
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

DECONTAMINATING CHORDAL RINGS AND TORI USING

MOBILE AGENTS

PAOLA FLOCCHINI and MIAO JUN HUANG

SITE, University of Ottawa∗

and

FLAMINIA L. LUCCIO

Dip. di Matematica e Informatica,University of Trieste†

Received (received date)
Revised (revised date)

Communicated by Editor’s name

ABSTRACT

In this paper we consider a network where an intruder is moving “contaminating” the
nodes it passes by, and we focus on the problem of decontaminating such a network by
a team of mobile agents.
The contamination/decontamination process has the following asynchronous dynamics:
when the team is deployed all nodes are assumed to be contaminated, when an agent
transits on a node, it will clean the node, when the node is left with no agent, the node
will be recontaminated as soon as at least one of its neighbours is contaminated.
We study the problem in asynchronous chordal ring networks and in tori. We consider
two variations of the model: one where agents have only local knowledge, the other in
which they have “visibility”, i.e., they can “see” the state of their neighbouring nodes.
We first derive lower bounds on the minimum number of agents necessary for the decon-
tamination. In the case of chordal rings we show that the number of agents necessary
to perform the cleaning does not depend on the size of the network; in fact it is linear in

the length of the longest chord (provided that it is not too long). In the case of a torus,
the minimum number of agents is equal to 2 · h, where h is the smallest dimension.
We then propose optimal strategies for decontamination and we analyse the number
of moves and the time complexity of the decontamination algorithms, showing that
the visibility assumption allows us to decrease substantially both complexity measures.
Another advantage of the “visibility model” is that agents move independently and
autonomously without requiring any coordination.

∗School of Information Technology and Engineering, University of Ottawa, 800 King Edward,
Ottawa, Canada. {mhuang,flocchin}@site.uottawa.ca.

†Dip. di Matematica e Informatica, 34100, Trieste, Italy. luccio@dsm.univ.trieste.it

1

1. Introduction

1.1. Problem and Framework

In networked environments supporting mobile agents, security is a pressing con-

cern and to tackle security issues is becoming more and more complex due to the

growing potential threats a network can be faced with. A particularly important

security concern is to protect a network from unwanted, and possibly dangerous

intrusions. At an abstract level, an intruder is an alien process that moves on the

network to sites unoccupied by the system’s agents “contaminating” the nodes it

passes by. The concern for the severe damage intruders can cause has motivated a

large amount of research, especially on detection (e.g., see [1, 13, 23]). Rather than

being interested in the detection of the presence of an intruder, we are interested

instead in designing strategies for “decontaminating” a possibly infected network,

by deploying a team of “cleaning agents”. Decontaminating the network, while pro-

tecting it from recontamination, is a rather useful task; an efficient implementation

of this task would have practical consequences for fighting the spread of viruses in

the network.

We consider a networked environment where nodes are hosts and links represent

connections between hosts. We assume the nodes of the network are initially con-

taminated and we want to deploy a team of agents to clean (or decontaminate) the

whole network. The cleaning of a node occurs when an agent transits on the node;

however, as soon as a node without an agent on it has a contaminated neighbour, it

will become contaminated again. We are interested in monotone decontamination

strategies, i.e., we want that once a node is clean, it remains clean until the whole

network is decontaminated. More precisely, a team of agents is initially located at a

node (the homebase) and agents can move from node to neighbouring node. At any

point in time each node of the network can be in one of three possible states: clean,

contaminated, guarded. Initially all nodes are contaminated except for the home-

base (which is guarded). A node is guarded when it contains at least one agent. We

say that a node is clean when an agent passes by it and all its neighbouring nodes

are clean or guarded, contaminated otherwise. The solution of the problem is given

by devising a strategy for the agents to move in the network in such a way that at

the end all the nodes are clean.

The system is asynchronous, that is, every action the agents perform (i.e., com-

puting, moving), takes a finite but otherwise unpredictable amount of time. In

this setting efficiency is measured in terms of the number of agents to be involved,

traffic (i.e., number of moves the agents have to perform), and time (or steps)a.

We consider two variations of the model and accordingly propose lower bounds on

the number of agents necessary for decontamination and tight strategies. In the

first model (Local model), the only knowledge that an agent has is the information

available at its current location (port labels, state of the node); in the second model

aAs the system is asynchronous, we will measure ideal time, i.e., we assume - for the purpose
of time complexity only - that it takes one unit of time for an agent to traverse a link.

2

(Visibility model) agents can “see” also the state of their neighbouring nodes.

Network decontamination could be fairly simple in some specific topologies,

where the determination of the minimum number of agents required for the task

could be easy. This is the case, for example, of the ring, where two agents starting

from the same node can move in opposite direction and easily clean the whole

network (with one agent the task would be obviously impossible). Determining the

optimal number of agents and a tight strategy is however in general an NP-complete

problem.

In this paper we consider chordal ring networks and tori. Chordal rings are a

particular case of circulant graphs, and are also known in the literature as distributed

loop networks. A chordal ring is a ring augmented by additional chords (each node

has the same chord structure) that act as “shortcuts” of the external ring. Chordal

rings constitute a common topology for interconnection networks and have been

widely studied in the literature to analyse their fault-tolerant properties (for a

survey see [5]). Subclasses of chordal rings have been studied under a variety of

scenarios and for a large number of problems ranging from routing (e.g., [15]), to

election (e.g., [2]), to broadcast (e.g., [17]).

