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Abstract

The gathering (or multi-agent rendezvous) problem requires a set of mobile

agents, arbitrarily positioned at different nodes of a network to group within

finite time at the same location, not fixed in advanced.

The extensive existing literature on this problem shares the same fundamen-

tal assumption: the topological structure does not change during the rendezvous

or the gathering; this is true also for those investigations that consider faulty

nodes. In other words, they only consider static graphs.

In this paper we start the investigation of gathering in dynamic graphs,

that is networks where the topology changes continuously and at unpredictable

locations.

We study the feasibility of gathering mobile agents, identical and without

explicit communication capabilities, in a dynamic ring of anonymous nodes; the

class of dynamics we consider is the classic 1-interval-connectivity. We focus on

the impact that factors such as chirality (i.e., a common sense of orientation)

and cross detection (i.e., the ability to detect, when traversing an edge, whether

some agent is traversing it in the other direction), have on the solvability of the

problem; and we establish several results.

We provide a complete characterization of the classes of initial configurations
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from which the gathering problem is solvable in presence and in absence of cross

detection and of chirality. The feasibility results of the characterization are all

constructive: we provide distributed algorithms that allow the agents to gather

within low polynomial time. In particular, the protocols for gathering with cross

detection are time optimal.

We also show that cross detection is a powerful computational element. We

prove that, without chirality, knowledge of the ring size n is strictly more power-

ful than knowledge of the number k of agents; on the other hand, with chirality,

knowledge of n can be substituted by knowledge of k, yielding the same classes

of feasible initial configurations.

From our investigation it follows that, for the gathering problem, the com-

putational obstacles created by the dynamic nature of the ring can be overcome

by the presence of chirality or of cross-detection.

Keywords: Dynamic Networks, Mobile Agents, Gathering

1. Introduction

1.1. Background and Problem

The gathering problem requires a set of k mobile computational entities, dis-

persed at different locations in the spacial universe they inhabit, to group within

finite time at the same location, not fixed in advanced. This problem models5

many situations that arise in the real world, e.g., searching for or regrouping

animals, people, equipment, and vehicles,

This problem, known also as multi-agent rendezvous, has been intesively and

extensively studied in a variety of fields, including operations research (e.g., [1])

and control (e.g., [34]), the original focus being on the rendezvous problem, i.e.10

the special case k = 2.

In distributed computing, this problem has been extensively studied both in

continuous and in discrete domains. In the continuous case, both the gathering

and the rendezvous problems have been investigated in the context of swarms

of autonomous mobile robots operating in one- and two-dimensional spaces,15
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requiring them to meet at (or converge to) the same point (e.g., see [10, 11, 17,

22, 23, 35]).

In the discrete case, the mobile entities, usually called agents, are dispersed in

a network modeled as a graph and are required to gather at the same node (or at

the two sides of the same edge) and terminate (e.g., see [2, 16? , 20, 21, 27, 28, 29,20

30, 38, 39]). The main obstacle for solving the problem is symmetry, which can

occur at several levels (topological structure, nodes, agents, communication),

each playing a key role in the difficulty of the problem and of its resolution. For

example, when the network nodes are uniquely numbered, solving the gathering

problem is trivial. On the other hand, when the network nodes are anonymous,25

the network topology is highly symmetric, the mobile agents are identical, and

there is no means of communication, the problem is clearly impossible to solve by

deterministic means. The quest has been for minimal empowering assumptions

which would make the problems deterministically solvable.

A very common assumption is for the agents to have distinct identities (e.g.,30

see [13, 16, 39]). This enables different agents to execute different deterministic

algorithms; under such an assumption, the problem becomes solvable, and the

focus is on the complexity of the solution.

An alternative type of assumption consists in empowering the agents with

some minimal form of explicit communication. In one approach, this is achieved35

by having a whiteboard at each node giving the agents the ability to leave notes

in each node they travel (e.g., [2, 9, 20]); in this case, some form of gathering can

occur even in presence of some faults [9, 20]. A less explicit and more primitive

form of communication is by endowing each agent with a constant number of

movable tokens, i.e. pebbles that can be placed on nodes, picked up, and carried40

while moving (e.g., [12]).

The less demanding assumption is that of having the homebases (i.e., the

nodes where the agents are initially located) identifiable by a mark, identical

for all homebases, and visible to any agent passing by it. This setting is clearly

much less demanding that agents having identities or explicit communication;45

originally suggested in [3], it has been used and studied e.g., in [21, 30, 37].
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Summarizing, the existing literature on the gathering and rendezvous prob-

lems is extensive and the variety of assumptions and results is aboundant (for

surveys see [29, 36]). However, regardless of their differences, all these investi-

gations share the same fundamental assumption that the topological structure50

does not change during the rendezvous or the gathering; this is true also for

those investigations that consider faulty nodes (e.g., see [5, 9, 20]). In other

words, they only consider static graphs.

Recently, within distributed computing, researchers started to investigate

dynamic graphs, that is graphs where the topological changes are not localized55

and sporadic; on the contrary, the topology changes continuously and at unpre-

dictable locations, and these changes are not anomalies (e.g., faults) but rather

integral part of the nature of the system [8, 33].

The study of distributed computations in highly dynamic graphs has con-

centrated on problems of information diffusion, reachability, agreement, and60

exploration (e.g., [6, 18, 25, 26, 4, 7, 24, 31, 32]).

In this paper we start the investigation of gathering in dynamic graphs by

studying the feasibility of this problem in dynamic rings. Note that rendezvous

and gathering in a ring, the prototypical symmetric graph, have been intensively

studied in the static case (e.g., see the monograph on the subject [29]). The65

presence, in the static case, of a mobile faulty agent that can block other agents,

considered in [14, 15], could be seen as inducing a particular form of dynamics.

Other than that, nothing is known on gathering in dynamic rings.

1.2. Main Contributions

In this paper, we study gathering of k agents, identical and without commu-70

nication capabilities, in a dynamic ring of n anonymous nodes with identically

marked homebases. The class of dynamics we consider is the classic 1-interval-

connectivity (e.g., [19, 24, 31, 32]); that is, the system is fully synchronous and

under a (possibly unfair) adversarial schedule that, at each time unit, chooses

which edge (if any) will be missing. Notice that this setting is not reducible to75

the one considered in [14, 15].
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In this setting, we investigate under what conditions the gathering problem is

solvable. In particular, we focus on the impact that factors such as chirality (i.e.,

common sense of orientation) and cross detection (i.e., the ability to detect, when

traversing an edge, whether some agent is traversing it in the other direction),80

have on the solvability of the problem. Since, as we prove, gathering at a single

node cannot be guaranteed in a dynamic ring, we allow gathering to occur either

at the same node, or at the two end nodes of the same link.

A main result of our investigation is the complete characterization of the

classes F(X,Y ) of initial configurations from which the gathering problem is85

solvable with respect to chirality (X ∈ {chirality,¬chirality}) and cross

detection (Y ∈ {detection,¬detection}).
In obtaining this characterization, we establish several interesting results.

For example, we show that, without chirality, cross detection is a powerful

computational element; in fact, we prove (Theorems 1 and 5):

F(¬chirality,¬detection) ( F(¬chirality, detection)

Furthermore, in such systems knowledge of the ring size n cannot be substituted

by knowledge of the number of agents k (at least one of n and k must be known

for gathering to be possible); in fact, we prove that, with cross detection but90

without chirality, knowledge of n is strictly more powerful than knowledge of k.

On the other hand, we show that, with chirality, knowledge of n can be sub-

stituted by knowledge of k, yielding the same classes of feasible initial configura-

tions. Furthermore, with chirality, cross detection is no longer a computational

separator; in fact (Theorems 3 and 4)

F(chirality,¬detection) = F(chirality, detection)

We also observe that

Fstatic = F(chirality, ∗) = F(¬chirality, detection)

where Fstatic denotes the set of initial configurations from which gathering is

possible in the static case. In other words: with chirality or with cross detec-
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tion, it is possible to overcome the computational obstacles created by the highly

dynamic nature of the system.95

All the feasibility results of this characterization are constructive: for each

situation, we provide a distributed algorithm that allows the agents to gather

within low polynomial time. In particular, the protocols for gathering with cross

detection, terminating in O(n) time, are time optimal. Moreover, our algorithms

are effective; that is, starting from any arbitrary configuration C in a ring with100

conditions X and Y , within finite time the agents determine whether or not

C ∈ F(X,Y ) is feasible, and gather if it is. See Figure 1 for a summary of some

of the results and the sections where they are established.

no chirality chirality

cross detection

feasible: C \ P feasible: C \ P
time: O(n) time: O(n)

(Sec. 4.1) (Sec. 4.3)

no cross detection

feasible: C \ (P ∪ E) feasible: C \ P
time: O(n2) time: O(n log n)

(Sec. 5.2) (Sec. 5.1)

Figure 1: Each entry shows the set of feasible configurations and the time complexity of

the gathering algorithm; C, P and E denote the set of all possible configurations, periodic

configurations, and configurations with an unique symmetry axis passing through edges of the

ring, respectively.

