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Abstract

In this paper, we consider the problem of decontaminating a network from a black virus (BV)
using a team of mobile system agents. The BV is a harmful process which, like the extensively
studied black hole (BH), destroys any agent arriving at the network site where it resides; when
that occurs, unlike a black hole which is static by definition, a BV moves, spreading to all the
neighbouring sites, thus increasing its presence in the network. If however one of these sites
contains a system agent, that clone of the BV is destroyed (i.e., removed permanently from the
system). The initial location of the BV is unknown a priori. The objective is to permanently
remove any presence of the BV from the network with minimum number of site infections (and
thus casualties). The main cost measure is the total number of agents needed to solve the
problem.

This problem integrates in its definition both the harmful aspects of the classical black hole
search problem (where however the dangerous elements are static) with the mobility aspects of
the classical intruder capture or network decontamination problem (where however there is no
danger for the agents). Thus, it is the first attempt to model mobile intruders harmful not only
for the sites but also for the agents.

We start the study of this problem by focusing on some important classes of interconnection
networks: grids, tori, and hypercubes. For each class we present solution protocols and strategies
for the team of agents, analyze their worst case complexity, and prove their optimality.

Keywords: Network decontamination, Dangerous graphs, Mobile Entities, Distributed Comput-
ing
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1 Introduction

1.1 Framework and Problem

Mobile agents are widely used in distributed and networked systems; however, the support of mobile
agents can also cause security issues and threats to the network. In particular, a malicious agent
can cause computer nodes to malfunction or crash by contaminating or infecting them; additionally,
a contaminated or infected host in turn can destroy working agents for various malicious purposes.
In the distributed computing literature, the former situation is categorized as one of harmful agents,
the latter as one of harmful hosts (e.g., see [30]).

In the case of a harmful host, the primary concern has been on locating its position, to isolate
and later deactivate it; the theoretical focus has been on a particularly harmful host, called black
hole: a network node infected by a process which destroys any incoming agent without leaving any
detectable trace of the destruction. Indeed, the problem of locating a black hole, called black hole
search (BHS), has been extensively studied (e.g., [7, 8, 9, 11, 12, 17, 19, 20, 33, 37, 38, 45]). It is
worth to point out that a black hole is a presence which is harmful to agents but it is static, that
is, it does not propagate in the network and so it is not harmful to other sites.

The theoretical work related to harmful agents has focused on the problem called intruder capture
(IC) (also known as graph decontamination and connected graph search): an extraneous mobile agent,
the intruder, moves through the network infecting the visited sites; the task is to decontaminate the
network using a team of system agents avoiding recontamination. This problem has been extensively
studied (e.g.,[3, 4, 5, 14, 16, 22, 23, 28, 29, 32, 35, 36, 40, 41, 42, 43, 44, 46]). Let us point out that,
in this problem, the harmful presence (the intruder) is mobile and harmful to the network sites, but
does not cause any harm to the system agents.

Summarizing, the previous studies on BHS have not considered the transition characteristics
of the harmful nodes: black holes do not move and their number does not change; similarly, the
previous studies on IC have not considered the case of a mobile intruder harmful for both sites and
agents. The problem we consider in this paper combines some aspects of black hole search with
some of network decontamination: the harmful process is mobile (like an intruder) and harmful also
to the system agents (like a black hole).

The harmful presence we consider is a black virus (BV), a dangerous process initially resident at
an unknown network site. Like a black hole, a BV destroys any arriving agent. When this occurs,
unlike a black hole, the BV moves spreading to all neighbouring sites, thus potentially increasing
its number, presence and damage in the network. On the other hand, the original node containing
the BV becomes empty and clean. A BV is destroyed when it moves to a node that contains an
anti-viral system agent; in this case, the agent is able to deactivate and permanently remove that
instance of the BV. The problem we study is that of black virus decontamination (BVD), that is
to permanently remove any presence of the BV from the network using a team of system agents.
Solving this problem is dangerous for the agents, since any agent arriving at a node where an instance
of the BV resides will be destroyed; it is obviously dangerous for all the nodes where the BV will
spread to. A protocol defining the actions of the agents solves the BV decontamination problem if,
within finite time, at least one agent survives and the network is free of BVs. A solution protocol
will specify the strategy to be used by the agents; that is, it specifies the sequence of moves across
the network that will enable the agents, upon all being injected in the system at a chosen network
site, to decontaminate the whole network. The goal of a solution protocol is to minimize the spread
of the BV i.e., the number of node infections by the BVs; note that, since each instance of the BV
has to be eventually removed and each removal requires the destruction of at least one agent, the
spread also measures the number of agent casualties. The other important cost measure is the size
of the team, i.e. the number of agents employed by the solution. An additional cost measure is the
number of moves required.

A desirable property of a decontamination protocol is to protect the nodes which have been
already explored by mobile agents from being infected or contaminated by the BV spreading; note
that re-contamination of a decontaminated site will re-occur if the virus is able to return to that
site in the absence of an agent. Following the literature on classical network decontamination (e.g.,
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see [31]), a solution protocol with such a property will be called monotone.

1.2 Main Contributions

In this paper we define the black virus decontamination (BVD) problem and start the study of its
solution.

We first establish some basic facts. In particular, we observe that monotonicity is necessary for
optimality: in every network, to minimize the spread, a solution protocol must be monotone. We
also describe a general solution strategy for the problem.

We then study in detail the black virus decontamination problem for three large classes of common
network topologies: (multi-dimensional) grids, (multi-dimensional) tori and hypercubes.

For each class, we design a monotone solution protocol which decontaminates the networks re-
gardless of the number of dimensions, and we analyze its complexity. All the protocols are optimal
both in terms of spread (i.e., number of casualties) and of total number of agents, and are asymptot-
ically optimal in the total number of moves; a summary of the results are shown in the table below,
where n and m denote the number of nodes and of links, respectively.

Network Spread Size Moves

q-Grid q + 1 3q + 1 O(m)
q-Torus 2q 4q O(m)
Hypercube log n 2 log n O(m)

Table 1: Summary of results.

In all our solutions, the agents perform local computations only based on their current loca-
tion; an agent’s local memory containing just O(log n) bits is then sufficient to perform the BV
decontamination.

1.3 Related Work

The black virus decontamination problem we study is related to two problems extensively studied
in the literature: black hole search and intruder capture.

