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Abstract: An extensive body of evidence exists of the impact that specific edge labelings have on the
communication complexity of distributed problems. It has been long suspected that these very different
labelings share a common property, named sense of direction. In spite of the large number of investiga-
tions, and of the obvious practical importance, a formal characterization of this property did not exist.
In this paper, we finally provide a formal definition of sense of direction, making explicit the very specific
relationship between three factors: the labeling, the topological structure, and the local view that an entity
has of the system. In a way, sense of direction is the capability of a node in the system to use the labeling
to translate the local view of its neighbors into its own. Using the formal definition as an observational
platform, we describe several properties which allow the translation process to be possible beyond the
immediate neighborhood. Finally, we identify four general classes of labelings and analyze their properties;
these classes include all the labelings used in the literature. q 1998 John Wiley & Sons, Inc. Networks 32:
165–180, 1998

1. INTRODUCTION work, where each entity has a local nonshared memory
and can communicate by sending messages to and receiv-
ing messages from its neighbors. The entire system canA distributed system is a collection of autonomous entities
be viewed as a graph where each node corresponds to(e.g., processors) connected by a communication net-
a system entity and each edge corresponds to a direct
communication link between two entities. Every entity

Correspondence to: P. Flocchini; e-mail: flocchini@iro.umontreal.ca has a distinct label (e.g., port number) associated to each
A preliminary version of this paper appeared in the proceedings of its incident links; every edge has, thus, two labels, one

of the 1st Colloquium on Structural Information and Communication for each of its incident nodes. A classical example is a
Complexity, Ottawa, May 6–8, 1994

ring network where each edge is labeled ‘‘right’’ at anContract grant sponsor: NSERC
incident node and ‘‘left’’ at the other.Contract grant number: A2415
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166 FLOCCHINI, MANS, AND SANTORO

bels (or labelings) have a dramatic effect on the commu- All these labelings differ greatly from each other: the
‘‘distance’’ labeling in chordal rings, the ‘‘dimensional’’nication complexity of distributed problems. This fact has

been made explicit by the surprising result of [28]: The labeling in hypercubes, the ‘‘neighboring’’ labeling in
arbitrary graphs, etc. Still, the way they impact the com-‘‘distance’’ labeling of a complete graph allows the mes-

sage complexity of the election process to be reduced plexity (i.e., the manner in which the solution algorithms
exploit the labelings) is similar, hinting of the presencefrom V(n log n) (for the unlabeled case [22]) to O(n) ,

where n is the number of entities in the system (see also of a common extremely useful property. This property
has been named sense of direction [42] and is generally[33, 45]) . Since this first result, the evidence of the im-

pact of specific labelings in particular graphs has been described as the presence of some ‘‘global consistency’’
of the labeling.accumulating in recent years. For example, in particular

chordal rings without labeling, the election process re- The knowledge acquired by most investigations con-
centrates on specific problems in particular topologiesquires V(n log n) messages; with a ‘‘distance’’ labeling,

there exist algorithms whose complexity depends on the with particular labeling: It provides information on in-
stances of sense of direction. Other information on sensechord structure and can be linear [3, 21, 32, 37, 38, 49].

Similarly, O(n) election algorithms exist for a hypercube of direction is given implicitly by the related investiga-
tions on the impact of the network structure in anonymouswith the traditional ‘‘dimensional’’ labeling [12, 40, 48,

51]; without labeling, the best-known complexity is O(n systems [2, 4, 14, 25, 36, 52], on the difference between
labeled and unlabeled anonymous systems [23], and onlog log n) [10]. An even simpler O(n) technique has

been found if the hypercube has a particular ‘‘distance’’ the relationship between graph symmetry and labelings
[15, 52] and, to some extent, by the investigations onlabeling [12]. In systems of unknown topology (the so-

called arbitrary graph case) , the availability of the implicit routing (see [50] for a survey).
Unfortunately, in spite of the large number of investi-‘‘neighboring’’ labeling (or, equivalently, knowledge of

the identifiers of the neighbors) reduces the complexity gations, of the extensive body of knowledge, and of the
evident practical importance, a formal definition of senseof the election problem from V(e / n log n) (for the

unlabeled case [17, 41]) to O(n log n) messages (where of direction did not exist. Actually, even an understanding
of what ‘‘global consistency’’ is and why it works in ae is the number of communication links) . With the same

labeling, the message complexity of the depth-first tra- context larger than the single instances has been missing.
In this paper, we provide a formal definition of senseversal drops from V(e) to O(n) [44]. The same reduc-

tions for both the election and depth-first traversal prob- of direction. In particular, we define those properties
which make it possible to reduce the communication com-lems can be obtained also with the simpler ‘‘distance’’

labeling [31]. plexity, a task which was not exploited in the previous
investigations. This is achieved by identifying the mecha-The properties of some of these labelings have been

intensely studied and applied. For example, the ‘‘dis- nisms which operate in the reduction and determining the
conditions for the existence of those mechanisms.tance’’ labeling in chordal rings and complete graphs has

been used for the weak unison problem [20] and for fault- From the definition, it emerges that in sense of direc-
tion there is a very specific relationship among three fac-tolerant election [30, 35]. The ‘‘dimensional’’ labeling

in hypercubes has been investigated for its impact on tors: the labeling, the topological structure, and the local
view that an entity has of the system. In a way, sense ofcomputability when the system is anonymous and possi-

bly faulty [24, 26]. The complexity of constructing the direction is the capability of a node in the system to use
the labeling to translate the local view of its neighborstraditional ‘‘left–right’’ labeling of a ring has been stud-

ied [2, 19, 46], and lower bounds for the election problem into its own.
Using the formal definition as an observational plat-in the presence of such a labeling have been established

[6]. The construction of the traditional labelings of the form, we derive several previously unknown properties
well-known topologies (hypercubes, tori, etc.) has been of sense of direction as well as properties implied by
the object of extensive study [47]. having sense of direction in a system.

