
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER

Point-of-Failure Swap Rerouting: Computing The Optimal

Swaps Distributively

Paola FLOCCHINI†, Antonio MESA ENRIQUES††, Linda PAGLI†††, Giuseppe PRENCIPE†††,
and Nicola SANTORO††, Nonmembers

SUMMARY We consider the problem of computing the op-
timal swap edges of a shortest-path tree. This problem arises in
designing systems that offer point-of-failure shortest-path rerout-
ing service in presence of a single link failure: if the shortest
path is not affected by the failed link, then the message will be
delivered through that path; otherwise, the system will guaran-
tee that, when the message reaches the node where the failure
has occurred, the message will then be re-routed through the
shortest-path to its destination. There exist highly efficient se-
rial solutions for the problem, but unfortunately because of the
structures they use, there is no known (nor foreseeable) efficient
distributed implementation for them. A distributed protocol ex-
ists only for finding swap edges, not necessarily optimal ones.

We present two simple and efficient distributed algorithms
for computing the optimal swap edges of a shortest-path tree.
One algorithm uses messages containing a constant amount of
information, while the other is tailored for systems that allow
long messages. The amount of data transferred by the protocols
is the same and depends on the structure of the shortest-path
spanning-tree; it is no more, and sometimes significantly less,
than the cost of constructing the shortest-path tree.

(1) Keywords.

Fault-Tolerant Routing, Point of Failure Rerouting,
Shortest Path Spanning Tree, Weighted Graphs, Dis-
tributed Algorithms.

1. Introduction

1.1 The Framework and Previous Work

In systems using shortest-path routing tables, a single
link failure is enough to interrupt the message transmis-
sion by disconnecting one or more shortest-path span-
ning trees. The on-line recomputation of an alternative
path or of the entire new shortest path trees, rebuilding
the routing tables accordingly, is rather expensive and
causes long delays in the message’s transmission [10],
[15]. Some of these costs and delays could be reduced
if the serial algorithms for dynamic graphs (e.g., those
of [5]) could somehow be exploited. These serial algo-
rithms pre-compute some useful information and store
it in ad-hoc data structures. The difficulty is clearly in
distributing the computation and the data structures,
and more importantly in the distributed maintenance

†The author is with the University of Ottawa, Canada.
††The author is with Carleton University, Canada.

†††The author is with University of Pisa, Italy. Contact

author: prencipe@di.unipi.it

of this dynamic structure; these difficulties have not yet
been successfully overcome (e.g., see [12]).

An alternative approach is to pre-compute addi-
tional information and use it to augment the shortest-
path routing tables so to make them operate when a
failure occurs. Examples of this approach are tech-
niques (e.g., see [9]) of pre-computing and storing, in
addition to the shortest-path routing tables, k other
spanning trees for each destination [9]. A single ad-
ditional tree would not be sufficient because it would
need to be edge-disjoint with all the original shortest-
path spanning-trees defining the routing tables, and
such a tree might not exist; hence k > 1. The stor-
age requirements are reasonable: for each destination,
a node stores k links (one for each additional tree)
in addition to the one in the fault-free shortest-path.
The pre-computing can be done using any the existing
distributed algorithms distributed algorithms for con-
structing possibly edge-disjoint spanning-trees or col-
lection of disjoint paths (e.g., [1], [11]). However, the
alternative routes do not satisfy any optimization cri-
terion (such as shortest path) even in the case when
only one link might be down.

To reduce the amount of communication and of
storage, a new strategy has been recently proposed
[4], [10], [13], [14], [16]. It starts from the idea of pre-
computing, for each link in the tree, a single non-tree
link (the swap edge) able to reconnect the network
should the first fail. The strategy, called point-of-failure

swap rerouting is simple: normal routing information
will be used to route a message to its destination. If,
however, the next hop is down, the message is first
rerouted towards the swap edge; once this is crossed,
normal routing will resume. This approach has several
advantages. In particular, there is no need to broadcast
a link failure and its subsequent reactivation (if any).
Furthermore, it requires only a single item of additional
information (the swap) to be added to each item of
the shortest-path routing tables. This fact makes the
approach particularly suited for systems which employ
static routing table, or where memory requirements are
stringent.

The problem of determining a swap edge for each
link in the shortest path trees has been investigated by
Ito et al [10], who presented an efficient sequential algo-
rithm that can, possibly, be efficiently implemented in

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

a distributed setting. A basic drawback of their solu-
tion is that swap edges they determine are arbitrary, i.e.
they do not have any particular property. This means
that, if the failure occurs, the system does not make
any guarantee other than message delivery. Although
acceptable in some contexts, this level of service might
not be tolerable in general.

Clearly, some swap edges are preferable to others
and, choosing appropriately, the routing system can be
made to offer a higher level of service. Consider for ex-
ample the choice of swap edges such that if the shortest
path is not affected by the failed link, then the mes-
sage will be delivered through that path; otherwise, the
system will guarantee that, when the message reaches
the node where the failure has occurred, the message
will then be re-routed to its destination through the
shortest-path. Such a service is called point-of-failure

shortest-path rerouting and the set of swap edges en-
abling it are called optimal swap edges.

The advantage of having optimal swap edges can
be significant. In fact, experimental results [16] show
that the tree obtained from using an optimal swap edge
is very close to the new shortest-path spanning tree
computed from scratch.