2. Model and Basic Limitations

2.1. Model and Terminology105

Let R = (v0, . . . vn−1) be a synchronous dynamic ring where, at any time

step t ∈ N , one of its edges might not be present; the choice of which edge

is missing (if any) is controlled by an adversarial scheduler, not restricted by

fairness assumptions. Such a dynamic network is known in the literature as a

1-interval connected ring.110
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Each node vi is connected to its two neighbours vi−1 and vi+1 via distinctly

labeled ports qi− and qi+, respectively (all operations on the indices are modulo

n); the labeling of the ports is arbitrary and thus might not provide a globally

consistent orientation. Each port of vi has an incoming buffer and an outgoing

buffer. Finally, the nodes are anonymous (i.e., have no distinguished identifiers).115

Agents. Operating in R is a set A = {a0, . . . , ak−1} of computational entities,

called agents, each provided with memory and computational capabilities. The

agents are anonymous (i.e., without distinguishing identifiers) and all execute

the same protocol.

When in a node v, an agent can be at v or in one of the port buffers. Any120

number of agents can be in a node at the same time; an agent can determine how

many other agents are in its location and where (in incoming buffer, in outgoing

buffer, at the node). Initially the agents are located at distinct locations, called

homebases; nodes that are homebases are specially marked so that each agent

can determine whether or not the current node is a homebase. Note that, as125

discussed later, this assumption is necessary in our setting.

Each agent aj has a consistent private orientation λj of the ring which desig-

nates each port either left or right, with λj(qi−) = λj(qk−), for all 0 ≤ i, k < n.

The orientation of the agents might not be the same. If all agents agree on the

orientation, we say that there is chirality.130

The agents are silent: they not have any explicit communication mechanism.

The agents are mobile, that is they can move from node to neighboring node.

More than one agent may move on the same edge in the same direction in the

same round.

We say that the system has cross detection if whenever two or more agents135

move in opposite directions on the same edge in the same round, the involved

agents detect this event; however they do not necessarily know the number of

the involved agents in either direction.

Synchrony and Behavior. The system operates in synchronous time steps, called

rounds. In each round, every agent is in one of a finite set of system states S,140
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which includes two special states: the initial state Init and the terminal state

Term.

At the beginning of a round r, an agent a in v executes its protocol (the

same for all agents). Based on its state, the content of its local memory, and

the number and location of the other agents in v, a determines whether or not145

to move and, if so, in which direction (direction ∈ {left, right, nil}).
If direction = nil, the agent places itself at v (if currently on a port). If

direction 6= nil, the agent moves in the outgoing buffer of the corresponding

port (if not already there); if the link is present, it arrives in the incoming buffer

of the corresponding port of the destination node at round r+ 1; otherwise the150

agent stays at outgoing buffer until round r + 1. As a consequence, an agent

can be in an outgoing buffer at the beginning of a round r+ 1 if and only if the

corresponding link was not present at round r. In the following, if an agents is

in an outgoing buffer whose corresponding edge is missing, we will say that the

agent is blocked.155

We will say that a set of agents form a group if they are in the same node,

in the same state, and all of them have the same direction of movement.

Gathering Problem. Let (R,A) denote a system so defined. In (R,A), gather-

ing is achieved in round r if all agents in A are on the same node or on two

neighbouring nodes in round r; in the first case, gathering is said to be strict.160

An algorithm solves Gathering if, starting from any configuration from

which gathering is possible, within finite time all agents are in the terminal

state, are gathered, and are aware that gathering has been achieved.

A solution algorithm is effective if starting from any configuration from which

gathering is not possible, within finite time all agents detect such impossibility.165

2.2. Configurations and Elections

The locations of the k home bases in the ring is called a configuration. Let

C be the set of all possible configurations with k agents.

Given a configuration C ∈ C, let h0, . . . , hk−1 denote the nodes correspond-

ing to the marked homebases (in clockwise order), and let di (0 ≤ i ≤ k − 1)170
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denote the distance (i.e., number of edges) between hi and hi+1 (in clock-

wise order), where all operations on the indices are modulo k. Let δ+j =<

dj , dj+1 . . . dj+k−1 > and δ−j =< dj−1 . . . dj−(k−1) > denote the clockwise

and the couter-clockwise sequence, respectively, of inter-distances with respect

to hj ; the unordered pair (δ+j , δ−j) describes the configuration from the point175

of view of node hj .

A configuration is periodic with period p (with p|k) if δi = δi+p for all i =

0, . . . k−1, aperiodic otherwise. Let P denote the set of periodic configurations.

Let ∆+ = {δ+j : 0 ≤ j < k − 1} and ∆− = {δ−j : 0 ≤ j < k − 1}.
We will denote by δmin the ascending lexicographically minimum sequence in180

∆+ ∪∆−. Among the aperiodic configurations, particular ones are those where

δmin = δ+i = δ−j with i 6= j; they are called double palyndrome because the

two sequences between the corresponding home bases hi and hj are both palin-

drome. A double-palindrome configuration has thus a unique axis of symmetry,

equidistant from hi and hj . If such an axis passes through two edges (i.e., the185

distances between hi and hj are both odd), we say that the configuration is

edge-edge, and we denote by E the set of edge-edge configurations.

For example, let k = 4 and h0, h1, h2, h3 be the four home bases with d0 =

3, d1 = 4, d2 = 5, d3 = 4. In this case we have δmin = δ+0 = δ−1 =<

3, 4, 5, 4 > and the unique axis of symmetry passes through two edges (one190

half-way between h0 and h1, the other half-way between h2 and h3).

For static rings there is a well-known characterization of the configurations

where a node or an edge can be elected leader depending on chirality:

Property 1. In a static ring without chirality, a leader node can be elected

from configuration C if and only if C ∈ C \ (P ∪E); a leader edge can be elected195

if and only if C ∈ C \P. With chirality, a leader node can be elected if and only

if C ∈ C \ P.

The canonical way to elect a leader without chirality from configuration C ∈
C \ (P ∪E) informally is as follows. If C is asymmetric, the leader is the unique

homebase that starts the lexicographically smallest inter-distance sequence. If C200
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is double-palindrome, let h and h′ be the two homebases that start (in opposite

direction) the two identical lexicographically smallest sequences: if C ∈ E the

leader edge is the edge in the middle of the shortest portion of the ring delimited

by h and h′ (note that both portions have odd distance and there is a central

edge); otherwise (C /∈ E) at least one of the two portions of the ring between h205

and h′ has even distance and a central node is identified as the leader.

2.3. Basic Limitations and Properties

Observe that, in our setting, it is necessary for the homebases to be distin-

guishable from the other nodes.

Property 2. If the homebases are not distinguishable from the other nodes,210

then Gathering is unsolvable in (R,A); this holds regardless of chirality, cross

detection, and knowledge of k and n.

Proof. Let the homebases be not distinguishable from the other nodes in (R,A).

Consider an execution in which all the entities have the same chirality and no

link ever disappears. Because of anonymity of the nodes and of the agents, and215

since homebases are not marked as such, in each round all agents will perform

exactly the same action (i.e., stay still or move in the same direction). Thus the

distance between neighbouring agents will never change, and hence gathering

will never take place if k > 2. For k = 2, by choosing the initial distance

between the two agents to be greater than one, the same argument leads to the220

same result.

Thus, in the following we assume that the homebases are identical but distin-

guishable from the other nodes.

An obvious, very basic limitation that holds even if the ring is static is the

following.225

Property 3. In (R,A), if neither n nor k are known, then Gathering is

unsolvable; this holds regardless of chirality and cross detection.
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Hence at least one of n or k must be known.

An important limitation follows from the dynamic nature of the system:

Property 4. In (R,A), strict Gathering is unsolvable; this holds regardless230

of chirality, cross detection, and knowledge of k and n.

Proof. Consider the following strategy of the adversarial scheduler. It selects

two arbitrary agents, a and b; at each round, the adversary will not remove any

edge, unless the two agents would meet in the next step. More precisely, if the

two agents would meet by both independently moving on different edges e′ and235

e′′ leading to the same vertex, then the adversary removes one of the two edges;

if instead one agent is not moving from its current node v, while the other is

moving on an edge e incident to v, the adversary removes edge e. This strategy

ensures that a and b will never be at the same node at the same time.

Hence, in the following we will not require gathering to be strict.240

An obvious but important limitation, inherent to the nature of the problem,

holds even in static situations:

Property 5. Gathering is unsolvable if the initial configuration C ∈ P; this

holds regardless of chirality, cross detection, and knowledge of k and n.