In black hole search (BHS), there is a harmful process, the black hole, stationary at one or
more network nodes; a black hole destroys any agent arriving at the node where it resides without
any detectable trace. The task is for a team of system agents to locate the black hole(s); this
task is dangerous for the agents, and it is completed when at least one agent survives and reports
the location(s) of the black hole(s). The black hole search problem has been originally studied
in ring networks [20] and has been extensively investigated in various settings since then. The
main distinctions made in the literature are whether the system is synchronous or asynchronous.
The majority of the work focuses on the asynchronous model. The problem has been studied in
rings [20], common interconnection networks [17], directed graphs [11], and networks of arbitrary
topologies under a variety of assumptions on the agents’ knowledge [19, 33]. In asynchronous settings,
a variation of the model where communication among agents is achieved by placing tokens on the
nodes, has been investigated in [18, 21, 24, 45]. The case of black links in arbitrary networks has
been studied in [6, 26], respectively for anonymous and non-anonymous nodes. The study of BHS
in time-varying graphs has been started in [25]. In synchronous networks, where movements are
synchronized and it is assumed that it takes one unit of time to traverse a link, the techniques and
the results are quite different. Tight bounds on the number of moves have been established for
some classes of trees [13]. In the case of general networks finding the optimal strategy is shown
to be NP-hard [12, 37], and approximation algorithms are given in [37, 38]. The case of multiple
black holes has been investigated in [9], and tight bounds are given. The impact of synchronicity in
directed graphs has been studied in [39]. Recent investigations have also dealt with scattered agents
searching for a black hole in rings and tori [7, 8]. Finally, the problem of repairing networks with
black holes has been recently investigated [10, 15].
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In the intruder capture problem, an intruder moves from node to node at arbitrary speed through
the network, contaminating the sites it visits; a team of agents has to capture the intruder; the
intruder is captured when it comes in contact with an agent. This problem, first introduced in
[4], is equivalent to the problem decontaminating a network infected by a virus while avoiding
any recontamination. This problem, also called connected graph searching, is a non-trivial variant
of the well known graph searching problem, which has been extensively studied (see [31] for a
recent comprehensive survey), and is closely related to some basic graph parameters and concepts,
including tree-width, cut-width, path-width, graph minor, etc. The intruder capture problem has
been investigated for a variety of network classes: trees [3, 4, 16], hypercubes [22], multi-dimensional
grids [28], pyramids [44], chordal rings [23], tori [23], outerplanar graphs [32], chordal graphs [43],
Sierpinski graphs [42], star graphs [36], product graphs [35], graphs with large clique number [46],
while the study of arbitrary graphs has been started in [5, 34]. The study of the problem with
stronger requirements for recontamination has been done for toroidal meshes and trees with strong
majority threshold [41], and for grids, tori and hypercubes with arbitrary threshold [40, 27].

2 Model and Terminology

The environment in which the agents operate is a network whose topology is modelled as a simple
undirected connected graph G = (V,E) with n = |V | nodes and m = |E| links. For a given graph
G = (V,E) we denote by E(v) ⊆ E the set of edges incident on v ∈ V, by d(v) = |E(v)| its degree,
and by 4(G) (or simply 4) the maximum degree of G.

The network is not anonymous: every node has a distinct id, visible to the agents visiting it. The
links incident to a node are labelled with distinct port numbers. The labelling mechanism could be
totally arbitrary among different nodes. Without loss of generality, we assume the link labelling for
node v is represented by set lv : (v, u) ∈ E : u ∈ V and lv = 1, 2, 3, ..., d(v).

In the network operate a system of mobile agents. An agent is modelled as a computational
entity which can move from node to neighbouring node. Agents may have different functions/roles
(i.e. states). In the following, for simplicity of presentation, we assume that it takes one unit of
time for an agent to move from one node to another, and that computing and communication time
is assumed to be negligible compared to moving time. In other words, we assume that the network
is synchronous. However all the results established here hold also if the system is asynchronous, i.e.
the time of each activity (processing, communication, moving) is finite but otherwise unpredictable;
in particular, all the solution algorithms can be easily adapted to the asynchronous case.

More than one agent can be at the same node at the same time. Communication among agents
(e.g. to coordinate, synchronize or update their maps, and etc.) occurs when they are at the same
node. Each agent Ai has a unique id from some totally ordered set. The agents all execute the same
protocol.

In G there is a node infected by a black virus (BV), an extraneous harmful process endowed with
reactive capabilities for destruction and spreading. The location of the BV is not known a priori. It
is harmful not only to the node where it resides but also to any agent arriving at that node. In fact
like a black hole, a BV destroys any agents arriving at the network site where it resides. When that
occurs, (unlike a black hole which is static by definition) the BV clones itself and moves from the
current node spreading to all the neighbouring sites leaving the current node clean; upon arriving
at a node, (the clone of) the BV infects the node and stays inactive until an agent arrives. As the
clones of a BV have the same capabilities of the original BV, the number of BVs in the network
may increase over time. However, at each node at any time there is at most one BV; multiple copies
of the BV (arriving) at the same node merge. A BV is destroyed if there is already an agent at a
node when the BV arrives. Thus, the only way to eliminate a BV from the system is to surround it
completely and let an agent attack the BV by moving to the BV node. In this case, the node where
the BV resides is cleaned and all the generated clones of that BV are destroyed.

Summarizing, there are four possible situations:

Situation 1. Agents arrive at a node v which is empty or where there are other agents: the agents
can communicate with each other.
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Situation 2. Agents arrive at a BV node v: they are destroyed; the BV moves to each of v’s neigh-
bours; v becomes clean.
Situation 3. BVs arrive at v which is empty or where there is a BV: the BVs merge and v is a BV
node.
Situation 4. BVs arrive at a node v where there are agents: the BVs are destroyed.

The BV decontamination problem is to permanently remove any presence of the BV from the
network using a team of agents. The initial location of the BV is unknown. A protocol defining
the actions of the agents solves the BV decontamination problem if, within finite time, at least one
agent survives and the network is free of BVs. A solution protocol is monotone if no recontamination
occurs in any of its executions; that is, once a node is explored (or decontaminated), it will never
be (re)contaminated. Notice that determining the initial location of the BV can be achieved only
by having an agent arriving there; the cost of this operation will be the destruction of the agent,
and the creation of more BVs which will move to the neighbouring nodes; unless these neighbouring
nodes are protected by a resident agent, they will become BV nodes.

The goal of a solution protocol is to minimize the spread of the BV i.e., the number of node
infections by the BVs; note that, since each instance of the BV has to be eventually removed and
each removal requires the destruction of at least one agent, the spread also measures the number
of agent casualties. We denote by spreadP (G) the number of casualties incurred in the worst case
(i.e., over all possible initial locations of the BV) when executing solution protocol P in G, and by
spread(G) the minimum over all solution protocols. We denote by size(G) the smallest team size
capable of decontaminating G with optimal spread in the worst case (i.e., over all possible initial
locations of the BV). An additional cost measure is the number of moves performed by the agents;
when measuring it for our protocols we will consider synchronous execution.

3 Basic Properties and Algorithmic Tools

3.1 Basic Properties and Bounds

Our concern is with solution protocols that are efficient and possibly optimal with respect to number
of casualties, the spread, and the total number of agents, the size. In this respect, the first observation
is with regards to monotonicity of the solution.

