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Abstract We study the computational power of distributed systems consisting of simple autonomous robots
moving on the plane. The robots are endowed with visual perception, allowing them to see each other, but they
do not have any means of explicit communication with each other. Further the robots are oblivious, meaning that
they always act based on their current perception of the environment, and they have no memory of the past.
Such system of simple robots have been studied extensively with the objective of achieving coordinated tasks e.g.
arranging the robots in a line or a circle. In fact it has been shown that obliviousness is not a limiting factor
to form a single geometric pattern, however arbitrary. This paper aims to understand the computational limits
imposed by the obliviousness of the robots by studying the formation of a series of geometric patterns instead of a
single pattern. If such a series of patterns could be formed this would create some form of memory in an otherwise
memory-less system. We show that, under particular conditions, oblivious robot systems can indeed form a given
series of geometric patterns starting from any arbitrary configuration. More precisely, we characterize the series of
patterns that can be formed by oblivious robot systems under various additional restrictions such as anonymity,
asynchrony and lack of common orientation. These result! s provide strong indications that oblivious solutions may
be obtained also for tasks that intuitively seem to require memory.

Keywords Distributed Coordination · Autonomous Mobile Robots · Pattern Formation · Oblivious · Semi-
Synchronous · Sequence of Patterns

1 Introduction

1.1 Problem and Background

We are interested in understanding the computational power of distributed systems consisting of simple autonomous
robots. The robots move on the plane, can see each other but cannot explicitly communicate with one another.
This lack of direct communication capabilities means that all synchronization, interaction, and communication of
information among the sensors take place solely by observing the position of the robots in the plane. Each robot
has a local coordinate system (a set of Cartesian axes, an origin, and a unit of distance); however there might be
no relationship between the coordinate items of different robots. There is no central coordinator; the robots are
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indistinguishable, they have the same capabilities, and execute the same (deterministic) algorithm. Each robot
computes its next location based on the visual information and moves to this location.

These systems have been extensively investigated by researchers from robotics, AI, control and, more recently,
distributed computing (e.g., [1,2,4,6–13,16,19,22,25–27]).

A particular class of these systems are those in which the robots are oblivious: they have no memory of the
past, and do not rely on it for their computations. In other words, the current behavior of an oblivious robot
depends only on the presently observed configuration of the robots but not on past history of observations and
computations by the robot. Thus, a system of oblivious robots is inherently self-stabilizing; each robot may start
from any arbitrary initial state and there is no need to initialize the system. For this reason there has been a
strong interest in the study of such systems (e.g., [1,2,7,8,10,12,16,19,21,26,27]); for a recent account of the
current research on oblivious robots see also [14]. Designing algorithms for oblivious robots is specially challenging
and some simple tasks such as the gathering of two robots, are known to be impossible for oblivious robots [26].

The studies on the computational power of systems of oblivious robots have focused on determining what
minimal capabilities are necessary so that the robots can perform simple basic tasks e.g. gathering at a point [2,4,
8], or scattering uniformly in a given region [9]. Many such problems can be generalized to the abstract problem
of (geometric) pattern formation. A pattern is represented by a set of points in the Euclidean plane that form
some geometric figure such as a circle, a line, or some other arbitrary shape. Given a particular pattern as input,
the robots must position themselves with respect to each other such that the location of the robots correspond
to points in the pattern. Notice that point formation (i.e., formation of a single point) corresponds to the well
known gathering or rendezvous problem, extensively studied in the literature (e.g., [1,2,8,15,21–23]). The arbitrary

pattern formation problem, that is forming any pattern given in input, has also been studied [3,16,17,20,25,26,28].
Characterizations of patterns formable from a given initial configuration under various conditions have been given
in [18,26]. Formation problems have been investigated also for specific patterns in the case of oblivious robots, in
particular for the circle [7,10,12]. Another problem that has been studied is that of moving in formation, called
flocking [19,24].

At a more general level, the research has focused on the characterization of which patterns are possible under
what conditions [3,16,18,26]. For example, if there is agreement about the local coordinate system (e.g., a compass),
oblivious robots can form any pattern even if they are totally asynchronous [16]. It has been recently shown [27]
that oblivious semi-synchronous robot can form exactly the same patterns that non-oblivious robot can, with one
exception: point formation by two robots. These results indicate that, in most settings, simple robots can form a
single geometric pattern, however arbitrary, in spite of their obliviousness. In other words, obliviousness is not a
limiting factor to form a single pattern.

This naturally brings to the front the question of whether the robots can form not just a single pattern but a
series of patterns in a particular order, and if so, what series can be formed. Notice that obliviousness limits what
can be remembered. On the other hand, to enable a series of pattern to be formed, a protocol must guarantee that
a robot that wakes up in an arbitrary configuration can still join the others in performing the required tasks. Thus,
a formable series of patterns provides some form of memory in an otherwise memoryless system of robots. The
problems examined here are integral components of the crucial research question on what are the computational
limits imposed by the robots being oblivious.

1.2 Contributions and Organization

We study the series of patterns that may be formed by oblivious robots starting from any arbitrary configuration.
An immediate observation (c.f. Lemma 1) is that no algorithm that terminates within a finite time can completely
form any non-trivial series of distinct patterns; as explained later, an adversary can force any protocol to produce
at most a single pattern, by appropriately choosing the initial configuration. Thus, in this paper, we concentrate
on periodic (or cyclic) series S∞, i.e. the periodic repetition of a finite series S of distinct patterns.

We consider the case of anonymous identical robots as well as that of distinguishable robots, i.e. robots having
visibly distinct identities. We also consider the case of robots that are visibly indistinguishable from each other but
each robot has distinct (invisible) identity; this allows the robots to execute distinct algorithms. When the robots
have distinct visible identities, we prove that any series of distinct patterns can be formed provided that there
are sufficiently many robots. The same result holds for robots having invisible but distinct identities. In case of
anonymous robots, the series that may be formed depends on the symmetry in the initial configuration, quantified
by the parameter called symmetricity. We characterize the series of patterns formable by anonymous, oblivious and
unoriented robots. We also consider the special case when the robots agree on directions.
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The paper is organized as follows. In the next section the model, terminology and basic properties are intro-
duced. In Section 3 we study the most general (thus weaker) case of anonymous robots. The strongest case when
robots have distinct visible identities is examined in Section 4. Finally the series of patterns formable when the
robots have distinct but invisible identities is investigated in Section 5. We conclude the paper in Section 6 with
some directions for future research.

2 The Model

2.1 The Robots

Each robot in the system has sensory capabilities allowing it to determine the location of other robots in the
plane, relative to its own location. The robots also have computational capabilities which allow them to compute
the location to move to. Each robot follows an identical algorithm that is preprogrammed into the robot. This
algorithm may contain description of patterns that the robots are required to form. The robots may start from
arbitrary locations in the plane.

The behavior of the robots can be described as follows. Each step taken by a robot consists of three stages:
LOOK, COMPUTE and MOVE as described below. Between two steps taken by a robot, the robot may go to
sleep for an arbitrary amount of time. We assume that time is discretized into rounds and at each round an
arbitrary subset of the robots (selected by an adversarial scheduler) are active. The robots that are active in a
round complete exactly one step in that round. This model of synchronization is called the semi-synchronous or
SSYNC model in the literature and there exists many variants of this model depending on assumptions about the
powers or limitations of the scheduler or the adversary. In our case, we impose only the following fairness constraint
on the scheduler: In any infinite execution, each robot must be activated in infinitely many rounds.

We now describe the actions of the robot during each step.