Incomplete labelings of specific topologies have also Based on the formal definition, four general classes of
been the object of investigations (e.g., [3, 18, 43]) . It labelings are identified and defined. These classes include
has been shown that even in this case there is an impact all the labelings used in the field. We have shown in [13]
on complexity. For example, it is possible to elect a leader that all the existing results for general graphs follow as
in a complete graph with O(n) messages [28] [instead simple applications of the definition or of the derived
of V(n log n)] even if each node has the ‘‘distance’’ properties.
labeling on only O(1) appropriate incident arcs [3] . In The paper is organized as follows: In the next section,
unlabeled torus and chordal rings (with one chord of we give an informal description of sense of direction. In

Section 3, we introduce the notion of local edge and nodelength approximately
√

N) , a linear communication cost
can be achieved [29, 39]. labelings, and, on the basis of these notions, we formally
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Fig. 1. Labeling which is an SD.

define sense of direction. In Section 4, we discuss proper- and y , in the set of walks starting from x , the ones which
terminate in y .ties of sense of direction which allow a node to derive

information about the local view of other nodes in the The second property, which is a consequence of the
first, is the existence of a relationship between edge label-system. In Section 5, we introduce several instances of

sense of direction, group them in four general classes, ings and local node names. Each node x refers to the
other nodes using local names. Let us stress that theseand analyze their properties. Finally, in Section 6, we

discuss some open problems. local names are not necessarily identities ( i.e., unique
global identifiers) : The system could be anonymous. The
set of local names given by x will be called the local view
of x . Let bx(y) be the local name under which y is known2. AN INFORMAL DESCRIPTION
at x . Obviously, this name is the one which will be used
whenever x wants to refer to y .In this section, we provide an intuitive description of

the three fundamental properties which characterize the Intuitively, in a labeled graph with sense of direction,
there is a function which maps the sequences of labelsnotion of sense of direction. These properties are (some-

times obscurely) implicit in the previous (topology-de- associated to the walks from x to y to the local name
bx(y) used by x to refer to y .pendent) results.

First of all, in sense of direction, there is a relationship The third property is, perhaps, the most important
property of sense of direction and refers to the ‘‘transla-between labeling and capability of distinguishing among

walks. Each node x has a unique label associated to each tion’’ capability of a node. This property can be described
by an example:of its incident edges; let lx(»x , z …) be the label associated

by x to the edge »x , z … . Consider the situation of node x sending to its neighbor
z information about a node y (see Fig. 2) . Node y isIntuitively, when the labeling is a sense of direction it

is possible to understand, from the labels associated to known at x as bx(y) ; thus, the message sent by x will
contain information about a node called ‘‘bx(y) .’’ Sup-the edges, whether different walks from any given node

x end in the same node or in different nodes. pose that this information is received by z along the edge
locally labeled with lz( »z , x …) .For example, consider the system depicted in Figure

1: The communication topology is a 2-dimensional mesh Informally, if there is sense of direction, node z , based
on the label lz( »z , x …) and on the name bx(y) , can deducewhere the edge labels are from the set {north, south, east,

west} and are assigned in the natural globally consistent that the received information is about the node locally
known as bz(y) .way. This labeling is a sense of direction (for an appro-

priate choice of the node names, as discussed later) . Con-
sider, for instance, the three walks, starting from X , whose
associated labels are c1 Å [north, north, east, south] , c2

Å [east, east, north, west] , and c3 Å [east, east] . Using
the rules of the globally consistent labeling, it is trivial
to deduce that the two walks corresponding to c1 and c2

will end in the same node Y , while the one corresponding
to c3 will end in a different node V .

In other words, when there is sense of direction, it Fig. 2. Communication of information about node y from
node x to z .must be possible to distinguish for each pair of nodes, x
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In other words, when a labeling is a sense of direction, in G , and let C : L/ r L/ be defined as follows: C(a)
Å [c(am) , . . . , c(a1)] . By definition of C, we have thatthe decoding function must be global: Each node can

consistently translate the local views of its neighbors.
Together these three properties indicate that, in a la- Property 1. ∀p √ P[x, y] , Lx(p) Å C(Ly(pR)) , where

beled graph with sense of direction, there is a very specific pR √ P[y, x] is the reverse of walk p.
relationship between edge labels, local names, and walks.
The nature of this relationship, and, thus, the definition Each node x refers to the other nodes using local
of sense of direction, will be formally described in the names. Let us stress that these local names are not neces-
following sections. sarily identities ( i.e., unique global identifiers) . In fact,

the system could be anonymous. A local node-labeling
(or naming) function for x √ V is an injective function

3. SENSE OF DIRECTION bx : V r N, where N is a set of names, such that ∀y , z
√ V bx(y) Å bx(z) iff y Å z .

Let G Å (V, E) be a connected graph where nodes corre- The naming function b for (G , l) is the set of local
spond to entities and edges correspond to direct bidirec- naming functions, that is, b Å {bx : x √ V }. We shall
tional communication links between the entities. Let E(x) denote by (G , l, b) the labeled graph with naming b.
denote the set of edges incident to node x . Each node has a local view of the system. The local

A walk in G is a sequence of edges [ »x0 , x1 … , »x1 , x2 … , view W ( x) of node x consists of the set of names {bx(y) :
. . . , »xm01 , xm …] , »xi , xi/1 …√ E(xi ) , in which the endpoint y √ V } used by x .
of one edge is the starting point of the next edge. A walk A naming function is said to have name symmetry
is a cycle if the starting point x0 coincides with the ending when, for any two nodes x and y , there exists a relation-
point xm . A path is a walk where all vertices are distinct. ship between the name that x associates to y and the name

Let P[x] denote the set of all the walks with x √ V as that y associates to x , that is, if there exists a bijection
a starting point, and let P[x , y] denote the set of walks m : N r N, such that ∀x , y √ V, bx(y) Å m(by(x)) . The
starting from node x √ V and ending in node y √ V . naming function b is homonymous if ∀x , y √ V, bx(x)

Å by(y) , that is, it assigns the same ‘‘self ’’ name to
every vertex.3.1. Local Edge Labelings, Local Node

In the following, for clarity, names refer to node labelsLabeling, and Local View
whereas labels refer to edge labels.