Property 3.1 Monotonicity is necessary for spread optimality

Proof: By contradiction, let P be a protocol that solves BVD in G non-monotonically with optimal
spread. That is, during the execution of P in G, a BV moves to an unguarded node v which was
previously explored by an agent. As a result, v becomes a BV node. Note that the move of the BV
to v must have been triggered by an agent A moving to a BV node u neighbour of v. Consider now
a protocol P ′, whose execution is totally identical to that of P except that, before A moves to u, an
agent B moves to v; B is either an agent that, at the time of A moving to v, is not being used by P
for protection of an explored neighbour of v, or an additional one. This means that when the move
of A to u causes the BV to move to v, agent B destroys that BV without harm for itself. In other
words spreadP ′(G) < spreadP (G) contradicting the spread optimality of P . �

Hence, we can restrict ourselves to designing monotone solution.
The values of the size and of the spread depend on many factors, first and foremost the structure

of the graph, but also on the location of the home-base and of the BV. Some basic bounds follow
immediately from the definition of the problem. In particular, regardless of the topology of the
network, since at least one agent must survive by definition, we have

Property 3.2 For any network G, size(G) ≥ spread(G) + 1.

Let v be an articulation point of G, let Gmin(v) denote the smallest (in terms of number of
nodes) connected component formed by removing v and its incident edges from G, and let ρmin(v)
denote its size.
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Property 3.3 If G has an articulation point v, then spread(G) ≥ n− ρmin(v).

Proof: Consider the case when the home-base is a node u in Gmin(v), and the BV is located at the
articulation point v. In this case, regardless of the solution strategy, the BV will spread to all nodes
of all connected components formed by removing v from G, with the exception of Gmin(v). �

Let e = (u, v) be a cut edge of G, let Gmin(e) denote the smallest (in terms of number of nodes)
of the two connected components formed by removing e from G, and let ρmin(e) denote its size;
without loss of generality let u be in Gmin(e).

Property 3.4 If G has a cut edge e, then spread(G) ≥ n− ρmin(e).

Proof: Let e = (u, v) be a cut edge; without loss of generality let u be in Gmin(e). Consider the
case when the home-base is a node in Gmin(e), and the BV is located at v. In this case, regardless
of the solution strategy, the BV will spread to all nodes of G \Gmin(e). �

As a corollary of Property 3.4, it follows that there are graphs where the size and the spread are
Ω(n):

Corollary 3.5 Let G contain a node v of degree |E(v)| = 1. Then, spread(G) ≥ n− 1.

Notice the the class of graphs covered by Corollary 3.5 includes acyclic networks, i.e. trees. In the
case of trees, the bounds are tight:

Lemma 3.1 Let T be a tree on n nodes. Then, size(T ) = spread(T ) + 1 = n.

Proof: Necessity is by Property 3.2 and Corollary 3.5. To see that n agents always suffice in a tree
T , consider a depth-first traversal where, starting from the homebase, a single agent moves forward;
once the outcome is determined (either the agent returns or a BV arrives), all remaining agents
move to that node; when backtracking, all remaining agents move back. It is easy to see that this
strategy decontaminates the tree with at most n− 1 casualties. �

In other words, there are graphs (e.g., trees) where the size and the spread are Θ(n). On the
other hand, there are networks where the spread and the size are Θ(1) regardless of the number of
nodes. To see this, let us concentrate on regular graphs.

Property 3.6 Let G be a ∆-regular graph. Then spread(G) ≥ ∆.

Proof: Since the very first node v explored by the agents can be a BV, the number of casualties is
at least one for each neighbour of v (other than the homebase) plus the one incurred at v. �

In most regular graphs, the relationship between size and spread can be much higher than that
expressed by Property 3.2; in fact

Property 3.7 Let G be a triangle-free ∆-regular graph. Then size(G) ≥ 2∆.

Proof: Let the first node v explored by the agents be a BV; thus all ∆−1 neighbours (other that the
homebase) of v become BV nodes. Since G is triangle-free, none of these BV nodes are neighbours.
This means that each of these BV nodes has now ∆ clean neighbours (including v). Let z be the
first of these BV nodes to be cleared; at least ∆ agents are needed to protect the clean neighbours
of z, in addition to the ∆ casualties, for a total of at least 2∆ agents. �

Notice that the class of graphs covered by Property 3.7 includes among others rings, tori, and
hypercubes. In the case of rings, both size and spread are constant, independent of n, and the bounds
are tight:

Lemma 3.2 Let R be a ring of n nodes. Then, size(R) = 4 and spread(R) = 2

Proof: By Property 3.6 it follows that spread(R) ≥ 2 and thus, by Property 3.7, size(R) ≥ 4.
Sufficiency of four agents with two casualties regardless of the ring size n is immediate. �
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3.2 Algorithmic Structure and Tools

In this paper we concentrate on the specific case of multi-dimensional grids, multi-dimensional tori,
and hypercubes; we develop optimal protocols for all these classes.

All our protocols consist of two separate phases. In the first phase, the network is traversed
until the initial location of the BV is determined. When this occurs, that location is cleared but
all its unprotected neighbours have become BV nodes. In the second phase, these BV nodes are
permanently removed ensuring that none of their safe neighbours are infected.

In the first phase, the solutions use two basic techniques, safe-exploration and shadowing, ex-
plained below.

Safe-exploration. To minimize the spread of the virus, during the traversal, the actual explo-
ration of a target node v from a safe node u is performed using a safe-exploration technique. This
technique is executed by two agents, the explorer agent EA, and the leader explorer agent LEA both
residing at u. The exploring agent EA goes to v to explore it. If EA returns both agents proceed
to v. If instead v was a BV node, LEA becomes aware of that because a BV arrives through that
link instead of EA; in this case, the second phase starts.

Shadowing. To insure monotonicity, at any point in time the already explored nodes must
be protected so that they do not come into contact with a moving BV. To achieve that, during
the traversal by EA and LEA, some agents are employed to guard the already visited neighbours
of the node currently under exploration. This technique is called shadowing. In the following, we
use the term shadowing agent (SA) to indicate an agent who plays the shadowing role to prevent
re-contamination of the explored nodes. Note that LEA, in safe-exploration, also plays the role of
a shadowing agent.

Once the BV node is detected, the protocols enter the second phase. In this phase, the SAs
sequentially “surround” the newly created BVs (i.e., an agent is deployed in each one of its safe
neighbours). Once a BV is surrounded, an agent moves to it to remove it; this agent dies, perma-
nently destroying that BV. This process is repeated until all instances of the BV are permanently
removed.

In some of the protocols (specifically, for meshes and tori), the number of agents surviving the
first phase is smaller than what is needed in the second phase. It is intended that these extra agents
travel with LEA during the first phase; thus, they are co-located with LEA when the second phase
starts.

The correct behaviour of the algorithms relies on the proper synchronization of actions of all
the agents; in particular, to ensure monotonicity, the exploration of a new node u by the Explorer
can only start after the already explored neighbours of u are covered by Shadowing Agents. All the
proposed protocols, irrespective of the topology of the graph, use the same coordination mechanisms,
the only difference being on whether the system is synchronous of asynchronous. These mechanisms
are rather straightforward and are described in the Appendix.

4 BV Decontamination of Grids

4.1 Base Case: 2-Dimensional Grid

The general algorithm for BV decontamination of multi-dimensional grids makes use of the basic
algorithm for the 2-dimensional case presented and analyzed in this section. Let G be a 2-dimensional
grid of size d1 × d2; without loss of generality, let the nodes of G be denoted by their column and
row coordinates (x, y), 1 ≤ x ≤ d1, 1 ≤ y ≤ d2.