– During the LOOK stage of a step, an active robot r gets a complete snapshot of the environment showing the
current location of all the other robots. These locations are observed by robot r in terms of the local coordinate
system and unit distance used by robot r at the time of observation. The coordinate system used by a robot
may change at the beginning of each LOOK-COMPUTE-MOVE step, but remains invariant during the step1.

– During the COMPUTE stage, an active robot executes an algorithm that determines its next location. The
algorithm takes as input the information obtained from the LOOK operation and the identifier of the robot (if
any), and outputs the next location of the robot in terms of the robot’s current coordinate system. Note that
the actions of each robot r depend only on the current configuration of robots as seen by r and do not depend
on the previous history of moves (i.e. the robots are oblivious).

– During the MOVE stage of the step, the robot moves to the location computed during the COMPUTE stage.
We assume rigidity of movements (as in [12,21,22,24]) which means that a robot always reaches its intended
destination in each step regardless of the distance.

The local coordinate system of a robot r in round t is denoted by Zr,t. The origin of the coordinate system
Zr,t is always the current location of the robot. The robots may not agree on a common sense of direction, but
they agree on left-right orientation with respect to any given direction, i.e. the robots can distinguish clockwise
from counter-clockwise. The visual capabilities of the robots allows them to detect multiplicity (i.e. they can count
how many robots are at the same location). The robots may have distinct identities, and these identities may be
visible, allowing other robots to identify and distinguish between robots; or, the robots may be all identical.

We denote by n the number of robots in the system and the i-th robot will be denoted by ri. The robots are
viewed as points in the plane. This means that multiple robots may occupy the same location in a plane. In order to
describe our algorithms and the global configuration of robots during the algorithm, we shall use a fixed coordinate
system2; in this system, the location of robot ri is denoted by L(ri) = (xi, yi) and the Euclidean distance between
the robots ri and rj , by d(ri, rj).

A configuration of the n robots on the plane is denoted by the multi-set γ = {(label(ri), L(ri)) : 1 ≤ i ≤ n}
where label(i) is the identity (or label) assigned to robot ri. If the robots are anonymous then label(ri) = 1, for all
i. On the other hand, if the robots are all distinct then we assume that label(ri) = i, for all i ∈ {1, 2, . . . , n}. The
configuration at a specific time t is denoted by γ(t). Given a configuration γ, we denote by L(γ) the set of points

1 This models any deviations in sensory apparatus used by a robot in between two steps, specially when the robot physically
moves across the plane.

2 The robots themselves are not aware of this global coordinate system.
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occupied by robots in the configuration γ, i.e. L(γ) = {(x, y) : ∃l, (l, x, y) ∈ γ}. Recall that multiple robots may
occupy the same location, thus the cardinality of L(γ) could be strictly less than n.

Given any set of points on the plane, the smallest enclosing circle SEC of the points is the circle of minimum
diameter such that every point is either on or in the interior of this circle. For a configuration γ, we define SEC(γ)
to be the smallest enclosing circle for the set of points in L(γ).

2.2 Patterns, Series and Formation

A pattern P is represented by a set of distinct points (x1, y1), (x2, y2), . . . , (xs, ys) in the two-dimensional Euclidean
plane. A pattern Pi is said to be isomorphic to a pattern Pj if Pj can be obtained by a combination of translation,
rotation and scaling of pattern Pi. Two patterns that are not isomorphic to each other are said to be distinct. The
size of a pattern Pi is its cardinality, and is denoted by ni =size(Pi). We define some special patterns below:

– POINT: The pattern consisting of a single point.
– TWO-POINTS: The only possible pattern consisting of exactly two points.
– POLYGON(k) : For any k ≥ 3, this is the pattern consisting of points p1, p2, . . . , pk that are vertices of a regular

convex polygon of k sides.

For any pattern P , with size(P )> 1, the bounding circle of P is the smallest circle that encloses all points in P .
We define the symmetricity ρ(P ) to be the largest integer q ≥ 1 such that the area inside the bounding circle of P
can be partitioned into exactly q equiangular sectors (each making an angle of 2π/q at the center), and containing
the sets of points s1, s2, . . . , sq respectively, where each si+1 is a rotation of si with respect to the center of the
circle. We define ρ(POINT) to be infinity.

We say that a system of robots R have formed the pattern P , if the current configuration γ is such that L(γ)
is isomorphic to P . Two configurations γi and γj are said to be analogous if L(γi) is isomorphic to L(γj) (i.e. the
two configurations form the same pattern P ).

We are interested in ordered series of patterns that can be formed by a system of robots. We consider two
types of pattern series: A linear pattern series L is any (possibly infinite) ordered sequence S = 〈P1, P2, . . . 〉 of
patterns, where Pi and Pj are non-isomorphic whenever i 6= j. A cyclicly ordered series is any periodic sequence
S∞ = 〈P1, P2, . . . , Pm〉∞ where S = 〈P1, P2, . . . , Pm〉 is a finite linear pattern series.

A system of robots executing an algorithm A, starting from a configuration γ(t0) is said to completely form a
pattern series S = 〈P1, P2, P3 . . . , 〉 if during any possible execution of A, there exists time instances t1, t2, t3 . . . ,
where t0 < tj < tj+1 such that for all 1 ≤ j ≤ |S|, L(γ(tj)) is isomorphic to Pj . A pattern series S is completely

formable if there exists an algorithm A for a system of k > 0 robots such that starting from any initial configuration,
the system of k robots completely forms S. It is immediate that no finite linear pattern series is completely formable
by a terminating algorithm:

Lemma 1 Given any finite linear series of patterns S = 〈P1, P2, P3 . . . , Pm〉, where m ≥ 2, no deterministic algorithm

A that terminates in finite time can completely form S from all possible starting configurations.

Proof In any deterministic algorithm for oblivious robots, actions taken by the robots depend only on the current
configuration. By contradiction, let A be a deterministic protocol that always completely forms the finite linear
series of patterns S = 〈P1, P2, P3 . . . , Pm〉, where m ≥ 2. Consider an execution of A from an arbitrary initial
configuration γ. Let γt be the configuration when the algorithm terminates. Consider now the execution of A
when the starting configuration is γt, Because of obliviousness, the robots can not distinguish between the two
executions; thus, this execution will immediately terminate without forming S: a contradiction.

The above lemma does not forbid the formation of trivial series consisting of a single pattern. However for longer
series (m ≥ 2), any terminating algorithm can form only a suffix of S, depending on the starting configuration.
This means that, for any linear series S = 〈P1, P2, P3 . . . , Pm〉, any protocol that just forms the single pattern Pm

will be deemed to be forming S. It may be however possible to construct non-terminating algorithms that form
the entire given series: this is the case if S∞ is completely formable. Thus our focus will be on determining which
cyclic series are completely formable by a team of oblivious robots.
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3 General Case: Anonymous Robots

3.1 Preliminaries

In this section, the robots are assumed to be anonymous and oblivious, having no other additional capabilities.
Central to the anonymous case is the notion of symmetry in a configuration, which is quantified using the concept
of centred view, and symmetricity, a slight modification of the notion of local view and of symmetricity introduced
in [26].

Definition 1 The centred view of a robot r at a time t is defined with respect to the coordinate system Zr,t, as
the set of tuples CVr(t) = {(xi, yi, ki) : ki > 0 robots are located at (xi, yi)}.