1.2. Related Work

It is easy to see that the decontamination problem can be equivalently formulated

in terms of an intruder capture problem, where an intruder moves arbitrarily fast

in a network and a team of searching agents is deployed to capture it. The intruder

capture problem has been extensively studied in the literature under the name of

graph search in a model where the searchers may be placed and removed from any

node of the graph, i.e., they are allowed to “jump” while they perform the searching

task. This problem was first introduced by Breish [7] and Parson [20, 21], and after

that several variations of the problem have been studied: among them, node search

and edge search (see, e.g., [8, 14, 16, 18, 19, 22]), where the aim is to find a strategy

that minimizes the number of searchers and leads the graph to a state in which

all nodes (or nodes and edges) are simultaneously decontaminated. The size of the

searching team is called node-search number ns(G) (or edge-search number es(G)))

and the determination of the optimal size is an NP -complete problem in general.

Graph search, intruder detection, and decontamination are equivalent problems.

The main difference in our setting is that the agents cannot be removed from the

network: they can only move from a node to a neighbouring node; this assumption

is obviously motivated by the fact that we are considering software agents that are

able to move only on the edges of the network. In fact, we consider the contiguous,

monotone, decontamination first introduced in [3] where: 1) the removal of agents

is not allowed, 2) at any time of the search strategy, the set of clean nodes forms a

connected subnetwork, and 3) a clean node cannot be recontaminated. The contigu-

ous assumption considerably changes the nature of the problem and the classical

results on node and edge search do not generally apply. Moreover, the problem is

harder than the non-contiguous one as in [4] it has been proved that the contigu-

ous searching number is always greater or equal to the non-contiguous searching

3

number; the relationship between the search numbers in the two models has been

also studied in outerplanar graphs [12]. Finding the contiguous searching number

is still an NP -complete problem for general graphs; some specific topologies have

been studied, for example it has been shown that it can be solved in linear time in

trees [3], moreover, optimal strategies have been studied in hypercubes and meshes

[9, 10]. Also the arbitrary topology has been considered; in this case, some heuristics

have been proposed [11] and a move-exponential solution has been given in [6].

1.3. Our Results

As mentioned above, for some topologies an efficient decontamination is easy

to perform and finding the optimal number of agents is a trivial task. In general

however, the problem is NP-complete. The ring is an extreme case, where de-

contamination is trivial. Adding extra chords to the ring highly complicates the

decontamination problem and clearly only two agents are not sufficient anymore

to clean the network. One interesting question that we address in this paper is

whether, with the addition of the chords, the minimum number of agents is still

constant, or it depends on the size of the network, or on the structure of the chords.

Interestingly we show that, when the longest chord is not too long, none of these

hypothesis is correct; in fact, the smallest number of agents needed for the decon-

tamination solely depends on the length of the longest chord. After we derive the

lower bound on the number of agents we describe and analyse two optimal strategies

for two variations of the model.

More precisely, let C(〈d1 = 1, d2, ..., dk〉) be a chordal ring network with n nodes

and link structure 〈d1 = 1, d2, ..., dk〉, where di < di+1 and dk ≤ ⌊n
2 ⌋. We first show

that, when 4 ≤ dk ≤ √
n, the minimum number of agents required is 2 · dk in the

Local model, and it is 2 · dk + 1 in the Visibility model. In a similar fashion, we also

derive a lower bound for the torus topology (which was unknown) in both models.

We then describe agent-optimal decontamination algorithms for the chordal ring in

the two models, and simple agent-optimal strategies for Tori.

One of our goals is to understand the power of visibility by determining whether

such an assumption can indeed improve the performances of solutions to the prob-

lem, and how. In this respect, we have observed that with our strategies the visibility

assumption allows to drastically decrease both the time and the number of moves

in tori and chordal rings (provided that the longest chord does not exceed
√

n).

2. Lower Bounds for Decontamination

2.1. Chordal Rings

A circulant graph with n nodes x0, x1, ..., xn−1 and link structure 〈d1, d2, ..., dk〉,
di < di+1, and dk ≤ ⌊n

2 ⌋, is a graph where each node xi is adjacent to all the nodes

x(i+dj) mod n and x(i−dj) mod n for 1 ≤ j ≤ k. A chordal ring is a circulant graph with

d1 = 1, i.e., it is an augmented ring, and will be denoted by C(〈d1 = 1, d2, ..., dk〉).
The links of the chordal ring are labeled with chordal sense of direction, i.e., asso-

4

ciated to link (xi, xj) at xi is the distance (j − i)modn between xi and xj along

the ring connection.

As the topology is fully symmetric, we can assume that the agents start from

any node: the homebase. Let x0, . . . xn−1 be the nodes of the external ring and

w.l.g, let x0 be the homebase.

In the following we consider the chordal ring as arranged in rows of size dk where

the last node of a row is connected to the first node of the following row and the

last node is connected to the first. Depending on the size of the chordal ring, the

last row could be incomplete. Observe that in this “matrix”, going down a column

corresponds to using the longest chord dk.