Agents LEA and EA start from the corner node (1, 1) to perform a safe exploration of G with
shadowing to locate the BV while protecting the nodes already visited. Once triggered, the BV
spreads to its unprotected neighbours, and the elimination phase starts where agents are deployed
to surround each newly created BV and to eliminate them.

The safe exploration proceeds along the columns of the grid in a snake-like fashion (see the dotted
route in Figure 1), where odd columns are traversed downwards and even columns are traversed
upwards. EA leads the exploration, while LEA stays one node behind to detect the presence of
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Figure 1: BV exploration in 2D

the Black Virus, should it be triggered by EA. While the safe exploration proceeds, an appropriate
number of shadowing agents are deployed to cover the already explored nodes that are neighbours
of the node under exploration by EA so that when the BV is triggered, those nodes are protected
and will not be recontaminated.

Let v = (x, y) be the node under exploration, with 1 ≤ x ≤ d1 and 1 ≤ y ≤ d2. Let x+ and x−

be defined as follows: x+ = x + 1 (if x 6= d1), x+ = x otherwise. Similarly: x− = x − 1 (if x 6= 1),
x− = x otherwise. An analogous definition holds for y+ and y−.

We can now define the set of explored and unexplored neighbours of node v = (x, y):

Nex(v) =

{
{(x−, y), (x, y−)} if x is odd

{(x−, y), (x, y+)} if x is even

Nun(v) =

{
{(x+, y), (x, y+)} if x is odd

{(x+, y), (x, y−)} if x is even

In a step of the shadowed exploration, the actions performed are as follows:

Algorithm BVD-2G: Shadowed Exploration

Agents EA and LEA are at safe node (x, y).
1. Agents compute Next(x, y):

If x is odd and x 6= d1, y 6= d2: Next(x, y) = (x, y+)
If x is even and x 6= d1, y 6= 1: Next(x, y) = (x, y−)
If x is odd and y = d2: Next(x, y) = (x+, y)
If x is even and y = 1: Next(x, y) = (x+, y)

2. SAs move to occupy the nodes Nex(Next(x, y)) \ (x, y)
3. EA moves to Next(x, y).
4. If unarmed, EA returns to (x, y) and both EA and LEA move to Next(x, y).

The shadowed exploration continues until EA meets the BV, at which time EA dies, LEA detects
the presence of the BV (i.e., it receives a new virus from the node v just explored by EA), and the
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elimination phase starts.
At this point LEA, together with the shadowing agents fully cover Nex(v), and new BVs have

spread to Nun(v).

Algorithm BVD-2G: Surrounding and Elimination

BV originally in v now spread to Nun(v)
LEA and SAs are at the nodes Nex(v)

1. LEA moves to v.
2. For each u ∈ Nun(v):

2.1 Agents move to each unoccupied z ∈ {N(u)}
2.2 An agent moves to u to permanently remove that BV.

Note that while the two exploring agents traverse the first column (i.e., x = 1), no other shadow-
ing is necessary; when they traverse subsequent columns (i.e., x > 1), a shadowing agent moves to
the already explored neighbour (x−, y) so to protect it, should the node (x, y) to be explored next
contain a BV.

Theorem 4.1 Protocol BVD-2G, performs a BV decontamination of a 2-dimensional Grid using
k = 7 agents and 3 casualties.

Proof: Let v = (x, y) be the node containing the BV . When EA moves to v, it will be destroyed
and the BV will move to all neighbours of v. When this happens, according to the algorithm, LEA is
protecting the neighbour from which EA moved to v. If x > 1, the neighbour (x− 1, y) is protected
by a shadowing agent; if x = 1, then we are still in the first column and this neighbour does not
exist. So, when the BV moves to the neighbours of v, the explored ones are protected and will not
be infected by the BV; this means that the BV can safely move only to the unexplored neighbours
of v, of which there are at most two. In other words, after v is explored, at most two BV nodes are
formed; furthermore, since the grid is a triangle-free graph, they are not neighbours. This means
that the BV nodes can be sequentially and separately surrounded and destroyed using at most six
agents (including SA and LEA): one to enter a BV node and four to protect the neighbours. Hence,
in addition to EA, at most two more agents die, and the total number of employed agents is seven.
�

It is not difficult to verify that both the spread and the size of Protocol BVD-2G are optimal.

Theorem 4.2 Let G be a 2-dimensional grid. Then, regardless of the number of nodes, spread(G) =
3 and size(G) = 7.

Proof: Since the very first node visited by any algorithm could be a BV, at least two more BV will
be generated; that is, for any solution protocol P , spreadP (G) ≥ 3. Of these two generated BVs at
least one has four neighbours; furthermore, since G is triangle-free, these neighbours have no edges
in common, and none of them is the other BV node. This means that at least four agents are needed
in addition to the three casualties; that is, for any solution protocol P , sizeP (G) ≥ 7. �

Let us now consider the number of moves.

Theorem 4.3 Protocol BVD-2G, performs a BV decontamination of a 2-dimensional grid of size
n with at most 9n+O(1) moves in time at most 3n.

Proof: Let v = (x, y) be the BV node, and let the size of the grid be n = d1 × d2.
Let us first consider the number of moves performed during the shadowed exploration. The

travelling distance from the home base to v is d = (x−1)d1 +x+y. The shadowing agent follow the
same path, except when EA and LEA traverse the first column (that does not need shadowing), so
the number of moves for the shadowing agent is bounded by d − 1. The number of moves is then
3(d− 1) + 1 for EA, (d− 1) for LEA, and at most (d− 1) for the SA. The other four agents (needed
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for the surrounding and elimination) travel with LEA incurring in the same cost for a total of at
most 4(d− 1). We then have an overall cost of at most 9(d− 1) + 1 moves for this phase.

Consider now the number of moves performed for Surrounding and Elimination. The new BV
nodes v′ and v′′ are not connected, so they can be surrounded and cleaned sequentially. Each
surrounding and cleaning requires a constant number of moves by 5 agents (4 to surround and 1 to
clean the BV). Hence O(1) moves are performed in this phase.

In total we then have that the number of moves is at most 9(d− 1) +O(1) ≤ 9n+O(1).
As for the time complexity. The time required for the exploration phase is equal to the number

of moves of EA, which is 3(d− 1) + 1; the time required for the surrounding and elimination phase
is constant. �

4.2 Multi–Dimensional Grid

LetM be a q-dimensional grid of size d1×. . .×dq and let each node ofM be denoted by its coordinates
(x1, . . . , xq), 1 ≤ xi ≤ di. The algorithm, called BVD-qG, follows a general strategy similar to the
one described in Section 4.1: a safe exploration with shadowing, followed by a surrounding and
elimination phase.

We first describe the path followed for the safe exploration, and then the details of the surrounding
and elimination phase.

Informally, the multi-dimensional grid is partitioned into d1 × . . .× dq−2 2-dimensional grids of
size dq−1 × dq. Each of these grids is explored using the shadowed traversal technique of Protocol
BVD-2G described in Section 4.1, in a snake-like fashion column by column, and returning to the
starting point; in the following we refer to this exploration as Traverse2. From that starting point,
the exploration proceeds to another grid, with a neighbouring starting point.