In the above definition, the coordinate system Zr,t of robot r is computed with respect to the current con-
figuration, as follows. Let γ be the current configuration of robots. If a robot ri is not located at the centre c of
the smallest enclosing circle SEC(γ), it builds its coordinate system Zri,t by considering its own position as the
origin (0, 0) and by considering the position of the center c as the point with coordinate (1,0). On the other hand,
if robot ri is located at the centre of the smallest enclosing circle, its coordinate system Zri,t has still its own
position as origin, and the robot rj whose view CVrj (t) is minimum among all the other robots is considered to
be at coordinate (1, 0). Clearly, if all robots are located at c, then CVri(t) = {(0, 0, k)} for all robots ri.

According to the above definition, no information about the local coordinate system of the robots is included
in the centred views3 because such information is neither globally known nor necessarily consistent between two
rounds. In the following, when no ambiguity arises, we will refer to the centred view simply with the term view. Our
definition ensures that the view of a robot is independent of the local coordinate system used by the robot. Thus,
robots that are collocated have identical views, i.e. L(ri) = L(rj) =⇒ CV (ri) = CV (rj).

Notice that, given any arbitrary configuration γ, there is a total order of the distinct views of the robots in γ,
in spite of their anonymity. The elements of CVr can be ordered lexicographically to obtain an ordered sequence
Q(CVr), for each robot r ∈ γ. For any two robots ri and rj , the ordered sequences Q(CVri) and Q(CVrj ) contain
the same number of elements and these sequences can be ordered lexicographically. So, CVri < CVrj if and only if
Q(CVri) is lexicographically smaller than Q(CVrj ). CVri = CVrj if the views of ri and rj are identical.

An obvious consequence of anonymity is that from a configuration γ consisting of anonymous robots at w distinct
locations, a configuration γ′ where the robots occupy more than w distinct locations might not be reachable, which
restricts the size of patterns in any formable series of patterns.

Property 1 From a configuration γ consisting of anonymous robots at w distinct locations, it is not always possible
reach a configuration γ′ where the robots occupy more than w distinct locations.

(a) (c)(b)

Fig. 1 A configuration γ where robots occupy distinct locations, such that: (a) The symmetricity ρ(γ) = 1 and each robot has
a distinct view; (b) The symmetricity ρ(γ) = 1 and only one robot (the shaded one) has a unique view; (c) The symmetricity
ρ(γ) = 4.

Based on our definition of views of robots, we define the symmetricity of a configuration γ. Examples of
configurations with various symmetricities are shown in Figure 1.

3 unlike the definition of views in [26].
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Definition 2 The symmetricity, ρ(γ) of a configuration γ consisting of n robots, is the largest integer q such
that for each robot r, the number of robots having the same view as r (including itself) is a multiple of q; i.e.
ρ(γ) = max{q : ∀ri ∈ γ, q divides |{rj ∈ γ : CV (rj) = CV (ri)}|}

The following properties follow from the above definition and the earlier results in [26].

Property 2 For any configuration γ containing n robots ρ(γ) divides n.

Property 3 For any configuration γ where robots occupy distinct locations, the following holds: (i) If a robot is
located at the center of SEC(γ) then ρ(γ) = 1; (ii) If ρ(γ) = q > 1, then the robots are located at the vertices of
regular polygons of q sides, each of which is concentric to SEC(γ).

Lemma 2 If the current configuration γ has symmetricity q = ρ(γ) then, for any algorithm, there exists an execution

where all subsequent configurations γ′ satisfy ρ(γ′) = l · q , l ≥ 1.

Proof Any deterministic algorithm must specify the actions of a robot based on its current view. Thus, two robots
having the same view would take the same action (if they are activated simultaneously). For the sake of argument,
we assume an adversary that decides which robots are activated at each step. Whenever a robot r is activated,
the adversary also activates all other robots that have the same view as r. The new location computed by each
such robot r′ with respect to its coordinate system Zr′ , would be the same as location computed by robot r with
respect to its coordinate system Zr. In other words, any two robots having identical views would continue to have
identical views after moving to the new location. In this case, the symmetricity of the new configuration must be
a multiple of the previous one.

3.2 Robots starting from Distinct Locations

As mentioned, Property 1 restricts the size of patterns in any formable series of patterns. To form repetitively any
series S of patterns, all the patterns in S should be of the same size. Thus, we consider only patterns of size n,
where n is the number of robots. Each robot starts from a distinct location and during the pattern formation, no
two robots should occupy the same location (i.e. we can not allow points of multiplicity). Due to Property 1 and
Lemma 2, we know the following impossibility result:

Lemma 3 A cyclic series of distinct patterns 〈P1, P2, ...Pm〉∞ is formable only if size(Pi) = size(Pj) and ρ(Pi) =
ρ(Pj), ∀ i, j ∈ {1, 2, . . .m}.

We now show that exactly the above type of series are formable, by providing algorithms for forming any such
series. Note that there exists exactly one pattern P such that ρ(P ) =size(P )=n and this is the pattern POLYGON(n).
Thus, no non-trivial series may be formed starting from any configuration having symmetricity exactly equal to
n. In the following, we will consider configurations with ρ(γ) < n. The formation algorithm for forming the type
of series mentioned in the lemma, is based on the identification of special configurations: the bi-circular and the
q-symmetric-circular configurations. Before giving an intuition of the technique employed in the algorithms, we
define these special configurations.

Definition 3 (BCC) A configuration is called bi-circular (denoted by BCC) if: (i) there is a unique location (called
the pivot), such that the smallest enclosing circle C1 containing all the robots, has diameter more than three times
the diameter of the circle C2 that encloses all robots except those at the pivot; (ii) C1 and C2 intersect at exactly
one point: the point directly opposite the pivot (called the base-point).

Definition 4 (SCC) A configuration γ containing n robots is called q-symmetric-circular or, SCC(q), 1 < q < n, if: (i)
the smallest enclosing circle C1=SEC(γ) has exactly q robots on its circumference forming a regular polygon; (ii)
all the other robots lie on or in the interior of a smaller circle C2 that is concentric to C1 such that Diameter(C1) ≥
(5 + sin−1(π/q)) ·Diameter(C2); (iii) there are no robots at the center of SEC(γ).

In both configurations, the former circle (C1) is called the primary enclosure while the latter circle (C2) is called
the secondary enclosure. The ratio of the diameter of the primary enclosure over the diameter of the secondary
enclosure is called the stretch of the configuration. For a BCC configuration, the point on the secondary enclosure
directly opposite the base-point is called the frontier-point. Starting from an asymmetric configuration of robots,
it is possible to form a BCC by moving a single robot to the pivot location (see Figure 2).

An interesting property of the bi-circular configuration is that in such a configuration the robots can agree on
a coordinate system and define a unique way to order the robots, as we show below. Another property that can
be shown is that starting from an arbitrary initial configuration either a particular type of BCC configuration or a
particular type of SCC(q) configuration can always be formed. More precisely:
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(a) (b)

BP FP Pivot c

(c)

Fig. 2 (a) An asymmetric configuration of robots and the smallest enclosing circle. (b) A bi-circular configuration formed by
moving one of the robots. (c) An SCC(q) configuration with q = 4.

Lemma 4 Starting from any configuration γ with symmetricity ρ(γ) = q, q < n, and for any k ≥ (5 + sin−1(π/q)) we

can reach a configuration γ′ such that either (i) γ′ is SCC(q′) having stretch k, where q′ > 1 is a factor of q, or, (ii) γ′

is BCC having stretch k′ = (k + 1)/2.