Each node x √ V associates a label to each incident edge
e √ E(x) . Given a graph G Å (V, E) and a set L of

3.2. Sense of Directionlabels, a local edge-labeling (or labeling) function for x
√ V is any function lx : E(x) r L.

We will now introduce the formal definition of sense ofThe labeling l of G is the set of local labeling func-
direction.tions, i.e., l Å {lx : x √ V }. The resulting labeled graph

A coding function f of a graph (G , l, b) is a functionwill be denoted by (G , l) .
that associates names to sequences of labels of walksWe now extend the definition of the labeling func-
in G .tion from edges to walks. Given a labeling l and a node

x √ V, let Lx : P[x] r L/ be the walk-labeling function
Definition 1. Coding Function:defined as follows: For every walk p √ P[x] ,

Given a labeling l, a coding function for l is any
function f : L/ r N < {w} , where w ∉ N is a distin-Lx(p)
guished element called the null name, such that

Å (lx( »x , x1 …) , lx1
( »x1 , x2 …) , . . . , lxm01

( »xm01 , xm …)) ,

f (a) √ N iff ∃x √ V, p √ P[x] : a Å Lx(p) .
where p Å [ »x , x1 … , »x1 , x2 … , . . . , »xm01 , xm …] .

If a labeling l is injective, the labeling is called a local
Definition 2. Consistent Coding Function:orientation. A labeling l has edge symmetry if there exists

A coding function f is consistent in (G , l, b) iff ∀x,a bijection c : L r L, such that ∀ »x , y … √ E , lx( »x , y …)
y √ V, p √ P[x, y] ,Å c(ly( »y , x …)) , that is, knowing the label at one side

allows one to derive the label on the other side of the
f (Lx(p)) Å bx(y) .edge. We say that a labeling is a locally symmetric orien-

tation when it is a local orientation with edge symmetry.
Let l be a locally symmetric orientation, let a Å [a1 , Intuitively, the coding function is consistent if it allows

the node to understand, from the labels associated to the. . . , am] be a sequence of labels corresponding to a walk
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h(lx( »x , y …) , f (Ly(p))) Å bx(z) .

The existence of a consistent decoding function is
clearly a crucial property since it would allow the nodes
to solve global problems while working solely and truly
in a local mode.

Definition 5. SD—Sense of Direction:Fig. 3. Graph where consistency exists only for nonhom-
Given (G, l, b) , l is a sense of direction (SD) iff theonymous namings.

following conditions hold:

1. There exists a consistent coding function f for l.edges, whether different walks from any given node x
2. There exists a consistent decoding function h for f.end in the same node or in different nodes.

By the above definition,
Note that condition 1 implies that l must be a local orien-
tation; however, it does not imply condition 2 (see Exam-Property 2. If f is consistent, then ∀x, y, z √ V, ∀p1
ple 3) .√ P[x, y] , p2 √ P[x, z] ,

Example 1. Labeling which is an SD:
f (Lx(p1)) Å f (Lx(p2)) iff y Å z .

Consider a system (G , l, b) where

In other words, if a coding function is consistent, then G is a 2-dimensional mesh;
walks originating from the same node are mapped to the l is the natural ‘‘compass’’ assignment of the labels L
same name if and only if they end in the same node. Å {north, south, east, west} (see Fig. 1) . The label-

Notice that if b is homonymous any consistent coding ing clearly has edge symmetry, for example, north
function must map to the same name all sequences of Å c(south) .
labels associated to cycles. Let us stress that consistency b is the following function: ∀x , y √ V, if x x y, bx(y)
is not related to homonymy. In fact, for example, in the is the (lexicographically ordered) sequence of labels
labeled square of Figure 3, consistent coding functions corresponding to the shortest path between x and y ; if
exist only for nonhomonymous namings b. This is due xÅ y , bx(x) is the empty string. For example, in Figure
to the fact that any consistent coding function f must 1, bx(y) Å [east, north] .
be such that bx(x) Å f (ara) x f (brb) , while by(y)
Å f (brb) , that is, nodes x and y must use different ‘‘self ’’ Note that, in this system, N , L*.
names for consistency to exist. We will now show that this labeling l is an SD. Given

A decoding function h for f in a graph (G , l, b) is a a sequence a of labels, let a
V

be the sequence obtained
function which associates a name to a given name and a from a by deleting every pair of labels l , l * such that l
label. Å c( l *) and lexicographically sorting the resulting se-

quence. To show that l is an SD, we show that there exists
Definition 3. Decoding Function: a consistent coding function f in (G , l, b) . Consider, for

Given a coding function f, a decoding function h for example, the function f : L/ r N < {w} such that
f is any function h : L 1 N r N < {w}, where w ∉ N
is a distinguished element called the null name , such that

f (a) Å Ha
V

if ∃x √ V, p √ P[x] : a Å Lx(p)

w otherwise.h( l , q) √ N iff ∃ »x , y … √ E(x) ,

p √ P[y] : l Å lx( »x , y …) and q Å f (Ly(p)) . It is easy to verify that function f , applied to any walk
between x and y , coincides with bx(y) . Note that the

To guarantee a consistent ‘‘translation’’ mechanism, a name does not necessarily correspond to an existing walk.
decoding function requires an additional property called In the example of Figure 1, we have f ([north, east, north,
consistent local decoding. south]) Å [east, north] Å bx(y) and f ([east, west, north,

east]) Å [east, north] Å bx(y) . It is easy to see that the
function h( l , n) Å f ( l + n) , where + is the concatenationDefinition 4. Consistent Decoding Function:

Given a consistent coding function f, a decoding operator, is a consistent decoding function for f . This
labeling is an instance of contracted sense of direction,function h for f is consistent iff ∀ »x, y … √ E(x) ,

p √ P[y, z] , which will be discussed in Section 5.3.

8U1F 0813/ 8u1f$$0813 08-17-98 13:56:26 netwa W: Networks
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it follows that f ( p) Å f (q) but this contradicts the fact
that, from node R , f ( p) x f (q) . This proves that l is a
WSD but not an SD.

We now see a condition which guarantees the existence
of a consistent decoding function:

Fig. 4. Labeling which is not an SD.