Proof. It is sufficient to consider an execution in which all the entities have the245

same chirality and no link ever disappears. Depending on their initial positions,

the agents can be partitioned into k/p congruent classes, each composed of

p agents, where p is the period of the initial configuration. In each round,

all agents of the same class will perform exactly the same action (i.e., stay

still or move in the same direction) based on the same observation. Thus the250

distance between two consecutive agents of the same class will never change;

hence gathering will never take place.

Hence, in the following we will focus on initial configurations not in P.
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3. General Solution Stucture

We present several solutions algorithms, depending on whether or not there255

is chirality and or cross detection. All solution algorithms have the same general

structure and use the same building block and variables.

General Structure. All the algorithms are composed of two phases. The goal

of Phase 1 is for the agents to explore the ring. In doing so, they may happen

to solve Gathering as well. If they complete Phase 1 without gathering, the260

agents are able to elect a node or an edge (depending on the specific situation)

and the algorithm proceeds to Phase 2. In Phase 2 the agents try to gather

around the elected node (or edge); however, gathering on that node (or edge)

might not be possible due to the fact that all edges might not be present at all

times.265

Different strategies are devised, depending on the setting (availability or lack

of cross detection and presence or not of chirality) to guarantee that in finite

time the problem is solved in spite of the choice of schedule of missing links

decided by the adversary. In the following, we will describe the two phases

for each setting; intuitively, cross detection is useful to simplify termination in270

Phase 2, chirality helps in breaking symmetries.

Exploration Building Block. At each round, an agent evaluates a set of pred-

icates: depending on the result of this evaluation, it chooses a direction of

movement and possibly a new state. In its most general form, the evaluation

of the predicates occurs through the building block procedure Explore (dir |275

p1 : s1; p2 : s2; . . . ; ph : sh), where dir is either left or right , pi is a predicate,

and si is a state. In Procedure Explore, the agent evaluates the predicates

p1, . . . , ph in order; as soon as a predicate is satisfied, say pi, the procedure exits

and the agent does a transition to the specified state, say si. If no predicate is

satisfied, the agent tries to move in the specified direction dir and the procedure280

is executed again in the next round. In particular, the following predicates are

used:
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• meeting : satisfied when the agent (either in a port or at a node) in the

current round detects an increase in the numbers of agents it sees.

• meetingSameDir: satisfied when the agent detects, in the current round,285

new agents moving in the same direction as its own. This occurs when

seeing new agents in an incoming or outgoing buffer corresponding to the

current direction of the agent.

• meetingOppositeDir: satisfied when the agent detects, in the current

round, new agents moving in its opposite direction. This occurs when290

seeing new agents in an incoming or outgoing buffer corresponding to the

direction opposite to the one of the agent.

• crossed: satisfied when the agent, while traversing a link, detects in the

current round other agent(s) moving on the same link in the opposite

direction.295

• seeElected: satisfied when the agent, having elected a node or an edge.

has reached the elected node or an endpoint of the elected edge.

Furthermore, the agents keeps six variables during the execution of the al-

gorithm. Two of them are never reset during the execution; namely:

• Ttime: the total number of rounds, initially set to 0since the beginning300

of the execution of the algorithm.

• TotalAgents: the number of total agents (initially set to 1). This variable

will be set only after the agent completes a whole loop of the ring, and

will be equal to k.

The other four variables are periodically reset; specifically:305

• rms: the last round when the agent meets someone (at a node) that is

moving in the same direction; this value, initially set to 0, is updated each

time a new agent is met, and it is reset at each change of state or direction

of movement;
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• Btime: the number of rounds the executing agent has been blocked trying310

to traverse a missing edge since rms. This variable is reset to 0 each time

the agent either traverses an edge or changes direction to traverse a new

edge;

• Etime, Esteps: the total number of rounds and edge traversals, respec-

tively. These values are reset at each new call of procedure Explore or315

when rms is changed.

• Agents: the number of agents at the node of the executing agent. This

value is set at each round.

4. Gathering With Cross Detection

In this section, we study gathering in dynamic rings when there is cross320

detection; that is, an agent crossing a link can detect whether other agents are

crossing it in the opposite direction. Recall that, by Property 3, at least one of

n and k must be known.

We first examine the problem without chirality and show that, with knowl-

edge of n, it is solvable in all configurations that are feasible in the static case;325

furthermore, this is done in optimal time Θ(n). On the other hand, with knowl-

edge of k alone, the problem is unsolvable.

We then examine the problem with chirality, and show that in this case the

problem is sovable in all configurations that are feasible in the static case even

with knowledge of k alone; furthermore, this is done in optimal time Θ(n).330

4.1. With Cross Detection: Without Chirality

In this section, we present and analyze the algorithm, Gather(Cross, 6Chir),

that solves Gathering in rings of known size with cross selection but without

chirality.

The two phases of the algorithm are described and analyzed below.335
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4.1.1. Algorithm Gather(Cross, 6Chir): Phase 1

The overall idea of this phase, shown in Figure 2, is to let the agents move

long enough along the ring to guarantee that, if they do not gather, they all

manage to fully traverse the ring in spite of the link removals.340

In this phase there are two important checkpoints, at rounds 6n and 12n.

At round 6n, the agents are able to find out important global conditions that

direct their subsequent actions; at round 12n, if they have not already gathered,

they start Phase 2.

More precisely, for the first 6n rounds each agent attempts to move to the left345

(according to its orientation). At round 6n, the agent checks if it met someone

new going in its same direction more than 3n rounds ago and, since then, it has

traversed less than n− 1 links (predicate Pred ≡ (rms < 3n∧Esteps < n− 1)).

If Pred holds, then (as we show) all agents moving in the same direction of

this agent are now together, and Pred holds for all of them; they all enter state350

KeepDir and continue in the same direction for an additional 6n rounds. If

instead Pred is false, then (as we show) all agents moving in the same direction

of this agent have explored the entire ring, thus know the total number k of

agents (local variable TotalAgents) and the configuration of homebases, and

Pred is false for all of them; all of them switch direction, enter state SwitchDir,355

and attempt to move for the next 6n rounds. During this time, if an agent

in state KeepDir crosses or meets an agent moving in the opposite direction, it

terminates.
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States: {Init, SwitchDir, KeepDir, Term}.

In state Init:

Explore (left | Ttime = 6n ∧ ¬Pred: SwitchDir; Ttime = 6n ∧ Pred: KeepDir)

In state SwitchDir:

Explore(right | Ttime = 12n ∧ (rms < 9n ∧ Esteps < n − 1 ) ∧ (Agents =

TotalAgents ∧ ¬meetingOppositeDir): Term; Ttime = 12n: Phase 2)

In state KeepDir:

Explore (left | crossed ∨ meetingOppositeDir: Term; Ttime = 12n ∧ rms <

9n ∧ Esteps < n− 1: Term; Ttime = 12n: Phase 2)

Pred ≡ [rms < 3n ∧ Esteps < n− 1]

Protocol Gather(Cross, 6Chir), Phase 1.

Figure 2: Phase 1 of Algorithm Gather(Cross, 6Chir)

The second checkpoint occurs at round 12n. At that time, an agent in state

SwitchDir terminates if all the following conditions hold: (i) it crossed less than360

n−1 links, (ii) met someone less than 9n rounds ago, (iii) never met anybody in

opposite direction, and (iv) there are k agents on the current node; otherwise,

it startsPhase 2.

At round 12n, an agent in state KeepDir terminates if it crossed less than n

links and met someone less than 9n rounds ago; otherwise, it starts Phase 2.365

As we will show, if an agent terminates in Phase 1, then every agent termi-

nates and gathering is achieved. On the other hand, if no agent terminates in

Phase 1, all of them have done a complete tour of the ring and start Phase 2.

We now formally prove the properties of Phase 1.

Lemma 1. Let A be a group of agents moving in the same direction during an370

interval of time I lasting at least 3n− 1 rounds. If an agent a∗ ∈ A moves less

than n− 1 steps in I, then there exists a round r ∈ I where all agents in A are

in the same group.
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Proof. If there is a round r′ ∈ I when a∗ is blocked, then every a ∈ A that

at round r′ is not at the same node of a∗ does move, due to the 1-interval375

connectivity of the ring. Since a∗ moves less than n − 1 steps in an interval

lasting at least 3n−1 rounds, then the number of rounds in which a∗ is blocked

is at least 2n+ 1. Thus, all agents in A that are not already in the same node

as a∗ have moved towards a∗ of at least 2n+ 1 steps. On the other hand, every

time a∗ moves, the other agents might be blocked; however, by hypothesis, this380

has happened less than n times.