The problem of computing all the optimal swap
edges for a shortest-path tree has been attacked by
Nardelli, Proietti, and Widmayer [14]. They showed
that the problem can be solved sequentially in O(m ·
α(m, n)) time, where α(m, n) is the functional inverse
of Ackermann’s function. This bound is achieved using
Tarjan’s sophisticated technique for union-find, which
requires the construction of transmuters [17]. Unfor-
tunately, there is currently no efficient distributed im-
plementation of this sequential technique; since in a
distributed network setting the construction of trans-
muters requires complete global network information at
some node, it is doubtful whether this approach can be
efficiently implemented in a distributed setting.

Summarizing, the problem of computing all the op-
timal swap edges of a shortest-path tree is an interest-
ing graph-theoretic problem and a crucial component
to implement a point-of-failure shortest-path rerout-
ing strategy. Currently, there is no distributed solution
(in [10], the problem is posed but no solution given).
Clearly any such a solution should not add significantly
to the overall cost of constructing the final routing ta-
bles. In particular, the computation should not require
more messages (at least in order of magnitude) than
those used to construct the shortest-path tree.

1.2 Our Contribution

In this paper we present an efficient distributed solution
to the optimal swap edges problem.

Given a shortest-path spanning-tree Tr, the pro-
posed protocol determines at each node x the optimal
swap edge for ex = (x, p(x)), with p(x) the parent of

x. The algorithm uses O(n∗
r) messages of constant size,

where n∗
r is the size of the transitive closure of Tr \ {r};

observe that 0 ≤ n∗
r ≤ (n − 1)(n − 2)/2.

If longer messages are allowed, the same strategy
can be modified to construct a different algorithm that
uses only O(n) such messages.

Providing a uniform comparison between protocols
using different sized messages, the data complexity of a
protocol measures the total amount of data exchanged
during the execution; in our context, a node, an edge,
a label, a weight, and a distance are each a unit of
data. Both algorithms have an overall data complexity
of O(n∗

r).
Notice that this cost is always less, and often-

times substantially so, than the cost of constructing
a shortest-path spanning-tree. We actually conjecture
that such a cost is optimal.

Further notice that the information assumed avail-
able by our algorithms can be acquired during the
shortest-path spanning-tree construction, without in-
creasing the order of magnitude of the message and
information complexity of that process. Should this in-
formation not be provided, it can be easily acquired
with an O(m) data complexity.

The paper is organized as follows. In the next
section we introduce some definitions and terminology.
The new distributed algorithm for constructing all the
optimal swap edges for a given shortest-path spanning-
tree using constant-size messages is described and an-
alyzed in Section 3. In Section 4, we present a more
efficient algorithm for systems allowing long messages.
The concluding remarks and open problems are in Sec-
tion 6.

2. Definitions and Terminology

Let G = (V, E) be a simple undirected graph, with
n = |V | vertices and m = |E| edges. A subgraph

G′ = (V ′, E′) of G is any graph where V ′ ⊆ V and
E′ ⊆ E. If V ′ ≡ V , G′ is a spanning subgraph.
A path P = (Vp, Ep) is a subgraph of G, such that
Vp = {v1, . . . , vs}|vi 6= vj , for i 6= j, and (vi, vi+1) ∈ Ep,
for 1 ≤ i ≤ s − 1. If v1 = vs then P is a cycle. A graph
G is connected if, for each pair {vi, vj} of its vertices,
there exists a path connecting them. A graph G is bi-

connected if, after the removal of anyone of its edges it
remains connected. A tree is a connected graph with
no cycles.

A non negative real value called weight (or length)
and denoted by |e| is associated to each edge e in G.
Given a path P , the length of the path is the sum of
the lengths of its edges. The distance dG′(x, y) between
two vertices x and y in a connected subgraph G′ of G,
is the length of the shortest path from x to y in G′.
For simplicity, in the following we will denote dG(x, y)
simply by d(x, y).

For a given vertex r, called source, the shortest

FLOCCHINI et al.: POINT-OF-FAILURE SWAP REROUTING: COMPUTING THE OPTIMAL SWAPS DISTRIBUTIVELY
3

C

E
D

H

A

B

F

G

C

E
D

H

A

B

F

G

(b)(a)

1

3

3

6
3

4

1

1 1

1

4
1

4

1

6

Fig. 1 (a) A biconnected weighted graph G. (b) The shortest-
path spanning tree TA rooted in A; the dotted edge (F, B) is the
optimal swap edge for (C, A).

path tree (SPT) of r is the spanning tree Tr rooted at
r such that the path in Tr from r to any node v is the
shortest possible one; i.e., ∀x ∈ V dTr

(x, r) = d(x, r).
The removal of any edge e of Tr will disconnect Tr

into two subtrees. If G is biconnected, there will always
be at least an edge e′ ∈ E(G) \E(Tr) that will join the
two disconnected subtrees forming a new spanning tree
T ′ of G. Any such an edge is called a swap edge for e;
let Sr(e) denote the set of swap edges for e.

