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Abstract

Image-Based Rendering is a technology that can be used to develop systems for navi-

gation in real-image-based virtual environments, potentially providing a high-quality

realistic experience. Scene representation and view synthesis are major research top-

ics in this field and form the main focus of this thesis. Three major topics investigated

in detail are high-quality panorama generation, view interpolation and a simplified

Concentric Mosaics technique. First, a novel optimization model is proposed for reg-

istration of the overlap-area between two adjacent images taken by a camera mounted

and rotated on a tripod, and a new algorithm is given to significantly reduce the ac-

cumulated errors when stitching multiple images to generate 360◦ panoramas. The

algorithms have been implemented based on matching features to significantly reduce

the computations. Second, a matching-feature-based view interpolation algorithm is

proposed and the triangulation of the images, combined with an affine transforma-

tion model, has been applied for the texture mapping. In addition, a novel disparity

estimation algorithm is studied for view interpolation. Special transformations de-

termined from the physical imaging conditions to minimize the difference between

two source views are used in the algorithm. Finally, a simplified implementation

of the Concentric Mosaics technique is proposed. The camera positions, where the

pre-captured images are taken, are estimated from the pre-captured images. The

mathematical equations and the optimal solution of such large scale linear equations

with noisy coefficients are given, together with a set of associated methods such as

a closed-loop constraint, a ratio fitting technique, and an angle grouping method

x



xi

to improve the estimation precision. Simulation results demonstrate that each pro-

posed view synthesis method can generate valid views of good quality and satisfy

Image-Based Rendering application requirements.
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Chapter 1

Introduction

Navigation in a virtual environment providing a high-quality realistic experience has

been a very active research topic in recent years. Although most of the currently-

used techniques are based on computer-graphics methods to simulate a photo-realistic

effect, the techniques of Image-Based Rendering [1], [2], [3], [4], [5], [6] bring potential

to generate truly photo-realistic views based on real images.

The idea of Image-Based Rendering (IBR) is to generate arbitrary novel views of a

scene, anywhere within a certain navigation area and in any viewing direction, based

on a set of pre-captured images. It has become an active research topic with the avail-

ability of increased computing power and network bandwidth. The idea is illustrated

in Fig. 1.1. The panoramic view at the top of Fig. 1.1 represents a real scene (a real

3D environment). After sufficiently many pre-captured images, taken by an ordinary

camera at different positions and in different directions, are obtained and stored, a

view at any arbitrary position and in any arbitrary direction can be synthesized from

the pre-captured-image database. These synthesized arbitrary views can be regarded

as have been taken by a virtual camera. In this way, a real-image-based virtual en-

vironment is constructed and a user can navigate in it by controlling the trajectory

and orientation of the virtual camera, using either a local or a remote terminal. IBR

can provide the user with a highly realistic experience in many applications such as

e-commerce, teleconferencing, view-based maps, virtual museum visiting, new-worker

1
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Figure 1.1: The illustration of Image-Based rendering
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training, e-education, etc.

However, the implementation of an IBR system is very difficult. The research is

still in an initial stage and much remains to be done [7]. The current research work

is focusing on topics such as

• How many pre-captured images are necessary and sufficient to represent a par-

ticular environment?

• How to determine the camera positions and shooting directions in order to

obtain such a set of necessary and sufficient pre-captured images, if more than

one set exists?

• What are efficient acquisition methods to obtain such sets, or at least one set,

of necessary and sufficient pre-captured images?

• Given one such set of pre-captured images, how can the novel views be synthe-

sized (with good quality)?

• What are the optimal IBR techniques in the sense of increasing acquisition

efficiency, reducing rendering complexity and improving rendering quality?

• How can these pre-captured images, which usually involve a huge amount of

data, be compressed and stored so that they can be accessed efficiently during

the real-time rendering?

There exists neither a general answer to any of these questions nor a general

method for all IBR applications. Current work is focusing on different specific meth-

ods for different applications. Many IBR approaches have been proposed for specific

applications. In the different IBR approaches, the methods to obtain the pre-captured

images and to synthesize novel views are very different and are the distinguishing fea-

tures for different approaches. The methods of view synthesis usually depend on

the data structures of the pre-captured images, which are motivated by the differ-

ent strategies for scene representation and determined by the acquisition methods.
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Each IBR method has its own advantages and disadvantages. In the future, a com-

plete IBR system might be hybrid [8] and compatible with different structures of

the pre-captured image data obtained from different methods, using concepts such as

plenoptic primitives [9].

Neither a general answer to any of the above questions nor a general method for

IBR applications will be given in this thesis. Only after each particular technique

has been thoroughly studied can the above questions be precisely answered. In this

thesis, different approaches for view synthesis from the pre-captured images will be

studied. The methods to acquire pre-captured images and to organize these pre-

captured images in the different approaches will be investigated for generating novel

views from the pre-captured images. We will find that view synthesis is implemented

through the plenoptic function, which is used to represent the scene and relates the

synthesized views to the pre-captured images. In order to associate the pre-captured

images with the plenoptic function, the camera positions associated with these pre-

captured images must be known.

In the following section, the current research on different approaches for IBR will

be reviewed and organized in a general framework. Then, the different approaches will

be compared with each other, and the conclusions will determine the thesis orienta-

tion. The contributions will be described, followed by an overview of the organization

of the thesis.

1.1 Overview of current research on IBR

The framework of IBR is based on the concept of the continuous plenoptic function

[10]. In various IBR techniques, the environments are represented by pre-captured

images that contain discrete samples of the plenoptic functions. Based on the recon-

structed plenoptic functions, novel views can be synthesized for any specified position

and viewing direction.

Each view is constructed from all light rays entering the virtual camera, passing
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through the projection center of the camera at every possible angle (θ, φ) within the

field of view (FOV), where θ is along the horizontal direction and φ is along the vertical

direction. The entire set of light rays that can be perceived at every possible location

(Vx, Vy, Vz) and every time t can be represented by a seven-dimensional function, if

each light ray is decomposed into different wavelengths λ, as

P (θ, φ, λ, t, Vx, Vy, Vz), (1.1)

where P is the spectral radiance. The seven-dimensional plenoptic function can be

reduced to six dimensions by ignoring the time variable, which is appropriate for static

environments. The plenoptic function can further be reduced to five dimensions by

eliminating the wavelength variable,

Pi(θ, φ, Vx, Vy, Vz) =

∫
P (θ, φ, λ, Vx, Vy, Vz)qi(λ)dλ, i = 1, 2, 3, (1.2)

where the qi(λ) are ideally color-matching functions of human vision. In practice,

they are sensitivities of three color sensors, such as r(λ), g(λ) and b(λ). Thus, each

light ray will consist of three components for the tri-chromatic representation of a

color view in a given color space. We use vector P to denote [P1, P2, P3] for the

color-space representation of light rays,

P (θ, φ, Vx, Vy, Vz). (1.3)

Although it is difficult, if not impossible, to capture all the light rays within a certain

spatial area, the plenoptic function provides a mathematical model for the scene

representation where the light rays are organized in the viewer’s coordinate system.

The objective of IBR is to generate arbitrary views within certain ranges of viewing

positions and directions by obtaining or reconstructing the plenoptic functions from

the discrete plenoptic samples, which are extracted from the pre-captured images.

The plenoptic function is theoretically a continuous function, but it is represented

in discrete format in practice and its value at any arbitrary position and direction

can be obtained through interpolation. The ranges of possible viewing positions and

directions define the navigation space.
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In [11], the different image-based representations have been classified based on

whether or not geometric information about the scene is required and what kind

of geometric information (implicit or explicit) is required for a particular technique.

However, it will be helpful for any rendering algorithm if the scene geometry is avail-

able. In order to explore the relationship between different methods and to illustrate

the application scenarios of each method, the different techniques that have been

developed can be associated with one of three main approaches as shown in Fig. 1.2.

One goal of IBR is to eliminate the tedious work involved in building 3D model-

based scene representations using computer graphics primitives. If the 3D objects

in computer graphics can be generated using real images, the procedure of building

3D models may be largely simplified. In addition, the previous rendering framework

can still be used with improved rendering quality due to the more realistic generated

views. This form of representation is similar to the idea of representation using source

descriptions in [12]. Because the coordinate systems for the source descriptions are

world systems, the plenoptic functions are not explicitly expressed in this approach

and the rendering algorithms are similar to those in computer graphics.

Recently, research has been carried out on methods to generate novel views from

the pre-captured images in scenarios where the camera positions from where the pre-

captured are taken, and the virtual camera positions from where the novel views are to

be obtained, are close to each other. This approach is called general view interpolation

here and the methods developed include view interpolation [1], view morphing [13],

view transfer [14], [15], [16], etc. Only the reference views taken at positions that are

near the virtual cameras are required and only novel views with the virtual camera

close to the positions where several (at least two) pre-captured images have been

taken can be generated. In such a scenario, a few pre-captured images might be

sufficient to generate novel views within some limited local areas and toward some

specified viewing directions. This may be adequate for some applications. Moreover,

when more pre-captured images are available, the navigation areas and the ranges

of viewing directions can consequently be increased. Thus, these techniques are very
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Figure 1.2: Overview of different scene representations for IBR
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flexible for different application requirements.

Both of the above approaches require certain geometric information about the

scene, but in different formats. In the 3D-reconstruction approach, explicit geometry

of the scene has to be reconstructed for rendering, whereas implicit geometry of the

scene is usually used in the general-view-interpolation approaches. The relationship

between the above two approaches is illustrated in Fig. 1.3. Both methods essentially

include two steps: specifying the imaging position of the 3D scene points in the novel

views and mapping the texture from the reference views to the novel views. If the

Figure 1.3: Rendering with implicit or explicit geometry

scene geometry can be reconstructed, either from the reference images or from any

other methods such as using a range finder, the novel views can be obtained based

on the projection theory using the texture from the reference images (assuming that

the scene geometry and the texture in the reference images have been registered

if the scene geometry is obtained from a range finder). Thus, explicit 3D models
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of the scene are reconstructed in this approach. In the general-view-interpolation

approach, the novel views can be directly generated from the reference images using

the camera relationships among the reference views, and between the reference views

and the novel views. The 3D scene points are still used in order to obtain the above

relationships although they may not be explicitly reconstructed in space.