Definition 7. Let N ⊆ L/ . A coding function f is associa-
tive iff, ∀ »x, y… √ E(x) , ∀p √ P[y] ,

Example 2. Labeling which is not an SD:
Consider the system (G , l) of Figure 4. To see that

f (lx( »x , y …) + f (Ly(p))) Å f (lx( »x , y …)) + Ly(p)) ,l cannot be an SD for any choice of b, consider the four
paths p1 Å [ »A , B … , »B , C …] , p2 Å [ »A , C …] , p3 Å [ »D ,

where + is the concatenation operator.E … , »E , F …] , and p4 Å [ »D , G …] . For these walks, we
should have f (LA(p1)) Å f (LA(p2)) Å bA(C) and
f (LD(p3)) x f (LD(p4)) . On the other hand, we have Theorem 1. Let N ⊆ L/ and l be a WSD. If the corre-
LA(p1) Å [1, 2] Å LD(p3) and LA(p2) Å [3] Å LD(p4) , sponding coding function f is associative, l is an SD.
which proves that the coding function is not consistent

Proof. Consider the following decoding function h( l ,regardless of b.
n) Å f ( l + n) , where l √ L, n √ N and + is the concatena-
tion operator. Note that N ⊆ L/ ; thus, [ l + n] √ L/ . We

3.3. Weak Sense of Direction have that ∀ »x , y … , ∀p √ P[y , z] ,
and Associativity

A weaker form of sense of direction in a system (G , l, h(lx( »x , y …) , f (Ly(p))) Å f (lx( »x , y …) + f (Ly(p)) .
b) is represented by a labeling l such that there exists a
consistent coding function f , but not necessarily a consis- By definition of the associative coding function, we have
tent decoding function h for f . that

Definition 6. WSD—Weak Sense of Direction:
f (lx( »x , y …)) + f (Ly(p)) Å f (lx( »x , y …) + Ly(p)) .Given (G, l, b) , l is a weak sense of direction (WSD)

iff there exists a consistent coding function f.
But,

It is important to note that not every WSD is an SD,
that is, there are systems where no consistent coding func- f (lx(»x , y …) + Ly(p)) Å bx(z) .
tion can be consistently decoded. Consider the following
example: Thus, h(lx( »x , y …) , f (Ly(p))) Å bx(z) , and the de-

coding function h( l , n) Å f ( l +n) is consistent for f in
Example 3. Consider the labeled graph (G , l) shown in (G , l, b) .
Figure 5. It is simple to find a naming function b and a j
consistent coding function such that l is a WSD in (G ,
l, b) , for example, by using the recognition algorithm
of [9] . However, for any choice of consistent coding
function f , there exists no corresponding decoding func-
tion: l is not an SD. The proof can be found in [9]; here,
we give a sketch of it.

Let f be a consistent coding function for l. From node
X , we must have f ([a , b]) Å f ([c , d]) , and from node
W , f ([e , g]) Å f ([c , d]) ; it follows that f ([a , b])
Å f ([e , g]) . Let h be a consistent decoding function.
From node Y , we would have h(m , f ([a , b])) Å f ( p) ;
thus,

h(m , f ([e , g])) Å f ( p) . (1)

Fig. 5. A labeling which is WSD but not SD.Consider now node Z ; h(m , f ([e , g])) Å f (q) . By (1),
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4. TRANSLATION OF LOCAL VIEWS Proof. Let l have edge symmetry, and let c be the
edge-symmetry function. Consider now any xi , xj in the
walk. If i ° j , the property holds by Property 4. Let iIn the previous section, we have seen that the availability
ú j . By definition of the consistent coding function,of sense of direction in (G , l, b) implies the existence
bxi

(xj) Å f (ai ,j) , where ai ,j Å Lxi
([ »xi , xi01 … , . . . , »xj/1 ,of a decoding function h which allows any node x to

translate the local view of its neighbors into its own local xj…]) Å [lxi
( »xi , xi01 …) , . . . , lxj/1

( »xj/1 , xj…)] . The se-
view. quence ai ,j is clearly derivable since, by definition of the

In this section, we consider a system (G , l, b) , where edge-symmetry function, lxl
( »xl , xl01 …) Å c(lxl01

( »xl01 ,
l is an SD, and focus on what other knowledge of the xl …)) , for any xl √ p. j
system can be derived from the viewpoint of a node x .
We discuss the properties of SD which allow x to derive

4.2. Translation of Remote Walksinformation about the local views of other nodes. In par-
ticular, we show that, under certain conditions, the avail- The properties of the previous section refer to the knowl-
ability of SD allows the translation process to be possible edge which can be derived from a node x from the labels
beyond the immediate neighborhood. of a walk incident on x . We consider now what x can

derive from the labels of a walk which might not con-
tain x .4.1. Translation of Incident Walks

Property 6. Given a system (G, l, b) , where l is an SD,The following properties of SD express what knowledge
let p Å [ »y0 , y1 … , »y1 , y2 … , . . . , »ym01 , ym …] and acan be derived by x from the sequence of labels corre-

sponding to a walk in P[x] . Å Ly0
(p) . If node x knows the sequence a and the consis-

Given a system (G , l, b) , where l is an SD, let p tent coding function f, we have that
Å [ »x0 , x1 … , »x1 , x2 … , . . . , »xm01 , xm …] and let a

1. For any yj √ p, node x can derive {by0
(yj) : j Å 1 ,Å Lx0

(p) be the corresponding sequence of labels. If
node x0 knows the sequence a and the consistent coding 2 , . . . , m};
function f , then the following properties hold: 2. For any yi , yj √ p, i õ j, node x can derive

{byi
(yj)};

Property 3. Node x0 can derive the local names of all 3. If l has edge symmetry, node x can derive
the nodes on the walk, that is, {bx0

(xi ) : i Å 1 , 2 , . . . , {byi
(yj)} , for any yi , yj √ p.

m}.
Proof. Analogous to the proofs of Properties 3, 4,

Proof. By definition of a consistent coding function, and 5. j
to derive bx0

(xi ) , it suffices to compute f (ai ) , where ai

Å Lx0
( [ »x0 , x1 … , »x1 , x2 … , . . . , »xi01 , xi …]) . j That is, x can derive the name of any node in the walk

in the local view of the origin of the walk. Moreover, it
That is, x0 can translate into its local view the names can derive how a node yi refers to the nodes following it

of all the nodes on the walks. It can actually do more, as in the walk and, in the presence of edge symmetry, it can
expressed by the following: derive the name of any node in the view of any other

node.
Property 4. For any xi , xj in the walk, i õ j, node x0 Note that all the translation of remote walks described
can derive {bxi

(xj) : j Å 1 , 2 , . . . , m; i Å 1 , 2 , . . . , j}. above hold without requiring x to know the local name
of any node in the walk.

