer due to a deletion.

We now show that there is always at least one edge leading out of any tree or
subtree explored by the agents that cannot be deleted by the adversary.

Let GE be the explored portion of the graph. Let GSD = (VSD , ESD ) be the
safe portion of the graph GS after the adversary has performed all its deletions.
Let T = (VT , ET ) be any tree or portion thereof, where VT �= ∅, built by the
agents during the algorithm. We define a tree border edge as any safe edge
connecting two safe nodes where one end is in the tree and one is not in the tree.
Let the set of tree border edges be ETF = {e ∈ ES : e = [u, v]∧u ∈ VT ∧v /∈ VT }.
For any such tree or subtree thereof that covers less than all the nodes, we show
that there is a tree border edge that cannot be deleted.

Lemma 7. For any tree or subtree T ⊆ GE , where VT ⊂ VS , there is a safe
edge e ∈ ETF such that e ∈ ESD .

Proof. By contradiction, assume that no such edge e ∈ ETF ∩ESD exists. Since
we have assumed that no edge is in ETF and ESD , the adversary deletes the
all edges in ETF . Since VT ⊂ VS , T cannot span the entire safe portion of the
graph. As a result, the deletions of all the edges in ETF disconnects T from the
rest of the graph, contradicting our assumption that deletions do not disconnect
the safe portion of the graph.

We now focus on work in the trees created by the agents. Each tree has an active
root marker. We show that, with one exception, all tree border edges are marked
for work in the tree’s active root marker, being worked on, or become internal
within finite time. The one exception comes as the result of the deletion of a
tree link. For the links that become internal, we assume that there is an agent
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available to do the work that leads to this outcome. We show later that such an
agent eventually becomes available.

When the adversary deletes a tree link, it creates a subtree in the tree where
the deletion takes place, even if that subtree is only a single node. We call a
subtree created in this way a deletion subtree and the tree to which the deleted
edge currently belongs the original tree.

Let TO be the original tree and TS be the deletion subtree created by the
deletion of tree edge eD. Let EOS be the tree border edges, if any, that connect TO

to TS and ESO be the same edges in the opposite direction. Let EOS = ESO = ∅,
if the tree is not an original tree or a deletion subtree, respectively.

Lemma 8. For any tree T ⊆ GE with an active root marker, where VT ⊂ VS,
all edges e ∈ ETF \ EOS are marked for work in T ’s active root marker, being
worked on, or are marked as internal within finite time.

We now consider what happens to the links in EOS . The reason that they are
not marked for work is because they are marked internal to TO even though
they are now external due to the deletion of eD. By contrast, the links of ESO ,
which are the same links as EOS but in the opposite direction, are automatically
marked for verification in TS’s active root marker. By construction, when an
agent verifies an internal link, it only marks the link as internal in the passive
root markers on its path if both ends are in the subtree rooted in the passive
root marker; otherwise, the link remains marked for verification. The set ESO

are exactly those links in TS that are internal to TO before the deletion but were
marked for verification in TS ’s passive root marker when it became active.

We now prove that the links in EOS are guaranteed to be marked for work in
TO’s active root marker if there is previously reported work in TS , there is an
agent working in TO, and there are no other connections to TS ; otherwise, there
is no guarantee they are marked for work.

Lemma 9. Let eW ∈ TS \ ESO be marked for work in TS and let TS have no
agents working for it. Let an agent a in TO choose to work on eW . Within finite
time, the links in EOS are marked for work in the active root marker of TO.

This result suggests that there is two circumstances when a deletion subtree is
never detected: the subtree contains no agents and no work except for the links
in ESO , or the subtree contains agents exploring frontier or black links and no
other work except for the links in ESO . We say such a deletion subtree is empty.

Lemma 10. The links EOS leading to an empty deletion subtree are never
marked for work.

These empty trees do not affect the correctness of the algorithm.

Lemma 11. The failure to detect a deletion subtree with no other work than
ESO does not affect the correctness of the algorithm.

The same is true of the deletion of non-tree links, although they can and do
affect the complexity of the algorithm.



312 P. Flocchini et al.

Lemma 12. The deletion of a non-tree link does not stop the agent from com-
pleting its current work.

We now need to deal with the assumption in Lemma 9 that there must be an
agent in TO that chooses to work on eW ∈ TS in order to guarantee that the links
in EOS are marked for work and in Lemma 8 that there is an agent available
to verify [v, u] in the deletion subtree Ti, where i ≥ 1. We show that before
termination there must always be an agent working in the network and because
that agent must eventually work on edges that cannot be deleted, every tree is
eventually worked on.

Lemma 13. At any time before termination, at least one agent is performing
work.

Corollary 1. An agent is eventually available to do the work in TO described
in Lemma 9 and in deletion subtree Ti, where i ≥ 1, described in Lemma 8.

We can now prove the correctness of the algorithm.

Lemma 14. Within finite time, all accessible links have been visited and all
surviving agents terminate.

Lemma 15. After at most O(k2 ·nS +nS ·m+k ·nS ·D) moves, all agents that
are still alive terminate.

The proof of the main result, Theorem 2, now follows.
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