The following lower bound holds in chordal rings where, in the arrangement

described above, the number of columns is not smaller than the number of rows; in

other words, we assume that dk ≤ n
dk

.

Theorem 1 Any solution of the contiguous decontamination problem in a chordal

ring C(〈d1 = 1, d2, ..., dk〉) with n nodes and and 4 ≤ dk ≤ √
n, requires at least

2 · dk searchers.

Proof.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
��
��
��

��
��
��

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

k kd −1k d −1 d −10 0
0

a) b) c)

Figure 1: a) clean area formed by non attached blocks; b), c) clean area formed by
attached blocks in P (〈1, dk〉). Black nodes are guarded, white nodes are contami-
nated, grey nodes are clean.

Let f be the number of clean (or guarded) nodes. Let us consider a subgraph

P (〈1, dk〉) = (V, E′) of the chordal ring C = (V, E) (E′ ⊆ E) containing only the

chords at distance 1 and dk. Let us observe the placement of the f clean nodes

in P . By definition, we know that at any point in time the clean nodes must

be connected in C; however, in P they might form disconnected blocks. Clearly,

the “perimeter” (i.e., the clean nodes of the blocks in contact with contaminated

nodes) of these blocks in P must be guarded to avoid recontamination from the

neighbouring contaminated nodes (through chords 1 and dk). First notice that,

following a simple geometric reasoning, the number of agents X needed to cover the

perimeters of the clean blocks is greater than or equal to the number that it would

5

be required if these blocks were to be attached (i.e., forming a single block) (see

Figure 1).

Second, it is easy to show that the perimeter of a single block is minimized when

it is as close as possible to a rhombus as shown in Figure 2.

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 2: Block that, for a given area, has minimum perimeter.

Let us now compute the number of agents X needed to cover the perimeter of

the rhombus; for any other possible shape, X will be a larger number.

Given a rhombus of side l, the perimeter is 4l − 4 and the area (composed of

cleaned or guarded nodes) is f = l2+(l−1)2. Thus, the number of agents X needed

to cover the perimeter of any shape is at least 4l − 4. From f = l2 + (l − 1)2 we

derive that l =
1+

√
2f−1

2 ; substituting l we have X ≥ 2
√

2f − 1 − 2 .

Consider now a moment during the cleaning when there are f = l2 + (l − 1)2 ≥
d2

k+2dk+2
2 clean nodes. This holds as long as n ≥ d2

k ≥ d2

k+2dk+2
2 , i.e., dk ≥ 4.

From f ≥ d2

k+2dk+2
2 , it follows that the number of required agents is X ≥

2

√

2(
d2

k
+2dk+2

2) − 1 − 2 = 2dk.

2

The previous lower bound holds for any decontamination algorithm (so, in par-

ticular it holds for the Visibility Model); we now show that, when the agents do not

have visibility, the bound is actually higher since an additional agent is required to

perform the decontamination.

Theorem 2 In the Local model, any solution of the contiguous decontamination

problem in a chordal ring C(〈d1 = 1, d2, ..., dk〉) with n nodes and 4 ≤ dk ≤ √
n,

requires at least 2 · dk + 1 searchers.

6

Proof. In Theorem 1 we have shown that, at some point, the “perimeter” of

the clean area is 2dk. Let us assume that the decontamination has reached such a

point; i.e., there are 2 ·dk agents covering the perimeter and let us assume that this

number of agents suffices for the decontamination. Since n is big enough compared

to 2dk (n ≥
√

dk), it is easy to see that, regardless of the shape of the clean area, at

least one of the agents (say agent a) has more than one contaminated neighbour.

At least one agent has to move to continue the cleaning. Since the agents have only

local knowledge and cannot communicate with each other, let an adversary choose

agent a for the next movement. We have a contradiction because the clean area

will now be contaminated.

2

2.2. Tori

Following the same lines as the arguments of Theorems 1 and 2, we obtain a

lower bound also for the torus, which was not known. The torus is a very common

interconnection network; it is the product of two rings and it can be seen as a grid

where the last node of a row is connected to the first of the same row, and last node

of a column is connected to the first of the same column. Let T (h, k) denote a torus

with h rows and k columns, we have that:

Theorem 3 Any solution of the contiguous decontamination problem in a torus

T (h, k) with h, k ≥ 4 requires at least 2 ·min{h, k} searchers; in the Local model it

requires at least 2 · min{h, k}+ 1 searchers.

Proof. The argument follows the same lines as the argument of Theorems 1 and 2.

In this case, however, the “matrix” representation corresponds to the actual torus

and there are no additional chords. The minimum perimeter - occurring if the shape

of the block were to be a rhombus - would analogously be 4
√

f − 4 and the area

f = l2 + (l− 1)2, thus the number of required agents would be X ≥ 2
√

2f − 1− 2 .

Assume z = min{h, k} and consider a moment during the cleaning when there are

f = l2+(l−1)2 ≥ z2+2z+2
2 clean nodes. This holds as long as h×k ≥ z2 ≥ z2+2z+2

2 ,

i.e., z = min{h, k} ≥ 4.

