The Model & Basic Computations

Chapter 1 and 2
The Model
Broadcast

Spanning Tree Construction

Traversal

Wake-up

Spanning Tree Construction

A spanning tree T of a graph G = (V,E) is an
acyclic subgraph of G such that T=(V,E')
and E' C E.

Assumptions:

single initiator
bidirectional links
total reliability

G connected

Protocol SHOUT

Initially: V x, Tree-neighbors(x) = { } %/

At the end:

Y x, Tree-neighbors(x) = {links that belong to

the spanning tree } %)/

Q? = do you want to be
Q? my neighbour
/ 5 inthe spanning tree ?
1 —Q2,
init Q?\.

If it is the first time:

2 @ .
—¥es— /—O**';

If | have already answerd
yes to someone else:

et

Example

States S={INITIATOR, IDLE, ACTIVE, DONE}

Sinit = {INITIATOR, IDLE}
Sterm = {DONE}

INITIATOR

Spontaneusly
root:= true
Tree-neighbours :={}
send(Q) to N(x)
counter:=0
become ACTIVE

IDLE
receiving(Q)
root:= false
parent := sender
Tree-neighbours := {sender}
send(yes) to sender
counter:=1
if counter = |N(x)| then
become DONE
else
send(Q) to N(x) — {sender}
become ACTIVE

ACTIVE

receiving(Q)
send(no) to sender

receiving(yes)
Tree-neighbours:=
Tree-neighbours U sender
counter := counter +1
if counter = | N(x)|
become DONE

receiving(no)
counter := counter +1
if counter = | N(x)|
become DONE

Note:

SHOUT = FLOOD +REPLY

Correctness and Termination

- If xis in Tree-neighbours of y, y is in Tree-neighbours of x

- If x sends YES to y, then x is in Tree-neighbour of y
and is connected to the initiator by a chain of YES

- Every x (except the initiator) sends exactly one YES

Correctness and Termination

- If xis in Tree-neighbours of y, y is in Tree-neighbours of x

- If x sends YES to y, then x is in Tree-neighbour of y
and is connected to the initiator by a chain of YES

- Every x (except the initiator) sends exactly one YES

—

The spanning graph defined by the Tree-neighbour
relation is connected and contains all the entities

Note: local termination

Message Complexity

SHOUT = FLOOD + REPLY

—

Messages(SHOUT) = 2 M(FLOOD)

Possible situations

D D
Q
- —
Om//v —no S

Impossible situations

OJJ,O//' —YE >

OALES/' —Yes S

Message Complexity - worst case

Total n. of Q:

(n-1) m -(n-1)

only one Q on the ST links
on the other links

Total: 2(m -(n-1)) + (n-1)
=2m-n+1

Message Complexity - worst case

gle
Total n. of NO: ij/ \O
as many as Q---Q 2(m - (n-1))
Total n. of YES:
yes——r
D O

Exactly: (n-1)

Message Complexity - worst case

2m-n+1+2(m-(n-1)) + n-1
=2m-n+1+2m-2n+2+n-1
=4m -2n + 2

Messages(SHOUT) =4m -2n + 2

In fact: M(SHOUT) = 2 M(FLOOD) = 2(2m-n+1)

2(m) is a lower bound also in this case

Spanning Tree Construction

Without “NO”

Protocol SHOUT+

What does the reception of
a question mean ?

Q

G Yes

It means that to my question, you will certainly reply NO

Q

O

No need to send negative answers:
| can understand you cannot be part of the ST simply by your Question

States S={INITIATOR, IDLE, ACTIVE, DONE}
Sinit = {INITIATOR, IDLE}
Sterm = {DONE}

INITIATOR
Spontaneusly
root:= true IDLE
Tree-neighbours := { } receiving(Q)
send(Q) to N(x) root:= false
counter:=0 parent := sender
become ACTIVE Tree-neighbours := {sender}
send(yes) to sender
counter :=1

if counter = |N(x)| then
become DONE

else
send(Q) to N(x) — {sender}
become ACTIVE

ACTIVE
receiving(Q) (to be interpreted as NO)

counter := counter +1
if counter = | N(x) |
become DONE

receiving(yes)
Tree-neighbours:=
Tree-neighbours U {sender}
counter := counter +1
if counter = | N(x) |
become DONE

On each link there will be exactly 2 messages:

e =0
either
or QQ/ ‘\yeb

Messages(SHOUT+) = 2m

Much better than:

Messages(SHOUT) =4m -2n + 2

Spanning Tree Construction

With Notification

States S={INITIATOR, IDLE, ACTIVE, DONE}

Sinit = {INITIATOR, IDLE}
Sterm = {DONE}

INITIATOR
Spontaneusly

root:= true
Tree-neighbours :={}
send(Q) to N(x)

counter:=0
ack-counter:=0
become ACTIVE

IDLE

receiving(Q)

root:= false
parent := sender
Tree-neighbours := {sender}
send(yes) to sender
counter:=1
ack-counter:=0
if counter = |[N(x)| then
CHECK
else
send(Q) to N(x) — {sender}
become ACTIVE

ACTIVE

receiving(Q)
counter := counter +1
if counter = |[N(x)| and not root then
CHECK

receiving(yes)
Tree-neighbours:=
Tree-neighbours U {sender}
counter := counter +1

if counter = |[N(x)| and not root then
CHECK

ACTIVE (cont)

receiving(Ack)
ack-counter:= ack-counter +1

if counter = |N(x)| /* indicate tree-neighbors is done
if root then

if ack-counter = | Tree-neighbours|
send(Terminate) to Tree-neighbours
become DONE
else if ack-counter = | Tree-neighbours| - 1
send(Ack) to parent
receiving(Terminate)
send(Terminate) to Children

become DONE

CHECK

If | am a leaf

(* that is: Children:= Tree-neighbours — {parent}

if Children = emptyset *)

send(Ack) to parent

"

~

What happens if there are
multiple initiators ?

yes

An election is needed to have a unique initiator.

or

Another protocol has to be devised.

NOTE: Election is impossible if the nodes
do not have distinct IDs