Proof If q = 1 then the configuration γ is asymmetric and thus, it is possible to elect a leader among the robots (e.g.
the robot with the minimum view); this elected robot can move to a pivot position to form the BCC configuration
having the required stretch. In this case the lemma holds. For the rest of the proof, we assume that 1 < q < n

and we show algorithms to reach one of the configurations (i) or (ii). First notice that, since the robots start from
distinct locations and ρ(γ) > 1, no robots are located at the center c of SEC(γ). Further, all robots lie on circles
concentric to SEC(γ) and the robots can be partitioned into classes (each containing exactly q robots) such that
the robots in the same class have identical views and robots in distinct classes have distinct views (see Property 3).
Consider the class R of robots (called leaders) that have the minimum view among all robots, according to some
predefined ordering on the views. Note that there exist robots that do not belong to R (If all robots were in R,
then the symmetricity would be ρ(γ) = n: a contradiction). Further, we can choose the class R of leader robots in
such a way that some of the remaining robots are located on SEC(γ). The algorithm instructs only the robots in
R to move. Each robot in R computes its next destination on the circle C1 whose diameter is k times the diameter
D of the smallest circle (C2) enclosing the remaining robots (Note that C1 is identical to SEC(γ)). If robot r ∈ R
is activated by the scheduler it moves to the farthest point on C1 that lies on the straight line joining c to r.

First consider the case when exactly one robot r ∈ R is activated by the scheduler and it moves to C1. In this
case, the resulting configuration would be BCC with stretch k′ = (k + 1)/2 as in the lemma (Note that k′ > 3 as
required in the definition of BCC). Now, let us consider the case when exactly q′ > 1 robots from the set R, are
activated by the scheduler (where q′ is a factor of q as in the lemma) and these robots form a regular polygon of
q′ sides centred at c. When all these robots move to the computed circle C1, they would continue to form a regular
polygon of q′ sides. The resulting configuration is SCC(q′) and the lemma holds in this case too. We now consider
the case when either the number of robots that move to C1 is co-prime with q or, these robots do not form a
regular polygon. In both these cases the symmetry is broken, i.e. the new configuration has symmetricity one. This
new configuration γ∗ is neither BCC nor SCC ; However we show that the robots can easily revert to a bi-circular
configuration (BCC). First, notice that configuration γ∗ can be identified by each robot as a failed attempt to form
an SCC configuration. Let us call as failed robots, the robots that moved to the circle C1. Due to the following facts,
each of the failed robots is twice as far from any other robot, compared to the robots that did not move, i.e. those
that are on or inside C2.

1. The distance between any two failed robots is at least

k ×D × sin(π/q) ≥ (2 + 5 sin(π/q))×D > 2D

2. The distance between a failed robot and a robot on or inside C2, is at least (k − 1)D/2 > 2D.

Thus, it is possible to identify the failed robots by looking at configuration γ∗. Moreover, there exists a unique
ordering on the failed robots (since configuration γ∗ has symmetricity one). According to this ordering, each of
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the failed robots, one after the other, returns to some unoccupied location in the interior of C2; By choosing the
ordering, the algorithm can ensure that each intermediate configuration has symmetricity one. When only one of
the failed robots remains outside the circle C2, then the resulting configuration is BCC with stretch k′ as in the
lemma. Thus we have arrived at the required configuration (ii) and the lemma holds.

The only remaining case we need to consider is when q∗ < q robots from the set R move to the circle C1, but
the resulting configuration γ∗ has symmetricity q′, where q′ is a factor of both q and q∗. In this case, again it is
possible to identify the configuration as a failed attempt at forming SCC(q), and the failed robots can be identified,
as before. Moreover, the failed robots can be classified into distinct classes having q′ robots each. In the next step of
the algorithm, one of these classes is chosen and each robot in that class is instructed to move to some point inside
C2 that lies on the line segment from current location of the robot to the center of C1. This process is repeated
until there is exactly one class of q′ robots that are located on the outer circle C1. The resulting configuration is
SCC(q′) with the appropriate stretch as required by the lemma. Thus in a! ll cases, we arrive at a configuration of
type (i) or (ii) and the lemma holds.

Lemma 5 Starting from a configuration of type SCC(q), q > 1, with n robots occupying distinct locations we can form

any pattern P such that size(P )= n and the symmetricity ρ(P ) = q · a, for some integer a ≥ 1 .

Proof We begin forming the pattern P within the secondary enclosure (C2) of the SCC configuration, while the
robots on C1 remain stationary. The points in P are mapped to locations on or in the interior of C2, in such a
way that the circle C2 corresponds with the SEC (P ). The robots are assigned to these locations. The circle C2
is partitioned into q equiangular sections and the assignment of robots within each sector is unique. There are at
least q robots on C2 which do not need to move as they correspond to q points in SEC (P ). Thus, the configuration
SCC(q) is maintained during the movement of these robots. As a final step, the robots located on C1 need to move
inside C2 to complete the pattern. During this step the SCC configuration may be broken (since all the robots
on C1 may not be activated simultaneously). However, the robots can still identify the resulting configuration as
pattern P with at most q−1 points missing and an equal number of additional robots. These additional robots can
be distinguished as they are located a large distance apart from each-other (at least twice the distance between
any two robots that form the pattern). Moreover these robots can be uniquely mapped to the missing points to
complete the pattern P .

Lemma 6 The following properties hold for BCC configurations: (i) In any bi-circular configuration, the robots can agree

on a unique coordinate system. (ii) Starting from a bi-circular configuration with n ≥ 4 robots in distinct locations, any

pattern P of size n can be formed.

Proof (i) In a bi-circular configuration, there is a unique diameter of the primary enclosure (the diameter containing
the pivot). We can define the positive x-axis as the line containing this diameter, in the direction from the base-
point to the pivot. Due to the agreement on left-right orientation, we can now define the line perpendicular to
the x-axis in the left direction, to be the positive y-axis. Thus, the base-point represents the origin and we have
a unique coordinate system, where the length of the diameter of the secondary enclosure is taken as the unit
distance.
(ii) Due to the agreement on a unique coordinate system, the robots can be ordered lexicographically according
to their coordinates, as r1, r2, . . . , rn where r1 is the robot at BP and rn is the robot at the pivot position. If
rn−1 is not at FP, it moves to the FP position (note that there can not be any other robot at this location).
While r1, rn−1 and rn remain in these positions, the BCC configuration is maintained. The other robots compute
their destination according to the following algorithm. The points in the pattern P are mapped to locations in the
bi-circular configuration such that the bounding circle of pattern P coincides with the secondary enclosure C2 of
the configuration and the base-point coincides with the lexicographically smallest point pi on the bounding circle
of P. Notice that this mapping is unique and every robot can obtain the same set Γ (P ) of locations on or inside C2
that correspond to points in the pattern P. Let us assume first that at least three points of P lie on the bounding
circle BC(P). The robot rn−1 is assigned to the location lexicographically largest among those on the bounding
circle BC(P) of P. If there are more than three points on BC(P), the robot rn is assigned to the location that is
second-largest (lexicographically) among these; Otherwise the robot rn is assigned to the location lexicographically
largest among those in the interior of BC(P). Now, the remaining robots r2 to rn−2 are assigned to the remaining
locations in Γ (P ), according to the lexicographic order. The robots r2 to rn−2 move to their respective destination
in such a way as to maintain the relative order among them based on their positions. Now the robot rn−1 moves
to its assigned location (which lies on SEC2). After this move the BCC configuration is still maintained since there
are at least three robots on the SEC2 at distinct locations. At a final step, the robot rn can move to its destination
to complete the pattern P . We now consider the case when only two points of P are on BC(P), which implies
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that these two points are on the opposite ends of a diameter of BC(P). This case is simpler since the robots r1
and rn−1 as defined above, are already on the required locations (after the first step). Thus the robots r2 to rn−2

move to their respective destinations without disturbing the BCC configuration. As a final step, robot rn moves to
its assigned location to complete the pattern P .