An optimal swap edge (or bridge) for e = (u, v) is
any swap edge for e such that the distance from u to
the source r in the new tree T ′ is minimized; more
precisely, an optimal swap edge for e = (u, v) is a
swap edge e′ = (u′, v′) ∈ Sr(e) such that dT ′(u, r) =
dTr

(u, u′) + |(u′, v′)| + dTr
(v′, r) is minimum. As an

example, consider the biconnected weighted graph G
shown in Figure (1.a), and the shortest-path spanning
tree TA rooted in A shown in Figure in (1.b). It is
easy to verify that the optimal swap edge for (C, A) is
(F, B).

The optimal swap edges problem for T (r) is the
problem of determining an optimal swap edge for each
edge in Tr.

As already mentioned, a sequential algorithm solv-
ing this problem was given in [14]. We are interested
in the distributed solution of the optimal swap edge
problem. We consider a distributed computing system

with communication topology G. Each computational
entity x is located at a node of G, has local process-
ing and storage capabilities, has a distinct label λx(e)
from a totally ordered set associated to each of its in-
cident edges e, knows the weight of its incident edges,
and can communicate with its neighboring entities by
transmission of bounded sequence of bits called mes-
sages. The communication time includes processing,
queueing, and transmission delays, and it is finite but
otherwise unpredictable. In other words, the system is
asynchronous. All the entities execute the same set of
rules, called distributed algorithm.

In the following, when no ambiguity arises, we will
use the terms entity, node and vertex as equivalent;

analogously, we will use the terms link, arc and edge
interchangeably.

3. Computing All Optimal Swap Edges

We now present a solution to the problem of distribu-
tively computing all optimal swap edges for a given
shortest-path spanning tree Tr.

3.1 Basic Properties and Tools

In our algorithm we make use of some known properties
of rooted trees. In Tr each node except the root r has
a unique parent, and each edge connects a node to its
parent.

Property 1: The partial order induced by the rela-
tion parent has dimension at most 2.

Consider in fact the labelling α : V → {1, . . . , n}2

defined as follows. Given Tr, for x ∈ V let α(x) = (a, b),
where a is the numbering of x in the preorder traver-
sal† of Tr; and b is the numbering of x in the inverted

preorder traversal of Tr, i.e., when the order of the visit
of the children is inverted. The labels associated to the
nodes in the tree of Figure 1.b are shown in Figure 2.a.

Let Tr[x] denote the subtree of Tr rooted in x. Any
node y in the subtree Tr[x] is said to be a descendant of
x. Let Descr(x) be the set of the descendants of x in Tr;
note that, by definition, x ∈ Descr(x). Interestingly,
the lexicographic order � between the labels assigned by
α completely characterizes the descendant relationship
in a rooted tree:

Property 2: A node y is descendant of a node x in
Tr if and only if α(y) � α(x).

Property 2 can be easily verified and it is known as
a folklore method to check relationships among nodes
in trees.

Furthermore, there exists a simple relationship be-
tween swap edges and the descendants.

Property 3: An edge (u, v) ∈ E \E(Tr) is a swap for
ex ∈ E(Tr) if and only if only one of u and v (but not
both) is in Descr(x).

For brevity, we will denote the set Sr(ex) of all
swap edges for ex simply by S(x), and by InS(x) ⊆
S(x) the set of those that are incident on x. The last
useful property states that the swap edges for ex con-
sists only of all the swap edges incident to x and to its
descendants.

Property 4: For all x ∈ V , S(x) =
⋃

y∈(Descr(x)) InS(y).

Properties 2, 3, and 4 provide a powerful compu-
tational tool for determining which edges are possible
candidate for being optimal swap edges. We will now
see how to efficiently use this tool.

†Since the labelling of the incident links is drawn from
a totally ordered set, this numbering is unique.

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

3.2 The Algorithm

By definition, a node x knows the weight of all its in-
cident links, and can distinguish those that are part of
Tr from those that are not; of those that are part of Tr,
x can distinguish the one that leads to its parent from
those leading to its children.

We assume that each node x knows its distance
from r, the distances of its neighbors from r, its own
pair α(x), as well the pairs of its neighbors. If not
available, this information can be easily and efficiently
acquired.

In the proposed algorithm, each node x computes
an optimal swap edge for ex, i.e., the swap edge for
ex in the shortest path from x to r in E \ {ex}. We
shall denote such an edge as bx and call it the bridge

of x. A node x also contributes, if necessary, to the
computation of the bridges of other nodes.

Note that, because of Properties 2 and 3, to deter-
mine if an edge is a swap edge is sufficient to examine
the relationship “descendant”, which in turn is uniquely
determined by the mapping α. Hence, in the following,
we shall use the term “feasible for α(x)” to mean “swap
edge for ex” without any loss of precision.

Algorithm All Bridges (reported in Algo-
rithm 1), describes the state-event-action set of rules: it
specifies what action must a node perform if in a given
state.

Initially, all nodes are in state COMPUTING and start
the execution. Each node x maintains a list L(x) of
possible swap edges. Initially L(x) contains all the links
incident on x that are not in the tree.

To each e = (w, z) ∈ L(x), where w is a descendent
of x (possibly, x = w), it will be associated the pair α(z)
as well as the distance

d[e] = d(x, w) + |(w, z)| + d(z, r).

The set L(x) is kept sorted w.r.t. the distances.
Note that while each node knows its distance from the
root, the distances d[e] must be computed. This can
be easily done: when a swap edge e is transmitted by a
child to a parent along (u, v), together with a distance
d, node v will increment the distance by |(u, v)|.