From f ≥ z2+2z+2
2 , it follows that the number of required agents is X ≥

2
√

2(z2+2z+2
2) − 1 − 2 = 2z = 2min{h, k}, thus the number of required agents

is at least 2 min{h, k}.
If there is no visibility (Local model) an additional agent is required following the

same reasoning of Theorem 2. 2

3. Optimal Decontamination Strategies

3.1. Chordal Rings

In this section we propose two algorithms respectively for the decontamination

of a chordal ring of size n in the Local and in the Visibility models.

In the following discussion, we will assume that operation among indices are

7

modulo n (i.e., i + dj means (i + dj) mod n). We call clockwise neighbors (respec-

tively, counterclockwise neighbors) of xi, the set of neighbors {xi+1, xi+d2
, ..., xi+dk

}
(respectively, {xi−1, xi−d2

, ..., xi−dk
}). We call window of size s is a sequence of s

nodes in consecutive clockwise positions along the ring.

3.1.1. Decontamination in the Local Model

The first strategy we present is for the Local model, where a special agent is

designated as a coordinator. The main idea is that the searching agents are coor-

dinated by this special agent that, moving back and forth, allows them to visit all

nodes and safely protects the system from recontamination.

Cleaning strategy. In this strategy we employ 2dk identical agents and a coordi-

nator. We assume that the coordinator can communicate with an agent when they

reside on the same node.

The cleaning must be preceded by a deployment stage after which the agents

have to occupy 2dk consecutive nodes. The simplest way to deploy the agents is for

the coordinator to lead them to their respective starting position by moving along

the external ring. During the deployment the agents also clean the 2dk nodes and no

recontamination occurs (i.e., the deployment is monotone). After the deployment,

nodes x0 to x2dk−1 are guarded by one agent each, and the coordinator moves to

node xdk
, which is then guarded by two agents. Now the cleaning stage can start.

During the cleaning stage, nodes x0 to xdk−1 are still guarded by one agent each,

forming a window of dk agents. This window of agents will shield the clean nodes

from recontamination from one direction of the ring while the agents of the other

window are moved by the coordinator (one at a time starting from the one occupying

node xdk
) along their longest chord to clean the next window in the ring.

Algorithm 1 Clean with a coordinator.

Initially, nodes x0 . . . x2dk−1 are guarded by an agent each and the coordinator
is at xdk

.

1.1 The cleaning starts at xdk
and proceeds in the clockwise direction until

xn−1−dk
is reached. Let xi (dk ≤ i ≤ n − 1 − dk) be the node with an

agent and the coordinator on it. The two agents move along link dk of
xi, and when they both arrive to node xi+dk

, one is left to guard xi+dk

and the coordinator first goes back to xi and then moves along link 1 of
xi to arrive at node xi+1. The agent on any node xj where i 6= j has to
wait on xj for the coordinator to arrive.

1.2 When two agents are on node xn−dk
, one agent terminates and the

coordinator goes to notify all the agents on node xn−dk+1 to xdk−1 to
terminate.

8

Note that in Step 1.2., when two agents are on node xn−dk
all nodes from xn−dk

to xn are guarded. Note also that as the system is asynchronous, in the different

phases the coordinator has to make sure every agent reaches its position before

the new step can start: starting the new step without insuring that the agent has

reached the prescribed position would result in a possible recontamination.

Correctness and Complexity. We first prove that our cleaning strategy is correct;

i.e., that all nodes will be cleaned and that once a node has been cleaned, it will

never be recontaminated.

Theorem 4 Algorithm 1 cleans all the nodes of the chordal ring and a clean node

will never be recontaminated.

Proof. We first prove that a clean node will not be recontaminated. By induction.

The cleaning starts at node xdk
. Except for the neighbor x2dk

of xdk
, which is not

guarded by an agent yet, all the other neighbors are guarded. By the strategy, the

two agents on it move to x2dk
, the only contaminated neighbor. Then one agent

is left to guard this neighbor and the other goes back to xdk
. So all neighbors of

xdk
are guarded; when the agent from x2dk

comes back to xdk
and then moves to

xdk+1, node xdk
becomes clean and no recontamination can occur.

Assume nodes xdk
to xi−1 where dk ≤ i−1 ≤ n−2−dk are clean and the cleaning is

at node xi. We show that xi becomes clean and no recontamination can occur. By

the first step of the strategy and by the induction hypothesis, node x0 to xi−1 are

clean or guarded. So the counterclockwise neighbors of xi are all either guarded or

clean. Moreover, we know nodes from xi to xi−1+dk
are guarded. So the clockwise

neighbors of xi are guarded except for xi+dk
. By the strategy, when the two agents

move to the only contaminated neighbor xi+dk
, no recontamination can occur. One

agent is left to guard xi+dk
. So all neighbors of xi are either guarded or clean; when

the agent goes back to xi and then moves to xi+1, no agent is left to guard xi and

xi becomes clean. No recontamination can occur to xi.

At step 1.2, when the agent from xn−1−dk
arrives at xn−dk

, all the nodes from

xn−dk
to xdk−1 are guarded and the others are clean from step 1.1. There is no

contaminated node anymore and it is impossible to recontaminate a clean node.

Since a clean node will never be recontaminated, by the cleaning strategy, after

step 1.2 all agents terminate and all the nodes become clean. 2

We now compute the number of moves performed by the agents during the

cleaning.