Based on the above results, we now describe the algorithm for forming a cyclic series of distinct patterns
S∞ =〈P1, P2, ...Pm〉∞, with n robots starting from a configuration γ, under the condition that ∀i size(Pi) = n and
ρ(Pi) = q = ρ(γ).

We only need to consider the case q < n and n > 2, since for q = n or for n = 2, there is a single possible
pattern: the regular n-gon and the robots already form that. The scenarios (q = 2, n = 3) is impossible due to
Property 2. The scenario (q = 1, n = 3) is easily solved because every transformation from one pattern to another
requires only one robot to move and since the symmetricity is one, the algorithm can select exactly one robot to
move in each configuration. Thus, we now focus on the case when n ≥ 4 and q < n.

Let F be a function that maps each pattern Pi ∈ S to a real number ki = F (Pi) that satisfies the condition
of Lemma 5. To signal the formation of pattern Pi, one of the following configurations is unambiguously used:
either SCC(x) with stretch ki, where x is any factor of q, or configuration BCC with stretch k′i = (ki + 1)/2. Due to
Lemma 4 it is possible to form one of these configurations starting from an arbitrary configuration of symmetricity
q. By computing the stretch of the configuration, the robot can then identify which pattern Pi is being formed.
By Lemmas 6 and 5, the robots can then form pattern Pi. Once the pattern has been completed, the resulting
configuration has symmetricity q. Hence, by Lemma 4, it is again possible to form a SCC or BCC configuration having
the appropriate stretch F (Pi+1) for the next pattern Pi+1 in the series. Using this technique, the robots can move
from one pattern to the next, and thus they can form the required series of patterns.

From Lemma 3 and from the algorithm described above, we obtain the following characterization.

Theorem 1 A set of n anonymous robots starting from distinct locations in an arbitrary configuration γ, can form a

cyclic series of distinct patterns 〈P1, P2, . . . , Pm〉∞, each pattern of size n, if and only if ∀i, j ∈ {1, 2, . . .m} ρ(Pi) =
ρ(Pj) = a · ρ(γ) for some integer a ≥ 1.

3.3 Special Case: Agreement on Directions

In this section, as a special case we consider robots that agree on directions (i.e. they have common notion of
North, South, East and West). This is the case if each robot is provided with a consistent compass, for example.
Thus, the robots in this section, besides agreeing on a common clockwise direction, also agree on the directions of
a fixed coordinate system. We say such robots have common sense of direction.

In this case, as long as the robots occupy distinct locations, there exist a total order on the robots. However
whenever two robots gather at the same point, we lose the order relationship between these two robots. For robots
with this additional capability, we have the following results.

Lemma 7 With n anonymous robots having common sense of direction, any single pattern P of size n′ ≤ n can be

formed, if the robots start from distinct locations.

Proof As mentioned before, there is a total order on the n robots, say r1, r2, . . . , rn based on their locations (e.g.
ordered left to right and then bottom to top). Suppose the points p1, p2, . . . pn′ ∈ P are also ordered similarly.
Thus, the location of r1 and r2 can be matched to points p1 and p2 and all other other robots r3 to rn simply
move to the points p3 to pn′ , in this order (i.e. robots rn+1 to rn all move to the same location pn′). During these
movements, the ordering of the robots is preserved, thus every robot can unambiguously determine the location
where it should move to, to form the pattern P .

In case all robots do not start from distinct locations, it is easy to see that any pattern P of size n′ is formable
whenever at least n′ out of the n robots are initially in mutually distinct locations. We now show which series of
patterns are formable starting from any arbitrary configuration.

Theorem 2 With n anonymous robots having a common sense of direction and occupying w distinct locations, we can

form any cyclic series of distinct patterns S∞〈P1, P2, ...Pm〉, if and only if ∀i ∈ {1, 2, . . .m−1} size(Pi) size(Pi+1) ≤ w.

Proof The “only if” part follows from Property 1. We only need to show how to form the given series. Let
r1, r2, . . . , rw be the order among robots based on their locations. Note that robots located at the same place share
the same identity. We use the technique of fixed ratios, where robots r1,r2, and rw form a specific ratio to signal the
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formation of a pattern Pi. We employ a function F that associates each pattern Pi to some real number F (Pi) > 1
and to form the pattern Pi we maintain a configuration where the ratio of distances d(r1, rl)/d(r1, r2) = F (Pi)
where rl denotes the last robot in the current configuration. Note that such a configuration, called configuration
FormRatio(F (Pi)), can be formed in one step, by movement of one or more robots from the location L(rw) to the
new location satisfying the ratio constraint. Each robot can determine which pattern is being formed by computing
this ratio. Once the configuration FormRatio(F (Pi)) is formed the pattern Pi can be formed easily using the same
techniques as in the proof above.

4 Visibly Distinct Robots

Let us consider now the case when each robot ri has a unique identity IDi (w.l.g, IDi = i) and any other robot
can see this identity. During the LOOK operation, a robot ri obtains a snapshot containing tuples of the form
(j, xj , yj) where 1 ≤ j ≤ n, j 6= i and (xj , yj) is the location of the j-th robot, with respect to the local coordinate
system of robot ri. The view of a robot contains the information observed by the robot, including the identities
and locations of robots. Thus, the view of each robot is unique in this case, and even in absence of agreement
on directions, the symmetry among the robots can be broken by the use of distinct labels. In other words, there
can be no symmetric configurations. Moreover, as opposed to the anonymous case, robots can be allowed to form
dense points, since the robots can be separated later, if required.

As we showed in section 3.3, having an order on the robots allows us to form any pattern of size n′ ≤ n.
However, for labelled robots, the order among is preserved even if the robots are not in distinct location. So, the
assumption that the robots start from distinct locations, is no longer necessary.

Lemma 8 With n robots having visibly distinct identities, starting from arbitrary locations, any single pattern P of size

n′ ≤ n points can be formed.

Proof This is achieved by Algorithm 1. The case for P = POINT is trivial; all robots except r1 simply move to the
location of r1. Let us consider patterns where size(P ) > 1. If robots r1 and r2 are at the same location, then r2
will be the first robot to move. Once these two robots are in distinct locations, they remain there until the end of
the algorithm. Taking L(r1) as point p1 ∈ P and L(r2) as point p2 ∈ P , the locations corresponding to all the other
points in the pattern can be uniquely determined with respect to these two fixed points. Whenever the robot ri,
i > 2 becomes active, it can determine the correct location, corresponding to the point pi (or pn′ if i > n′) and
move there. Thus, after every robot has executed at least one computation cycle, the pattern P would be formed.

Algorithm 1: Form-Pattern

/* Algorithm for single pattern P */
INPUT: P =(p1, p2, . . . , pn′ ) , ID = i
begin

if P = POINT and i > 1 then
Move to the location of robot r1

else
if i = 2 and r1 is colocated with r2 then

Move to a location distinct from robot r1 ;

if i > 2 and r1 is not colocated with r2 then
i ← Min(i,size(P ));
Consider the coordinate system Z such that, LZ(r1) = p1 and LZ(r2) = p2;
Move to the location corresponding to pi ∈ P ;

When there is only one robot, the only pattern that can be formed is obviously POINT. With n = 2 robots, only
two patterns can be formed: POINT and TWO-POINTS and it is easy to form the cyclic series (POINT, TWO-POINTS)∞,
by movement of a single robot (say r2). There are no other possible series of patterns for n = 2. The more
interesting cases occur when there are at least three robots (i.e., n ≥ 3), in this case any series of distinct patterns
S∞ = 〈P1, P2, . . . Pm〉∞ can be formed, with the only restriction that each pattern Pi has at most n points. We
describe below an algorithm that achieves this.