It is understood that when sending information
about an edge e, as in the “Choice” messages, this in-
formation include the pairs of labels associated to the
end nodes of e.

Nodes behaves differently depending on whether
they are leafs of internal nodes in Tr.

Leaf. Leafs can compute their bridges locally: a leaf
x chooses as bridge the minimum cost incident
edge among those in L(x), by calling routine
ChooseMin(a, b) (Lines – in Algorithm 1).
Function ChooseMin(a, b) determines the swap
edge with minimum distance in L(x) that is feasi-
ble with (a, b). Note that for the leaves all edges

in L(x) are feasible. Its output is (mybridge, d),
where mybridge is the computed edge, and d is
the distance between x and r using mybridge as
a swap edge. If no such an edge exists, function
ChooseMin(a, b) returns NIL.
Finally, the leaf sends to its parent a “Choice” mes-
sage containing the result of ChooseMin().

Internal. An internal node x waits until it receives
the bridges computed by all its children. In par-
ticular, as soon as it receives a “Choice” message
containing the pair (edge, distance), it checks if
edge is a swap edge for itself: this is done by call-
ing the Boolean function Feasible(edge, (a, b)),
that determines whether edge is feasible with the
pair of labels (a, b) (Line –); by definition, if
edge = NIL, Feasible is always TRUE, regard-
less of (a, b). Let e = (z, w). The feasibility of the
swap edge e is checked by comparing the pair (a, b)
with the pair corresponding to w.
If the feasibility test succeed, then the received pair
is stored into array choice (Line –); otherwise, x
sends an explicit request (message “Request”) to
the child that sent the pair (edge, distance), asking
it to look for an edge that is feasible for (a, b) (Line
–). When x receives from each of its children a
feasible edge (count = |children| in Line –), x can
compute its bridge, and send its chosen bridge to
its parent (Lines –).
When a node x receives a message (“Request”,
(p, q)) (i.e., x is asked to look for an edge feasible
for node labelled (p, q)), it first computes the edge
in L(x) that is feasible for (p, q), and with mini-
mum distance from the root (routine ChooseMin()
in Line –). If x is a leaf, then it sends to the par-
ent the computed edge (“Choice” message in Line
–). Otherwise, for each child y of x, it first check
whether the choice sent by y is feasible for (p, q)
(we recall that this choice has been stored in ar-
ray choice of x). If the feasibility test fails, then
the “Request” message is forwarded to y (i.e., y is
asked to look for a feasible edge for (p, q), Line –),
and x starts WAITING until all requested children
answer (Lines –). At that time, x sends to its
parent the best feasible edge for (p, q) it received
from its children.
If none of the feasibility tests fail, then x does not
need to forward the request to its children, and can
choose as swap edge to send its parent the edge in
L(x) with minimum distance from the root. (i.e.,
the result of ChooseMin(), Line –).

(2) Example.

As an example consider the SPT of the graph of Fig-
ure 1, shown in Figure 2. According to the algo-
rithm, the leaf nodes B, G, H, and E compute their
bridges directly and become SWAPPED. Node F re-

FLOCCHINI et al.: POINT-OF-FAILURE SWAP REROUTING: COMPUTING THE OPTIMAL SWAPS DISTRIBUTIVELY
5

1
1

2
2

3

4 4

(B, F) 7

(G, D) 5

C

E
D

H

A

B

F

G

(a)

5 5

7 66 7

8 3
4 4

2 8
3 2

1 1

(B, G) 10
(B, D) 8

6
3

1

1 1

1

4

31

C

E
D

H

A

B

F

G

1

(b)

(F, B) 7

(E, F) 6

(H, E) 6
(G, B) 7
(G, H) 8

4

6
(F, C) 5

(H, G) 8

(E, H) 8

3

(F, C) 4

(F, B) 6
(D, B) 7

1 4
(H, E) 7

(F, B) 5
(F, E) 5 (G, D) 6

Fig. 2 Computing all the optimal swap edges in the graph G

of figure 1 for the SPT rooted in A. (a) For each node x there is
shown α(x). (b) For each node x there are shown: the distance
of x from the root (in the solid box); and the feasible edges for
x, together with their distances (in the dotted box).

Algorithm 1 All Bridges (G, Tr) for node x

Input: Children of x in Tr , parent of x in Tr, pair α(x) = (a, b)
of labels associated to x in Tr, neighbors of x in G.

States: S = {COMPUTING, SWAPPED, WAITING}.
COMPUTING

count := 0;
3: If leaf Then

(mybridge, d) := ChooseMin(a, b);
send (“Choice”, mybridge, d) to parent;

6: become SWAPPED;
If internal Then

Receiving (“Choice”,edge, distance); * it comes
from a child *\

9: If Feasible(edge, (a, b)) Then
count := count + 1;
choice[sender] := (edge, distance);

12: If count = |children| Then
(mybridge, d) := ChooseMin(a, b);
send (“Choice”,mybridge, d) to parent;

15: become SWAPPED;
If Not Feasible(edge, (a, b)) Then send (“Re-
quest”, (a, b)) to sender.

SWAPPED

18: Receiving (“Request”, (p, q));
(edge, d) = ChooseMin(p, q);
If leaf Then send (“Choice”,edge, d) to parent .