More precisely, given a sequence of k < q integers i1, . . . ik with 1 ≤ ij ≤ dj (where 1 ≤
j ≤ k), let M [i1 . . . ik] denote the (q − k)-dimensional sub-grid of M formed by the elements
{(i1, i2, . . . , ik, xk+1, . . . , xq)} where 1 ≤ xl ≤ dl (where k + 1 ≤ l ≤ q). The exploration traversal is
achieved using the procedure Traverse(V,k) described below, where V is a sequence of k integers.
The symbol V ◦ j denotes the operation of adding integer j at the end of sequence V , resulting in
V containing now k + 1 integers. Initially, the procedure is invoked with V = ∅ and k = 0; at each
end of the recursion, V is a 2-dimensional grid of size dq−1 × dq.

Traverse(V,k)

if (q − k) = 2 then Traverse2(M [V ])
else

for 1 ≤ j ≤ dk+1

Traverse(V ◦ j, k + 1)

Figure 2 visualizes the traversal on a 3-dimensional Grid M with size d1×d2×d3. M is explored
by sequentially traversing the 2-dimensional grids M [1],M [2], . . . ,M [d1].

During the traversal, before exploring a node v = (x1, . . . , xq) (1 ≤ xi ≤ di) from a node u, the
SAs move to the already explored neighbours of v to protect them; note that u is already protected
by LEA. The set of these nodes is Nex(v) = {(x−1 , x2, ..., xq), (x1, x

−
2 , ..., xq), ..., (x1, x2, ..., x

−
q )}\{v},

where

x−i =


xi − 1 if i ≤ q − 1 and xi > 1

xi − 1 if i = q and xi is odd and xi > 1

xi + 1 if i = q and xi is even and xi < di

xi otherwise

Once EA visits the BV node (and is destroyed there), the LEA and the SAs become aware of
the location of the new BV nodes. These are precisely the unexplored neighbours of the original
BV node v and, because of the structure of the traversal, their location is precisely determined
knowing the coordinates of v; in fact, the set of unexplored neighbours of v = (x1, x2, ..., xq) is
Nun(v) = {(x+1 , x2, ..., xq), (x1, x

+
2 , ..., xq), ..., (x1, x2, ..., x

+
q )} \ {v}, where
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Figure 2: BV exploration in 3D

x+i =


xi + 1 if i ≤ q − 1 and xi < di

xi + 1 if i = q and xi is odd and xi < di

xi − 1 if i = q and xi is even and xi > 1

xi otherwise

Thus, once v is identified, sequentially, 2q agents surround each node u ∈ Nun(v) and an addi-
tional agent enters it destroying the BV resident there and the instances that it generates.

Theorem 4.4 Protocol BVD-qG, performs a BV decontamination of a q-dimensional Grid using
3q + 1 agents and at most q + 1 casualties.

Proof: Let v = (x1, . . . , xq) (1 ≤ xi ≤ di) be the node containing the BV. When EA moves to v, it
will be destroyed and the BV will move to all neighbours of v. When this happens, according to the
algorithm, all the neighbours in Nex(v) are protected (either by LEA or by a SA) and will not be
infected by the BV; this means that the BV can safely move only to the neighbours in Nun(v). Since
|Nun(v)| ≤ q, there will be at most q new BVs. Since the q-grid is a triangle-free graph, these nodes
have no edges in common. This means that these BV nodes can be (sequentially and separately)
surrounded and destroyed using at most 3q agents (including SAs and LEA): one to enter each BV
node, and 2q to protect the neighbours. Hence, in addition to EA, at most q agents die, and the
total number of employed agents is 3q + 1. �

It is not difficult to verify that the spread and the size of Protocol BVD-qG are both optimal.

Theorem 4.5 LetM be a q-dimensional grid. Then, regardless of the number of nodes, spread(M) =
q + 1 and size(M) = 3q + 1.

Proof: Since the very first node visited by any algorithm could be a BV, at least q more BV will
be generated; that is, for any solution protocol P , spreadP (M) ≥ q + 1. Of these generated BVs at
least one has 2q neighbours; furthermore, since M is triangle-free, these neighbours have no edges in
common, and none of them is a BV node. This means that at least 2q agents are needed in addition
to the q + 1 casualties; that is, for any solution protocol P , sizeP (G) ≥ 3q + 1. �

Let us now consider the number of moves performed by the agents.
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Theorem 4.6 A q-dimensional Grid of size d1 × d2 . . . × dq can be decontaminated with at most
O(qn) = O(m) moves and Θ(n) time.

Proof: Since the length of the traversed path until the BV is found is O(n) in the worst case, the
number of moves by LEA, EA and each SA is O(n). Since there are at most q shadowing agents,
the total number of moves until the BV is found is O(qn) in the worst case. At that point, there
are at most q BV nodes, which are surrounded and eliminated sequentially. Each such node is
surrounded by at most q + 1 agents, each performing O(1) moves, which gives O(q2) moves in total
for surrounding and elimination. Since q < n, the bound follows. The total time is obviously O(n)
for the first phase, and constant in the second. �

5 BV Decontamination of Tori

A Torus is a regular graph obtained from a grid by adding wrap-around links to the “border” nodes.
In a q−dimensional torus every node has 2q neighbours.

The algorithm to decontaminate the BV in a q-dimensional torus, called BVD-qT, follows a
strategy very similar to the one used for the q- dimensional Grid described in Section 4.2.

Exploring routes 

Shadowing routes 

HB 

Figure 3: BV exploration in Tori

Let T be a q-dimensional torus of size d1 × . . . × dq and let each node of T be denoted by its
coordinates (x1, . . . , xq), 1 ≤ xi ≤ di. Without loss of generality, let (1, 1, . . . , 1) be the homebase.
Informally, the multi-dimensional torus is partitioned into d1× . . .×dq−2×dq−1 rings of size dq. The
exploration procedure traverses a ring and, when back to the starting point, proceeds to another
ring, with a neighbouring starting point. In Figure 3 the traversal is shown for q = 2.

Note that, because of the lack of borders, the spread of the BV might be higher in Tori than in
Grids. For example, if one of the nodes visited during the first traversed ring is the BV, the BV will
reach all its neighbours except the one occupied by LEA, inducing a casualty count of 4q.

The Shadowing procedure is identical to the one described for the Grid: when node v is to be
explored, all nodes in Nex(v) are occupied by a SA to protect them. Once the BV (say node v) is
visited by EA, each node of Nun(v) is surrounded sequentially and then eliminated like it is done
for the Grid.

Theorem 5.1 Protocol BVD-qT, performs a BV decontamination of a q-dimensional Grid using
4q agents with 2q casualties with at most O(qn) moves and Θ(n) time.
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Proof: Let Nex(v) (resp. Nun(v)) denote the set of explored (resp. unexplored) neighbours of node
v. The number of casualties is equal to 1 + |Nun(v)| ≤ 2q. To surround a BV node it always takes
2q agents, while for the shadowing |Nex(v)| = 2q − |Nun(v)| are deployed. Thus, in addition to the
agents that die in the BVs, at most max{2q, 2q− |Nun|(v)} = 2q agents are used for shadowing and
surrounding. The total number of agents employed by the algorithm is then: 1 + |Nun|+ 2q ≤ 4q.