Robots r1, r2 and rn have special roles. In particular, r1 and r2 remain fixed in distinct locations for the entire
algorithm serving as fixed points of reference for the other robots. If the robots r1 and r2 are initially collocated
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Algorithm 2: FormSeries

/* Algorithm for forming a series S∞ with visibly distinct robots */
INPUT: S = 〈P1, P2, . . . , Pm〉, ID = i
begin

case ID = 2
if all robots except rn are colocated then /* Pre-Point configuration */

Do nothing;
else if r1 is colocated with r2 then

Move to a location distinct from robot r1 ;
else if all robots except r2 and rn are colocated then

if ∃Pj ∈ S : Pj = POINT and d(r1, r2)/d(r1, rn) equals F (Pj) then
Move to the location of robot r1;

case 2 < ID < n
if r1, r2 and rn are at distinct locations then

w ← d(r1, r2)/d(r1, rn) ;
if ∃j ∈ {1, 2, . . .m} : F (Pj) = w then

Execute Form-Pattern (Pj , ID) ;

case ID = n
if all robots except rn are colocated then /* Pre-Point configuration */

Move to the same location as the other robots;
else if all robots except r2 are colocated then /* Post-Point configuration */

if ∃j ∈ {1, 2, . . . ,m} : Pj = POINT then
Move to a location such that the ratio d(r1, r2)/d(r1, rn) = F(P(j mod m)+1);

else
Move to a location such that d(r1, r2)/d(r1, rn) = F (P1);

else if r1 is not colocated with r2 then
t ← d(r1, r2)/d(r1, rn) ;
if ∃j ∈ {1, 2, . . . ,m} : F (Pj) = t then

if all other robots are in correct location to form pattern Pj then
Move to the appropriate location to form Pj

else if Current configuration corresponds to pattern Pj ∈ S then
Move to a location such that d(r1, r2)/d(r1, rn) = F (P(j mod m)+1);

else
// Start to form pattern P1

Move to a location such that d(r1, r2)/d(r1, rn) = F (P1);

then robot r2 must move away from r1 during the first step of the algorithm. As before, we use some known
function F to map each pattern Pj to a distinct real number wj = F (Pj), wj ∈ (1,∞). Before forming pattern Pj ,

robot rn moves to a location between r1 and r2 such that the ratio of distances dist(r1,r2)
dist(r1,rn) is equal to wj . This is

the signal for the other robots to indicate which pattern is being formed. Each robot ri, 2 < i < n can compute the
location where it should move to in order to form pattern Pj . Once each of these robots has moved into the correct
positions, robot rn moves to complete the pattern. During the execution of the algorithm every configuration of
the robots (excluding at most the first two configurations) either corresponds to some pattern Pl in the series ,
or is an intermediate configuration which signals the formation of Pl (i.e. where r1, r2, and rn maintain a ratio

of wj = F (Pl). The function F must be chosen in such a way that the ratio dist(r1,r2)
dist(r1,rn) in an actual pattern never

matches any values in the range of F . Thus, each robot can unambiguously determine the location that it needs
to move to, by looking at the current configuration.

In order to include POINT in the series of patterns formed, we need to make some modifications to our scheme.
Notice that the penultimate configuration just before forming POINT must necessarily have all robots except one at
the same location. The same holds for the configuration immediately after forming POINT . In these two situations,
we can not use the ratio of distances to signal the formation of a pattern. So, we use the following convention.
When forming the POINT pattern, the robot rn is the last robot to join and when breaking away from the POINT

pattern, robot r2 is the first robot to move. We define the following special configurations:

(i) PrePoint : Robots r1 to rn−1 in the same location and rn in a different location.

(ii) PostPoint : All robots except r2 in the same location and robot r2 in a different location.

(iii) TwoPoints: Robots r2 to rn in the same location and r1 in a different location.
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(iv) FormRatio(w): This is the set of configurations where robots r1, r2, rn lie on distinct locations on the same
line such that the ratio of distances dist(r1, r2)/dist(r1, rn) = w. (The other robots may be located anywhere.)

The algorithm for forming a given series S = 〈P1, P2, . . . , Pm〉∞ is called Form-Series and is sketched below and
presented in Algorithm 2. The algorithm recognizes the above configurations as special configurations. In particular,
the PrePoint configuration is recognized as the configuration immediately before forming POINT . In this case, the
algorithm proceeds to form POINT. Similarly, the algorithm recognizes the special configuration PostPoint as the
configuration immediately after POINT formation. In this case, the algorithm proceeds to form the next pattern
P(i mod m)+1 if Pi = POINT ∈ S. On the other hand, if POINT does not belong to the series S then the algorithm
proceeds to form the first pattern P1 in S. Notice that the configurations PrePoint, PostPoint and TwoPoints

are analogous; however only the configuration TwoPoints is considered to correspond to the pattern TWO-POINTS.
Whenever the current configuration corresponds to some pattern Pi ∈ S, the algorithm proceeds to form the next
pattern P(i mod m)+1 by first forming a configuration of type FormRatio(t) where t = F (P(i mod m)+1).

Lemma 9 Given a cyclic series of distinct patterns S∞ = 〈P1, P2, . . . , Pm〉∞ Algorithm Form-Series forms S∞ if

size(Pi) = ni ≤ n, for all i = 1, 2, . . . ,m.

Proof During the algorithm, the robot system goes through a series of configurations γ0, γ1, . . . , where for all i > 1,
either γi corresponds to some pattern Pi ∈ S

⋃
{POINT} or γi is one of the following configurations: PrePoint,

PostPoint, TwoPoints, or any configuration of the type FormRatio(w) for w = F (Pi), 1 ≤ i ≤ m. If the initial
configuration is none of those described above, then the system reaches such a configuration in just one or two
steps with a single movement of robot r2 or rn or both (one after the other). If all robots are collocated, r2 moves
away to form configuration PostPoint. If r1 and r2 are initially collocated, then r2 first moves out and followed by
robot rn to form configuration FormRatio(F (P1)). Otherwise r1 and r2 are initially separated and in this case only
rn needs to move to form FormRatio(F (P1)).

We now need to show that from a configuration γi that is one of the types discussed above, the algorithm
eventually forms the complete series of patterns. It is easy to see that if γi is of type FormRatio(F (Pj)), 1 ≤ j ≤ m,
then the algorithm forms the pattern Pj . On the other hand if γi corresponds to some pattern Pj in S, Pj 6= POINT

then γi+1 is a configuration of type FormRatio(w) where w = F (P(j mod m)+1) which implies that eventually
pattern P(j mod m)+1 will be formed. This implies that the algorithm forms the complete series in this case. Note
that if γi is TwoPoints, it is considered to correspond to the pattern TWO-POINTS and the thus the above argument
holds in that case too. This leaves us with only the special cases when γi is either PrePoint, PostPoint or corresponds
to POINT . If γi is PrePoint then γi+1 would correspond to POINT and γi+2 would be PostPoint. This further implies
that γi+3 would be the configuration FormRatio(t) where t = F (Pj) if Pj−1 = POINT and t = 1 otherwise. This
combined with the previous argument implies that the algorithm forms the series S even in these special cases.

The Algorithm Form-Series forms any cyclic series 〈P1, P2, . . . , Pm〉∞ for n ≥ 3 robots. For n = 2 robots, it is
easy to form the only possible series 〈POINT, TWO-POINTS〉∞, by movement of a single robot (as mentioned before).
For n = 1, no non-trivial series are possible. To summarize, we have the following result:

Theorem 3 With n > 1 robots having distinct visible identities, any cyclic series of distinct patterns 〈P1, P2, . . . , Pm〉∞
is formable if and only if for all i, 1 ≤ i ≤ m, size(Pi) ≤ n.