21: Else
check := 0;
For All y ∈ Children Do

24: If Not Feasible(swap[y], (p, q)) Then
send (“Request”,(p, q)) to y;
check := check + 1;

27: If check > 0 Then become WAITING .
Else

(edge, d) := ChooseMin(p, q);
30: send (“Choice”,edge, d) to parent.

WAITING

Receiving (“Choice”,edge, distance);
33: choice[sender] := (edge, distance);

check := check − 1;
If check = 0 Then

36: (edge, d) :=ChooseMin(p, q);
send (edge, d) to parent;
become SWAPPED.

ceives swap edges from G and H and can computes
its bridge [(F, C), 4] becoming SWAPPED. Node D re-
ceives the swap edge [(F, C), 5] from its only child F ,
and this becomes its bridge. Node C instead receives
non feasible edges from both D and E; it then sends to
both of them a request for a feasible edge. Node E does
not have edges feasible with C; hence it sends NIL. As
for D, as the swap link it had received from F is not
feasible for C, it will forward the request to F . Since
the swap edge known to F ((F, C)) is not feasible for C,
F forwards the request to the leaves G and H . At this
point there is a propagation of swap edges feasible with
C. In fact, G sends up [(G, B), 7], H sends up NIL,
F chooses as minimum [(F, B), 5] and returns this in-
formation to D which sends it to C. Receiving NIL
from E and [(F, B), 6] from D, node C can conclude its
computation selecting [(F, B), 7] as its bridge.

3.3 Analysis

The correctness of Algorithm ALL BRIDGES is estab-
lished by the following Theorem.

Theorem 1: In algorithm ALL BRIDGES:

(i) each node u correctly computes bu;
(ii) if so requested by its parent, each node u will deter-

mine among the swap edges incident to its subtree
and feasible with α(e) = (p, q), if any, one edge
e′ that minimizes the distance between u and r in
Tr − {e} ∪ {e′}.

Proof Removal of eu partitions Tr in two subtrees, one
rooted in r the other in u. By definition, any feasible
swap edge, and hence bu, must have an endpoint in
each component. The proof will be by induction on the
height h(u) of the subtree of Tr rooted in u.

Basis. h(u) = 0; i.e., u is a leaf. In this case, one
components contains only u, while the other con-
tains all the other nodes. In other words, the only
possible swap edges are incident on u. Thus, u
correctly computes bu, proving (i); it can also im-
mediately determine the feasibility of any of those
links with respect to any pair of labels, and thus
answer correctly any received query, proving (ii).

Induction step. Let the theorem hold for all nodes v
with k − 1 ≥ h(v) ≥ 0; we will now show that it
holds for u with h(u) = k. Since u is not a leaf,
the subtree Tr[u] rooted at u contains at least two
nodes. Consider the set S(u) of all feasible swap
edges for eu; clearly, if e = (w, z) ∈ S(u) then
one of its end point, say w, is in Tr[u] (and thus a
descendent of u), while the other say z, is not.
Let v be a child of u; then h(v) < k. It follows that,
by inductive hypothesis, when asked by u, v will
send to u the edge in Swap(v) that, among those
feasible with eu, minimizes the distance between v

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

and r. We will now show that this information is
sufficient for u to correctly determine its optimal
swap edge bu.
By definition of bridge, bu is the edge e = (w, z) in
S(u) that minimizes the quantity du[e] = d(u, w)+
|(w, z)|+ d(z, r). By Property 4, the optimal swap
edge is either incident on u or on a strict descen-
dent of u. Clearly u can locally determine its dis-
tance from r for any of its incident swap edges, and
determine the minimum one. If e is not incident
on u, it is in the subtree Tr[v] rooted in a child
v of u; furthermore, e is the swap edge in S(v)
that, among those feasible with eu, minimizes the
distance between v and r. In other words, once u
obtains from each child v′ the swap edge e′ ∈ S(v′)
that, among those feasible with eu, minimizes the
distance between vi and r, u can determine the
minimum one. Since, by inductive hypothesis, ev-
ery child of u sends this information to u, it follows
that u can correctly determine its optimal swap
edge, proving Part (i) of the Theorem.
To prove Part (ii), it is sufficient to observe that,
by Property 3, u can determine which of its in-
cident swap edges are feasible with a given pair
(p, q); furthermore, since the height of its children
in Tr is less than k, then by inductive hypothe-
sis it can obtain from them the “best” swap edge
in their subtree feasible with (p, q). Therefore, u
can determine among the swap edges incident to
its subtree and feasible with (p, q), if any, one that
minimizes the distance between u and r, proving
Part (ii).

2

Let us now examine the message complexity of the
proposed algorithm. Let n∗

r be the number of edges of
the transitive closure of Tr \{r}; observe that 0 ≤ n∗ ≤
(n − 1)(n − 2)/2.

Theorem 2: The message complexity of Algorithm
ALL BRIDGES is at most 2n∗ + n − 1.

Proof Each node, once computed its optimal swap
edge, sends a message to its parent, for a total of n− 1
“Choice” messages. To compute its optimal swap edge,
a node x might send a “Request” message to all its
children (if the original information provided by them
is not feasible), which in turn might send to their chil-
dren (if no feasible information was received), and so
on. Thus, in the worst case, each descendent of x will
receive a “Request” and reply a “Choice” for a total of
2|Desc(x)| messages.