Proof. To derive the name that xi associates to xj , with
Further note that unless x is in the walk (which is the

i õ j , it suffices to use the coding function. In fact, by
case covered by Section 4.1) it cannot, in general, trans-

definition of consistent coding function, bxi
(xj) Å f (ai ,j) , late those names in its own local view.

where ai ,j Å Lxj
([ »xi , xi/1… , »xi/1 , xi/2 … , . . . , »xj01 , xj…]) . Knowledge of the local name of the origin of the walk

j does not seem to make any difference for the systems
considered here. In the next section, we consider the im-

In other words, x0 can translate into the local view of pact of such a knowledge in stronger systems.
xi the names of the nodes following xi in the walk.

If there is also edge symmetry, the translation capabili-
4.3. Translation with Symmetric Senseties of x0 increase, as shown by the following:
of Direction

Property 5. If l has edge symmetry, node x0 can derive In this section, we show that, in systems with both edge
{bxi

(xj) : i, j Å 1 , 2 , . . . , m} for any xi , xj in the walk. and name symmetry, knowledge of the origin of a walk
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has an impact on the translation capabilities of a node
outside the walk.

Definition 8. SSD—Symmetric Sense of Direction:
Given (G, l, b) , l is a symmetric sense of direction

(SSD) if l is an SD with edge symmetry and b has name
symmetry.

Example 4. Consider the system (G , l, b) of Example
1. Recall that bx(y) is the (lexicographically ordered)
sequence of labels corresponding to the shortest path be-
tween x and y . We can easily see that b has name symme-
try and, thus, l is an SSD. In fact, for every x √ V, bx(x)

Fig. 6. Example of coordinate SD.
is the empty string, and for x x y ,

C(bx(y)) Å [c( lk) , c( lk01) , . . . , c( l0)] Å by(x) , view the name of the immediate neighbor y1 of y0 . We
can now obtain the following:

where bx(y) Å [ l0 , l1 , . . . , lk] and C is the walk-symme-
try function. Note that, due to the particular choice of Property 8. Node x can derive the local names bx(yi )
labels, it is not necessary to reorder the sequence of labels of all yi √ p.
to obtain the name that y associates to x .

Proof. Let c be the edge-symmetry function and let
m be the name-symmetry function. By Property 7, x canWe will now show the impact of SSD on the translation
derive the name bx(y1) . By induction, assume that x canof local views. Given a system (G , l, b) , where l is an
derive bx(yi ) and consider bx(yi/1) . By definition of theSSD, let p Å [ »y0 , y1 … , »y1 , y2 … , . . . , »ym01 , ym …] and a
consistent decoding function,Å Ly0

(p) . Let node x know the sequence a, the consistent
decoding function h , and the name bx(y0) that corre-

bx(yi/1) Å h(lyi/1
(»yi/1 , yi …) , bx(yi )) .sponds to the origin of p.

By definition of the edge-symmetry function,Property 7. Node x can derive the local name bx(y1)
of y1 .

lyi/1
(»yi/1 , yi …) Å c(lyi

( »yi , yi/1 …)) ,
Proof. Let c and m be the edge- and the name-symme-

try function, respectively. By definition of the name-sym- and by the induction hypothesis, bx(yi ) is derivable. The
metry function, property follows. j

by0
(x) Å m(bx(y0)) and bx(y1) Å m(by1

(x)) .

5. CLASSES OF SENSE OF DIRECTION
By definition of the consistent decoding function,

In this section, several instances of SD are introduced.
These instances include all the labelings used in the litera-by1

(x) Å h(ly1
( »y1 , y0 …) , by0

(x)) .
ture on senses of direction and are grouped in four general
classes: cartographic, chordal, contracted, and neigh-By definition of the edge-symmetry function,
boring SDs.

ly1
( »y1 , y0 …) Å c(ly0

( »y0 , y1 …)) .
5.1. Cartographic Sense of Direction

It follows that A cartographic sense of direction is any SD which uses
properties of an embedding of G Å (V, E) in the plane.

bx(y1) Å m(by1
(x)) j Instances of cartographic SDs are the following:

Å m(h(c(ly0
(»y0 , y1 …)) , m(bx(y0)))) .

5.1.1. Coordinate SD

A coordinate labeling is one which labels the edge »u , £ …The previous property shows that, when there is an
SSD and when x knows a, x can translate into its local at u by the relative coordinates of £ (see Fig. 6) .
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Definition 9. Coordinate labeling: c : R 2 r R 2 , c((x , y)) Å 0(x , y) . Function c is an
edge-symmetry function: Let u Å (x0 , y0) and £ Å (x1 ,Given an embedding of G in the plane, l is a coordinate

labeling if f y1) be neighbors, then

c(lu( »u , £ …)) Å c(x1 0 x0 , y1 0 y0)∀ »u , £ … √ E[u] lu( »u , £ …) Å (x1 0 x0 , y1 0 y0) ,

Å 0(x1 0 x0 , y1 0 y0) .
where (x0 , y0) and (x1 , y1) are the coordinates of u and
£, respectively, in the embedding.

It follows that
Note that the labels are elements of R 2 . When the

local names of the nodes are the appropriate relative coor-
c(lu(»u , £ …)) Å (x0 0 x1 , y0 0 y1) Å l

£
( »£, u …) .

dinates, the coordinate labeling is an SD.

Thus, l has edge symmetry. Since bu(£) Å 0bu(u) , itTheorem 2. Let l be a coordinate labeling and ∀u, £
follows that c is also a name-symmetry function. Hence,√ V, let bu(£) Å (x1 0 x0 , y1 0 y0) , where u Å (x0 , y0)
b has name symmetry and l is an SSD. j

and £ Å (x1 , y1) . Then, l is an SD.

Proof. To verify that l is an SD, consider the coding 5.1.2. Polar Sense of Direction
function f defined as follows: ∀p Å [ »u0 , u1 … , . . . , »um01 ,

A particular class of embeddings of G is obtained by
um …] √ P[u0 , um] , where ui Å (xi , yi ) ,

placing the nodes on the unit circle centered in the origin
and by connecting each pair of incident nodes by a straight

f (Lu0
(p)) Å f ([(x1 0 x0 , y1 0 y0) , . . . ,

line. (See Fig. 7.) Any embedding of this type will be
called a polar representation of G .(xm 0 xm01 , ym 0 ym01)])

Definition 10. Polar labeling:Å ( ∑
m

iÅ1

xi 0 xi01 , ∑
m

iÅ1

yi 0 yi01) .
Given a graph (G, l) in polar representation, l is a

polar labeling iff
It follows that

∀ »x , y … √ E[x] lx( »x , y …) Å axy ,
f (Lu0

(p)) Å (xm 0 x0 , ym 0 y0) Å bu0
(um) .

where axy is the angle under the arc »x, y… .
Thus, f is consistent in (G , l, b) .