It is easy to see that the asymptotic number of moves as well as the time are the same as the
ones determined for the q-Grid. �

It is not difficult to verify that both the spread and the size of Protocol BVD-qT are optimal.

Theorem 5.2 Let T be a q-dimensional torus. Then, regardless of the number of nodes, spread(T ) =
2q and size(T ) = 4q.

Proof: Since a q-dimensional torus is a triangle-free 2q-regular graph, the optimality follows directly
from Properties 3.6 and 3.7. �

6 BV Decontamination of Hypercubes

6.1 The Hypercube and its Properties

The hypercube is a classical topology for interconnection networks. A 1-dimensional hypercube is
simply composed by two connected nodes, one labeled 0 and the other labeled 1. A q-dimensional
hypercube can be constructed recursively by two copies of the (q-1)-dimensional hypercubes with
links between each pair of corresponding nodes (e.g. nodes with the same labels) in the two sub-
cubes. The name of each node in one of the sub-cubes is changed by prefixing it with a bit 0, and the
name of the corresponding node in the other is changed by prefixing it with bit 1. A q-dimensional
hypercube (q-Hypercube) has 2q nodes, and m = n · q2 = 1

2n log2 n links. Associating a q-bit string
to each node as described above, an edge between two nodes u and v exists if and only if u and v
differ in exactly one bit position (which is called the “dimension” of the edge).

The hypercube has several interesting properties that make it a desirable topology in many
applications. The hypercube clearly admits an Hamiltonian tour. A particular Hamiltonian tour is
given by following the so called Gray code, and it is described below.

The Gray code (also called reflected binary code) is a binary numeral system where two successive
values differ in only one bit. The binary-reflected Gray code list Gq for q bits can be constructed
recursively from list Gq−1 by reflecting the list (i.e. listing the entries in reverse order), concatenating
the original list with the reversed list, prefixing the entries in the original list with a binary 0, and
then prefixing the entries in the reflected list with a binary 1. Let 0Gi indicate list Gi where every
element is prefixed by 0 (resp. 1), let Gi indicate list Gi reversed, and let ◦ indicate concatenation
of lists. We then have: Gq = 0Gq−1 ◦ 1Gq−1. For example G1 = [0, 1], G2 = [00, 01, 11, 10],
G3 = [000, 001, 011, 010, 110, 111, 101, 100], and so on.

The Gray code provides a way to traverse a hypercube starting from node (00 . . . 0): each and
every node is visited once and a sub-cube is fully visited before proceeding to the next.

The properties of the Gray code allows one to determine easily the position Pos(u) of a node
u = (d1 . . . dq) in the traversal of the hypercube following the Gray code. In fact, we have that
Pos(u) = (d′1 . . . d

′
q) where d′1 = d1 and, for 1 < i ≤ q:

d′i =

{
di if di−1 = 1

1− di if di−1 = 0

In a similar way, given a binary number b = (b1, . . . bq), the the b-th node G(b) in the traversal
of a q-hypercube following the Gray code (starting from 0) is G(b) = (b′1, . . . b

′
q), where b′1 = b1 and,

for 1 < i ≤ q:

b′i =

{
bi if bi−1 = 0

1− bi if bi−1 = 1
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Particularly useful are the functions Pred(u) and Succ(u) that, given a node u = (d1, . . . dq)
determine all its successors and all its precedessors in the Gray code traversal of the hypercube.
Those functions are defined below, and they can clearly be computed locally by LEA: Pred(u) =
{Gq(i) : i < Pos(u)} and Succ(u) = {Gq(i) : i > Pos(u)}.

Another useful function which is locally computable is Next(u) which, given a node u, returns
the next node in the Gray code traversal: Next(u) = G(Pos(u) + 1).

00 01 

11 10 

2-hypercube 

000 

010 

011 

111 110 

100 101 

001 

3-hypercube 

Exploring route 

Shadowing route 

Figure 4: BV exploration in 2 and 3-Hypercube

6.2 Decontaminating a BV in q-Hypercube

Also in the case of the hypercube, the agents first perform a shadowed exploration, and then proceed
to the elimination once the BV is detected and triggered. In the shadowed exploration, the two
exploring agents EA and LEA traverse the hypercube following the Gray code, with the shadowing
agents protecting at each step the nodes in the explored area adjacent to the node under exploration.
EA goes ahead first, leaving LEA in the previously explored node, and if the BV arrives instead of
EA, LEA realizes that the BV has been hit. In the particular case of a q-hypercube, hitting the
BV triggers its propagation to the q neighbours, some of which are already explored (and protected
by the SAs), while some are not explored yet. Those neighbours protected by the SAs will not be
infected by the arrival of the new BV, the others will become BV nodes; they will then be surrounded
and eliminated (procedure Elimination and Surrounding).

Example: 3-Hypercube. As an example of shadowed exploration, let us consider in detail the
case of the 3-Hypercube. The exploring agents follow the Gray code traversal, which in this case
consists of the sequence of nodes: 000, 001, 011, 010, 110, 111, 101, 100 and is depicted in Figure 4.
Two shadowing agents (a and b) are needed overall, and they also perform a traversal of a subcube
starting from 000. More precisely, no shadow is required while EA is visiting 001 and 011; when
EA explores node 010, both a and b are still in node 000 to protect it, no shadow is needed when
EA is exploring 110 (because both neighbours different from the predecessor are unexplored), the
shadowing agents then proceed to 010 when EA visits 110, then one of the shadowing agents (say
a) stays here, and b moves to 011 to protect it while EA visits 111, b then moves to 001 when EA is
exploring 101, and finally b moves to 000 and a moves to 110 when EA is exploring 100. Note that
synchronicity of the system allows the shadowing agents to correctly synchronize their movements
with the exploration agents. Also note that one of the shadowing agents (a in the example) initially
follow the other shadowing agents without being needed (“inactive”). Shadowing agent a becomes
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Figure 5: BV exploration in 4-Hypercube

needed (“active”) when the exploration reaches node 100. In other words, in the 3-Hypercube one
shadowing agent performs the reverse of the first half of the grey code, while the second shadow
moves to the node connecting the two 2-Hypercubes to protect from the exploration of the last node.

In general, in the case of a q-Hypercube, one step in the shadowed exploration, with EA and
LEA both at a safe node u, is described by the following algorithm:

Algorithm BVD-qH: Shadowed Exploration

Agents EA and LEA are at safe node u.
1. Agents compute Next(u):

Next(u) = G(Pos(u) + 1). Let u′ = Next(u)
2. Shadowing agents compute Nex(u′) = N(u′) ∩ Pred(u′)

Shadowing agents move to occupy Nex(u′) \ u
3. EA moves to Next(u).
4. If unarmed, EA returns to u and both EA and LEA move to Next(u).