The plenoptic functions can also be explicitly defined using the light-field descrip-

tions, with pre-captured images that are taken using specially-designed procedures.

The manner in which the light rays are organized, the data structures of pre-captured

images, and the dimensions of the plenoptic functions can be very different with dif-

ferent techniques. Thus, they have different rendering algorithms, navigation area

constraints, technical requirements for implementation, etc. The methods used within

this category are technique dependent. For example, Light Field Rendering [4] indexes

each light ray in the plenoptic function using two planes, whereas the Concentric Mo-

saics technique [17] uses a very different way to index each column in the pre-captured

images taken on a circular path.

The dashed-line parts in Fig. 1.2 describe possible conversions between different

representations. When the 3D models of the scene are reconstructed (both geometry

and texture), the plenoptic functions can be obtained by moving a virtual camera

to capture the required images for light-field representations. Then the model-based

rendering is converted to the light-field approach. Similarly, the plenoptic functions

can be obtained from the pre-captured images together with additional images that

can be interpolated through the general view interpolation approach for particular

ranges of viewing positions and directions. Thus the essential difference between

different methods is the different data structures of the plenoptic function represen-

tations. Different approaches may be used collaboratively in one particular method.

The plenoptic functions may also be converted from one format to another, or to

one with reduced (or equivalent) dimensions. The considerations for selecting one

particular technique are generally application-based.

The various types of image-based representations that have been developed can
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be summarized as shown in Fig. 1.4, which is a more detailed version of Fig. 1.2. In

the following sections, we briefly introduce the major techniques within these three

approaches:

• 3D geometry reconstruction (the top branch within dashed rectangle in Fig. 1.4)

• general view interpolation (the middle branch within dashed rectangle in Fig. 1.4)

• light-field description (the bottom branch within dashed rectangle in Fig. 1.4)

1.1.1 Approaches based on 3D geometry reconstruction

The methods in this category use the explicit geometry of the scene to be represented.

The geometry of the scene can be obtained from a range camera, or range finder,

and then be registered with the correspondent texture in the pre-captured images.

However, a representation of the scene geometry is most often obtained using cor-

respondences (matching features or dense disparity maps) between the pre-captured

images along with the appropriate camera models.

After completely reconstructing the 3D geometry of the scene, IBR has been

converted to the traditional model-based rendering of computer graphics, allowing the

advanced techniques in computer graphics to be used in the rendering procedure. For

example, the 3D warping algorithm is factorized into a simple pre-warping stage and

a standard texture mapping procedure [18]. Texture mapping has been extensively

studied in computer graphics and can be accelerated by standard graphics hardware.

It is well known in computer vision that the precise 3D reconstruction of an

environment is very difficult and expensive. However, as long as some kind of 3D

model is available (precisely, roughly, or even partially), it is helpful to use it in

IBR for view synthesis. These 3D models are usually mesh or volumetric models [19].

Many methods for 3D model reconstruction have been reported in the literature, such

as visual-hull-based methods [20], [21], and voxel-based methods[22], etc.

Realizing the difficulties to precisely reconstruct the environment with a perfect

3D geometric model, the locally reconstructed model using the stereo technique has
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Figure 1.4: The overview of representations based on implicit plenoptic functions
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been proposed [23]. The local geometry of the scene is usually in the form of a depth

distribution. The depth values are related to the camera positions in the viewer’s

coordinate systems. Obviously, this local geometry, or depth distribution, is only

helpful for a limited range of viewing positions and directions due to the complex

occlusion relationships between different objects in the scene.

The depth values for the correspondent scene points are associated with each pixel

in the pre-captured images. A 3D warping algorithm based on dense depth maps has

been proposed [24]. The dense depth maps are also used in [25] for texture mapping.

A new depth-based representation for IBR namely layered depth image (LDI) was

proposed in [26]. In this method, multiple depth values from different viewpoints

for a same scene point are associated with one pixel in a certain view for a concise

representation in order to deal with the occlusion problem. The representation is

extended to a more general one using LDI trees [27].

In addition, the concept of view-dependent geometry [28] and thus the method of

view-dependent texture mapping [8] has been proposed with an efficient implemen-

tation [29]. The partially reconstructed 3D model [30] is used for view synthesis to

improve the rendering quality.

1.1.2 General-view-interpolation approach

One idea for IBR is to jointly apply the techniques of panoramic views [2] and view

interpolation [1]. Novel views with similar positions and directions to those of pre-

captured images can be interpolated. A more complete framework for this approach

is plenoptic modelling [3]. Novel views are interpolated directly from cylindrical

panoramas in this method. As a special case, the panoramic video can be used [31]

if the navigation is constrained on certain pre-defined paths. Some initial research

work using similar constraints appears in [2], [32], [33].

For the general view interpolation approach, the 3D structure or depth values

may not be explicitly recovered. The novel views are directly generated from the
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pre-captured views. In this approach, both the dense disparity maps between pre-

captured views, and the camera’s relative positions where the pre-captured images

are taken, are required. Thus, the scene geometry is still involved in an implicit way.

The key requirement for this class of approaches is to determine the relationships of

the correspondent matching points between the reference views and then specify the

positions of these correspondent points in the novel views. The way to specify the

positions of dense matching points in the novel views can be very simple [1] if the

camera’s relative positions are simple, such as the case of parallel camera views. More

generally, the positions of the dense matchings in the novel views are specified through

epipolar geometry constraints, using quantities such as the fundamental matrix [14]

or the trifocal tensor [15], [16]. This kind of approach is termed view transfer. The

epipolar geometry relationships can be computed through a set of reliable matching

features, such as corners [34].

View interpolation can also be carried out using sparse matching features. In view

morphing [13], the new views are transformed from one reference view. Although it

is the only possibility when just one reference view (pre-captured image) is available,

the most significant contribution in this method is to convert the two-dimensional

processing to a one-dimension one after view rectification, so that the view morphing

is carried out line-by-line in the horizontal direction. The approach can be easily

extended to view interpolation by using the texture from two reference images [35]

[36]. The methods can also be easily extended to the methods using dense disparity

maps if they are available.

1.1.3 Approach based on light field description

Recently, a new class of approaches that explicitly implement the plenoptic functions

for IBR applications has been introduced [17], [4]. The camera’s movements when

taking pre-captured images are usually specially constrained in order to obtain the

sufficient and necessary light rays of the plenoptic functions in a systematic way. The

most significant advantage of this approach is that rendering of the novel views can be
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independent of the scene geometry if a sufficient number of pre-captured images are

available. Thus, these methods are classified into the category of rendering without

geometric information in [11]. However, geometric information about the scene can

still be helpful for interpolation of new light rays in the rendering procedure if it is

available, especially when the plenoptic functions are not sufficiently sampled. Due to

the difficulties of acquiring plenoptic functions with the full number of dimensions, the

plenoptic functions are usually represented with reduced dimensions in the current

techniques to simplify the technical requirements. As a consequence, the range of

navigation areas and/or the viewing directions may be limited. The approach is

considered as restraining the viewing space [12].

It is impossible to pre-capture all light rays in the plenoptic function and it is in

many cases not necessary to do so. This is the basic idea behind this approach. Based

on the assumption that the light rays do not change along their locus of propagation,

the light field modelling techniques aim at using only necessary light rays to represent

all the light rays in the plenoptic function. As shown in Fig. 1.5, one light ray passes

Figure 1.5: A light ray in free space

through P1, P2, P3, P4, P5, and P6. Thus, instead of using six light rays, one light

ray is enough to represent all six light rays toward these six positions in the specified

direction and in fact all positions along its propagation trace. Thus the techniques

of light field modelling use a set of pre-captured images to extract the representative

light rays. The rendering of any arbitrary view is the procedure of recombining the

properly selected light rays for a specific location and view direction.
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Essentially, the approach technically provides a new method to obtain the light

rays, the basic elements participating in the rendering, which are extracted from the

pre-captured images taken in a specific constrained fashion. The approach is thus very

convenient for rendering due to the efficient IBR data representations. The conversion

from representations based on 3D reconstruction to representations based on light

field description are possible. The representations based on light field description can

also possibly be obtained by using the pre-captured images together with some other

required views which can be interpolated from the pre-captured images.

The concrete techniques of different light-field-based representations are classified

according to the dimensions of the plenoptic functions that are actually implemented.

More details on different plenoptic function representations with different dimensions

can be found in [11] and [12]. The key problem in the techniques based on the light-

field description is how to record the representatives of all possible light rays by means

of pre-captured images and thus efficiently index each light ray. The major known

techniques include panoramas [2], Concentric Mosaics [17], and Light Field Rendering

[4].

Panoramic views [2] are the simplest method for the IBR application. Although

the panoramas can be captured by a camera with large field of view [37], with a single

specially designed optical system, the lens distortions are usually very large. Thus

a more attractive approach is to stitch multiple images, giving the so-called image

mosaics. These multiple images could be obtained from one moving camera or special

multiple camera systems such as the Ladybug camera [38], etc.

If multiple overlapped images are taken by a camera rotated around its projection

center or by multiple cameras sharing the same projection center, they usually are

warped onto a common virtual imaging surface to minimize the differences in the

overlapped area. The commonly used surfaces are cylindrical, spherical, or cubic

surfaces. Then the adjacent images with some overlapping area can be stitched [39].

It is very difficult to rotate a camera exactly around its projection center, or to

constrain the projection centers of multiple cameras to be at exactly the same position
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in practice, and thus discontinuities may appear in the stitched images. In order to

reduce these discontinuities, research has been carried out to recover the camera’s

positions and thus to adjust the camera position relationships [40], [41], [42]. Work

has also been done to eliminate ghosts due to possible moving objects in the scene

[43].