Consider now the following decoding function h : When the local names of the nodes are the appropriate
angles, the polar labeling is an SD.

∀ »u0 , u1 … √ E(u0) ∀p √ P[u1] ,
Theorem 4. Let l be a polar labeling and ∀x, y √ V let

p Å [»u1 , u2 … , . . . , »um01 , um …] where ui Å (xi , yi ) ,
bx(y) Å axy . Then, l is an SD.

Proof. The proof is similar to the one of Theorem 2h((x1 0 x0 , y1 0 y0) , (xm 0 x1 , ym 0 y1))
considering the following coding function f : ∀p √ P[x0] ,Å (xm 0 x0 , ym 0 y0) .
p Å [ »x0 , x1 … , . . . , »xm01 , xm …] :

The decoding function is consistent. In fact, f (Lx(p)) Å f (ax0x1
, ax1x2

, . . . , axm01xm
)

(xm 0 x0 , ym 0 y0) Å bu0
(um) . Å ∑

m01

iÅ0

axixi/1
mod 2p,

Thus, l is an SD. j

and the following decoding function h :
Note that the set of names and the set of labels co-

incide: L Å N Å R 2 . We shall call this labeling a coordi- ∀ »x0 , y0 … √ E(x0) , ∀p √ P[y0] ,
nate SD.

p Å [»y0 , y1 … , . . . , »ym01 , ym …] :

Theorem 3. Coordinate sense of direction is symmetric. h(lx0
( »x0 , y0 …) , f (Ly0

(p)))

Proof. Let l be a coordinate SD in (G , l, b) . To prove Å ax0y0
/ f (Ly(p))mod 2p

the theorem, we must show that l and b have edge and
Å ax0y0

/ ay0ym
mod 2p Å ax0ym

. jname symmetry, respectively. Consider the function

8U1F 0813/ 8u1f$$0813 08-17-98 13:56:26 netwa W: Networks



174 FLOCCHINI, MANS, AND SANTORO

Fig. 7. Polar representation of a graph and polar SD.

We shall call the above labeling a polar SD. Also, when the local names of the nodes are relative
distances in the cyclic ordering, the chordal labeling is

Theorem 5. Polar sense of direction is symmetric. an SD.
Proof. The proof is similar to the one of Theorem 3

where the edge-symmetry function is c : L r L, c(a) Theorem 6. Let l be a chordal labeling and ∀x, y let
Å 2rp 0 a and the name-symmetry function coincides bx(y) Å d(x, y) . Then, l is an SD.
with the edge-symmetry function. j

Proof. The proof is similar to the one of Theorem 2,
considering the coding function f defined as follows: ∀p5.2. Chordal Sense of Direction √ P[x0] , p Å ( »x0 , x1 … , »x1 , x2 … , . . . , »xm01 , xm…) ,

A chordal labeling of a graph G Å (V, E) , with ÉVÉ

Å n , is defined by fixing a cyclic ordering of the nodes f (Lx0
(p)) Å f (lx0

( »x0 , x1 …) , lx1
( »x1 , x2 …) , . . . ,

and labeling each incident link by the distance in the
lxm01

( »xm01 , xm …))above cycle.

Definition 11. Let g : V r V be a successor function Å ∑
m01

iÅ0

lxi
( »xi , xi/1 …)mod n ,

defining a cyclic ordering of the nodes of (G, l) and let
g k(x) Å g k01(g(x)) for k ú 0 . Let d : V 1 V r {0 ,
. . . , n 0 1} be the corresponding distance function, that and considering the following decoding function h :
is, d(x, y) is the smallest k such that g k(x) Å y. The
labeling l is a chordal labeling iff ∀ »x, y… √ E(x): ∀ »x0 , y0 … √ E(x0) , ∀p √ P[y0]

lx( »x , y …) Å d(x , y) . h(lx0
( »x0 , y0 …) , f (Ly0

(p)))

Note that g is the function defining the cyclic ordering Å lx0
( »x0 , y0 …) / f (Ly0

(p))mod n . j
of the nodes, and different chordal labelings arise from
different g’s. Further note that if the link between p and

Note that the set of names and the set of labels coincide:q is labeled by d at node p it is labeled by n 0 d at node
L Å N Å Z /

n . We shall call this labeling chordal SD.q (see Fig. 8) .

Theorem 7. Chordal sense of direction is symmetric.

Proof. The proof is similar to the one of Theorem 3
with the following edge-symmetry function: c : Z /

n r

Z /
n , c(d) Å n 0 d (where n Å ÉVÉ and d √ Z /

n ) . It is
easy to see that c is also a name-symmetry function. j

The chordal labeling is the natural labeling for chordal
rings (also called circulant graphs [7] or loop networks
[5]) from which it takes the name. It can obviously be
defined for any graph. In the literature, the chordal SD
has been extensively investigated in specific topologies.
Sometimes called distance SD, it has been studied and

Fig. 8. A graph with chordal SD. exploited in complete graphs [20, 28, 33–35, 45] and
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chordal rings [3, 21, 37, 38]. Its impact has been also
investigated in hypercubes [12], as well as in systems of
unknown topology (the arbitrary graph case) [31].

5.3. Contracted Sense of Direction

In this section, we will analyze a rather general class of
SD based on labelings with locally symmetric orientation
(i.e., with both local orientation and edge symmetry) . As
we will see, this class contains the traditional labelings
for meshes, tori, and hypercubes, among others.

Fig. 9. Hypercube with dimensional SD.