5 Distinct Robots with Invisible Identities

In this section, we consider robots that have distinct identities but the identities of the robots are not visible to
other robots. The robots are assumed to be ordered with labels 1, 2, 3, . . . , n and each robot ri knows its own label
i, but it can not visibly identify the label of other robots. In this case, the information contained in the views of the
robots is similar to the anonymous case. Thus, two robots may have identical views (in particular, robots at the
same location have identical views). However, since the robots have distinct identities, they can execute different
algorithms depending on their own identifier.

Consider first the case when there are at least four robots (i.e. n ≥ 4). The BCC configuration, defined for the
anonymous case, is used here as well to signal the formation of specific patterns in a series. However since dense
points are allowed in this case, there may be more than one robots at the pivot and at the base-point of the
bi-circular configuration.

Lemma 10 From any arbitrary configuration γ with |L(γ)| ≥ 3 , a bi-circular configuration of any given stretch k > 3,

can be formed by the movement of a single robot (this single robot will place itself in a pivot position).



Forming Sequences of Geometric Patterns with Oblivious Mobile Robots 13

The technique for forming any given pattern P starting from a bi-circular configuration of stretch ki is as
follows: As before, the bi-circular configuration can be formed by robot rn jumping to the pivot location. Once the
robots are in bi-circular configuration BCC with stretch ki, robot r1 and robot rn−1 would move to the base-point
and the frontier-point respectively. Now, these three robots remain in their location while the other robots move
to the required positions for forming pattern P . The positions are assigned in the following manner. The points in
the pattern P are mapped to locations in the bi-circular configuration such that the bounding circle of pattern P

coincides with the secondary enclosure of the configuration and the base-point coincides with the lexicographically
smallest point pi on the bounding circle of P , i.e., pi ∈ BC(P ) and pi ≤ pj , for any pj ∈ BC(P ). Notice that this
mapping is unique. Let Γ (P ) be the unique mapping obtain by each robot (i.e., the locations that correspond to
points in the pattern P ). The elements of Γ (P ) are sorted in such a way that the first point is the base-point of
the current BCC configuration of the robots, and all points which lie on the secondary enclosure C2 precede those
that are located in the interior of C2. For 1 ≤ i ≤ size(P ) robot ri is assigned the ith location in Γ (P ) and for
size(P ) < j ≤ n robot rj is assigned to the last location in Γ (P ).

The algorithm that implements the above strategy is called algorithm Form-Series-2 (See Algorithm 3). During
the formation of a pattern Pi, the algorithm ensures that the BCC configuration is maintained by keeping the robots
r1, rn−1 and rn stationary at the BP, FP and pivot positions, respectively. When all other robots have moved to
their assigned location, robot rn−1 finally moves to its assigned location. If rn−1 is assigned a location inside the
secondary enclosure C2, then all the points on the circle BC(Pi) are already occupied by robots; So, the circle C2
(and thus the BCC) is preserved after the move of rn−1. Otherwise, if rn−1 is assigned another position on C2, then
there must be already two other robots on the circle C2 (since n ≥ 4) and thus, the BCC is preserved after the move
of rn−1 (Since any three points uniquely determine the only circle passing through them). Thus, after the move of
rn−1, the BCC configuration of appropriate stretch is still maintained. Hence robot rn can unambiguously move to
the required position to complete the pattern.

When the BCC configuration is initially formed, the robots r1 and rn−1 may not be present at the base-point(BP)
and frontier-point(FP) respectively. In that case, these robots move to these locations during the first step when
they are activated. Only after this the robots that were originally at BP and FP are allowed to move to other
locations. In case r1 is at FP and rn−1 is at BP, then none of these robots can move without breaking the BCC

configuration. In this special case, the robots r1 and rn−1 simply reverse their roles (i.e. rn−1 performs the algorithm
for r1 and vice versa).

For the above algorithm, the special configuration PrePoint is defined similarly as before, while the configuration
PostPoint is defined as the configuration where r1 is alone and all other robots are together. The configuration
TwoPoints that corresponds to TWO-POINTS is defined as the configuration where r1 and rn are together and all other
robots are collocated at a separate location. Since n ≥ 4, these three special configurations can be distinguished
from each-other by both robot r1 and robot rn (which are the only two robots that make the decisive move for
changing from one pattern to the next).

We now introduce a few lemmas to show that Algorithm Form-Series-2 is correct.

Lemma 11 Given a series of patterns S = 〈P1, P2, . . . , Pm〉 as input, Algorithm Form-Series-2 starting from any

arbitrary configuration, reaches a configuration γ, such that L(γ) is isomorphic to some Pi ∈ S

Proof During any execution of the algorithm 3, the series of configurations satisfies the condition that each con-
figuration γ other than the initial configuration is one of the following:

(i) L(γ) is isomorphic to Pi ∈ S, such that size(Pi)> 2.
(ii) γ is a bi-circular configuration with stretch ti = F (Pi).
(iii) |L(γ)| = 1 (i.e. all robots are collocated)
(iv) |L(γ)| = 2 and r1 is alone. (The configuration after POINT formation)
(v) |L(γ)| = 2 and rn is alone. (The configuration before POINT formation)
(vi) |L(γ)| = 2 and r1 is collocated with only rn. (The configuration for TWO-POINTS)

If the initial configuration is not one of the above then, during the next active cycle of robot rn, it moves to a
location such that configuration is BCC(t1) (Note that this is possible because there are at least two robots other
than rn that are located at distinct locations). If POINT, TWO-POINTS /∈ S, then all subsequent configurations will
be of the type (i) or (ii). If POINT /∈ S and the initial configuration is of the type (iii) or (v), then robot r1 moves
to a location distinct from its current location, such that after the move, at least two of the robots other than
rn are at distinct locations. Starting from such a configuration (including configurations of type (iv) and (vi) )
robot rn moves to form the configuration BCC(t1). (Note that if the configuration has robot ri, 1 < i < n alone and
all other robots together, then both r1 and rn could potentially move at the same time. However, the resulting
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Algorithm 3: FormSeries2

/* Algorithm for forming a series S∞; Robots with invisible identities */
INPUT: S = 〈P1, P2, . . . , Pm〉, k[j] = F (Pj), 1 ≤ j ≤ m, ID = i
begin

/* Let Conf be the current configuration of robots as viewed by ri. */
/* Let loc be the current location of the robot ri. */
case i = 1 /* Algorithm for robot r1 */

if Conf is BCC(k[j]) for some j ∈ [1,m] then
if loc 6= BP and FP is unoccupied then

Move to FP;
else if loc 6= BP and FP is occupied by at least one other robot then

Move to BP;
else if loc = FP and n− 2 other robots are occupying at least nj − 2 points of Pj then

MoveToPosition(Pj , n− 1);

else if all robots are collocated then /* i.e. L(Conf) ' POINT */
Move to an unoccupied location;

else if all robots except one are at loc and POINT /∈ S then /* maybe only rn is alone */
Move to an unoccupied location within current SEC;

case ID = n− 1 /* Algorithm for robot rn−1 */
if Conf is BCC(k[j]) for some j ∈ [1,m] then

if loc 6= FP and loc 6= BP then
Move to FP;

else if loc = BP and multiplicity(BP) > 1 then
Move to FP;

else if loc = FP and n− 2 other robots are occupying at least nj − 2 points of Pj then
MoveToPosition(Pj , n− 1);

case ID = n /* Algorithm for robot rn */
if Conf is BCC(k[j]) for some j ∈ [1,m] then

if all other robots are occupying at least nj − 1 points of Pj then
MoveToPosition(Pj , n);

else if all robots except one are at loc then
if Pj = POINT for some j ∈ [1,m] then