When moving to occupy their computed positions, the paths followed by the q − 1 shadowing
agents can be intuitively described recursively as follows:

Shadow(Q, q)

• 1. For q = 3, the paths of the 2 shadowing agents are as described in the example above.

• 2. For q > 3: the q-Hypercube Q is decomposed along dimension q in the two (q−1)-subcubes
Q1 and Q2

– 2.1. During the exploration of Q1, q − 2 shadowing agents follow the paths indicated
by Shadow(Q1, q − 1), while one is inactive.

– 2.2. During the exploration of Q2, the q− 2 shadowing agents already employed for Q1

now follow the paths indicated by Shadow(Q2, q − 1).
The extra shadowing agent covers the path in Q1 that corresponds to the exploration
path of EA in Q2.
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As an example, the shadowed exploration routes in the 4-Hypercube by the 3 shadowing agents
are shown in Figure 5. figures to be re-done. Indicated are also the timing constraints: label t
on a SA movement has to be completed before the movement labeled t by EA takes place.

Notice that the starting point in each subcube depends on the exploration path followed by LEA,
that is on the Gray code.

The shadowed exploration continues until EA meets the BV, at which time EA dies, LEA
receives a new virus from the node v just explored by EA detecting the virus, and the elimination
phase starts. At this point LEA, together with the shadowing agents SAs fully cover Nex(v), and
new BVs have spread to Nun(v).

Algorithm BVD-qH: Surrounding and Elimination

BV originally in v now spread to Nun(v) = N(v) ∩ Succ(v)
LEA and SAs are at the nodes Nex(v)

1. LEA moves to v.
2. For each u ∈ Nun(v):

2.1 Agents move to each unoccupied z ∈ {N(u)}
2.2 An agent moves to u to permanently remove that BV.

6.3 Complexity analysis

The overall number of agents needed for the whole process depends on the position of the BV with
respect to the traversal.

Theorem 6.1 Protocol BVD-qH, performs a BV decontamination of a q-Hypercube using 2q agents
and q casualties.

Proof: One agent dies in the BV. Let v be the node containing the BV. |Nex(v)| agents are first
employed to shadowing and then reused for surrounding and eliminating. Since the neighbours of the
BV are disjoint, nodes in Nun(v) are surrounded and eliminated sequentially. There are q−|Nex(v)|
such nodes and for each of them, q agents are needed for surrounding and 1 for the elimination.
Overall we then need q−|Nex(v)|+1 agents for elimination (these agents die and cannot be reused),
and q for surrounding sequentially each of the nodes in Nun(v). The total number of agents employed
is then 2q + 1− |Nex(v)|. Since |Nex(v)| ≥ 1, the bound follows. �

It is not difficult to verify that both the spread and the size of Protocol BVD-qH are optimal.

Theorem 6.2 Let H be a q-Hypercube, we have that spread(H) = q and size(H) = 2q.

Proof: Since a q-Hypercube is a triangle free q-regular graph, the optimality follows directly from
Properties 3.6 and 3.7. �

Let us now consider the number of moves.

Theorem 6.3 Protocol BVD-qH, performs a BV decontamination of a q-Hypercube with at most
O(n log n) moves and time Θ(n).

Proof: First note that the number of moves performed by the exploring agents is 4(Pos(v)−1) + 1,
where v is the node containing the BV. So we have a total of at most 4n moves for the exploring
agents. The number of moves performed by each shadowing agent is bounded by n and the total
number of shadowing agents employed is q − 1 = log n− 1. We then have that the total number of
movements by the shadowing agents is O(n log n).

Finally, let us now consider the number of moves performed for surrounding and eliminating
the new BVs. There are q such new BVs, to be treated sequentially. For each of them there are q
neighbours to be occupied by the q agents. To reach any of these assigned nodes, an agent performs
a constant number of moves. So, each new BV is surrounded and eliminated in at most O(q) moves
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and all the BVs are eliminated in at most O(q2) = O(log2 n) moves. Adding all these costs, the
move complexity is then O(n log n).

As for the time complexity. The time required for the exploration phase is equal to the number
of moves of EA, which is O(n); the time required for the surrounding and elimination phase is
constant. �

7 Conclusions and Open Problems

7.1 Conclusions

In this paper we have introduced the problem of decontaminating a network from a black virus, a
process harmful to both sites and agents and capable of reactive mobility. This problem presents
aspects that are not covered by the classical problem studied in the literature: black hole search
and intruder capture. In fact a black virus is capable to harm agents (like a black virus but unlike
an intruder) and is capable to spread (like an intruder but unlike a black hole). As such, it opens a
new line of investigation on security threats in networked systems supporting mobile agents.

We have started this investigation defining the model and establishing basic properties. We have
then examined in detail the problem for three classic classes of interconnection networks: grids, tori,
and hypercubes. We have presented decontamination protocols for each class (for all dimensions),
and analyzed their complexity in terms of spread of the virus and total number of agents, and we
have shown that our protocols are optimal in both measures. Although described for a synchronous
setting, the solutions easily adapt to asynchronous ones (requiring only coordination among the
shadowing and the exploring agents), all the results hold also in this case, and the extra cost consists
of an additional O(n) moves in total for coordinating the activities. An advantage of our solutions
is that the agents use only local information to execute the protocol.

7.2 Open Problems

The results of this paper open many research problems and pose new questions.
An immediate open problem is to study the black virus decontamination problem in other classes

of networks. Since the classes studied here are all of regular graphs, a particular focus should be on
irrregular networks; so far, our knowledge is limited to trees (see Lemma 3.1).

A related important research question is how to decontaminate arbitrary networks; i.e., to design
a “generic” protocol that allows to decontaminate every network. We have already started to
investigate some of these problems.

Another interesting research direction is to investigate the role of topological knowledge; e.g., to
study the impact that presence or absence of a network map has on the complexity of decontami-
nation; to discover the relationship between topological parameters and complexity; etc.

This paper is a starting point for a better understanding of the impact that the severity of the
security threat (i.e., the power of the harmful entity) has on the complexity of the defence mechanism
(i.e. the complexity of the solution protocol). For example, although a black virus combines some
harmful properties of a black hole (as defined by the black hole search problem) with some of an
intruder (as defined by the intruder capture problem), a black virus it is not all powerful.

In particular, a black virus remains hidden until it is triggered when a specific condition (the
arrival of a system agent) occurs, much like a logic bomb; that is, its behaviour, including its mobility,
is reactive. Once triggered, it copies itself and spreads to neighbouring computers. Of clear interest
is the study of the more complex problem decontamination when the behaviour of the Black Virus
is proactive, like a pure virus, when the spreading is spontaneous, that is not triggered by specific
events.

Currently the power of the black virus is restricted also because of limited spreading (BV moves
only to the immediate neighbourhood). An important research direction is to investigate which of
these restrictions (reactivity and limited spreading) is the most severe, which can be reduced or
lifted and the problem still be solvable, etc.; in other words, to determine whether the system is
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capable of sustaining a more powerful threat, how much more power the agents would need to have
to be able to sustain a stronger threat, etc.
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APPENDIX

A Exploration and Shadowing

In all proposed algorithms, regardless of the network topology, the execution, until the BV is found,
consists of a sequence of exploration steps. Each step comprises of an ordered sequence of operations:

1. At the beginning of each step, EA and LEA are at a safe node v.

2. All agents determine the new node u = next(v) to be explored among the neighbours of v as
well as the set Nex(u) = {u0, u1, ..., uq} of the already explored neighbours of u, where u0 = v.