Another kind of image mosaic involves stitching images with multiple projection

centers, or manifold mosaic [44]. The key technique here is also try to minimize the

discontinuities in the stitched view. A slit camera model with a pipe surface as the

common virtual imaging surface was introduced in this work.

The user has only very limited freedom when navigating in a panorama-based

virtual environment. With a large number of pre-captured images, Light Field Ren-

dering [4] provides a way to strictly obtain explicit plenoptic functions and allows the

user to navigate in a bounded 3D space. In this method, a two-plane reference system

is used to index the light rays in the pre-captured images and a 4D plenoptic function

is mechanically implemented by precisely controlling the camera’s movement. Similar

methods but using two spherical surfaces [45], or one spherical surface and one plane

[46] as the reference system to index light rays have also been proposed. In addition,

an algorithm to speed up the light field rendering was studied in [47]. A technique

similar to Light Field Rendering, known as the Lumigraph technique, uses a set of

irregularly spaced pre-captured images and the rough scene geometry, obtained in a

pre-processing step [5]. The rendering algorithms for the Lumigraph technique are

described in [30].

In order to reduce the technical requirement to implement the IBR techniques

based on light-field-description, the concentric mosaics technique was proposed in

[17]. It is a clever way to reduce the dimensions of the plenoptic functions for scene

representations by introducing column-based view synthesis. The columns in the

pre-captured images are the basic units participating in the view synthesis. The

column-based view interpolation is also used in [48].
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1.1.4 Comparison of different approaches and application con-

siderations

In the approaches based on the light-field-description, the plenoptic function is rep-

resented by the representative light ray samples which are extracted from the pre-

captured images. The light rays, the basic elements that will be used in the rendering,

are organized in the viewer’s coordinate system. Thus, the rendering is straightfor-

ward and relatively easy. The number of pre-captured images is usually large with a

great deal of data redundancy. With advanced techniques in data compression, this

will not be a significant problem. The key issues for this approach are the technical re-

quirements for implementation. Ideally, the camera positions where the pre-captured

images are taken should be precisely located at the pre-determined positions through

the use of mechanical control systems. The camera positions may also be estimated.

Both the position-control precision and the estimation precision will directly affect

the quality of the rendered views.

For the methods using general view interpolation, the geometry of the 3D scene is

usually used implicitly and fewer pre-captured images are required. The number of

pre-captured images is determined by the ranges of viewing positions and directions

that are specified by application requirements. This property makes this approach

very flexible. In both view interpolation and view transfer approaches, the intensities

and the colors of the same scene points are assumed to be unchanged (the Lambertian

assumption) in the related pre-captured images, and that is the basic principle used

to obtain the dense disparity maps and the matching features. The approach relies

on robust algorithms to obtain precise dense disparity maps, which is a fundamen-

tal problem in computer vision. The quality of the rendered novel views is usually

significantly affected by the precision of the correspondent matching relationships in

the different views.

The methods based on 3D reconstruction models are very efficient and many

advanced techniques for model-based rendering in computer graphics can be directly

inherited once the 3D models are available. However, the precise and robust 3D model
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reconstruction is a very difficult problem in which research has been carried out for

more than twenty years and much still remains to be done.

On the other hand, the application specifications are the essential considerations

before a specific IBR technique is selected. There are three main considerations: the

required quality of the rendered views, the constraints on the navigation (in both

position and viewing direction), and the cost of a particular technique. The cost

includes the technical requirement to obtain the pre-captured images, the quality of

data relating to the pre-captured images to be processed and stored, the complexity

of the rendering algorithm, etc.

The idea can be illustrated using the panoramas as an example, which are cur-

rently very popular in practical applications. The methods to obtain the pre-captured

images are very simple and the number of required pre-captured images is low. The

rendering algorithms are almost standard for each different panoramic representation

(cylindrical, spherical, cubic) with acceptable quality of the rendered novel views.

The rendering algorithms are simple and thus can be implemented in real-time. The

significant drawback is the limited navigation area. As a consequence, the tradeoff

between the above considerations has to be balanced in developing a successful IBR

method.

1.2 Thesis Orientation

Considering that it is very difficult and expensive to recover the 3D model and the

depth distributions of a scene, the approaches based on reconstruction of 3D scene

geometry will not be studied in this thesis. The current algorithms to recover 3D

scene geometry are usually not robust and reliable, although the author does believe

that the depth information will be helpful in various IBR techniques.

Panoramas are the most basic and important technique for various IBR applica-

tions. Panoramic views can be generated from pictures taken by an ordinary camera

mounted on a tripod and rotated around its projection center. These multiple images
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with overlap area between adjacent ones have to be stitched to generate panoramic

views. In the view mosaicking technique, the overlap area registration is required

before two adjacent views can be stitched. The current research is focused on re-

covering the camera pose with which the pre-captured images have been taken. The

camera-pose recovery is usually based on the different general camera motion models.

Complex camera motion models are usually required in such situations, but a more

complex model does not necessarily yield better results. A simple, but non-linear

model, which is focused on concrete algorithms for panoramic view generation will

be studied in this thesis.

View interpolation and view transfer are the basic techniques needed to recover

the plenoptic functions using a small number of pre-captured images. Most of the

previous approaches are based on dense disparity maps and in the scenario that

the novel views are generated from two reference views, in which the correspondent

matching relationships are established. In IBR applications, robust algorithms to

interpolate novel views from multiple reference views are useful. Thus, we will study

view interpolation and view transfer from multiple nearby views with similar imaging

directions.

Light Field Rendering and Concentric Mosaics are two special representative tech-

niques using the light field description. By comparing the technical requirements for

practical implementation, we find that the Concentric Mosaics (COM) technique is

easier to implement. A Simplified Concentric Mosaics (SCOM) technique using non-

uniformly distributed pre-captured images is proposed in this thesis, which further

reduces the technical requirements for implementation. In the proposed SCOM, the

camera positions are estimated from the pre-captured images. In this way, the cam-

era positions where the pre-captured images are taken do not have to be precisely

controlled as conventional COM requires. Moreover, the data structure of the COM

and SCOM will be compared to illustrate the similarities between the rendering pro-

cedures of COM and SCOM.
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1.3 Organization of the thesis

In Chapter 2, the mathematical model for IBR, i.e., the plenoptic function, will be

presented. The topics studied in this thesis will be illustrated with respect to this

model.

In Chapter 3, a new method for registration and stitching of adjacent views in

an image mosaic, specifically for cylindrical panoramas, is described. The possible

registration errors for the overlap area of two pictures captured by a camera mounted

on a tripod at different rotation angles have been analyzed based on a general camera

rotation model. Then a novel algorithm is proposed based on both affine adjustment

and focal-length adjustments on the optimal strip block where the stitching will be

implemented. Matching features in the overlap area have been used as control points

to implement the proposed method. The registration is carried out based on the

positions of the selected matching features instead of the texture in the overlap area.

The stitching errors can be greatly reduced because a narrow strip block is selected

instead of the whole overlap area. In addition, a novel algorithm is developed to reduce

the accumulated registration errors in the overlap area between the first image and

the last image when stitching a set of images that cover 360◦ view one by one in order

to generate cylindrical panoramas.

In Chapter 4, view interpolation from adjacent images is studied. First, a method

for view morphing and interpolation based on triangulation is presented. View mor-

phing is regarded here as a basic tool for view interpolation. In the proposed method,

the view change is specified through the motions of feature points, which serve as

control points. The triangulation of the images, combined with an affine transforma-

tion model, has been applied for the texture mapping. The method to interpolate

views from two source images has been extended to that from three source images

for IBR applications. Then, a novel dense-disparity-based view interpolation algo-

rithm for IBR application is given. The algorithm aims at the scenarios where the

traditional dense-disparity-based view interpolation fails to provide good interpolated

views. The reasons why the traditional dense-disparity-based view interpolation does
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not work well are illustrated and the improved algorithm follows.

In Chapter 5, an IBR rendering technique to simplify the implementation of the

conventional COM technique, named Simplified Concentric Mosaics (SCOM), has

been proposed. In SCOM, the camera positions are estimated from the pre-captured

images instead of being precisely controlled. An algorithm based on the stereo tech-

nique will be proposed for the camera rotation angle estimation in this special sce-

nario. The algorithm includes several techniques, such as the closed-loop constraint,

the ratio fitting method, using total least squares method to solve linear equations,

etc. In addition, a pre-processing step to eliminate or reduce the possible vertical

offsets and other distortions in the pre-captured images is also proposed, since in

a column-based view synthesis technique like the proposed method and the ordi-

nary Concentric Mosaics technique, these vertical offsets and distortions in the pre-

captured images will lower the quality of the synthesized images. Thus these methods

can be applied on both the proposed SCOM technique and the conventional COM

technique.

In addition, the pre-captured image data structures of both COM and SCOM

have been illustrated and the comparison has been made. It can be shown that the

proposed technique has a similar data structure and thus a similar rendering algorithm

as the ordinary COM technique. As a result, it meets our objective that an ordinary

user can obtain the COM technique-based image data and plug it into a common

COM rendering framework.

The thesis will conclude with a summary of contributions that have been achieved

in this thesis research and directions for future work.



Chapter 2

Theoretical framework and

background

The goal of IBR is to generate views of an environment from arbitrary locations

within a certain navigation area. These views can be regarded as pictures taken by a

moving virtual camera at the specified locations. They can be synthesized from the

plenoptic function, which is a complete set of light rays of the scene:

Ψ = {P (θ, φ, Vx, Vy, Vz)} (2.1)

where, P (θ, φ, Vx, Vy, Vz) denotes the trichomatic color components of one light ray

passing through point (Vx, Vy, Vz) in direction (θ, φ).

Light rays at a sufficient number of positions and directions must be obtained in

order to adequately reconstruct the plenoptic function. These light rays are usually

extracted from a set of pre-captured images of the environment. Thus a sufficient

number of pre-captured images is needed, and the camera positions and orientation

where these pre-captured images are taken must be known.

Thus we see that the plenoptic function relates the pre-captured images to syn-

thesized views. In other words, the novel views are essentially generated from the

pre-captured images through the plenoptic function representation, which provides

an efficient way to organize the light rays in space.