5.3.1. Simple Contraction

h(lx0
( »x0 , y0 …) , f (Ly0

(p))) Å lx0
( »x0 , y0 …) + f (Ly0

(p)) ,Let l be a labeling with locally symmetric orientation,
and let c be the corresponding edge-symmetry function.

where + is the concatenation operator. It follows that
Definition 12. Contraction: Given a sequence a √ L/ ,

h(lx0
( »x0 , y0 …) , f (Ly0

(p))) Å lx0
( »x0 , y0 …) + Ly0ymthe contraction of a is the sequence a

V
of labels obtained

from a by deleting every pair of labels l and l * such that Å Lx0ym
Å bx0

(ym) .l Å c( l *) , and lexicographically sorting the resulting
sequence.

Thus, h is consistent and l is an SD. j

We shall call this labeling contracted SD.Definition 13. Contracted Labeling: A labeling l with
edge symmetry is contracted iff ∀x, y √ V, ∀p1 , p2

Theorem 9. Contracted sense of direction is symmetric.√ P[x, y] ,
Proof. Let l be a contracted SD in (G , l, b) . To prove

that it is an SSD, we have to show that l and b have edgeLx(p1) Å Lx(p2) ,
and name symmetry, respectively. The labeling l has edge
symmetry by definition. To show that b has name symme-that is, if l is contracted, then all the sequences of all
try, first observe that it is, by definition, homonymous;the walks from x to y have the same contraction, which
in fact, bx(x) is the empty string for any x √ V . Considerwe shall denote by Lx ,y .
now x x y , and let c and C be the edge- and the walk-When the local names of the nodes are the appropriate
symmetry functions, respectively. By Property 1, ∀pcontractions, the contracted labeling is an SD.
√ P[x , y] , Lx(p) Å C(Ly(p)) . Since x x y , Lx(p) is
not the empty string and, thus, C(Ly(p) ) is defined. ByTheorem 8. Let l be a contracted labeling and ∀x, y
definition of b and since l is a contracted labeling, it√ V let bx(y) Å Lx ,y . Then, l is an SD.
follows that

Proof. To verify that it is an SD, consider the coding
function f defined as follows: ∀p √ P[x0] , p Å [»x0 , bx(y) Å Lx(p) Å C(Ly(p)) Å C(Ly(p) ) Å C(by(x)) .
x1 … , »x1 , x2 … , . . . , »xm01 , xm …] ,

Thus, b has name symmetry and it follows that l is
an SSD. jf (Lx0

(p)) Å Lx0,xm
.

Example 5. Dimensional SD—Contraction in Hyper-
It follows that cubes:

The traditional labeling of a d-dimensional hypercube,
f (Lx0

(p)) Å bx0
(xm) . shown in Figure 9 for d Å 3, is an instance of contracted

SD where the local name bx(y) is the (sorted) sequence
of labels (dimensions) on the shortest path between x andThus, f is consistent.
y . In fact, it is a locally symmetric orientation where theConsider now the following decoding function h :
edge-symmetry function c is the identity function. It is
easy to verify that, in the hypercube, this labeling is a∀ »x0 , y0 … √ E(x0) , ∀p √ P[y0] ,
contracted labeling. Consider, for example, the two walks
p1 and p2 from x to y in Figure 9 with Lx(p1) Å [3, 2,p Å [»y0 , y1 … , . . . , »ym01 , ym …] ,
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3, 1, 3] and Lx(p2) Å [1, 2, 3]; in this case, we have Definition 15. LW -contracted labeling:
A labeling l with edge symmetry is LW-contracted iffLx(p1) Å [1, 2, 3] Å Lx(p2) , and bx(y) Å by(x) Å [1,

∀x, y, ∀p1 , p2 √ P[x, y] ,2, 3] .

Example 6. Compass SD—Contraction in Meshes:
Lx(p1

s
) Å Lx(p2

s
) ,Each type of d-dimensional orthogonal mesh has a

natural labeling which forms a particular case of con-
that is, if l is LW -contracted, then all the sequences oftracted SD where the local name bx(y) is the (sorted)
all the walks from x to y have the same LW -contraction,sequence of labels on the shortest path between x and y .

Consider, for example, the traditional labeling of a d- which we shall denote by Lx ,y

s
.

dimensional quadrilateral mesh, shown in Figure 1 for d
Å 2. This labeling is a locally symmetric orientation Theorem 10. Let l be an LW-contracted labeling and
where the edge-symmetry function c is such that

∀x, y let bx(y) Å Lx ,y

s
. Then, l is an SD.c(north) Å south, c(east) Å west, and so on. It is easy

to verify that this labeling is contracted. Consider, for
The proof follows the same lines as the one of Theoremexample, the two walks p1 and p2 from X to Y in Figure

8. Similarly, we can prove the following:1 with LX (p1) Å [north, east, north, south] and LX (p2)
Å [east, north, east, west] ; we have LX (p1) Å [east,

Theorem 11. LW-contracted sense of direction is sym-north] Å LX (p2) . In this case, bX (Y ) Å [east, north] ,
metric.while bY ( X ) Å m(bX (Y )) Å [south, west] , where m is

the name-symmetry function.
Each d-dimensional torus has a natural labeling which

forms a particular case of LW -contracted SD where theIn the literature, the impact of contracted labelings has
local name bx(y) is the (sorted) sequence of labels onbeen extensively studied (e.g., in [12, 24, 26, 29, 39, 40,
the shortest path between x and y using only the allowed47, 48, 51]) .
directions.

5.3.2. Contraction with Wraparound
Example 7. Contraction in Rings:

An immediate generalization of the contracted SD is the Consider a ring (i.e., a 1-dimensional torus) of size n
one which applies to topologies with wraparound (e.g., with the traditional labeling with L Å { left, right} and
rings and tori) . In this case, the sequences associated to with the edge-symmetry function c: right Å c( left) . This
walks are transformed using only a subset of the labels labeling is LW -contracted where the wraparound is W
( termed ‘‘allowed directions’’) and taking into account Å {n} and the direction is, for example, L Å { left}.
the structure of the wraparound. Consider, for example, the two walks p1 and p2 from x

Let l be a labeling with locally symmetric orientation, to y , in a ring of size n Å 7, with a1 Å Lx(p1) Å [ left,
and let c be the corresponding edge-symmetry function. left, left, left] and a2 Å Lx(p2) Å [right, right, left, right,

right]. The corresponding LW -contractions are a1
s Å [right,

Definition 14. Contraction with Wraparound: right, right] Å a2
s. In this case, bx(y) Å [right, right,

Let L Å {l1 , . . . , lm} in Lm where li x c(lj) for i x j, right] .
and let W Å {w1 , . . . , wm} √ Z m. Given a sequence of
labels a √ L/ , the contraction with wraparound W and Example 8. Contraction in Tori: Compass SD:
allowed directions L (shortly, LW-contraction) of a is Consider the 2-dimensional torus of size n1 1 n2 with
the sequence aP of labels obtained from the contraction the traditional ‘‘compass’’ assignment of the labels L
a
V

by Å {north, south, east, west} (see Fig. 10) and edge-
symmetry function c: north Å c(south) , east Å c(west) .