Theorem 5 The total number of moves performed by the agents is 4n − 6dk − 1.

Proof. For cleaning a node xi, four moves are performed by the agents. It takes

one move for each of the two agents to arrive to xi+dk
, one move back to xi and

then one move to xi+1. So totally, 4(n − 2dk) moves are performed in the cleaning

stage. It takes 2dk − 1 moves for the agent from xn−dk
to notify agents on xn−dk

to xdk−1 to terminate. So totally, the number of moves for the entire process is

4(n − 2dk) + 2dk − 1 = 4n− 6dk − 1. 2

We now consider the ideal time complexity of the cleaning strategy. We recall that

ideal time assumes that it takes one unit of time for an agent to traverse an edge.

9

Theorem 6 The cleaning strategy takes 3n− 4dk − 1 time units.

Proof. The cleaning process is carried out sequentially by the coordinator agent

on each node. The time required is then equal to the number of moves of the

coordinator, which is 3(n− 2dk) + 2dk − 1. So totally, it takes 3(n− 2dk)+ 2dk − 1

= 3n− 4dk − 1. 2

Finally, it directly follows from the strategy that:

Theorem 7 Our strategy employs 2dk + 1 agents.

3.1.2. Decontamination with Visibility

In this section we consider the decontamination problem in the Visibility model:

we assume that an agent located at a node can “see” whether its neighboring nodes

are clean or guarded or contaminated. This capability could be easily achieved if

the agents have communication power and send a message (e.g., a single bit) to their

neighbouring nodes after cleaning a node or when guarding a node. The interesting

aspect of this model is that this extra capability enables agents to correctly act

without the need of being coordinated. We also assume that agents have distinct

Ids, otherwise they cannot perform any meaningful computation starting from the

same homebase (symmetry could not be broken).

Cleaning strategy. The idea of the algorithm is quite simple and all the agents

follow the same local rule: as soon as an agent sees that all its neighbours are

clean except for one, it moves there. Before starting the algorithm, however, a

deployment phase is needed during which the agents move to occupy 2dk consecutive

nodes. As for the Local model, we want that they deploy in a monotone way, that

is during the deployment they also start cleaning the nodes without allowing any

recontamination. For example, we can assume they move along the external ring

occupying one node each like in the deploy for the Local model.

Algorithm 2 Clean with visibility.

Initially all agents are in x0, and they start the deployment to occupy
xn−(dk−1), . . . xdk

.
- When an agent on a node xi “sees” that node xi has only one contaminated
neighbor, the agent moves to clean the contaminated neighbor; when the agent
“sees” that all the neighbors are clean or guarded, it terminates; otherwise, it
waits on the node.

Notice that the execution of the cleaning algorithm could actually start before

the deployment is completed. In fact, as soon as an agent sees it has only one

contaminated neighbour, it can start the cleaning.

Figure 3 shows a possible execution of the algorithm in a portion of a chordal ring

C(〈1, 2, 4〉). Figure 3 a) shows the guarded nodes (in black) after the deployment

phase. At this point, the nodes indicated in the figure can independently and

concurrently start the cleaning phase moving to occupy their only contaminated

10

a)

b)

Figure 3: A chordal ring C(〈1, 2, 4〉). a) The agents are deployed and four of them
(the ones pointed by an arrow) could move to clean the neighbour. b) Four agents
have moved to clean their only contaminated neighbour and four more (the ones
pointed by an arrow) could now move.

neighbour. Figure 3 b) shows the new state of the network if they all move (the

arrows indicate the nodes where the agents could move to clean their neighbour).

Correctness and Complexity. We first prove that our strategy is correct, i.e., that

the network is clean and once a node has been cleaned, it will never be recontami-

nated.

Lemma 1 In a chordal ring network with n nodes and link structure 〈d1 = 1, d2, ..., dk〉,
di < di+1, and dk ≤ ⌊n

2 ⌋, within a window of size 2dk, there are at most 2(dk−dk−1)

nodes which have only one neighbor outside this window. These nodes are consecu-

tive along the external ring.

Proof. Let us arbitrarily pick a window W of size 2dk and mark the first node to

be xn−(dk−1) and the the last node to be xdk
. We can also see W as two windows

W1 and W2 of size dk and such that W = W1

⋃

W2. Window W1 covers nodes

from xn−(dk−1) to x0 and W2 covers nodes from x1 to xdk
. Inside W1, nodes

from xn−dk+dk−1+1 to x0 have only one neighbor outside W = W1

⋃

W2 in the

counterclock direction. Similarly, inside W2, nodes from x1 to xdk−dk−1
have only

one neighbor outside of W in the clockwise direction. So totally, there are at most

2(dk − dk−1) nodes having only one neighbor outside of W . 2

Observe now that if n < 4dk − 2dk−1 some of the nodes that had to be outside

the window W , lie on the opposite subwindow (i.e., from W1 to W2 and vice versa).

Thus, we may obtain the following:

Corollary 1 If n ≥ 4dk − 2dk−1, within a window of size 2dk there are exactly

2(dk − dk−1) consecutive nodes which have only one neighbor outside this window.

We now prove the correctness of the strategy.

11

Theorem 8 Algorithm 2 cleans all the nodes of the chorded ring and a clean node

will never be recontaminated.