3. Let {S1, S2, ..., Sp} be the shadowing agents; note that, by construction, in each of the examined
classes of networks, p ≥ q. Each ui ∈ Nex(u) is assigned to a SA Si, 1 ≤ i ≤ q; u0 = v is
assigned to LEA and to Sq+1, ..., Sp. The agents move to the assigned nodes

4. EA moves to next(v).

Note that the assignment of nodes to SAs can be calculated according to optimization criteria
(e.g., ui is vertex in Nex(u) closest to Si, where ties are broken using identities) so to minimize the
number of moves. Observe that the movements of each Si over time defines a specific trajectory,
e.g., a snake-like path in a grid; see Figure 5 for an example in a 4-dimensional hypercube.

How the proper sequencing of these operations is ensured depends on whether or not the system
is synchronous.

Synchronous Agents
Assume: it takes one time unit for each movement (by agent or BV); computing and processing

is negligible (instantaneous)
Let tj denote the time when the j-th step starts, and let t̂j denote the time when EA moves to

next(v) in that step. Initially (i.e. at time t1) all agents are at the homebase, and know the position
of every other agent; all the algorithms maintain the invariant that, at time tj , all agents know the
position of every other agent and that the j-th step is starting.

Let di be the distance between the current position of si at time tj and the assigned node ui,
and let d = Max{di}. This means that, by the time tj + d all nodes have reached their position for
this step. Hence EA moves to u = next(v) at time t̂j = tj +d, when all already explored neighbours
of u are protected by agents. By time t̂j + 2 = tj + d+ 2 all agents know whether the BV has been
detected: a BV clone will arrive at the locations of the agents at that time if and only if the BV
was at u. If the BV is not detected, step j + 1 can start at time tj+1 = t̂j + 3 = tj + d + 3 with
LEA moving to u; notice that all agents know both tj+1 and the position of every other agent at
that time. If the BV is detected, the second phase of the protocols is started.

Asynchronous Agents
It takes a finite but unpredictable amount of time to perform any operation. Communication

occurs when two agents meet.
In an asynchronous system, the LEA will act as overall coordinator, responsible for the commu-

nication with and coordination of EA and the shadowing agents.
Let tj denote the time when the j-th step starts. Initially (i.e. at time t1) all agents are at the

homebase; all the algorithms maintain the invariant that, at time tj , LEA knows the position of all
the other agents and that the j-th step is starting.

Starting at time tj , LEA moves sequentially to notify all SAs of the new step. To notify si
(1 ≤ i ≤ p) LEA moves to the position currently occupied by si; it communicates to si its assigned
destination node ui (where ul = v for l > q); both si and LEA move (asynchronously and indepen-
dently) to ui; when LEA arrives at ui, it waits until ui arrives. Once all SA have been notified and
have moved to the assigned positions, LEA returns to v, and notifies EA to move to u.
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If BV is not at u, upon arriving at u, EA returns at v and notifies LEA that a new step must
be performed; both LEA and EA move to u; the time when they both arrive is called tj+1 and the
(j + 1)-th step starts.

If BV is at u, when EA arrives there, it is destroyed and it causes BV to move to all neighbours
of u, including v where LEA is waiting. When this occurs, the second phase of the protocol starts.
Also in that phase, LEA will coordinate the movements of the agents.

B Surrounding and Elimination

Once the BV has been detected and has moved to the unexplored neighbours of its original location,
in all proposed algorithms the surviving agents start the second phase. In this phase, all BV nodes
are surrounded and the permanent elimination of the BVs is performed.

Let u be the original location of BV, and let Nun(u) = {z1, ..., zk} denote the set of the unexplored
neighbours of u when EA enters u during the exploration. The second phase consists of a sequence
of k elimination steps to permanently remove the BV from Nun(u). In the j-th step, the following
operations are performed:

1. Let M(zj) = N(zj) \ Nun(u) = {v1, ..., vqj} be the set of non-BV neighbours of zj , and
let {A1, A2, ..., Apj

} be the surviving agents at the beginning of stage j. To each agent Ai

(1 ≤ i ≤ pj), is assigned node vi ∈M(zj), where vl = v1 for l > qj . Note that by construction,
pj > qj ; hence more than one agent is assigned to v1.

2. The agents move to the assigned nodes.

3. A1 moves to zj to permanently remove the BV from there.

Note that the assignment of nodes to agents can be calculated according to optimization criteria
so to minimize the number of moves; e.g., vi is vertex in M(zj) closest to vi, where ties are broken
using identities (1 ≤ i ≤ qj).

How the proper timing of these operations is ensured depends on whether or not the system is
synchronous.

Synchronous Agents

Let t1 the time when the BV is detected; notice that, by construction, all agents (except EA
that is destryed by BV) will detect it at the same time. At that time the first step of the second
phase starts. Let tj denote the time when the j-th step starts (1 ≤ j ≤ k), and let t̂j denote the
time when A1 moves to zj in that step; all the algorithms maintain the invariant that, at time tj ,
all agents know the position of every other agent and that the j-th step is starting.

Let wi be the distance between the current position of Ai at time tj and the assigned node vi,
and let w = Max{wi}. This means that, at time tj + w all nodes have reached their position for
this step.

Agent A1 moves to zj at time t̂j = tj + w, when all non-BV neighbours of zj are protected by
agents. At time t̂j + 2 = tj +w+ 2 a BV clone will arrive at the locations of the agents. Step j + 1
can start at time tj+1 = t̂j + 3 = tj +w+ 3; notice that all agents know both tj+1 and the position
of every other agent at that time, preserving the invariance.

Asynchronous Agents

In an asynchronous system, in addition to the synchronization and coordination of the agents,
there is the additional difficulty of dealing with the unpredictable delay before a clone BV arrives
at a node protected by an agent. This problem occurs immediately upon the arrival of EA to the
original location u of the BV. Let Wj denote the set of nodes where there are agents at the beginning
of step j. By definition, Wj = M(zj−1) for j > 1; at the beginning of the first step, W1 is instead
the set of the locations of all agents when EA moves to u.
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The coordinator role is played by LEA (called Apj
in step j). The j-th step starts at time tj

when the BV clone arrives at the node where LEA is waiting, detecting the end of step j − 1 (if
j > 1) or of the first phase (j = 1). When this occurs LEA does as following.

First LEA moves sequentially to all nodes in Wj . In each of this nodes, it waits until the BV
clone has arrived; it then communicates the assigned destination node(s) to the agent(s) resident
there.

Then LEA moves sequentially to the nodes in M(zj) (in reversed order, ending in v1). In each
of this nodes, it waits until all the agents assigned to that node have arrived.

Finally, LEA notifies A1 to move to zj . At this point, LEA waits until the BV clone arrives,
determining the end of the j-th step.
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