22
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For a particular IBR application, the requirements are to generate arbitrary novel

views: (1) at any position (Vx0, Vy0, Vz0) in a certain 3D space; (2) in any viewing

direction (θ0, φ0) within a certain range. The view direction ranges at different viewing

positions are not necessarily the same. In order to simplify the illustration, a fixed

viewing range is used here. Assume that the novel views are generated by a virtual

camera with field of view F ′. An arbitrary view I
′
k, k = 1, 2, 3, ..., K

′
is generated by

P (θ, φ, Vxk, Vyk, Vzk) where K
′
is the total number of arbitrary views that are required

to be generated. (Vxk, Vyk, Vzk) is the projection center of camera capturing I
′
k and

(θ, φ) ∈ F ′. The values of the plenoptic function that are defined on the set

Nk = {(θ, φ, Vxk, Vyk, Vzk)|(θ, φ) ∈ F ′} (2.2)

are required to generate I
′
k. The navigation space is defined as N =

⋃K
′

k=1Nk.

In another words, any arbitrary view can be generated from values of the plenoptic

function on the set N .

On the other hand, the capture space can be defined in a similar fashion. A

physical camera captures a set of image Ik, k = 1, 2, 3, ..., K. In the same way, each

image Ik gives information about P (θ, φ, Vxk, Vyk, Vzk) where (Vxk, Vyk, Vzk) is the pro-

jection center of camera capturing Ik and (θ, φ) ∈ F . F is the camera’s field of view.

The capture space is defined as C =
⋃K

k=1 Ck where

Ck = {(θ, φ, Vxk, Vyk, Vzk)|(θ, φ) ∈ F}. (2.3)

K is the total number of pre-captured images.

Due to the property of a light ray, i.e., its intensity changes very slowly along its

propagation path, there is much redundancy in navigation space N . The values of the

plenoptic function at certain different (θ, φ, Vxk, Vyk, Vzk) can be the same or almost

the same. Some IBR techniques such as Light Field Rendering aim to provide more

concise representations of the plenoptic function though reducing such redundancy.

Similarly, we can infer, by interpolation and extrapolation, values of the plenoptic

function at points outside of the capture space C.
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Given a particular IBR technique, the positions and shooting directions of the

pre-captured images are well planned. Thus, the values of the plenoptic function

P (θ, φ, Vxk, Vyk, Vzk) in navigation spaceN can be estimated by given P (θ, φ, Vxk, Vyk, Vzk)

for (θ, φ, Vxk, Vyk, Vzk) ∈ C. N depends on C. The objective of IBR techniques is to

find effective methods on how to select C in order to maintain the number of the

pre-captured image K as small as possible to generate the desired N . Thus, a large

number of novel views K
′
(even infinite in theory) can be synthesized. The capture

space C that can generate N with minimal number of the pre-captured images is an

optimal solution, which is very difficult to obtain in practice.

The light rays that can be extracted from the pre-captured images are discretely

distributed in space whereas the plenoptic function is a continuous function of its

independent variables. Thus a discrete capturing space is essentially obtained to

represent the correspondent capturing space in order to generate a specified navigation

space.

Usually, the pre-captured images and the synthesized views are conventional dis-

crete planar images. The relationship between the conventional discrete planar image

and its plenoptic function representation is studied first in section 2.1. They are re-

lated through the basic element of the plenoptic function, i.e., the light ray.

The panorama is a fundamental and important representation for IBR applica-

tions. It can provide some simple functions for some IBR applications and can also

serve as the basic representation format for some other IBR applications. Thus, the

relationship between a panorama and its plenoptic function representation will be

given in section 2.2. View interpolation from the adjacent views will be one of the

main topics in this thesis. An extended range of navigation space is obtained by ex-

ploring the capturing space, which is achieved through matching corresponding points

in different views and then specifying the motions of corresponding 3D points. This

scenario will be modelled in the plenoptic function framework in section 2.3. In the

last section, the techniques based on light field description will be briefly discussed,

providing another way to explore the capturing space.
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2.1 Plenoptic function representation of conven-

tional discrete planar images

Conventional discrete planar images can be associated with the values of the plenoptic

function at certain positions and in certain viewing directions, and the novel views

which are generated from the plenoptic function are also conventional discrete planar

images. It is fundamental to illustrate how such conventional discrete planar images

are related to the basic elements in the plenoptic function, namely the light rays.

Let W define the area where a planar image I(x, y) is defined and set I(x, y) =

0, (x, y) ∈ R2 \W . I(x, y) is generated from the set of light rays toward one specified

position V0(V0x, V0y, V0z) within a certain viewing range. The values of plenoptic

function within such viewing range can be represented by,

Ψ0 = {P (θ, φ, Vx, Vy, Vz)|θ ∈ Θ0, φ ∈ Φ0, Vx = V0x, Vy = V0y, Vz = V0z} (2.4)

where sets Θ0 and Φ0 determine the ranges of viewing directions which are constrained

by the camera’s field of view in both horizontal and vertical directions.

Assume there is a one-to-one mapping between (x, y) and (θ, φ). We use Q to

denote this mapping relationship, i.e., Q : (x, y) 7→ (θ, φ) or Q−1 : (θ, φ) 7→ (x, y).

Thus the range of viewing directions is given by (Θ0, Φ0) = QW = {(θ, φ)|(θ, φ) =

Q(x, y), (x, y) ∈ W}.
The relationship between the plenoptic function, i.e., the set of light rays, and the

image can be illustrated with Fig. 2.1 by an ideal pinhole camera [49]. In Fig. 2.1, the

imaging intensity I(λ, x, y) at point A, (x, y), is proportional to the spectral irradiance

of the light ray reaching this point, or P (λ,Q(x, y), V0x, V0y, V0z). This relationship

can be represented as,

I(λ, x, y) ∝ P (λ,Q(x, y), V0x, V0y, V0z), (x, y) ∈ W. (2.5)

The conventional discrete image Î(m,n) (represented in a certain color space) is
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generated by,

Îi(m,n) =

∫ ∫ ∫
I(λ, m+s1, n+s2)qi(λ)a(s1, s2)dλds1ds2, (m,n) ∈ W∩Λ, i = 1, 2, 3.

(2.6)

Here, I(λ,m + s1, n + s2) should be I(λ, mX + s1, nY + s2). X and Y are sampling

spacings along x and y directions, respectively. For simplicity, we set X = Y = 1. The

qi(λ) are ideally the color matching functions. In practice, they are the sensitivities

of three color sensors, such as r(λ), g(λ) and b(λ). Îi(m,n), i = 1, 2, 3 represent

the three color components of image Î(m,n), and a(−s1,−s2) defines the impulse

response function of the camera, or point-spread function (PSF). For an ordinary

camera with circular aperture (diameter d) and the focal length f , the PSF is defined

as,

a(s1, s2) = 2
J1(π

√
s2
1+s2

2

r0
)

π

√
s2
1+s2

2

r0

(2.7)

where J1(·) is the first-order Bessel function of the first kind. The parameter r0 is

called the Abbe distance and is determined by the optical property of the camera

system. The integration is applied within each sensor element, which usually is a

rectangular area. Usually, the sampling density on the lattice Λ, or the density of

the sensor elements, should match with the Abbe distance of the optical system;

otherwise an extra low-pass anti-aliasing filter has to be introduced before sampling.

In practice, the PSF can be modelled as some other functions such as Gaussian

function and the relationship between imaging model and observation model has

recently been discussed for image magnification application [50].

It should be noted that the capturing space represented by this set of light rays

can be much larger than the limited area on the imaging plane because the light ray

will not change rapidly along its propagation path.

Thus, the relationship between the conventional discrete image Î(m,n) and the
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light rays P (θ, φ, Vx, Vy, Vz) can be represented by,

Îi(m,n) =

∫ ∫ ∫
P (λ,Q(m,n), V0x, V0y, V0z)qi(λ)a(s1, s2)dλds1ds2,

(m,n) ∈ W ∩ Λ, i = 1, 2, 3.

(2.8)

after proper normalization. In the future, we may use image I to represent its three

color components of Ii, i = 1, 2, 3. The subscript of I will not represent the color

component of the image unless it is specified explicitly.

From the above relationship between the conventional planar image and the

plenoptic function, we can conclude that a discrete plenoptic function, or plenop-

tic function defined on a discrete capturing space, is essentially obtained from the

discrete pre-captured images. The sampled positions in the capturing space are not

uniformly distributed, and the distributions on a certain area are significantly af-

fected by the distance from the camera position to that area. If multiple images are

taken, the positions and orientations of the camera where the pre-captured images

are taken determine the sampling of the capturing space and the sampled positions

can be irregular.

This non-uniform or even irregular sampling of the plenoptic function will affect

the quality of the synthesized views, which are generated assuming that the plenoptic

function is continuous, and thus the sampling density issue of the capturing space

has to be considered when designing the pre-captured acquisition part of an IBR

system. However, if the camera positions where the pre-captured images are taken

are close to the positions where the novel views will be generated, the problem can

be relieved when assuming the physical and virtual cameras have similar parameters

(the diameter of the aperture and the focal length). Thus, we will not specifically

address this issue in this thesis.

The light ray interpolations have to be carried out when generating novel views

from discrete plenoptic functions, or essentially from the pre-captured images. The

pre-captured images have undergone lowpass filtering due to the limited camera aper-

ture. Thus the novel views can be obtained from the continuous version I, which is
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interpolated from Î using a linear interpolation operator H, i.e. I(x, y) = (HÎ)(x, y),

through any suitable interpolation method such as bilinear, bicubic, or spline.