Proof. We have to prove both that the strategy considers all the nodes of the

chordal and that no recontamination occurs.

Let us first prove by induction that there is no recontamination, i.e., a clean node

may never be a neighbour of a contaminated node. To prove this we also prove

something else, i.e., that if an agent has left a node xi reached during the deployment

stage to move to a new node for the cleaning stage, then xi is not a neighbour of a

contaminated node. This second property is included in the first but considering it

apart will help us during the proof.

We start the induction considering the initial state during which all the agent are

placed on the homebase. There is only one guarded node and all the other nodes

are contaminated, thus the two property hold. Consider the system after a set of

moves during which both properties held and let us now consider a set of agents

that execute a new move. There are two possible cases depending on the fact that

an agent that moves is in the deployment or in the cleaning stage. If the agent is

in the deployment stage, this holds because the deployment strategy is monotone.

So the case we are really interested in is the one in which a node moves during the

cleaning stage. Since no recontamination has occurred previously, the move is safe

because an agent moves only if all the neighbours but one are clean or guarded and

it moves towards the contaminated node. Thus, no recontamination occurs.

Let us now prove that the strategy cleans all the nodes, i.e., all nodes are eventually

reached. After the deployment stage all nodes in a window W of size 2dk starting

from xn−(dk−1) and ending in xdk
are guarded and thus cleaned by an agent. By

lemma 1 we know that there are 2(dk−dk−1) consecutive nodes which have only one

neighbor outside window W , thus agents guarding these nodes will eventually move

to guard (dk −dk−1) nodes outside W on the left and (dk −dk−1) nodes on the right

forming a clean window W ′ of size 4dk − 2dk−1. There are now other 2(dk − dk−1)

nodes of W ′ which have only one neighbor outside W ′ (this time the nodes are not

consecutive, but they form two consecutive blocks of size (dk − dk−1), thus this

procedure enlarges the window up to when the whole chordal ring is covered. 2

We now consider the ideal time complexity of the cleaning strategy.

Theorem 9 The cleaning strategy takes at most
⌈

n−2dk

2(dk−dk−1)

⌉

time units.

Proof. For simplicity, let us assume that the cleaning starts after the deployment

is completed (as we have seen before some agents could actually start earlier). We

also assume that n > 2dk, otherwise nothing has to be done after the deployment

phase. We can now divide our computation after the deployment phase into different

sub-phases during which, using lemma 1, blocks of 2(dk − dk−1) nodes are cleaned

until the whole network is cleaned. Thus, in at most
⌈

n−2dk

2(dk−dk−1)

⌉

time steps blocks

of 2(dk − dk−1) nodes are cleaned (one in each time step) up to when the whole

network is cleaned. 2

Theorem 10 The total number of moves performed by the agents during the clean-

ing strategy is n − 2dk, which is optimal.

12

Proof. By definition of the strategy, during the cleaning stage an agent moves

to a node only if it “sees” that is it the only contaminated neighbour, thus it only

moves to contaminated nodes. Moreover from Theorem 8 we know that the strategy

is correct and all the contaminated nodes will be cleaned. Thus all contaminated

nodes will be visited exactly once, and after the cleaning phase there are n− 2dk of

them (the remaining nodes are guarded). Notice that this number is optimal since

to clean n − 2dk contaminated nodes, at least n − 2dk moves are necessary. 2

Finally, it directly follows from the strategy that:

Theorem 11 Our strategy employs 2dk agents.

3.1.3. Comparison

Our results on the cost of the cleaning strategy are summarized in Table 1.

Chordal Ring Agents Time Moves

Local 2dk + 1 3n − 4dk − 1 4n − 6dk − 1
(⋆)

Visibility 2dk

⌈

n−2dk

2(dk−dk−1)

⌉

n − 2dk

(⋆) (⋆)

Table 1: Results for the Chordal Ring. The (⋆) indicates an optimal bound.

We can observe that with our strategies the visibility assumption allows us to

drastically decrease the time and move complexities. In particular, the strategies

for the Visibility model are optimal both in terms of number of agents and in terms

of number of moves; as for the time complexity, visibility allows some concurrency.

For example, in the case of the chordal ring the level of concurrency depends on the

distance between the longest chord and the second longest. The higher the distance,

the higher the concurrency is, and thus the improvement in time complexity.

3.2. Torus

In this section we briefly mention the decontamination strategies that match

the lower bounds for the Tori. The algorithms are very similar to the ones for the

mesh topology described in [10]. Without loss of generality, let us assume that

the number of rows h is smaller than the number of columns k. The idea is to

deploy the agents to cover two consecutive columns and then keep one column of

agents to guard from decontamination and have the other column move along the

torus. In the Local model the movement of the agents must be synchronized by

a coordinator so to avoid recontamination, in the Visibility model the agents can

safely move autonomously.

The cleaning is very similar to the one for the mesh, the only difference is that

in the mesh it was not required to have a column of agents shielding one part of the

network from recontamination since the cleaning could start from a border of the

13

mesh. The move and time complexities for the Local Model are the same as in [10],

and are reported in Table 2 (where we consider the complexity of the cleaning only).

For the Visibility Model the time complexity is half of the one for the mesh topology

because here the two columns of agents proceeds independently and autonomously

to clean the torus in both directions, thus halving the complexity.