Move to pivot to form BCC (k[(j mod m) + 1]);
else

Move to pivot to form BCC (k[1]);

else if all other robots are at the same location l 6= loc and POINT ∈ S then
Move to the location occupied by all other robots;

else if L(Conf) matches Pj for j ∈ [1,m], Pj 6= POINT then
Move to pivot to form BCC (k[(j mod m) + 1]);

else
Move to pivot to form BCC (k[1]);

otherwise /* Algorithm for all other robots, i.e. 1 < ID < n− 1 */
if Conf is BCC(k[j]) for some j ∈ [1,m] and BP, FP are occupied then

if at least i− 1 robots are occupying at least min(i− 1, nj) points of Pj then
if loc 6= BP or multiplicity(BP)> 1 then

MoveToPosition(Pj , i);

configuration would still be BCC(ti), since r1 is inside the current SEC.) On the other hand, if POINT ∈ S and the
current configuration is of type (iv), then robot rn moves to form the configuration BCC(ti) where Pi−1 =POINT.
If TWO-POINTS ∈ S and the current configuration is of type (vi), then robot rn moves to form the configuration
BCC(ti) where Pi−1 =TWO-POINTS. Thus, starting from any configuration, we eventually reach a configuration of type
BCC(ti) for some ti = F (Pi), Pi ∈ S. Once the configuration BCC(ti) is formed, each robot can correctly determine
the location that it needs to occupy in order to form pattern Pi. The robots move to respective locations in order.
While robots r2 to rn−2 are moving to their respective locations, robots r1, rn−1 and rn occupy the base-point,
frontier-point and pivot locations, ensuring that the bi-circular configuration is maintained. Note that when the
robot rn−1 moves to its designated location, the bi-circular configuration is still maintained. This holds because
the points on SEC2 are occupied earlier than the points in the interior of SEC2 and, since n ≥ 4, there must be
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Procedure MoveToPosition(P ,i)

/* Algorithm to move robot ri to the correct position for forming P */
INPUT: Pattern=P , ID=i
begin

n← size(P );
Γ ← MAP(Conf,P );
Sort Γ such that points on the SEC precede those inside SEC and Γ [1] is the BP;
if i = k and n = 2 then /* To form TWO-POINTS, rn joins r1 */

Move to location Γ [1];
else if i ≥ n then /* robots rn to rn go to the final point */

Move to location Γ [n];
else

Move to location Γ [i];

at least three robots on the SEC2 (including robots r1 to rn−1). In the final step, robot rn moves from the pivot
location to its assigned location and the pattern Pi.

Now, we show that after forming Pi, Algorithm Form-Series-2 forms the next pattern P(i mod m)+1, for any
i ∈ [1,m].

Lemma 12 From a configuration γ representing Pi ∈ S, the algorithm eventually reaches a configuration γ′ such that

L(γ′) is isomorphic to P(i mod m)+1.

Proof We only need to show that starting from the configuration representing Pi, a configuration of the type
BCC(tj), j = (i mod m) + 1 is eventually formed. The rest follows from the previous Lemma.

Suppose Pi = POINT, then all the robots are collocated. In this only robot r1 is allowed to move. Once robot
r1 moves away, we have the configuration (iv) above. This is recognized as the configuration just after POINT

formation. So, robot rn moves to the pivot location to form BCC(tj). If Pi = TWO-POINTS then the configuration is
of type (vi) mentioned above. In this case, robots r1 and r2 occupy distinct locations, so the SEC of all robots
other than rn is well-defined and can be computed by robot rn. Thus, robot rn can move to form BCC(ti). In all
other cases (i.e. for any other pattern), there are at least two robots other than rn which occupy distinct locations.
Thus, robot rn can form configuration BCC(tj) by directly moving to the corresponding pivot location.

From Lemmas 11 and 12, we have:

Theorem 4 Algorithm Form-Series-2 executed by n ≥ 4 robots forms any cyclic series of distinct patterns S∞ =
〈P1, P2, . . . , Pm〉∞, if size(Pi)≤ n, for i = 1, 2, . . . ,m.

The remaining cases are when there are exactly 2 or 3 robots. For n = 2, the case of invisible identities is
same as that of visible identities. For the case of n = 3, the transformations between any two patterns of size 3 is
straightforward and requires the movement of a single robot, as mentioned before. The only challenging scenario
involves the formation of POINT and TWO-POINTS, where the intermediate configurations before and after forming
POINT must be distinguished from the configuration forming TWO-POINTS. In contrast to the scenario in Section 4,
it is not possible for any single robot to distinguish between the special configurations PrePoint, PostPoint and
TwoPoints. This difficulty can be overcome by using the technique presented recently in [5]. The idea is to allow
robot r3 to move in each of these three configurations. Recall that robot r3 is alone in the configuration PrePoint
and t! hus can distinguish this configuration from the other two configurations. In order to distinguish between the
configurations PostPoint and TwoPoints, robot r3 moves to a location forming a particular scalene triangle with
respect to the other robots such the smallest of the interior angles is at the location of the robot that was earlier
collocated with r3. If the previous configuration was PostPoint, this robot would be r1 and otherwise this robot
would be r2. Thus, the other robots can now distinguish between these two scenarios and take the appropriate
action to form the next pattern in the series. With this minor modification, the algorithm from Section 4 can be
used to form any series of patterns of size at most three, for n = 3 robots. In conclusion:

Theorem 5 With n > 1 robots having distinct invisible identities, a cyclic series of distinct patterns 〈P1, P2,. . . , Pm〉∞
is formable if and only if size(Pi)≤ n, 1 ≤ i ≤ m.
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6 Conclusions

We studied the formation of geometric patterns by a system of oblivious mobile robots in a plane and showed
that a set of oblivious, asynchronous robots may form a cyclic series of distinct patterns. Thus it is possible to
encode the state of the system in the form of a pattern and “remember” this global state information even though
the individual robots have no memory of the past. This implies we can build a self-stabilizing system of mobile
robots that can perform a sequence of tasks in a given order. The computational power of such robot systems is
an important area of investigation.

In this paper we considered three types of robots—robots having distinct and visible identities, robots having
invisible identities and also robots that completely anonymous (and indistinguishable from each other). If the robots
have distinct visible identities then any series of patterns can be formed provided that there are sufficiently many
robots. The same result holds for robots having invisible but distinct identities. However, in the case of anonymous
robots, the series of patterns that may be formed depends on the symmetricity of the initial configuration.

The power of the robots in our model comes from their unlimited vision and mobility. If the movements of the
robots are bounded to a maximum distance δ that the robot can move in each step, as in the ATOM model [26],
then we could modify our algorithms as follows. First the robots would use some convergence algorithm to move
closer to each other, while avoiding collisions. Once all robots are within a circle of small diameter (depending
on the value of δ, assuming that it is known), then robots can then execute the same algorithms as in this paper
without ever having to move a distance longer than δ, i.e. all movements would be within a circle of diameter δ.
A similar approach has been used recently in [28] where the robots are assumed to have limited visibility.

A challenging problem that is left open by the current investigation is how to form a sequence of patterns in
an asynchronous setting. For example, in the asynchronous CORDA model studied in the literature, forming even
a single pattern seems difficult unless either the robots share a common coordinate system [16] or the points of
the pattern are visibly marked by some external agent [17].
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