2.2 Panoramic Views

Panoramic views are also formed by groups of light rays, specifically groups of light

rays with extended ranges of view directions (θ and φ) at one particular location

V0(V0x, V0y, V0z). The spherical, cylindrical and cubic panoramas have different view-

ing direction ranges. For cylindrical panoramas, Θ0 is defined to be [0, 2π] and Φ0 is

determined by the camera’s vertical field of view. Theoretically, Θ0 can be defined

from 0 to 2π and Φ0 can range from −π/2 to π/2 for spherical panoramas, which

might not be necessary for practical applications. Cubic panoramas provide another

method for panoramic representation, which can have the same viewing direction

ranges as cylindrical or spherical panoramas. In the following discussion, we will

use the cylindrical panorama as an example to illustrate the relationship between

panorama and plenoptic function representation, which is similar to the relationship

between conventional planar image and plenoptic function representation.

Assume Ip(x, y) is a cylindrical panorama ((x, y) defined in the coordinate system

located on the cylindrical surface, as shown in Fig. 2.2). The relationship between

the panorama and the light ray is similar to that for planar images,

Ip(x, y) = P (Qp(x, y), V0x, V0y, V0z), (x, y) ∈ Wp. (2.9)

Wp is the area where Ip(x, y) is defined. Qp is the mapping relationship between (x, y)

and (θ, φ). The discrete version of the panorama, denoted by Îp(m,n), is actually used

in practice after spatially filtering by the optical system and the sensor element of the

camera (which could be a virtual camera). This is similar to what we have illustrated

in the previous section for the planar conventional image. Thus, the corresponding

set of discrete light rays is defined on discrete values of (θ, φ) = Q−1
p (m,n) through

Îp(m,n). As opposed to the situation with the conventional planar image, the discrete

values (θ, φ) are uniformly distributed in Θ0 and Φ0, respectively. A panoramic view
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Figure 2.1: basic imaging principle: relationship between plenoptic function and
image

Figure 2.2: The coordinate relationship for warping an image onto a cylindrical surface
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represents a restricted plenoptic function and provides some basic IBR functions for

navigation. It can generate arbitrary views at one particular position in the navigation

space and synthesize approximate views when moving forward and backward along

radial directions. These properties can be obtained by analyzing the capturing space

that a panorama represents.

The panoramas can be captured by a panoramic camera or generated by a set of

images that are taken by an ordinary camera mounted on a tripod and rotated around

its imaging center. In this way, the set of light rays represented by a panorama is

constructed by some subset of light rays with overlapped definition ranges,

Ψ0, p = Ψ0,1 ∪Ψ0,2 ∪Ψ0,3... ∪Ψ0,i... ∪Ψ0,N (2.10)

where,

Ψ0,i = {Pi(θi, φi, Vx, Vy, Vz)|θi ∈ Θi, φi ∈ Φi, Vx = V0x, Vy = V0y, Vz = V0z},
i = 1, 2, ..., N.

(2.11)

For cylindrical panoramas, the horizontal viewing ranges Θi, i = 1, 2, ..., N are over-

lapped. For spherical panoramas, both horizontal viewing ranges Θi, i = 1, 2, ..., N

and vertical viewing ranges Φi, i = 1, 2, ..., N are overlapped.

Each of the Ψ0,i can be obtained from the conventional planar images Ii(x, y)

(i = 1, 2, ..., N) captured by an ordinary camera. However, the (θ, φ) values have

to be uniformly distributed in the ranges Θ0 and Φ0 for panoramic views. Thus,

the conventional planar images Ii(x, y) have to be processed so that all θi and φi,

determined by the processed images, are uniformly distributed in their correspondent

ranges. These processing procedures are termed warping, which map the conventional

images onto a common surface such as a cubic, cylindrical or spherical surface, as if

they were captured by a camera with its imaging sensor on this common surface.

The warping process can be denoted by W and (WIi)(x, y) is obtained after applying

warping on Ii(x, y). The warping processing here is essentially a transformation

between different coordinate systems. For example, it is a transformation from an

ordinary coordinate system on a plane to a coordinate system defined on a cylindrical
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surface when generating cylindrical panoramas in our example. Further details will

be discussed in following chapter.

The warped images can then be stitched together to generate the panoramic image

Ip(x, y). Due to the warping process, there are some distortions that can be observed

in panoramic views. After a panorama at a certain position has been obtained, any

view at the given position within a certain viewing-direction range can be obtained

by selecting the correspondent light rays for a particular viewing range. However, the

current synthesized views are in a warped state, or defined in the coordinate system on

a cylindrical surface. Thus, a de-warping processW−1, I(x, y) = W−1Ip(x, y), (x, y) ∈
W1 has to be applied on particular viewing ranges of (θ, φ) to generate the planar

images without warping distortions. The area W1 is defined by the viewing ranges

(θ, φ).

The overall procedure for using panoramas for IBR applications can be briefly

described in the following. The overlapping conventional discrete images Îi(m,n),

(m,n) ∈ Wi ∩ Λ are taken by a camera mounted and rotated on a tripod around

the camera center or by a multi-camera system sharing the same imaging center.

The warped images (WHÎi)(x, y) can be obtained from (HÎi)(x, y). In practice,

the discrete images (WHÎi)(m,n) (obtained from (WHÎi)(x, y) using the method

similar to equation (2.6)) are used for stitching to generate the discrete panorama

Ip(m,n), (m,n) ∈ Wp ∩ Λ. A novel view for a particular viewing range (Θk, Φk),

((Θk, Φk) ⊂ (Θ0, Φ0)), can be generated by de-warping (HÎp)(x, y), (x, y) ∈ Wp,k in

the particular range Wp,k = Q(Θk, Φk) , i.e. (W−1HÎp)(x, y). The discrete image

Î(m,n), (m,n) ∈ Wk ∩ Λ is actually obtained. Wk (the range where Î is defined) is

determined by Wp,k (the correspondent range that Îp is selected). When the virtual

camera moves along the radial direction from point V0x, V0y, V0z, the correspondent

views can be approximately obtained through zooming. In the zooming mode, the

light rays in the plenoptic function representation on the area where it is not defined

are approximated by the values within its capturing space.

The panoramic views provide restricted plenoptic functions for some basic IBR
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applications which have been widely used recently. All novel views at one specified

position, and views when moving forward and backward in the radial direction from

the specified position, can be synthesized from a panorama. The panoramic views

also serve as a basic technique for other IBR approaches due to their efficient way to

represent all light rays toward one particular position. For these reasons, panoramas

are considered as an important and basic technique in IBR and will be discussed

further in Chapter 3.

2.3 View interpolation from adjacent views (par-

tial plenoptic-function representations)

With the panoramic view, arbitrary views in all possible viewing directions, i.e., all

possible values of (θ,φ), at one specified position V0 can be obtained through the

plenoptic function represented by a panorama.

Since it is impossible to capture all images at every point, i.e. all possible values

of V (Vx, Vy, Vz) within the navigation area, a straightforward method is to capture

some representative images to generate the panoramas at some particular locations

within the navigation area and synthesize views (or panoramas) at other specified

locations through view interpolation. In this way, methods to determine the camera

positions (V0x, V0y, V0z) where the representative images are taken and algorithms for

view interpolation are required.

The idea of view interpolation is based on the Lambertian assumption. For a

given scene point S, its imaging point in image I1 is located at (x1,s, y1,s) and at

(x2,s, y2,s) in image I2. Images I1 and I2 have similar viewing directions and can

be conventional planar images or parts of panoramas. If image I1 is captured at

V 0,1(V0x,1, V0y,1, V0z,1) and Image I2 is captured at V 0,2(V0x,2, V0y,2, V0z,2), then the cor-

respondent light rays represented by these two images are P (θ1, φ1, V0x,1, V0y,1, V0z,1)
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and P (θ2, φ2, V0x,2, V0y,2, V0z,2), respectively. The Lambertian assumption can be ex-

pressed as,

P (Q(x1,s, y1,s), V0x,1, V0y,1, V0z,1) ≈ P (Q(x2,s, y2,s), V0x,2, V0y,2, V0z,2). (2.12)

If the depth of any scene point (the distance from the scene point to V 0,1) which

can be projected to image I1 is known, the view I2 can be generated from image I1

based on the above Lambertian assumption. This is the technique termed view mor-

phing [13], which has been widely used in computer graphics. In the above condition,

position (x2,s, y2,s) can be calculated from the V 0,1, V 0,2, (x1,s, y1,s), the distance

from S to V 0,1, and the virtual camera’s internal parameters (the image center and

the focal length) based on simple geometric relationships. Similar relationships for

imaging-position transfer can be applied for any other points in image I2. Thus, the

transformation from discrete image Î1(m, n) to Î2(m,n) is the change of sampling

structure.

Î2(m,n) = (HÎ1)(m + x2,1(m,n), n + y2,1(m,n)), (m, n) ∈ W ∩ Λ (2.13)

where W is the range where I2 is defined. Point (m + x2,1(m, n), n + y2,1(m,n)) in

I1 is the imaging position of a scene point whose imaging position in I2 is (m,n).

This assumes that this scene point is visible from both image I1 and I2. This is

not always the case if occlusions happen during the transition from one view to the

other. Point (m + x2,1(m,n), n + y2,1(m,n)) in I1 and point (m, n) in I2 are a pair

of correspondences. The array of all (x2,1(m,n), y2,1(m,n)) forms the disparity map.

However, the depth distribution (or geometry) of the scene is very difficult to obtain

in practice. Thus, view interpolation and view transfer are usually used. In the

following context, we assume both I1 and I2, and the disparity map between I1 and

I2 are known.

Traditionally, view interpolation has been studied based on two source images [1].

The views at the positions between the two camera positions where two source images

are taken can be interpolated. Assume that a viewing position V i = (V0x,i, V0y,i, V0z,i)

is located on the line V 0,1V 0,2 (between V 0,1 and V 0,2). The view Ii at this position
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has a similar viewing direction to I1 and I2 if I1 and I2 are conventional planar images.