Torus Agents Time Moves

Local 2h + 1 hk − 2h 2hk − 4h − 1
(⋆)

Visibility 2h ⌈k−2
2 ⌉ hk − 2h

(⋆) (⋆) (⋆)

Table 2: Results for the 2-dimensional Torus with dimensions h, k, h ≤ k. The (⋆)
indicates an optimal bound.

This cleaning strategy can be seen as a generalization of an optimal strategy for

the ring (which is a 1-dimensional torus), where two agents would move in opposite

directions).

Notice that, in the Visibility model all three complexity measures are optimal.

In fact: 1) the number of agents is shown to be optimal in Theorem 3; 2) the

ideal time is optimal because it corresponds to the number of contaminated nodes

(after the agents are deployed on two consecutive columns) divided by the number of

available agents (⌈k−2
2 ⌉ = ⌈kh−2h

2h
⌉), which means that at each time step every agent

is cleaning a node; 3) the number of moves is obviously optimal because hk − 2h is

the number of contaminated nodes (after the deployment on two columns).

Interestingly, the simple strategy of this section, which would work in the par-

ticular case of the ring, can be generalized to d-dimensional tori.

Multi-dimensional Tori. Let T (h1, h2, . . . , hd) be a d-dimensional torus and let

h1 ≤ h2 ≤ . . . ≤ hd. Let R(n) denote a ring with n nodes.

A d-dimensional torus T (h1, h2, . . . , hd) is the product of a torus T (h1, h2, . . . , hd−1)

with a ring R(hd).

In other words, T (h1, h2, . . . , hd) can be seen as a replica of hd (d−1)-dimensional

tori T1(h1, h2, . . . , hd−1), . . . , Thd
(h1, h2, . . . , hd−1) connected in parallel cycles (see

the example of dimension 3 in Figure 4). Each node in a replica of Ti(h1, h2, . . . , hd−1)

is then connected to two corresponding nodes in the two “adjacent” replicas Ti−1(h1, h2,

. . . , hd−1) and Ti+1 (h1, h2, . . . , hd−1).

Let N be the number of nodes in the torus and H = h1 · h2 · . . . · hd−1 (i.e.,

H = N
hd

). It can be easily verified that 2 · H + 1 agents can clean T (h1, h2, . . . , hd)

(2 ·H in the Visibility Model). The idea is that the agents are first deployed to cover

two consecutive replicas Ti(h1, h2, . . . , hd−1) and Ti+1(h1, h2, . . . , hd−1) (as in the

3-dimensional example of Figure 4) and then they are moved to clean, one at a time,

the successive replicas - analogously to the case of the two-dimensional torus. In

14

����������

��������������������

����������

����������

����������

����������

Figure 4: A portion of a 3-dimensional torus.

the Visibility Model the agents move autonomously and concurrently, while in the

Local Model they must be leaded by the coordinator. The resulting complexities

are reported in Table 3.

d-dim Torus Agents Time Moves

Local 2 N
hd

+ 1 N − 2 N
hd

2N − 4 N
hd

− 1

Visibility 2 N
hd

(⌈hd − 2⌉)/2 N − 2 N
hd

Table 3: Results for a d-dimensional Torus T (h1, h2, . . . , hd).

The two-dimensional torus can be seen as a particular case; in fact T (h, k) is

the product of two rings R(h) and R(k) and can be decontaminated with 2h + 1

agents (2h in the Visibility Model). It is interesting to observe that the number of

agents employed by this strategy grows very quickly when increasing the number

of dimensions: in the ring 2 agents are enough, in the two dimensional torus 2
√

N

are employed, in a d-dimensional torus their number grows to d
√

Nd−1.

Although this number can appear quite high, we conjecture it is optimal. In

fact the lower bound for the 2-dimensional Torus of Section 2.2 can probably be

extended to the multi-dimensional Tori. We leave as an open problem to verify the

conjecture or disprove it.

4. Remarks and Open Problems

In this paper we have considered the problem of decontamination in chordal

rings. We have determined lower bounds on the number of agents required and

decontamination strategies for two variations of the model.

Following similar reasonings as the ones of the lower bounds for the chordal ring,

we have obtained lower bounds also for the Torus (which were not known); these

15

bounds can be easily matched by simple cleaning strategies.

We have observed that the visibility assumption allows us to drastically decrease

the time and move complexities in both topologies. The improvements hold when

the longest chord of the chordal ring is not too long (dk ≤ √
n), otherwise our

strategies are not as efficient, and the lower bound is not valid. Consider, for exam-

ple, the case of C(〈1, 8〉) with 24 nodes. It is easy to see that the decontamination

can be done with 6 agents only (placed in two consecutive “columns” in the matrix

representation), while our bound would prescribe 16. The determination of the

minimum number of agents needed when dk >
√

n and a matching strategy is an

interesting open problem.

Another interesting problem would be to study a trade-off between time and

number of agents in the Local Model. For example, if we add one extra agent to

our strategy with coordinator, that is we employ 2dk + 2 agents, we can reduce the

cleaning process time by half. The extra agent can move in opposite direction to

clean the contaminated nodes thus two agents would be cleaning concurrently, in

the two directions of the external ring.