Since each node, except the root, must compute its
optimal swap edge, this process will require at most

∑

x 6=r

2|Desc(x)| =
∑

x

2(|Ance(x)| − 1) = 2n∗
r ,

where Ance(x) denotes the set of ancestors of x. 2

A node, an edge, a label, a weight, and a distance
are all unit of data. To evaluate the overall data com-
plexity of the algorithm we need to consider the mes-
sage size; since each message contains only a constant
number of units of information, we have:

Theorem 3: The data complexity of the distributed
Algorithm ALL BRIDGES is O(n∗

r).

Observe that the data complexity needed by our
algorithm to compute all the optimal swap edges of a
shortest-path spanning-tree is no more (and very of-
ten dramatically less) than the one of computing the
shortest-path spanning-tree itself [2], [3], [7].

4. An O(n) Messages Algorithm

In this section, we discuss how the algorithm of Sec-
tion 3 can be modified in order to reduce the message
complexity to O(n) in case that longer messages are al-
lowed. The overall information complexity of the new
algorithm remains of O(n∗

r).
The idea is now that each node simultaneously

computes the “best” feasible swap edges, not only for
itself, but also for all its ancestors in the SPT . The
modified algorithm will be described only at high level.
It consists simply of a broadcast phase started by the
children of the root, followed by a convergecast phase
started by the leaves.

Algorithm 2 All Bridges-2

[Broadcast.]

1. Each child x of the root starts the broadcast by sending a
list containing α(x) to its children.

2. Each node y, adds α(y) to the received list and sends it to
its children.

[Convergecast.]

1. Each leaf z first computes its own bridge. It then computes
the best feasible swap edge for each of its ancestors, and
sends the list of those edges to its parent (if different from
r).

2. An internal node y waits until it receives the list of best
swap edges from each of its children. Based on the received
information and on InS(y), it computes its bridge by. It
also computes the best feasible swap edge for each of its
ancestors, and sends the list of those edges to its parent (if
different from r).

Theorem 4: Each node u 6= r:

(i) correctly computes bu;
(ii) determines for each ancestor v 6= r the best swap

edge feasible with α(v), if any.

Proof First observe that, as a result of the broadcast,
every node will receive the pair associated to each of its

FLOCCHINI et al.: POINT-OF-FAILURE SWAP REROUTING: COMPUTING THE OPTIMAL SWAPS DISTRIBUTIVELY
7

ancestors (except r); hence it can determine feasibility,
for each ancestor, of any available set of swap edges.
The proof is by induction on the height h(u) of the
subtree of Tr rooted in u.

Basis. h(u) = 0; i.e., u is a leaf. In this case, one
components contains only u, while the other con-
tains all the other nodes. In other words, the only
possible swap edges are incident on u. Thus, u
correctly computes bu, proving (i); it can also im-
mediately determine the feasibility of any of those
links with respect to any pair of labels, and thus
answer correctly any received query, proving (ii).

Induction step. Let the theorem hold for all nodes x
with k − 1 ≥ h(x) ≥ 0; we will now show that it
holds for u with h(u) = k. By inductive hypoth-
esis, it receives from each child y the best feasible
swap edge for each ancestor of y, including u itself.
Hence, based on these lists and on the locally avail-
able set InSwap(u), u can correctly determine its
optimal swap edge, as well as its best feasible swap
edge for each of its ancestors.

2

The functioning of the Algorithm All Bridges-2

can be followed in the example of Figure 2.b and in par-
ticular through the convergecast, starting from the two
leaves G and H . After Phase 1, G and H know their an-
cestors, namely: F, D, C. Node G computes its bridge
as ((G, D), 5), and the minimum swap edge for each
of its ancestor, namely: ((G, D), 5) for F , ((G, D), 5)
for D and ((G, B), 7) for C, and sends these values
to F . Similarly H computes its bridge as ((H, E), 6),
and the minimum swap edge for each ancestor, namely:
((H, E), 6) for F , ((H, E), 6) for D and NIL for C, and
sends these values to F . F computes its optimal swap
edge as the minimum among its incident edges, that
is, ((F, C), 4), the edge coming from G, (G, D), having
now distance 6, and the edge coming from H , (H, E),
having now distance 7. Hence it selects ((F, C), 4), as
bridge and computes the minimum feasible swap edge
for each of its ancestor, namely: ((F, C), 4) for D, and
((F, B), 5) for C, and sends these values to F . D selects
as bridge the edge coming from F , with distance incre-
mented by 1, that is ((F, C), 5), and sends ((F, B), 6)
for C. C can finally selects its bridge, considering the
information coming from D and that coming from E
which is NIL, as ((F, B), 7).

Let us now analyze the complexity of the algo-
rithm:

Theorem 5:
The message complexity of Algorithm ALL BRIDGES-
2 is exactly 2(n− 1− δ(r)), where δ(r) is the degree of
r.

Proof In the broadcast phase, every node except the

root and its children receives a message. In the con-
vergecast phase, every node except the root and its
children sends a message. 2

Theorem 6: The data complexity of Algorithm ALL
BRIDGES-2 is exactly 2n∗

r .