Further assume that the imaging point of the scene point S in image Ii is located

at (xi,s, yi,s). (xi,s, yi,s) is usually determined by a correspondence motion model (i.e.

uniform translation assumption) through (x1,s, y1,s), (x2,s, y2,s) and the position of V i

on line V 0,1V 0,2, or determined by the techniques in computer vision such as using

the fundamental matrix [14]. Based on the above Lambertian assumption,

P (Q(xi,s, yi,s), V0x,i, V0y,i, V0z,i) = w1(i, x1,s, y1,s) · P (Q(x1,s, y1,s), V0x,1, V0y,1, V0z,1)+

w2(i, x2,s, y2,s) · P (Q(x2,s, y2,s), V0x,2, V0y,2, V0z,2) (2.14)

w1(i, x1,s, y1,s) and w2(i, x2,s, y2,s) denote different weights applied on a particular

pair of light rays from different views, and w1(i, x1,s, y1,s) + w2(i, x2,s, y2,s) = 1 for a

particular i. In a similar way, all light rays associated with image Ii can be obtained.

Thus the interpolated view Îi, at position V i = (V0x,i, V0y,i, V0z,i), can be synthesized

by

Îi(m,n) = w1(i,m + xi,1(m,n), n + yi,1(m,n)) · (HÎ1)(m + xi,1(m,n),

n + yi,1(m,n)) + w2(i,m + xi,2(m,n), n + yi,2(m,n))

· (HÎ2)(m + xi,2(m,n), n + yi,2(m,n)), (m,n) ∈ W ∩ Λ (2.15)

Here, W is the range where image Ii is defined. Î1 and Î2 are the discrete versions of

image I1 and I2 that are used in practice. (m + xi,1(m,n), n + yi,1(m,n)) and (m, n)

are a pair of correspondences located in image I1 and Ii, respectively. Similarly,

(m + xi,2(m,n), n + yi,2(m,n)) and (m,n) are a pair of correspondences located in

image I2 and Ii, respectively. (xi,1(m,n), yi,1(m,n)) and (xi,2(m,n), yi,2(m,n)) are

specified through the disparity map between I1 and I2 from a feature motion model

or a projection model.

For IBR applications, the navigation areas are usually within a 2D area rather

than on a 1D line. One strategy is to divide the 2D navigation area into a set of

sub-areas, the combination of which cover the original navigation area. The basic

sub-area could be chosen in triangular shape. If three source images (with similar
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viewing directions) are taken at camera positions which are located at three vertices

of a basic triangular area, then the views in the similar viewing directions from any

position within this triangular area may be possibly synthesized from these three

reference views.

This leads to our research topic on view interpolation from three source images.

Obviously, other shapes rather than the triangle can be used in the above approach.

In that way, the view interpolation will be carried out on multiple (larger than three)

source images for a general case. Then arbitrary views can be synthesized when a

virtual camera moves on a 2D plane, given there are three (or more) pre-captured

images with viewing directions and camera positions similar to the virtual camera’s

current viewing direction and position. The situation where view interpolation is

carried out using three (or more) pre-captured views can be formulated in a similar

way to view interpolation based on two views. The correspondent movement can be

determined through the trifocal tensor [15], [16].

The navigation space is extended by exploring the correlations between the light

rays in the capturing space during view interpolation. In this way, fewer pre-captured

images are required, thus simplifying the methods for acquisition of pre-captured

images. As a tradeoff, the dense disparity maps, or motion field, which are usually

difficult to obtain precisely, are required. Thus the way to get a precise motion field

between pre-captured images will be studied in the thesis.

One way to get the motion field, at least as an initial estimation, is using matching

features. Although the methods to obtain precise sparse matching features are not

robust for all scene scenarios, they are more reliable than current dense disparity

estimation algorithms and much research work has been carried out in this field.

The dense disparity maps then can be estimated from the sparse matching features

in triangulation-based approaches, where a local smoothness constraint is usually

applied for approximation. Thus a novel-view-synthesis algorithm is proposed by

means of triangulation through sparse feature matchings. Further details will be

presented in Chapter 4.
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2.4 Techniques based on light field description:

plenoptic function representations

In the above plenoptic function representation, the light rays P (θ, φ, Vx, Vy, Vz) are

determined by their directions (different values of θ and φ) in a coordinate system

located at the camera’s position (Vx, Vy, Vz). As we mentioned before, the potential

navigation space can be much larger than the capture space because the light rays

do not change rapidly along their propagation directions. This is the idea behind

the methods based on light field description. For example, consider two camera

positions at V 1(Vx,1, Vy,1, Vz,1) and V 2(Vx,2, Vy,2, Vz,2). The light rays in V 1V 2 and

V 2V 1 directions are defined twice in the above plenoptic function representation.

The situations are applied between any two camera positions in 3D space. Thus

more efficient ways to represent the light rays may exist and are of interest for IBR

applications.

In the Light Field Rendering technique, the 4D plenoptic function is represented

with the assistance of two parallel planes E1 and E2 as shown in Fig. 2.3. Any

arbitrary light ray l(k) (as long as it is not parallel with E1 and E2) can be determined

by two points M(x1(k), y1(k)) (in the E1 plane) and N(x2(k), y2(k)) (in the E2 plane),

or in the form of P̃ (x1(k), y1(k), x2(k), y2(k)). P̃ (x1, y1, x2, y2) is the plenoptic function

represented by the Light Field Rendering technique. In other words, each light ray

can be specified by its intersections with E1 and E2. Assume that a camera takes

images when moving on one plane such as the E1 plane and the E2 plane is the focal

plane (or imaging plane) of the camera. In image Ik taken at position N (in Fig. 2.3),

every pixel corresponds to one light ray passing through N and all light rays with

the same (x2(k), y2(k)) coordinates are recorded in this image. Ik is correspondent to

the light ray set {P̃ (x1, y1, x2, y2)|x2 = x2(k), y2 = y2(k), (x1, y1) ∈ W}, where W is

determined by the camera’s field of view in both horizontal and vertical directions.

We use 2-parallel-planes as an example to illustrate the idea of the 4D plenoptic

function representation. If only two parallel planes are used, the light rays that can
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be represented have to intersect with these two parallel planes. In practice, more

than one set of 2-parallel-planes are used to cover the light rays in all directions [4],

[5], [46]. In a more general situation, the camera may move on any other surface as

long as the camera positions along that surface can be obtained precisely [45]. Then

each light ray can be determined in a general 2-surface parametrization framework

[30].

The camera has to be precisely controlled during pre-captured-images acquisition

in the techniques using the above 2-surface parametrization approach. This is very

expensive for an ordinary user to obtain the pre-captured images, and potentially

prevents the related techniques from being widely used.

If the navigation activities are constrained within a certain plane, then the above

2-surface parametrization can be simplified. The idea can be illustrated in Fig. 2.4.

The line L1 is the camera movement trajectory when the pre-captured images are

taken. Plane E2 is the camera’s imaging plane. In Fig. 2.4, an arbitrary light ray

l(k) comes from the correspondent scene point S. This light ray is not captured. The

light ray l
′
(k) comes from the same scene point S but it intersects with both plane E2

(at N
′
) and L1 (at M). Thus, light ray l

′
(k) is captured. Due to the fact that both

light rays come from the same scene point, the values of plenoptic function for these

two light rays are similar. By approximation, we can use one (e.g. l
′
(k)) to replace

the other (e.g. l(k)).

In order to find light ray l
′
(k) (which is used to replace light ray l(k)) in the

plenoptic function database, we need to know the position N
′
. It is a simple geometric

relationship if the 3D depth distribution is known. However, the reconstruction of

3D depth distribution of the scene is not a trivial task. Thus, further approximation

is required. Usually, a constant depth of the scene, or the infinite depth of the scene,

can be assumed to simplify the rendering procedure. This approximation will cause

vertical distortion in the synthesized views. However, this approach can significantly

simplify the procedure to obtain the required light rays in the pre-captured image

acquisition, since the camera movement is only required to be precisely controlled in
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Figure 2.3: 2-plane parametrization of light rays for Light Field Rendering

Figure 2.4: Illustration of 3D parametrization of light rays



39

one dimension. Moreover, experiments show that the distortion in the synthesized

view is acceptable. This may be because the average depth of the scene is larger than

the depth variation in the usual case. Further details on this topic can be found in

[51].

This is the idea behind the methods in [47], [52] [53] and Concentric Mosaics [17],

which uses a column-based view interpolation strategy to synthesize the novel views.

In Concentric Mosaics (COM), the camera is precisely controlled to move on a circle

in the acquisition of the pre-captured images.

2.5 feature points and matching features between

multi-views

One major task in IBR techniques is to find the relationships between views taken

at different camera positions and in different imaging directions. These views could

be pre-captured images or the synthesized views (as if taken by a virtual camera).

One common way to extract the relationship between multi-views is to identify the

corresponding points in different views. The corresponding points (sometimes referred

to as correspondences [34]) are the imaging points of the same scene point in different

images that are taken at different positions and/or in different directions. After

we identify enough correspondences, the relationships between these multiple views

can be retrieved and thus the relationship between the camera positions and imaging

direction where these multiple views were taken can be estimated. There are basically

two ways to represent corresponding points in different views. One is disparity maps

and the other is matching features. Matching features are extensively used in several

of the proposed techniques in this thesis. We briefly introduce the concept of matching

features in the following.

It is possible to find reliable correspondences using some “special” points in the

images. This leads to the concept of feature points. Features are some specific pat-

terns, or points with “certain properties” from the image processing point of view.
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The procedure to identify the features (or corners) in an image is feature detection

(or corner detection). After detecting the feature points in the individual images,

the corresponding points can be identified by matching the feature points in different

views. This is the procedure of feature matching. The resulting corresponding fea-

tures are called matching features. Thus, matching features are special and reliable

corresponding points between multiple views. This is one major reason that they are

widely used in computer vision and image processing.

By definition, feature points must have some special properties to distinguish

them from other points. The selection criteria for features include [54]: localization,

robustness, sensitivity, stability and complexity. These criteria are used to evaluate

different feature detection algorithms. Usually, a computable metric for measurement

is proposed in the feature detection algorithms to represent the mentioned special

properties (texture patterns) around the point in the image. The most straightforward

way is to measure the intensity variations within a local window around a point [55].