Since the initial distance between a∗ and an agent in A is at most n − 1,

it follows such a distance increases less than n − 1 (due to a∗ moving), but it

decreases by 2n + 1 (due to a∗ being blocked); thus the distance is zero (i.e.,

they are at the same node) by the end of interval I.385

Because of absence of chirality, the set A of agents can be partitioned into

two sets where all the agents in the same set share the same orientation of the

ring; let Ar and Al be the two sets.

Lemma 2. Let A ∈ {Ar, Al}. If at round 6n Pred is verified for an agent

a∗ ∈ A, then all agents in A are in the same group at round 6n. Moreover,390

Pred is verified for all agents in A.

Proof. By definition of Pred and by Lemma 1, at round 6n all agents in A are at

the same node of a∗. Also, let r be the first round when all agents in A meet at

the same node: by definition, the value of rms for all agents under consideration

is exactly r. From this observation and since Pred holds for a∗, it follows that395

Pred must be satisfied for all agents in A.

Lemma 3. Let A ∈ {Ar, Al}. If Pred is not verified at round 6n for agent

a∗ ∈ A, then at round 6n all agents in A have done a complete tour of the ring

(and hence know the number of total agents, k); moreover, Pred is not verified

for all agents in A.400

Proof. Let us assume by contradiction that there exists a′ ∈ A that has not

done a complete tour of the ring after 6n rounds; that is, a′ has moved less then
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n− 1 steps in the first 3n− 1 rounds. By Lemma 1, all agents in A are in the

same node as a∗ by round r ≤ 3n − 1. Therefore, Pred would be satisfied for

any of the robots in A, including a∗: a contradiction.405

To prove the second part of the lemma, note that Pred cannot be satisfied

for any agent in ∈ A: in fact, by Lemma 2, this would prevent the existence of

an agent in A for which Pred is not satisfied. Thus, the lemma follows.

Lemma 4. If one agent terminates in Phase 1, then all agents terminate and

gathering has been correctly achieved. Otherwise, no agent terminates and all410

of them have done a complete tour of the ring.

Proof. Notice that, by construction, the agents do not change their direction

before round 6n.

Let us first consider the case when at round r = 0 the agents do not have

the same orientation. We distinguish three possible cases, depending on what415

happens at round 6n.

1. At round 6n, all agents change direction. By Lemma 2, it follows that at

round 6n all of them completed a loop of the ring. According to SwitchDir,

an agent, to enter the Term state, has to verify both (a) Agents =

TotalAgents and (b) ¬meetingOppositeDir: to verify (a), the agents have420

to meet at the same node, thus meetingOppositeDir has to be true, hence

(b) can not verified. It follows that the agents cannot terminate at round

12n, and the lemma follows.

2. At round 6n, no agent changes direction. Thus, according to the algo-

rithm, Pred is verified for all agents, that will enter KeepDir state; also, by425

Lemma 2, all agents that share the same direction are in the same group

(i.e., there are two groups of agents moving in opposite direction).

By definition of KeepDir, if between round 6n and 12n an agent crosses or

meets another agent, they both terminate; hence, all the agents in their

respective group terminate, and the lemma follows. If no crossing occurs430

between round 6n and 12n, then both group of agents are necessarily
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blocked at the ends of the missing link (otherwise the two groups would

have crossed or met). Thus, at round 12n, rms < 9n (last reset of rms oc-

curred at round 6n) and Esteps < n−1 (otherwise, again, the two groups

would have crossed or met), for any agent; hence all agents terminate at435

round 12n, and the lemma follows.

3. At round 6n, only some agents change direction. By Lemmas 2 and 3, it

follows that, after round 6n. all agents will move in the same direction.

Let us assume that, at round 12n, condition rms < 9n ∧ Esteps < n − 1

holds for some agent a∗, by a similar argument used in Lemma 2 we can440

show that the condition holds for all agents. If a∗ did not switch direction

at round 6n, a∗ terminates at round 12n, say at node v (KeepDir); hence,

by Lemma 1, all agents gather at v. Otherwise, if a∗ switched direction

at round 6n, since all agents are moving in the same direction, condition

meetingOppositeDir is false from round 6n on; moreover, by Lemma 3,445

a∗ computed the number k of total agents at round 6n. Therefore, a∗

terminates at round 12n, say at node v (SwitchDir). Finally, by Lemma 1,

all agents gather at v, and the lemma follows.

On the other hand, if condition rms < 9n ∧ Esteps < n − 1 does not

hold for any agent at round 12n, no agent can enter the Term state. Also,450

following an argument similar to the one used in Lemma 3, we have that

all agents have done a complete loop of the ring after 6n rounds, and the

lemma follows.

The other case left to consider is when at round r = 0 the agents have the

same orientation. We distinguish two cases.455

1. There is an agent that does not change direction at round 6n. Then, at this

time, all agents are in the same group and none of them switches direction

(Lemma 2). Thus, if the agents terminate at round 12n, gathering is

solved, and the lemma follows. Otherwise, by KeepDir, predicate rms <

9n∧Esteps < n− 1 is not verified at round 12n for any of them (they are460

19



all in the same group) and they have all done a complete loop of the ring

(last reset of rms occurred at round 6n, hence Esteps ≥ n for all agents),

so they start Phase 2, and the lemma follows.

2. There is an agent that switches direction at round 6n. Then, at this time,

all of them switch direction, and have done a complete loop of the ring465

(Lemma 3). The proof follows with an argument similar to the one of

previous case.

4.1.2. Algorithm Gather(Cross, 6Chir): Phase 2

If the agents execute Phase 2 then, by Lemma 4, they know both the position470

of all the homebases and the number of agents k; that is, they know the initial

configuration C. If C ∈ P, gathering is impossible (Property 5) and they

become aware of this fact. Otherwise, if C ∈ E they can elect an edge eL, and

if C ∈ C \ (P ∪ E) they can elect one of the nodes as leader vL (Property 1).

For simplicity of exposition and without loss of generality, in the following we475

assume that Phase 2 of the algorithm, shown in Figure 3, starts at round 0.
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States: {Phase 2, ReachedElected, ReachingElected, Joining, Waiting, ReverseDir,Term}.

In state Phase 2:

if C ∈ P then

unsolvable()

Go to State Term

resetAllVariables except TotalAgents

dir =shortestPathDirectionElected()

Explore (dir | seeElected: ReachedElected; Ttime = 3n: ReachingElected)

In state ReachedElected:

dir =opposite(dir)

if Ttime ≥ 3n then

Explore (dir | Agents = TotalAgents ∨Btime = 2n: Term; crossed: Joining)

In state Joining:

dir =opposite(dir)

Explore (dir | Agents = TotalAgents∨Btime = 2n∨ crossed: Term; Esteps = 1:

ReverseDir)

In state ReachingElected:

Explore (dir | Agents = TotalAgents ∨ Btime = 2n: Term; crossed: Waiting;

meetingSameDir: ReachedElected; meetingOppositeDir ∨ seeElected : ReverseDir )

In state Waiting:

Explore (nil | Etime > 2n: Term; meeting: ReverseDir)

In state ReverseDir:

dir =opposite(dir)

Go to State ReachedElected

Protocol Gather(Cross, 6Chir), Phase 2.

Figure 3: Phase 2 of Algorithm Gather(Cross, 6Chir)

In Phase 2, an agent first resets all its local variables, with the excep-

tion of TotalAgents, that stores the number of agents k; between rounds 0

and 3n, each agent moves toward the elected edge/node following the short-

est path (shortestPathDirectionElected()). If at round 3n an agent has reached480

the elected node or an endpoint of the elected edge, it stops and enters the
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ReachedElected state. Otherwise (i.e., at round 3n, the agent is not in state

ReachedElected), it switches to the ReachingElected state. If all agents are in

the node (Agents = TotalAgents), they terminate. If they do not terminate,

all agents start moving: the ReachingElected agents continuing in the same di-485

rection, while the ReachedElected agents reverse direction.

From this moment, each agent, regardless of its state, terminates immedi-

ately if all k agents are in the same node, or if it is blocked on a missing edge

for 2n rounds. In other situations, the behaviour of each agent a∗ depends on

its state, as follows.490

State ReachedElected. If a∗ crosses a group of agents, it enters the Joining state.

In this new state, say at node v, the agent switches direction in the attempt to

catch and join the agent(s) it just crossed. If a∗ leaves v without crossing any

agent (Esteps = 1), a∗ enters again the ReachedElected state, switching again

direction (i.e., it goes back to direction originally chosen when Phase 2 started).495

If instead a∗ leaves v and it crosses some agents, it terminates: this can happen

because also the agents that a∗ crossed try to catch it (and all other agents in

the same group with a∗). As we will show, in this case all agents can correctly

terminate.

State ReachingElected. if a∗ crosses someone, it enters the Waiting state, and it500

stops moving. If while in the Waiting state a∗ meets someone new before 2n

rounds, it enters the ReachedElected state and switches direction. Otherwise, at

round 2n round it terminates.