Finally, we have left as an open problem the verification of our conjecture that

the lower bounds for the 2-dimensional torus can be generalized to multi dimensional

tori making the general algorithm of Section 3.2 optimal.

Acknowledgements

Work partially supported by NSERC, by Dr. Flocchini’s University Research

Chair, and by Abstract Interpretation Design and Application MIUR COFIN Project.

References

1. M. Asaka, S. Okazawa, A. Taguchi and S. Goto. A method of tracing intruders
by use of mobile agents. Proceedings of the 9th Annual Conference of the Internet
Society (INET), San Jose, California, U.S.A., 1999.

2. H. Attiya, J. van Leewen, N. Santoro and S. Zaks. Efficient elections in chordal ring
networks. Algorithmica, 4:437-446, 1989.

3. L. Barrière, P. Flocchini, P. Fraigniaud and N. Santoro. Capture of an intruder by
mobile agents. Proceedings of the 14-th ACM Symposium on Parallel Algorithms
and Architectures (SPAA), Winnipeg, Manitoba, Canada, 200-209, 2002.

4. L. Barrière, P. Fraigniaud, N. Santoro and D.M. Thilikos. Searching is not jumping.
Proceedings of the 29th International Workshop on Graph Theoretic Concepts in
Computer Science (WG), Elspeet, the Netherlands, Springer Verlag, Lecture Notes
in Computer Science 2880, 34-45, 2003.

5. J-C Bermond, F. Comellas and D.F. Hsu. Distributed loop computer networks: a
survey. Journal of Parallel and Distributed Computing, 24:2-10, 1995.

6. L. Blin, P. Fraigniaud, N. Nisse and S. Vial. Distributed Chasing of Network In-
truders by Mobile Agents. Proceedings of the 13th International Colloquium on
Structural Information and Communication Complexity (SIROCCO), Chester, UK,
70-84, 2006.

7. R. Breish. An intuitive approach to speleotopology. Southwestern cavers, VI (5),
72-28, 1967.

16

8. J.A. Ellis, I.H. Sudborough and J.S. Turner. The vertex separation and search
number of a graph. Information and Computation, 113: 50-79, 1994.

9. P. Flocchini, M.J. Huang and F.L. Luccio. Contiguous search in the hypercube
for capturing an intruder. Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Denver, Colorado, U.S.A.

10. P. Flocchini, F.L. Luccio and L.X. Song. Size Optimal Strategies for Capturing an
Intruder in Mesh Networks. Proceedings of the International Conference on Com-
munications in Computing (CIC), Las Vegas, USA, 200-206, 2005.

11. P. Flocchini, A. Nayak and A. Shulz. Cleaning an arbitrary regular network with
mobile agents Proceedings of the 2nd International Conference on Distributed Com-
puting & Internet Technology (ICDCIT), Bhubaneswar, India, 132-142, 2005.

12. F.V. Fomin, D.M. Thilikos and I. Todinca. Connected graph searching in outer-
planar graphs. Proceedings of the 7th Int. Colloquium on Graph Theory (ICGT),
Electronic Notes in Discrete Mathematics 22, 213-216, 2005.

13. N. Foukia, J.G.Hulaas and J. Harms. Intrusion Detection with Mobile Agents.
11th Annual Internet Society Conference (INET), 2001.

14. L. M. Kirousis and C. H. Papadimitriou. Searching and pebbling. Theoretical
Computer Science, 47:205-218, 1986.

15. D. Krizanc and F.L. Luccio. Boolean Routing on Chordal Rings. Proceedings
of the 2nd Colloquium on Structural Information and Communication Complexity
(SIROCCO), Olympia, Greece, June 12-14, 1995.

16. A. Lapaugh. Recontamination does not help to search a graph. Journal of the
ACM, 40(2): 224-245, 1993.

17. B. Mans. Optimal distributed algorithms in unlabeled tori and chordal rings.
Journal of Parallel and Distributed Computing, 46(1): 80-90, 1997.

18. N. Megiddo, S. Hakimi, M. Garey, D. Johnson and C. Papadimitriou. The com-
plexity of searching a graph. Journal of the ACM, 35(1): 18-44, 1988.

19. B. Monien and I.H. Sudborough. Min cut is NP-complete for edge weighted trees.
Theoretical Computer Science, 58, 209-229, 1988.

20. T. Parson. Pursuit-evasion problem on a graph. Theory and applications in graphs,
Lecture Notes in Mathematics, Springer-Verlag, 426-441, 1976.

21. T. Parson. The search number of a connected graph. 9-th Southeastern Conference
on Combinatorics, Graph Theory and Computing, Utilitas Mathematica, 549-554,
1978.

22. S. Peng, M. Ko, C. Ho, T. Hsu and C. Tang. Graph searching on some subclasses
of chordal graphs. Algorithmica, 27: 395-426, 2000.

23. E.H. Spafford and D. Zamboni. Intrusion detection using autonomous agents,
Computer Networks, 34(4), 547-570, 2000.

24. P. Yospanya, B. Laekhanukit, D. Nanongkai and J. Fakcharoenphol. Detecting and
cleaning intruders in sensor networks. Proceedings of the 8th National Computer
Science and Engineering Conference, 2004.

17