1. Replacing any subsequence of k consecutive li ’s with Clearly, the set of wraparounds is W Å {n1 , n2}, the
a subsequence of wi 0 k consecutive c( li ) , where k corresponding set of allowed directions is, for example,
¢ 0 , li √ L, wi √ W (note that wi ú k by definition); L Å {north, west}. The labeling l is an LW -contracted
and labeling. Consider, for example, the two walks p1 and p2

2. Lexicographically sorting the resulting sequence. from X to Y , in Figure 10, with a1 Å LX (p1) Å [east,
south, west, west, west] and a2Å LX (p2)Å [north, north,
east, north, north, east, east] .Examples of contractions with wraparound are given in

The contractions of a1 and a2 are a1 Å [south, west,Examples 7 and 8.
west] and a2 Å [east, east, east, north, north, north,Using this operation, the notions of contracted labeling

and contracted SD are extended as follows: north]. The corresponding LW -contractions are a1
s Å [east,
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h(lx0
( »x0 , y0 …) , f (Ly0

(p))) Å f (Ly0
(p)) .

h is consistent, in fact:

h(lx0
( »x0 , y0 …) , f (Ly0

(p)))

Å lym01
( »ym01 , ym …) Å l (ym ) Å bx0

(ym) .

Thus, l is an SD. j

Fig. 10. A torus with LW -contracted SD. We shall call this labeling a neighboring SD.
Let us observe that, unlike all the previous classes of

SDs, the neighboring sense of direction is not symmetric.
east, east, south] Å a2

s. In this case, bX (Y ) Å [east, east, This implies that we cannot apply the properties of Sec-
east, south] . tion 4.3. Let us recall that, if a labeling is symmetric,

The study of the impact of contracted labelings with knowledge of the origin of a walk has an impact on the
wraparound is extensive, especially for the ring (see, e.g., translation capabilities of a node outside the walk.
[2, 4, 6, 19, 29, 46, 49]) . However, we will now show that the neighboring SD

has actually a very strong property. In fact, with such a
labeling, the translation capabilities of a node outside the5.4. Neighboring Sense of Direction
walk are the same as for a symmetric labeling, even with-

In this section, we describe a class of labelings, which out knowledge of the origin of the walk.
we will show are very powerful ones. Given a system (G , l, b) , where l is a neighboring

SD, let p Å [ »y0 , y1 … , »y1 , y2 … , . . . , »ym01 , ym…] and let
a Å Ly0

(p) . Let node x know the sequence a.Definition 16. Given a graph (G, l) , l is a neighboring
labeling iff: ∀ »x, y… √ E[x] , »z, w… √ E[z] ,

Property 9. Node x can derive the local names bx(yi )
lx( »x , y …) Å lz( »z , w …) iff y Å w , of all yi √ p.

Proof. It trivially follows since bx(yi ) Å l (yi ) Å lyi01that is, in a neighboring labeling, all the links ending in
the same node x are labeled with the same label, which (»yi01 , yi …) . j

we shall denote by l (x ) (see Fig. 11).

The above property shows an aspect of the strength of
Theorem 12. Let l be a neighboring labeling, and ∀x, the neighboring SD, which sets it apart from the other
y √ V, let bx(y) Å l (y ) . Then, l is an SD. classes of SDs. Another, even more startling proof of this

strength is given by the following:Proof. To verify that it is an SD, consider the coding
function f with N Å L, defined as follows: ∀p √ P[x0] ,
p Å [»x0 , x1 … , »x1 , x2 … , . . . , »xm01 , xm …] ,

f (Lx(p)) Å lxm01
( »xm01 , xm …) .

Since, by definition of neighboring labeling, lxm01
(»xm01,

xm …) Å l (xm ) , it follows that

f (Lx(p)) Å bx0
(xm) .

Thus, f is consistent.
Consider now the following decoding function:

∀ »x0 , y0 … √ E(x0) , ∀p √ P[y0] ,

Fig. 11. A complete network with neighboring SD.p Å [ »y0 , y1 … , »y1 , y2 … , . . . , »ym01 , ym …] ,
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Property 10. Given an anonymous system (G, l, b) , if An interesting problem is to find simpler ways to de-
scribe (some of the) classes of sense of direction; a stepl is a neighboring SD, then the election problem is solv-

able in G. in this direction has been recently taken by [49]. A more
interesting and important problem is to find an equivalent

Proof. Let l be a neighboring SD. Then, each node x but simpler definition of sense of direction; the one pro-
can acquire a unique global identifier, for example, by posed in [49] unfortunately only captures a small subset
asking an arbitrary neighbor for the label of the link con- of classes (as proven in [15]) .
necting them and assuming such a label as its identifier. Another important research area is the application of
In the presence of a unique global identifier for each sense of direction to distributed problems. We have
node, the election problem can be solved using any of shown in [13] that all the existing results for general
the existing algorithms. j graphs follow as simple applications of the definition or

of the derived properties, that is, in arbitrary graphs, the
To fully appreciate this result, recall that the election complexity improvements obtained with very specific la-

problem is unsolvable in an anonymous systems with belings can be obtained with any sense of direction. As
local orientation alone [1] and that similar results do not for specific topologies, no such a result exists. The open
exist for the other classes of SDs described above. problem is thus to understand how topology-dependent

Note that this strength of the neighboring SD is also distributed algorithms (e.g., election protocols for hyper-
its weakness. In fact, exactly because the election problem cubes) can be constructed which would be efficient with
is unsolvable in anonymous graphs, it follows that the any sense of direction.
neighboring SD cannot be constructed in anonymous Finally, a very interesting research direction now open
systems. is the study of the interplay between implicit routing (e.g.,

In the literature, the neighboring SD has been studied [50]) and sense of direction.
solely in systems of unknown topology [27, 44].
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