If a∗ is blocked on a missing edge and it is reached by other agents, then

it switches state to ReachedElected keeping its direction (meetingSameDir is505

verified).

Finally, If a∗ is able to reach the elected node/edge (seeElected is verified),

it enters the ReachedElected state, and switches direction. Notice that, this

does not happen if a∗ crossed someone before reaching the elected node/edge,

in which case it immediately enters in Waiting state.510

22



Lemma 5. At round 3n of Phase 2, there is at most one group of agents in state

ReachingElected, and at most two groups of agents in state ReachedElected.

Proof. In Phase 2, all agents start moving towards the nearest elected endo-

point/node. The lemma clearly follows for agents in state ReachedElected: in

fact, the two groups (one of them possibly empty) are formed by all the agents515

that have successfully reached the elected endpoint/node from each of the two

directions.

If an agent is not able to reach the elected endpoint/node within 3n rounds,

it must have been blocked for at least 2n+1 rounds; notice that this cannot hap-

pen to two agents walking on disjoint paths toward the elected endpoint/node.520

Therefore, by Lemma 1, there can be at most one group of agents in state

ReachingElected, and the lemma follows.

Note that, if at round 3n there are two groups of agents in state Reached-

Elected, they have opposite moving direction dir ; also, they are either at the

same leader node, or at the two endpoints of the leader edge.525

Lemma 6. If an agent a∗ terminates executing Phase 2, then all other agents

will terminate, and gathering is correctly achieved.

Proof. If a∗ terminates because Agents = k, the lemma clearly follows. Let us

consider the other termination conditions.

1. a∗ is either in state ReachedElected or ReachingElected, and Btime =530

2n. Agent a∗ is blocked on one endpoint of the missing edge; thus, after

2n steps, all agents with opposite direction are on the other endpoint

of the missing edge. Notice, that Btime is reset every time an agent

with the same direction reach the node where a∗ is blocked, therefore if

Btime = 2n all agents with the same direction of a∗ are waiting on the535

same endpoint of a∗. Note that this holds also if the other agents are all

in the ReachingElected state and reach the elected endpoint/node in (at

most) n rounds: in this case, in fact, they would switch direction, and go

back to the other endpoint of the missing edge in at most other n steps.
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Therefore, the other agents will either terminate because they wait for 2n540

rounds at the other endpoint of the missing edge, or because they reach

the same endpoint node where a∗ terminated (Agents = TotalAgents is

thus verified); hence they correctly gather, and the lemma follows.

2. a∗ is in state Joining and crossed is verified. First notice that, if a∗ crosses

some agent(s), then the crossed agent(s) are in state Joining as well (the545

agents in the Waiting state do not try to actively cross an edge); thus, they

were in the ReachedElected state before crossing. However, this is possible

only if there is no group of agents in state ReachingElected: at round 3n,

the two groups ReachedElected starts moving in opposite directions from

the same node or from two endpoints of the same edge. Therefore, when550

they cross, one of them has already met the group ReachingElected, if it

exists, and when that happens the group ReachingElected merges with the

group ReachedElected. This implies that, when two groups ReachedElected

cross, all agents are in Joining. Therefore, when they cross again, all agents

are on the two endpoints of the same edge, and the lemma follows.555

3. a∗ is in state Waiting, and Etime > 2n. By Lemma 5, a∗ has crossed

a group of agent in state ReachedElected. These agents, by entering the

Joining state, actively try to reach the node where a∗ is (in Waiting). If the

Joining group does not reach a∗ in 2n rounds, then the edge connecting

them is necessarily missing. Also note that, if there is another Reached-560

Elected group, it has to reach the agents in the Joining state within 2n

rounds. Now, these two groups will either terminate by waiting 2n rounds,

or because they are able to reach the Waiting agent a∗, finally detecting

that Agents = TotalAgents. In all cases, the agents correctly terminate

solving the gathering, and the lemma follows.565

Lemma 7. Phase 2 terminates in at most 10n rounds.

Proof. By Lemma 5, at the end of round 3n, the following holds:
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1. If there is only one group with state ReachingElected, the agents terminate

on condition Agents = TotalAgents.570

2. If there is only one group with state ReachedElected, the agents terminate

on condition Agents = TotalAgents.

3. If there are two groups with state ReachedElected, they have opposite

direction of movements (otherwise, they would be in the same group).

Therefore, within n rounds, they have to be at distance 1 from each other:575

they terminate within the next 2n + 1 rounds either by crossing in state

Joining, or on condition Btime = 2n.

4. If there are two groups of agents in the ReachedElected state, say G and

G′, and one group of agents in the ReachingElected state, say G∗, then G

and G′ have opposite direction of movements (otherwise, they would be580

in the same group); hence one of them, say G, has direction of movement

opposite to the one of G∗. Therefore, within n rounds, G and G∗ have to

be at distance 1 from each other. If they do not cross each other within

the next 2n rounds, they will terminate on condition Btime = 2n, and

the lemma follows.585

Otherwise (they cross within the next 2n rounds), two cases can occur:

(A) they both terminate, one group on condition Btime = 2n and the

other one on condition Etime > 2n in the Waiting state (between the

two groups there is the missing edge); or (B) they will join within the

next 2n rounds. In Case (A) the lemma follows. In Case (B), they either590

terminate on condition Agents = TotalAgents, and the lemma follows; or

the ReachingElected group enters the ReachedElected state (via Waiting),

and starts moving towards the other ReachedElected group. In this last

case, the proof follows from previous Case 3.

5. If there is one group in the ReachedElected state and one in the Reaching-595

Elected state, we have two possible cases. (A) The two groups are moving

towards each other: in this case the proof follows similarly to the pre-
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vious Case 3. (B) The two groups move in the same direction. If the

group ReachingElected does not reach the elected endpoint/node within

2n+1 rounds, the two groups necessarily meet, and thus terminate; hence600

the lemma follows. Otherwise, after ReachingElected reaches the elected

endpoint/node, this group enters the ReachedElected state, and the proof

follows similarly to the previous Case 3.

Hence we have605

Theorem 1. Without chirality, Gathering is solvable in rings of known size

with cross detection, starting from any C ∈ C \ P. Moreover, there exists an

algorithm solving Gathering that terminates in O(n) rounds for any C ∈ C\P
and, if C ∈ P, the algorithm detects that the configuration is periodic.

Proof. If algorithm Gather(Cross, 6Chir) terminates in Phase 1 then, by Lemma 4,610

it correctly solves gathering and it terminates by round 12n. If it terminates in

Phase 2, then by Lemma 6, it correctly solves gathering, and by lemma 7 will

do so in at most 10 additional rounds. Notice, that in Phase 1, either the agents

discover the initial configuration C or they gather. Once they know C, they can

detect if the problem is solvable or not. This proves the last statement of the615

theorem

4.2. Knowledge of n is more Powerful Than Knowledge of k

One may ask if it is possible to obtain the same result of Theorem 1 if

knowledge of k was available instead of n; recall that at least one of n and k

must be known (Property 3). Intuitively, knowing k, if an agent manages to620

travel all along the ring, it will discover also the value of n. Unfortunately, the

following Theorem shows that, from a computational point of view, knowledge

of the ring size is strictly more powerful than knowledge of the number of agents.

Theorem 2. In rings with no chirality, Gathering is impossible without

knowledge of n when starting from a configuration C ∈ E. This holds even625

if there is cross detection and k is known.
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Proof. By contradiction. Let us suppose to have two agents a and b on a ring

R where the the distances between the homebases h1 and h2 are d1 < d2 and

they are both odd. Let e1 be the central edge between h1 and h2 in the smallest

portion of the ring (i.e., at distance (d1−1)
2 from h1 and h2) and e2 the central630

edge on the other side (i.e., at distance (d2−1)
2 from h1 and h2). Let us consider

an execution E of a correct algorithm A starting from this configuration. The

adversary decides opposing clockwise orientation for these two agents, and it

only removes edges e1 and e2 during the execution of the algorithm. We will

show that, by appropriately removing only this two edges, the adversary can635

prevent the two agents to ever see each other. At the beginning the agents

move towards each other (w.l.o.g, in the direction of e1). The adversary lets

them move until they are about to traverse edge e1; at this point edge e1 is

removed and both agents are blocked with symmetric histories. After a certain

amount of time, they will either both reverse direction or terminate. The same640

removal scheduling is taken whenever they are about to cross either e1 or e2. The

adversary keeps following this schedule until both agents decide to terminate.