Proof In the broadcast phase, every node (except the
root and its children) receives the labels of all its an-
cestors. In the convergecast phase, every node (except
the root and its children) sends a swap edge for each of
its ancestors. 2

5. Point-of-failure Shortest-path Re-routing

5.1 Computing for all Destinations

We have seen how to efficiently compute the optimal
swap edges for a single SPT of a biconnected graph. To
construct fault tolerant shortest-path persistent routing
tables, the proposed computation must be carried out
for all the n shortest path trees, each having as root a
different vertex of the graph. The computation of the
resulting costs is rather straightforward. For example,
using long messages we have

Theorem 7: All optimal swap edges for all n SPTs
Tr can be constructed with 2n2 − 4m − 2n messages,
where m is the number of edges; the overall information
complexity is less than n3.

Proof We execute Algorithm ALL BRIDGES-2 n
times, each time with a different node as the root.
Then, by Theorem 5, it follows that the total number
of messages will be

∑
r 2(n − 1 − δ(r)) = 2n(n − 1) − 2

∑
r δ(r) =

2n(n − 1) − 4m.

For each Tr, we have that 0 ≤ n∗ ≤ (n − 1)(n − 2)/2;
hence, by Theorem 6, it follows that the overall infor-
mation complexity will be less than n(n − 1)(n − 2).
2

Notice that this cost is always less, and often signif-
icantly so, than that required to construct the all-pairs
shortest paths using long messages

5.2 Routing with optimal swap edges

Let us now address the problem of how the routing
tables are organized and how the information stored
there must be used in presence of failure of an incident
link.

The routing table at node u contains, for each des-
tination r, the neighbor v in the shortest path from u to
r (as determined in the SPT Tr) as well as the optimal
swap edge (u′, v′) for (u, v) in Tr. This entry will be

8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

indicated as RT [u, r].bridge in the following.
Consider now a message M with destination r ar-

riving to u where however the link to the next hop v
has just failed. The following steps are performed in
this case:

1. the optimal swap edge (u′, v′) for (u, v) is retrieved
by u from RT [u, r].bridge;

2. the message M is backtracked to u′ along the
shortest-path from u to u′;

3. M is transmitted by u′ along the bridge (u′, v′);
4. M is sent by v′ to the final destination r using the

information in its routing table.

Note that the optimal swap edge can be incident to u; in
this case u and u′ coincide and there is no backtracking.
Otherwise, the backtracking is accomplished according
to the standard routing table information, but with fi-
nal destination u′ instead of r. This guarantees that M
is sent on the shortest path between u and u′.

Hence, each message M can travel in two different
modes:

• the normal mode, in which it follows the standard
shortest-path routing algorithm to its final desti-
nation, and

• the backtracking mode, in which it follows the stan-
dard shortest-path routing algorithm to a tempo-
rary destination (from u to u′ in Step 2 above) and
crosses a optimal swap edge (edge (u′, v′) in Step
3 above).

Clearly each message must contain one additional
bit to specify the routing mode (0 for normal, 1 for
backtracking). Furthermore, when backtracking, the
information about the bridge (u′, v′) must be added to
the message; notice that this information includes the
temporary destination u′. In other words, the format
of a message is as following

• < 0, destination, M > for the normal mode
• < 1, bridge, destination, M > for the backtracking

mode

When a node u recognizes a failure along one of its
edges, it reads in the routing table the bridge (u′, v′)
for the failed edge; then, in case u′ is different from u, it
modifies the label of the messages that need to transit
along the failed edge, and send them to the next hop for
destination u′. Otherwise the messages are sent directly
to v′ without changing the mode. More precisely, the
routing algorithm is reported in Algorithm 3.

Referring to Figure 2.b, in presence of a failure on
the edge (C, A) a message in C with destination A is
backtracked to F , it traverses the bridge (F, B) and
then continues to its destination in normal mode. Note
that in the algorithm, node u cannot detect a failure
when it is routing a message in swap mode, because
the model is 1-fault tolerant only.

As concluding remarks of this section, note that

Algorithm 3 Routing for Node u
Receiving (0, dest, M);
l := RT [u, dest];
If l = dest Then

Process M . * Reached Destination *\
Else

If There is a failure in (u, l) Then
(x, y) := RT [u, dest].bridge;
If u 6= x Then

send (1, (x, y), dest, M) to RT [u, x];
Else

send (0, dest, M) to y;
Else * There is not a failure in (u, l) *\

send (0, dest, M) to l;

Receiving (1, (x, y), dest, M)
l = RT [u, x];
If u 6= x Then

send (1, (x, y), dest, M) to l;
Else

send (0, dest, M) to y;

more than one optimal swap edge can be incident on the
same vertex. For instance, in Figure 2.b, the optimal
swap edge for (D, C) is (F, C), and the optimal swap
edge for (C, A) is (F, B), both incident on F . Then,
storing only one endpoint of the bridge is not sufficient.
For this reason, the additional information we use in
the routing tables, of size 2l to store one swap edge
for each failure, is minimal. Other solutions (see for
example [10]) storing only one vertex for each failure,
that is with additional information of size l, are not
able to guarantee the shortest alternative path.