However, this measurement is not very reliable. The derivatives of image intensity

are more reliable measurement to detect features. Some measurements based on

the the derivatives of image intensity can be found in [56], [57], [58]. Among these

different algorithms for corner detection, Harris corner [59] detection is one of the most

successful methods and thus has been widely used. In the Harris corner detection

algorithm, a corner response function is defined as

R = D(M)− α · T (M)2 (2.16)

where M = [
I2
x IxIy

IyIx I2
y
] is the autocorrelation matrix. Ix and Ix represent the first

order derivatives of image intensity along x and y direction, respectively. α is a

constant. D(·) denotes the calculation of the determinant of a matrix. T (·) denotes

the calculation of the trace of a matrix. A similar approach can be found in [60].

Recent work has been extended to detect more difficult scenarios, i.e., to detect

scale and affine invariant features. For example, the multi-scale representation [61] is

used to detect scale invariant features (SIF) [62]. The research work on affine invariant

feature detection includes the algorithms based on the second moment matrix [63],
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the methods to extract affine invariant regions in the images [64], etc.

In order to match the corresponding features in different views, a unique identifer

is required to distinguish the feature points from one with each other. The mathemat-

ical representations of such identifers are named feature descriptors. They are used

to match features in different views. In various matching algorithms, the feature de-

scriptors are first computed. The measurement metric, such as cross-correlation [65],

is used to identify corresponding features for comparisons of these feature descriptors

in different views. Different algorithms to represent and compare feature descriptors

are proposed in the literature, which may use shape or/and edge information of the

image [66], histogram statistics (such as SIFT descriptor [67], [62]) of a local area in

the image, etc.

In this thesis, we will mainly use Harris corner and cross-correlation matching

algorithm. This combination approach has relatively low computing complexity and

it is sufficient to generate reliable matching features for the imaging conditions that

we deal with.



Chapter 3

Generation of panoramic views

using image stitching

Pictures with a large field of view (FOV), such as panoramic views, are a simple but

important scene representation format in image-based rendering (IBR) [11]. Common

approaches to obtain such pictures are to stitch several pictures with overlapping area,

taken by a camera moving in a specific fashion [2], [39], [68], [42], [69], [70], [32], or

by a panoramic camera with multiple optical systems and imaging sensors, such as

the Ladybug panoramic camera [38], or other types of special optical systems such as

omnidirectional cameras [71], fisheye lens [37], etc. More general scenarios for view

mosaics can be found in [44], [72], [73], [74], [75].

Overlap-area registration [76] is the most important step that must be accom-

plished before stitching. In this chapter, we will propose a new efficient algorithm for

panoramic view generation.

3.1 Overview of previous work

Traditional image registration methods only consider the translations along horizontal

and vertical directions. When depth variations are small compared with the average

depth, such as in most outdoor-scene applications, the registration of adjacent images

42
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is not a big problem and most of the available commercial software, (e.g., [77], [102]),

can perform well. However, when the depth variation is large compared to the average

depth, as in most indoor-environment applications, this depth variation will cause

significant problems for overlap area registration between the adjacent views. In

order to reduce the overlap-area registration errors, research work on overlap-area

registration has been reported in the literature to recover the camera motion based

on different models. Under this framework, various methods to register the overlap

area of two adjacent images have been proposed based on an 8-parameter perspective

transformation [40], a polynomial transformation with more freedom [41], and other

geometric corrections [42]. A comparison of some commonly-used parametric models

for camera motion recovery can be found in [78].

In the previous work, the registration and the stitching are usually implemented

based on the whole overlap area, which can be problematic because the overlap area

may be too large for one global transformation to yield a good result. Thus local

corrections have to be used for ghosting cancelation [40], which makes the registra-

tion more complex and introduces the possibility of causing further discontinuities

among local blocks and even distortions, especially when dealing with high resolu-

tion pictures. In addition, 360◦ cylindrical panoramas have become very common

recently. In this situation, views from different directions are captured by a camera

that is mounted on a tripod and rotated around its optical center. The adjacent

images, with some overlap area, are then stitched together. However, the accumu-

lated registration errors between the first image and the last image when generating

a 360◦ panorama are usually very large. This issue was reported in [40], although it

may not be a serious issue when only translations are used for registration. In [40],

these accumulated registration errors in the vertical direction are modeled as a global

rotation. The global rotation angle is then evenly assigned to the transformations on

each of the pre-captured images after finding this global rotation angle through an

initial tentative registration. Then registrations and stitching are carried out again

considering the assigned rotation angles in each transformation. This will affect the
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registration results and the way to assign the accumulated global rotation angle on

each transformation is tentative. Several trials may be required to experimentally ap-

proach a good result. Thus, no reliable work has been found in the literature to reduce

the potential accumulated errors when generating a 360◦ panorama. In conclusion,

the problem of effective overlap-area registration still has many open problems.

In this chapter, a new registration model has been proposed which jointly applies

affine adjustment and focal-length adjustment. A matching-feature-based overlap

area registration method has been used for implementation. A novel algorithm based

on a coordinate-system-transformation model has been proposed to reduce accumu-

lated errors when generating 360◦ panoramic views. In addition, the idea of stitching

on an optimal strip area has been proposed. A multi-resolution stitching algorithm is

also proposed to avoid potential large intensity changes when stitching two adjacent

images on a narrow strip area.

3.2 Camera movement model and basic techniques

In order to stitch two adjacent images, the difference between the two views in the

overlap area must be minimized to obtain stitched images with good quality. From a

general camera rotation model [42], we find that camera pose and movement deviating

from the ideal case is the main cause of registration error [79]. Affine adjustment and

focal-length adjustment are used in the proposed algorithm to reduce the registration

error in the overlap area caused by such non-ideal camera pose and movement. The

affine transformation on a discrete image is defined first. Then, cylindrical warping is

discussed in order to introduce the nonlinear part of the proposed model. In addition,

the precise definition of the overlap area is given, followed by a brief discussion of

feature detection and matching in the overlap area.
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3.2.1 A general camera rotation model for analysis of regis-

tration errors

When a camera is mounted on a tripod and captures images at different rotation

angles, its motion usually deviates from a pure rotation about the camera projection

center. We refer to the camera’s projection center as the camera position in the

following sections. A general camera rotation model [42] is illustrated in Fig. 3.1. It

is not easy to physically locate the projection center of a real camera. Thus the camera

center usually moves along a circle (the circle may not even be on the level plane),

as shown by the dashed arc in Fig. 3.1, rather than remaining fixed at a given point,

such as O in Fig. 3.1. Assume that two images I1 and I2 are captured from adjacent

Figure 3.1: The general camera rotation model

viewpoints (O1 and O2 in Fig. 3.1) with some overlap area. Using similar notation

to [80], we assume that image I1 is captured with a camera having a certain frame

of reference F1 with origin at the camera center O1 and I2 is captured with a camera

having frame of reference F2 with origin O2. The coordinate vector of a scene point
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P in frame Fi (i = 1, 2) is denoted FiP = [FiPx
FiPy

FiPz]
T . Then F2P = F2

F1
R · F1P + F2O1,

where F2
F1

R is a rotation matrix and F2O1 is the coordinate vector of O1 in frame F2

[80]. Using the pinhole camera model, the point P is projected to points p1 and p2

in F1 and F2 respectively, given by pi = fi · FiP/FiPz, where f1 and f2 are the focal

lengths associated with the two camera positions. Combining these equations, we

obtain

w12




p2x

p2y

f2


 =




r11 r12 r13 + F2O1x/
F1Pz

r21 r22 r23 + F2O1y/
F1Pz

r31 r32 r33 + F2O1z/
F1Pz







p1x

p1y

f1


 (3.1)

where w12 = f1 · F2Pz/(f2 · F1Pz),
F2O1 = [F2O1x

F2O1y
F2O1z]

T and pi = [pix piy piz]
T

(i = 1, 2). rij (i, j = 1, 2, 3) are the elements of 3 by 3 matrix F2
F1

R. The key observation

here is that the transformation to describe the positions of corresponding points in

the overlap area of the two adjacent images is depth-dependent. Perfect registration

can only be achieved with perfect 3D reconstruction of the depth distribution of the

environment, which is difficult to implement in practice.

3.2.2 Discrete affine transformation

Affine transformations are normally defined on continuous-space images. For a discrete-

space image I, the affine transformation is defined as follows. Assume that a continuous-

space image corresponding to I can be obtained using a linear interpolation operator

H. Then the discrete affine transformation operator with parameter vector t, denoted

At, is defined by (AtI)(x) = (HI)(T (x − x0) + d + x0),x ∈ Λ, where T = [ t11 t12
t21 t22 ]

and d = [d1 d2]
T . We define the parameter vector t = [t11 t12 t21 t22 d1 d2]

T and

x0 is an arbitrary reference point. The image center xc = (xc, yc) will be selected

as the reference point, so we will not explicitly specify x0 in the following sections

unless necessary. Λ is the sampling lattice where the image (AtI)(x) is defined. Of

course, (HI)(x
′
) is only computed at the points x

′
= T (x − xc) + d + xc,x ∈ Λ,

using any suitable interpolation method such as bilinear, bicubic, or spline. The affine

transformation of coordinates on R2 can also be represented as an operator St where
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Stx = T (x − xc) + d + xc. Thus, we have (AtI)(x) = (HI)(Stx). In practical

situations, T is non-singular, so that St is invertible. The inverse is also an affine

transformation, with S−1
t x

′
= T−1(x

′ − xc)− T−1d + xc.

3.2.3 Warping the image onto a cylindrical surface

In order to reduce the difference between two adjacent images in the overlap area, the

images should be mapped onto a common surface such as a cylindrical or spherical

surface, as if they were captured by a camera with its imaging sensor on this com-

mon surface. We choose here a cylindrical surface as the common imaging surface

since it is a popular choice to generate 360◦ panoramas. The warped images are

referred to as cylindrically-warped images. The cylindrical radius is usually chosen

to be the focal length of the planar camera. This choice makes the geometric rela-

tionships between the source images and the warped images straightforward and thus

the warping algorithm is easy to implement. Using similar notation as above, the

cylindrical warping is denoted as Wf with parameter f , which is the focal length of

the camera (assuming that the camera is rotated exactly around its optical center

and the focal length is unchanged for adjacent images). Then, the warped image

is (WfI)(x) = (HI)(x
′
),x ∈ Γ, where Γ is a lattice in the cylindrical coordinate

system. The relationship between x = [x y]T and x
′
= [x

′
y
′
]T can be represented as

(obtained from [39]) x
′
= f ·tan((x−xc)/f)+xc and y

′
= (y−yc)/ cos((x−xc)/f)+yc.