Notice that for A to be correct they can only terminate on the endpoints of one

of the edges e1 or e2. Let r′ = f(R) be the round when the agents terminate in

execution E.645

Let us now consider the same algorithm on a ring R′ of size greater than

4f(R) + 2 where the two agents are initially placed at distance greater than

2f(R). Consider agent a: the adversary removes the edge at distance d1−1
2 on

its right and the one at distance d2−1
2 on its left whenever a tries to traverse

them. In doing so a does not perceive any difference with respect to execution650

E, and therefore terminates at round r′ = f(R). At this point, the other agent

b cannot be at the other extreme of the edge where a terminated, therefore,

the adversary now blocks b from any further move, preventing gathering. A

contradiction.
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4.3. With Cross Detection: With Chirality655

Let us now consider the simplest setting, where the agents have cross de-

tection capability as well as a common chirality. In this case, the impossibility

result of the previous Section does not hold, and a solution to Gathering exists

also when k is known but n is not.

The solution consists of a simplification of Phase 1 of Algorithm Gather-660

(Cross,6Chir), also extended to the case of k known, followed by Phase 2 of

Algorithm Gather(Cross, 6Chir).

4.3.1. Algorithm Gather(Cross, Chir): Phase 1

In case of known n, each agent executes Phase 1 of Algorithm Gather-

(Cross,6Chir) moving clockwise until round 6n (if not terminating earlier) and665

then executing Phase 2 of Algorithm Gather(Cross, 6Chir). By Lemma 2 we

know that, if termination did not occur by this round, then the ring has been

fully traversed by all agents.

In case k is known (but n is not), each agent moves counterclockwise termi-

nating if the k agents are all at the same node. As soon as it passes by k + 1670

homebases, it discovers n. At this point, it continues to move in the same di-

rection switching to Phase 2 at round 3n + 1 (unless gathering occurs before).

In fact, by Lemma 1, we know that, if an agent does not perform n − 1 steps

in the first 3n− 1 rounds, then all agents are in a single group and, knowing k,

they can immediately terminate. This means that after 3n rounds, if the agents675

have not terminated, they have however certainly performed a loop of the ring,

they know n (having seen k + 1 home bases) and they switched to Phase 2 by

round 3n+ 1.

4.3.2. Algorithm Gather(Cross, Chir): Phase 2

When Phase 2 starts, both n and k are known and Phase 2 of Algorithm680

Gather(Cross, Chir) is identical to the one of Algorithm Gather(Cross, 6Chir).

We then have:
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Theorem 3. With chirality, cross detection and knowledge of either n or k,

Gathering is solvable in at most O(n) rounds from any configuration C ∈ C\P.

685

5. Without Cross Detection

In this section we study the gathering problem when there is no cross detec-

tion.

We focus first on the case when the absence of cross detection is mitigated by

the presence of chirality. We show that gathering is possible in the same class of690

configurations as with cross detection, albeit with a O(n log n) time complexity.

We then examine the most difficult case of absence of both cross detection

and chirality. We prove that in this case the class of feasible configurations

is smaller (i.e., cross detection is a computational separator). We show that

gathering can be performed from all feasible configuration in O(n2) time.695

5.1. Without Cross Detection: With Chirality

The structure of the algorithm, Gather( 6Cross,Chir), still follows the two

phases. However, when there is chirality but no cross detection, the difficulty

lies in the termination of Phase 2.

5.1.1. Algorithm Gather( 6Cross,Chir): Phase 1700

Notice that the Phase 1 of Algorithm Gather(Cross,Chir) described in

Section 4.3 does not really make use of cross detection. So the same Algorithm

can be employed in this setting in both cases when n or k are known. Phase 1

terminates then in O(n) rounds.

5.1.2. Algorithm Gather( 6Cross,Chir): Phase 2705

Because of chirality, a leader node can be always elected, even when the

initial configuration is in E (Property 1). We will show how to use this fact to

modify Phase 2 of Algorithm Gather(Cross,Chir) to work without assuming

cross detection. We will do so by designing a mechanism that will force the
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agents never to cross each other. The main consequence of this fact is that,710

whenever two agents (or two groups of agents) would like to traverse the same

edge in opposite direction, only one of the two will be allowed to move thus

“merging” with the other. This mechanism is described below.

Basic no-crossing mechanism.. To avoid crossings, each agent constructs

an edge labeled bidirectional directed ring with n nodes (called Logic Ring)715

and it moves on the actual ring according to the algorithm, but also to specific

conditions dictated by the labels of its Logic Ring .

X1X1X2X2

X3X3

X4X4
X5X5

X6X6

Y0Y0

Y1Y1Y2Y2

Y3Y3

Y4Y4 Y5Y5

Y6Y6

X0X0

v0v0

v1v1

v2v2

v3v3

v4v4

v5v5
v6v6

Figure 4: Example of the Logic Ring

In the Logic Ring , each edge of the actual ring is replaced by two la-

beled oriented edges in the two directions. The label of each oriented edge ei,

0 ≤ i ≤ n−1, is either Xi or Yi , where Xi and Yi are infinite sets of integers. La-720

bels X0, . . . , Xn−1 are assigned to consecutive edges in counter-clockwise direc-

tion starting from the leader node, while Y0, . . . , Yn−1 are assigned in clockwise

direction (see Figure 4).

Intuitively, we want to construct these sets of integers associated to labels in

such a way that Xi and Yi have an empty intersection. In this way, the following725

meta-rule of movement will prevent any crossing:

An agent is allowed to traverse an edge of the ring at round r only

if r is contained in the set of labels associated to the corresponding

oriented edge of the Logic Ring.
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For this construction, we define Xi = {s + m · (2p + 2) | (s ∈ Si ∨ s =730

2p),∀m ∈ N}, where p = dlog2 ne, and Si is a subset of {0, 1, . . . , 2p− 1} of size

exactly p (note that there are
(
2p
p

)
≥ n possible choices for Si). Indeed, there

are 2p = 2dlog2 ne ≥ n ways to choose which elements of {0, 1, . . . , p − 1} are in

Si; each of these choices can be completed to a set of size p by choosing the

remaining elements from the set {p, p + 1, . . . , 2p − 1}. Therefore there are at735

least n available labels, and we can define the Xi’s so that they are all distinct.

Then we define Yi to be the complement of Xi for every i. That is, Xi ∩Yi = ∅

and Xi ∪ Yi = N.

Y2 : {2, 4, 5, 7}

X2 : {0, 1, 3, 6}

Y1 : {1, 3, 4, 7}

X1 : {0, 2, 5, 6}

Figure 5: Example of labels for a ring of size n = 8, where p = 3. The elements

in the set are limited to interval [0, 7]. Notice, that X1∪Y1 = ∅ and Xi∪Yj 6= ∅
for any i 6= j. Moreover, all Xj contain element 6 and all Yj contain element 7.

By construction, it follows that |Xi ∩ {0, 1, . . . , 2p − 1}| = p, and |Yi ∩
{0, 1, . . . , 2p− 1}| = p, ∀i. As a consequence, if i 6= j and m ∈ N, then Xi and740

Yj have a non-empty intersection in {m,m+ 1, . . . ,m+ 2p+ 1}. Furthermore,

in this labelling, each Xi contains all integers of the form 2p+m · (2p+ 2), and

each Yi’s contains all integers of the form 2p+ 1 +m · (2p+ 2). An example of

sets for a ring of size 8 is reported in Figure 5.

The following property is immediate by construction:745

Observation 1. Let m ∈ N and let I = {m,m+ 1, . . . ,m+ 2p+ 1}. Then, Xi

and Yj have a non-empty intersection in I if and only if i 6= j, Xi and Xj have

a non-empty intersection in I, and Yi and Yj have a non-empty intersection in

I.
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From the previous observation, it follows that two agents moving following750

the Logic Ring in opposite directions will never cross each other on an edge of

the actual ring.

As a consequence of this fact, we can derive a bound on the number of rounds

that guarantee two groups of robots moving in opposite direction, to “merge”.

In the following lemma, we consider the execution of the algorithm proceeding755

in periods, where each period is composed by 2p+ 2 rounds. We have:

Lemma 8. Let us consider two groups of agents, G and G′, moving in opposite

directions following the Logic Ring. After at most n periods, that is at most

O(n log n) rounds, the groups will be at a distance d ≤ 1 (in the direction of

their movements).760

Proof. Without loss of generality, let us assume that G and G′ are initially

positioned on two nodes, respectively v and v′, trying to traverse two edges

incident to v and v′. If the two edges have labels that are the complement of

each other in the Logic Ring then, by construction, they are trying to traverse

the same edge in the actual ring in opposite directions, and the lemma follows.765

Let us then assume now that the two groups are trying to traverse edges

whose labels in the Logic Ring are not the complement of each other. Since

these sets of labels have a non empty intersection (Observation 1), it follows

that, in each period of 2p + 2 rounds, the adversary can block at most one of

the two groups. Thus, there exists a round r in which both groups try to cross770

two different edges, and at least one of them will succeed, hence moving of one

step in the direction of the other group. Therefore, after at most (n−1)(2p+2)

rounds the two groups will be at a distance at most one in the directions of their

movements. Since each period has O(log n) rounds, the lemma follows.
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States: {ReachedElected, ReachingElected, ChangeDir, ChangeState, DirCommR,

DirCommS, Term}.