6. Concluding Remarks

In this paper we have presented simple and efficient
distributed algorithms for computing the optimal swap
edges of a shortest-path tree. One algorithm uses mes-
sages containing a constant amount of information,
while the other is tailored for systems that allow long
messages. Both algorithms exchange a quantity of in-
formation which is no more, and often significantly
so, than that required to construct the shortest-path
spanning-tree; also, they require information that can
be acquired, with no increase in order of magnitude,
during the shortest-path spanning-tree construction.

The idea of point-of-failure swap rerouting can be
applied to trees other than shortest-path trees (e.g., [4],
[13]). In this case, different criteria of optimality must
be employed. We are currently investigating whether
our technique could be generalized and extended to
those other situations.

The proposed algorithms allow for the efficient con-
struction of point-of-failure shortest-path rerouting ser-
vice. To do so, the proposed computation must be car-
ried out for the n shortest path trees, each having as
root a different vertex of the graph. In this regards,

FLOCCHINI et al.: POINT-OF-FAILURE SWAP REROUTING: COMPUTING THE OPTIMAL SWAPS DISTRIBUTIVELY
9

an interesting open problem is whether it is possible to
achieve the same goal in a more efficient way than by
performing n independent computations. For example,
it is known that the constructions of all-pairs shortest-
paths can be done more efficiently than n independent
constructions of a single shortest-path spanning-tree
(e.g., [1]); the research question is whether something
similar holds also in this context.

Among the possible development of this study, it
would be interesting to study how to recover from mul-
tiple link failures, following the same strategy of storing
in the routing tables the information useful for finding
alternative paths. The problem appears much more
complex. In addition, the size of the routing tables is
limited [15], hence the additional information to store
in order to compute alternative paths in presence of
faults must be also be small. An interesting problem is
to determine the minimal amount of memory needed to
obtain a k-fault-tolerant point-of-failure shortest-path
rerouting service.

(3) Acknowledgments.

Part of this work was carried out while the the first and
last authors were visited by the others at the University
of Ottawa and at Carleton University. This work was
supported in part by the Natural Sciences and Engi-
neering Research Council of Canada, and by “Progetto
ALINWEB: Algoritmica per Internet e per il Web”,
MIUR Programmi di Ricerca Scientifica di Rilevante
Interesse Nazionale.

References

[1] Y. Afek and M. Ricklin. Sparser: a paradigm for running
distributed algorithms. Journal of Algorithms, 14:316-328,
1993.

[2] B. Awerbuch and R. Gallager. A new distributed algorithm
to find breadth first search trees. IEEE Transactions on
Information Theory, 33:315–322, 1987.

[3] K. M. Chandy and J. Misra. Distributed computation on
graphs: shortest path algorithms. Communication of ACM,
25:833–837, 1982.

[4] A. Di Salvo and G. Proietti. Swapping a failing edge of
a shortest paths tree by minimizing the average stretch fac-
tor. Proc. of 10th Colloquium on Structural Information and
Communication Complexity (SIROCCO 2004) 2004.

[5] D. Eppstein, Z. Galil, and G.F. Italiano./ Dynamic graph
algorithms. CRC Handbook of Algorithms and Theory, CRC
Press, 1997.

[6] P. Flocchini, T. Mesa, L. Pagli, G. Prencipe, and N. Santoro.
Efficient protocols for computing optimal swap edges. In
Proc. of 3rd IFIP International Conference on Theoretical
Computer Science (TCS 2004), 2004, to appear.

[7] G. N. Frederikson. A distributed shortest path algorithm for
planar networks. Information and Computation, 86:140-159,
1990.

[8] P. Humblet. Another adaptive distributed shortest path
algorithm. IEEE/ACM Transactions on Communications,
39(6):995–1003, 1991.

[9] A. Itai and M. Rodeh. The multi-tree approach to reliabil-

ity in distributed networks. Information and Computation,
79:43-59, 1988.

[10] H. Ito, K. Iwama, Y. Okabe and T. Yoshihiro. Polynomial-
time computable backup tables for shortest-path routing.
Proc. of 10th Colloquium on Structural Information and
Communication Complexity (SIROCCO 2003), 163–177,
2003.

[11] H. Mohanty and G.P.Bhattacharjee. A distributed algo-
rithm for edge-disjoint path problem Proc. of 6th Confer-
ence on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), 44-361, 1986.

[12] P. Narvaez, K.Y. Siu, and H.Y. Teng. New dynamic algo-
rithms for shortest path tree computation IEEE Transac-
tions on Networking, 8:735–746, 2000.

[13] E. Nardelli, G. Proietti, and P. Widmayer. Finding all the
best swaps of a minimum diameter spanning tree under tran-
sient edge failures. Journal of Graph Algorithms and Appli-
cations, 2(1):1–23, 1997.

[14] E. Nardelli, G. Proietti, and P. Widmayer. Swapping a fail-
ing edge of a single source shortest paths tree is good and
fast. Algoritmica, 35:56–74, 2003.

[15] L. L. Peterson and B. S. Davie. Computer Networks: A
Systems Approach, 3rd Edition. Morgan Kaufmann, 2003.

[16] G. Proietti. Dynamic maintenance versus swapping: An
experimental study on shortest paths trees. Proc. 3rd Work-
shop on Algorithm Engineering (WAE 2000), 207–217, 2000.

[17] R. E.Tarjan. Application of path compression on balanced
trees. Journal of ACM, 26:690–715, 1979.