In state Phase 2:

if C ∈ P then

unsolvable()

Go to State Term

resetAllVariables except TotalAgents

dir = leaderMinimumPath()

Explore (dir | seeElected: ReachedElected; Ttime = 3n: ReachingElected)

In state ReachedElected:

if Ttime ≥ 3n then

dir = clockwiseDirection()

Explore (dir | (BPeriods ≥ 4n + 8 ∨ Agents = TotalAgents): Term;)

In state ReachingElected:

if Ttime = 3n then

dir = counterclockwiseDirection()

Explore (dir | (BPeriods ≥ 4n + 8 ∨ Agents = TotalAgents): Term;)

Figure 6: Phase 2 of Algorithm Gather( 6Cross,Chir)

We are now ready to describe the second Phase of the algorithm.775

Phase 2. In the following, when the agents are moving according to the meta-

rule in the Logic Ring , we will use variable BPeriods, instead of Btime, indi-

cating the number of consecutive periods in which the agent failed to traverse

the current edge. As in the case of Btime, the new variable BPeriods is reset

each time the agent traverses the edge, changes direction, or encounters new780

agents in its moving direction.

In the first 3n rounds, each agent moves towards the elected node using the

minimum distance path. After round 3n, the agents move on the Logic Ring

ring: the group in state ReachedElected starts moving in clockwise direction,

the group in state ReachingElected in counterclockwise. One of the two groups785

terminates if BPeriods ≥ n rounds or if Agents = k. This replaces the termi-
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nating condition Btime = 2n that was used in case of Cross detection. Phase 2

of the Algorithm is shown in Figure 6.

Lemma 9. Phase 2 of Algorithm Gather( 6Cross,Chir) terminates in at most

O(n log n) rounds, solving the Gathering problem.790

Proof. Let us first prove that the algorithms terminates in O(n log n) rounds.

At the end of round 3n of Phase 2, we have at most one group of agents in

state ReachedElected and one group in state ReachingElected (Lemma 5 derived

in the case with cross-detection still holds). If there is only one of these group,

termination is immediate from condition Agents = k. If both groups are present795

(moving in opposite direction by construction) we have that, by Lemma 8 the

two groups will be at distance 1 by at most round 3n + n(2p + 2), where p

is a quantity bounded by O(log n). At this point, they either meet in one

node because only one of the two group will be allowed to cross the edge, and

therefore they terminate by condition Agents = k, or they are blocked by the800

adversary on two endpoints of the same edge. In this case, however, they will

terminate e by condition BPeriods ≥ n. Notice that, if a group G terminates

by BPeriods ≥ n gathering will be achieved, because by Lemma 8, we have

that the other group G′ is at the other endpoint of the edge where G has been

blocked. Therefore, G′ either terminates by condition BPeriods ≥ n, or it805

reaches the node where G is and it terminates by condition Agents = k.

From the previous Lemma, and the correctness of Phase 1 already discussed

in Section 4.3, the next theorem immediately follows.

Theorem 4. With chirality and knowledge of n or k, Gathering is solvable

from any configuration C ∈ C \ P. Moreover, there exists an algorithm solving810

Gathering that terminates in O(n log n) rounds for any C ∈ C \ P, if C ∈ P
the algorithm either solves Gathering or it detects that the configuration is in

P.
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eueu eded

vu1vu1

vu2vu2

v0u2
v0u2

v0u1
v0u1

alal

arar

Figure 7: Configuration used to prove the impossibility of Gathering when

the configuration is in E and there is no cross detection

5.2. Without Cross Detection: Without Chirality

In this section, we consider the most difficult setting when neither cross815

detection nor chirality are available. We show that in this case Gathering

is impossible if C ∈ E . On the other hand, we provide a solution for rings of

known size from any initial configuration C ∈ C \ (P ∪E), which works in O(n2)

rounds. We start this Section with the impossibility result.

5.2.1. Impossibility for C ∈ E820

Theorem 5. Without chirality and without cross detection, Gathering is im-

possible when starting from a configuration C ∈ E. This holds even if the agents

know C (which implies knowledge of n and k).

Proof. By contradiction. Consider an initial configuration C with two agents

al, ar, a unique axis of symmetry passing through edges eu, ed, and where the825

two homebases hl, hr are at distance at least 4 from eu and 5 from ed (see an

example in Figure 7). Let A be an algorithm that solves gathering starting

from configuration C in an execution E where the adversary does not remove

any edge. Note that, because of symmetry, without edge removals the two
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agents can cross each other only over eu or ed never meeting in the same node830

at the same time, so gathering could be achieved only on the two endpoint of

one of these edges. Let us suppose, w.l.o.g, that A terminates when the two

agents are on the endpoints of edge eu = (vu1
, vu2

). Let v′u2
be the neighbour of

vu2 different from vu1 (resp. v′u1
the neighbour of vu1 different from vu2). Let

rf be the round in which al reaches vu1
and terminates (note that al could have835

passed by vu1
several time before, without terminating; let r1, possibly equal to

rf , be the first round when al reaches vu1
). Agent al may reach vu1

at round

rf in two ways: Case 1) after performing a loop of the ring starting from vu1

(note that, during the loop, the agents may go back and forth over some nodes

several times). Case 2) after moving in a certain direction for X step and then840

back for other X step, possibly moving back and forth over some nodes several

times. In either case, agent ar does exactly the symmetric moves of al with

respect to the symmetry axis.

Let us now consider an execution E′ starting from C where the agents be-

have like in execution E until they possibly find themselves blocked by an edge845

removal. We will show that the edge removal schedule chosen by the adversary

does not influence agent al, which behaves exactly as in execution E terminat-

ing in node vu1
at round rf , but gathering is not achieved.

No edge removal is done on the way of agent al until it terminates in node vu1
.

If al does so by looping around the ring (Case 1), also ar is performing an op-850

posite loop and the adversary blocks ar, on an endpoint of ed, after the agents

cross each other, for the last time, on ed during their loop. Regardless of the

decision taken by ar at this point, when al terminates, ar is at at least two edges

apart. If al is reaching vu1 after moving for X steps and coming back (Case

2), ar is performing the symmetric moves and the adversary behaves differently855

depending on various sub-cases. Case 2.1) Assume first that al (resp. ar) leaves

the set of nodes {vu1
, vu2

, v′u2
} (resp. {vu2

, vu1
, v′u1

}) at least once after round

r1. In this case, if the agents do not traverse ed or eu, then the adversary blocks

ar the last time it leaves node vu2 ; if instead they traverse ed, then al, ar cross

on ed and the adversary blocks ar on an endpoint of ed after their last cross.860
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Finally, if the agents cross each other on eu, then the adversary blocks ar as

soon as it moves from v′u1
. In all these situations, when al reaches vu1

, ar is

at least two edges apart. Case 2.2) Assume now that al never leaves the set of

nodes {vu1
, vu2

, v′u2
} after round r1. The adversary blocks agent ar right before

it is entering for the first time in the set of nodes {vu2 , vu1 , v′u1
}, this would865

be undetectable by al, and, by construction, ar would be at distance at least 2

from vu1
, when al terminates.

Being run E′ undistinguishable for al from the execution E, we have that,

in E′, al terminates on vu1 , while agent ar is not on a neighbour node of vu1 .

At this point the adversary blocks ar from any further move and gathering will870

never be achieved. A contradiction.

5.2.2. Algorithm Gather( 6Cross,6Chir): Phase 1

As we know, the lack of cross detection is not a problem when there is a

common chirality. However, the combination of lack of both cross detection

and chirality significantly complicates Phase 1, and new mechanisms have to be875

devised to insure that all agents finish the ring exploration and correctly switch

to Phase 2.

In the following we will denote by Btime′ the value of Btime at the previous

round, that is at round Ttime− 1.
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States: {Init, KeepState,SyncR, SyncL, Term}.

In state Init:

Explore (left | (Ttime ≥ (3n + 1)(n + 3)) ∧ (Btime > n): KeepState; Ttime

≥ (3n + 1)(n + 3): SyncL; Btime ≥ (2n + 2) ∨ (Btime′ ≥ n + 1 ∧meeting): Term)

In state KeepState:

Btime = Btime′ + 1

Explore (left | (Ttime ≥ (3n+1)(n+3)+2n+1)∨Agents = TotalAgents: Term;

Esteps = 1: SyncL )

In state SyncL:

Explore (left | Agents = TotalAgents: Term; Ttime ≥ (3n + 1)(n + 3) + 2n + 1:

Phase 2; Btime = 1: SyncR)

In state SyncR:

Explore (right | Agents = TotalAgents: Term; Ttime ≥ (3n+ 1)(n+ 3) + 2n+ 1:

Phase 2; Btime = 1: SyncL)

Figure 8: Phase 1 of Algorithm Gather( 6Cross,6Chir)

Each agent attempts to move along the ring in its own left direction. An880

agent terminates in the Init state if it has been blocked long enough (Btime ≥
2n + 2), or if it was blocked for an appropriate amount of time and it is now

meeting a new agent (Btime′ ≥ n+1∧meeting). If an agent does not terminate

by round (3n + 1)(n + 3), it enters the sync sub-phase, that lasts 2n rounds;

this syncronization step is used to ensure that, if a group of agents terminates885

in the Init state by condition Btime ≥ 2n + 2, all the remaining active agents

will correctly terminate in this sub-phase.

An agent with Btime > n starts the sync sub-phase in the KeepState state;

in this case (and only in this case) it does not reset Btime (see line Btime =

Btime′+1 in the pseudocode). Otherwise, an agent starts in state SyncL. In the890

following rounds, when an agent becomes blocked (Btime = 1) in state SyncR

(resp. SyncL), if it ever occurs, it switches direction, changing state to SyncL

(resp. SyncR). The agent terminates if it either detects k agents at its current

node, or if it never moved (Esteps < 1) until round (3n + 1)(n + 3) + 2n + 1
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while being in state KeepState; otherwise, at round (3n+ 1)(n+ 3) + 2n+ 1, it895

starts Phase 2.

Observation 2. If an edge is missing for 3n + 1 consecutive rounds, between

rounds 0 and (3n+ 1)(n+ 3), then all agents terminate. Therefore, if an agent

has not terminated by round (3n + 1)(n + 3), then it has done a complete tour

of the ring.900

Lemma 10. If an agent terminates during Phase 1, then all agents terminate

and Gathering is correctly solved.

Proof. The proof proceeds by considering all possible cases when an agent a∗

can terminate during Phase 1.

If a∗ terminates at a round r ≤ (3n + 1)(n + 3), then it is blocked on a905

missing edge, say at node v. Also, by definition of state Init, either condition

Btime ≥ 2n+ 2 or Btime′ ≥ n+ 1 ∧meeting is satisfied by a∗ at round r.

• If Btime ≥ 2n + 2 is verified at round r, then all agents with the same

direction of movement of a∗ are terminated as well at v, and for all of

them Btime ≥ 2n+2 is verified. Let us consider the agents with direction910

of movement opposite to that of a∗. If there is no such agent, then the

lemma clearly follows. Otherwise, they form a group, call it G, on the

other endpoint of the missing edge. Note that, at round r, the agents in

G have been blocked for at least 2n+ 2− (n+ 1) = n+ 3 rounds, hence,

at round r, for the agents in G, (**) Btime ≥ n+ 3 is verified.915

If the agents in G are terminated at round r, then the lemma follows.

Otherwise, at round r, for the agents in G, Btime′ ≥ n+1 is satisfied (see

(**)). If the agents in G do not change state, and if the edge is missing

for the next n + 1 rounds, then the agents in G terminate on condition

Btime ≥ 2n + 2. Otherwise (i.e., if the edge comes alive within the next920

n+ 1 rounds) the agents in G will cross it, meet the (terminated) agents

in v, and terminate as well. Thus, gathering is correctly achieved, and the

lemma follows.
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On the other hand, if the agents in G switch to the KeepState state, two

cases can occur: (a) the edge is missing for the next 2n rounds: in this925

case, the agents in G terminate on condition Ttime ≥ (3n)(n+3)+2n+1

by remaining in state KeepState; (b) the edge comes alive within the next

2n rounds: in this case, the agents in G cross it and meet all the other

(terminated) agents in v. In both cases, the gathering is correctly achieved,

and the lemma follows.930

• If Btime′ ≥ n+1∧meeting is verified at round r, then all agents with the

same direction of movement of a∗ are terminated as well at v, and for all

of them Btime′ ≥ n + 1 ∧meeting is verified. Let us consider the agents

with direction of movement opposite to that of a∗. They form a group,

call it G, on the other endpoint of the missing edge.935

First note that, since meeting is verified at round r, at the previous round

r − 1, a∗ was at v’s previous node (according to the chirality of a∗), say

vi−1. Moreover, since Btime′ ≥ n + 1 is satisfied, the edge between vi−1

and v is missing at round r− 1, and the agents in G must have entered in

a terminal state by round r − 1 (notice that the agents in G had enough940

time to reach the other endpoint and enter the port, therefore if they are

not in terminal state at round r, then a cross would have occurred at

round r, hence meeting not satisfied); also, the agents in G terminated on

condition Btime ≥ 2n + 2. Therefore, at round r, gathering is correctly

achieved at v, and the lemma follows.945

It remains to prove the correctness of the termination of a∗, say at node v, in

a round r > (3n + 1)(n + 3), that is during the sync sub-phase. In this case,

by Observation 2, all agents know k. The correctness of the termination when

condition Agents = k holds is trivial. Thus, let us consider the case when

termination occurs because Ttime ≥ (3n + 1)(n + 3) + 2n + 1 holds and the950

agent is in state KeepState.

Let G be the group of agents that terminates because of this condition.

Notice that no agent in G can leave the KeepState state. In fact, any agent that
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enters state SyncL (or SyncR) at any time during the sub-phase will never have

Btime > n for the rest of the sub-phase. This implies that the edge on which955

G terminates has been missing for the whole execution of the sub-phase.

At round (3n)(n+ 3) +n all agents with direction of movements opposite to

the one of the agents in G are in another group G′ on the other endpoint of the

missing edge. If the agents in G′ are already terminated, the termination of the

agents in G correctly solves gathering, and the lemma follows.960

Otherwise, if the agents in G′ are not terminated, but they are also in the

KeepState state, then they will also terminate because of condition Ttime ≥
(3n + 1)(n + 3) + 2n + 1; therefore gathering is correctly achieved, and the

lemma follows.

Otherwise, the agents are either in state SyncL or SyncR: in this case, they965

will change direction at round (3n + 1)(n + 3) + n + 1, and in the following n

rounds they will move towards G, thus reaching group G. When this occurs,

gathering will be correctly achieved (because of condition Agents = k), and the

lemma follows.

5.2.3. Algorithm Gather( 6Cross,6Chir): Phase 2970

By Lemma 10, at the end of Phase 1 each agent knows the current configu-

ration. Since we know that the problem is not solvable for initial configurations

C ∈ E (Theorem 5), the initial configuration must be non-symmetric (i.e., with-

out any axis of symmetry) or symmetric but with the unique axis of symmetry

going through a node. In both cases, the agents can agree on a common chi-975

rality. In fact, if C does not have any symmetry axes, the agents can agree, for

example, on the direction of the lexicographically smallest sequence of home-

bases inter distances. If instead there is an axis of symmetry going through a

node vL, they can agree on the direction of the port of vL with the smallest

label.980

We can then use as Phase 2, the one of Algorithm Gather( 6Cross,Chir)

presented in Section 5.1.2.
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Theorem 6. Without chirality, Gathering is solvable in rings of known size

without cross detection from all C ∈ C \ (P ∪ E). Moreover, there exists an

algorithm solving Gathering that terminates in O(n2) rounds for any C ∈985

C \ (P ∪ E), if C ∈ P ∪ E the algorithm either solves Gathering or it detects

that the configuration is in P ∪ E.

Proof. By Lemma 10, it follows the correctness and the O(n2) bound of Phase 1.

The correctness and complexity of Phase 2, follows by the Lemma 9 of Section

5.1.2. The last statement of the theorem is obvious by Lemma 10, if at the end990

of Phase 1 the gathering is not solved, then agents know C, therefore they can

detect if the configuration is in P ∪ E .

6. Concluding Remarks and Open Questions

In this paper we started the investigation of gathering in dynamic graphs,

and studied its feasibility in a dynamic ring of anonymous nodes; the class of995

dynamics we considered is the classic 1-interval-connectivity.

We provided a complete characterization of the impact that chirality and

cross detection have on the solvability of the problem establishing several results.

The feasibility results of the characterization are all constructive. The protocols

for gathering with cross detection are time optimal. The ones without cross1000

detection allow the agents to gather within low polynomial time; an interesting

open question is whether the current bounds O(n log n) (with chirality) and

O(n2) (withour chirality) might be improved.

This work poses several major open questions. In particular: Are there more

factors, other than chirality and cross-detection, that might have a computa-1005

tional impact on the feasibility of gathering ? What happens to gathering in

1-interval connected graphs with a more complex topology (e.g., torus, hyper-

cube, etc) ? What happens, even in rings, in presence of different assumptions

on the dynamics ?
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