This one-to-one nonlinear mapping between x and x
′

can also be represented

by an operator Uf on R2, so that (WfI)(x) = (HI)(Ufx) with x
′

= Ufx. The

corresponding inverse mapping defines the de-warping procedure that will be used

later. The inverse of the above relationship is given by x = f · tan−1((x
′−xc)/f)+xc

and y = f · (y′ − yc)/(
√

(x′ − xc)2 + f 2) + yc, or x = U−1
f x

′
. Operator U−1

f denotes

the sampling structure change from the warped image to the de-warped image in the

de-warping transformation, I(x) = (H(WfI))(U−1
f x).

One fixed focal length can only be used to warp all images if the camera was ro-

tated exactly around its projection center and the camera focal length was unchanged
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during the capture procedure, because this focal length is the radius of the cylindrical

surface. However, the camera usually does not rotate around its projection center,

as illustrated in Fig. 3.1. The optimal virtual common imaging surface for view mo-

saicking is no longer a cylindrical surface with one fixed radius, or focal length. Thus,

the focal length will be assumed variable and can be adjusted for each image. In

practice, the real shape of the virtual common imaging surface may be too difficult to

recover. Adjustment of focal length alone may be insufficient to recover the practical

virtual common imaging surface. In section (3.3.2), we will define the optimal focal

length with respect to minimization of the registration errors in the overlap area.

3.2.4 Definition of the overlap area between adjacent images

Assume that I1 and I2 are two original adjacent images where I1 is to the left of I2.

I1 and I2 are defined on sampling lattice Λ. Let W1 define the area where image I1 is

defined and set I1(x) = 0,x ∈ R2 \W1. Similarly, let W2 define the area where image

I2 is defined with I2(x) = 0,x ∈ R2 \W2. In both cases, x is in the image coordinate

system, with origin at the top left of the image. The approximate registration of

image I1 and I2 through a simple shifting technique is given by

d̂0 = arg min
d0∈Λ

1

|W12(d0)
⋂

Λ|
∑

x∈W12(d0)
⋂

Λ

|I1(x)− I2(x− d0)|, (3.2)

where W12(d0) = W1

⋂
(W2 + d0) is the overlap between two regions W1 and (W2 +

d0). |W12(d0)
⋂

Λ| represents the number of pixels within area W12(d0). This is the

traditionally-used image registration method [81], [3], [39]. The overlap area between

images I1 and I2 is defined as W12(d̂0) = W1

⋂
(W2 + d̂0). The sub-image of I1 in

the overlap area is I1com, where I1com(x) = I1(x), x ∈ W12,Λ(d̂0) and W12,Λ(d̂0) =

W12(d̂0)
⋂

Λ. Similarly, I2com(x) = I2(x− d̂0), x ∈ W12,Λ(d̂0) for the sub-image of I2

in the overlap area.

The above registration processing is defined on the original images, so that W1, W2

and W12(d̂0) are rectangular in shape. If the affine or/and warping transformations

are applied on I2, then W2 and W12(d̂0) may no longer be rectangular. We use W
′
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to denote the general non-zero area of a transformed image I, so that we denote the

overlap area of transformed images by W
′
12(d̂

′
0) = W

′
1

⋂
(W

′
2 + d̂

′
0).

3.2.5 Matching-feature detection in the overlap area

Matching features are detected in images I1com and I2com in order to implement the

feature-based approach for registration [82]. We simply match Harris corners [59]

based on correlation. The matching relationships between the Harris corners in two

sub-images are found through neighbor area searching based on a normalized corre-

lation criterion. The epipolar constraints can be used to guide the matching process

[83]. A publicly available software package that includes similar functions can be

found on Projection Vision Toolkit (PVT) website [84].

For each feature point, or Harris corner P , located at x in I1com, its matching point

in I2com is searched from among the Harris corners located in a window centered at

x in image I2com. This window is the neighborhood searching window. The block-

based normalized correlations between every Harris corner within the neighborhood

searching window in I2com and the feature point P in I1com are calculated. The feature

point with maximum normalized correlation is selected and its normalized correlation

value is compared with a threshold to determine if it is a good matching point for

P . Since the images I1com and I2com are very similar to each other, the neighborhood

searching window can be set to a relatively small size, which makes matching relatively

easy and reliable. More details on the above feature matching algorithm can be found

in [85].

The relationship between I1com and I2com is represented by two sets of matching

feature points MP1 = {x1,n|n = 1, 2, ..., N} and MP2 = {x2(x1,n)|n = 1, 2, ..., N} in

I1com and I2com, respectively. For any feature point x1,n ∈ MP1, its matching point

in I2com is denoted as x2(x1,n) ∈ MP2, where N is the total number of matching

features in the common region. In the following section, we will use the position

of these feature points to determine the transformations of the images I1 and I2 for

overlap area registration.
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Some recently developed more reliable matching features, such as SIFT corners

[62], PCA-SIFT [67], etc., can also be used. The algorithms for Harris corner detection

are relatively simple and thus save computations. For those overlap areas where there

are few or no features that can be detected, the matching features can be selected

from dense disparity maps. Usually, stitching of overlap areas having little texture

and thus few features, is easy to achieve with few artifacts.

3.3 Overlap area registration using matching fea-

tures as control points

In this section, we introduce our methods to reduce the registration errors. The affine

transformation is used as one technique to adjust the camera pose changes, together

with a nonlinear focal-length adjustment procedure. The objective function in the

proposed optimization model aims at minimizing the residual registration errors in

order to obtain a seamless mosaic view after stitching. Thus the ‘optimal’ focal

lengths obtained do not necessarily have any significant physical meaning.

3.3.1 Camera pose adjustment through affine transformation

The affine adjustment is applied on the cylindrically-warped images. For example,

assume two cylindrically warped images are Wf0I1 and Wf0I2. Here, f0 is the a priori

estimated focal length of the camera.

In the texture-based approach [79], also developed as part of this thesis research,

the affine adjustment on Wf0I2 is determined by searching for the parameter vector

t̂2 that minimizes the average of absolute differences over the overlap area,

t̂2 = arg min
t2

1

|W ′
12(d̂

′
0)

⋂
Γ|

∑

x∈W
′
12(d̂

′
0)∩Γ

|Wf0I1(x)−At2(Wf0I2)(x)| (3.3)

where W
′
12(d̂

′
0) is the overlap between the images Wf0I1 and Wf0I2 as defined in

Section 3.2.4.
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For the feature-matching approach, the corresponding optimal affine transforma-

tion is given by

t̂2 = arg min
t2

1

N

N∑
n=1

|U−1
f0

x1,n − S−1
t2

(U−1
f0

x2(x1,n))|2, (3.4)

where U−1
f0

and S−1
t2 define the forward mapping for cylindrical warping and affine

transformations, respectively.

In order to simplify the illustration of the solution, we use x1,n,U−1
f0

to denote

U−1
f0

x1,n and use x2,n,U−1
f0

to denote U−1
f0

x2(x1,n). x2,n,U−1
f0

is a 2-D vector of the

coordinate, which can be represented as x2,n,U−1
f0

= [x
(1)

2,n,U−1
f0

x
(2)

2,n,U−1
f0

]T . If we define a

new matrix

X2,n,U−1
f0

=




x
(1)

2,n,U−1
f0

x
(2)

2,n,U−1
f0

0 0 1 0

0 0 x
(1)

2,n,U−1
f0

x
(2)

2,n,U−1
f0

0 1


 , (3.5)

then we obtain S−1
t2 (U−1

f0
x2(x1,n)) = X2,n,U−1

f0

t2. Thus, equation (3.4) can be reformed

as

t̂2 = arg min
t2

1

N

N∑
n=1

|x1,n,U−1
f0

−X2,n,U−1
f0

t2|2, (3.6)

This is a standard least-squares problem with solution [86],

t̂2 =
1

N
[

N∑
n=1

XH
2,n,U−1

f0

X2,n,U−1
f0

]−1[
N∑

n=1

XH
2,n,U−1

f0

x1,n,U−1
f0

] (3.7)

More details on the problem formulation can be found in [87]. It can easily

be solved using the singular value decomposition (SVD) method or other related

algebraic methods (usually N À 3).

The optimal parameter vector t̂2 is selected to update the current Wf0I2 by

At̂2
(Wf0I2). The positions of matching features are also updated following the op-

timal transformation. An affine adjustment can equivalently be applied on image

Wf0I1 to match Wf0I2.
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3.3.2 Focal-length adjustment method

The optimal focal length associated with each image for cylindrical warping is selected

as a refinement so as to further minimize the registration error. In the proposed

algorithm, the focal-length adjustment is applied on original or de-warped images

after some initial geometric transformation (such as the above affine adjustment) has

been applied on two adjacent images. For example, assume that we want to apply

focal-length adjustment on image I2, i.e., to find the optimal focal length associated

with I2 that can minimize the overlap registration error with I1.

First, we warp I1 with some fixed focal length f1. It can be the focal length

initially estimated from camera calibration, or it can be the focal length obtained

from a previous optimization of focal length applied on image I1. The estimated focal

length does not need to be very accurate, which makes the calibration inexpensive.

Then, the search for an optimal focal length f̂2 for I2 using image intensity matching

yields [79]

f̂2 = arg min
f2

1

|W ′
12(d̂

′
0)

⋂
Γ|

∑

x∈W
′
12(d̂

′
0)∩Γ

|Wf1I1(x)−At̂2
(Wf2I2)(x)| (3.8)

where W
′
12(d̂

′
0) is the overlap area between the images Wf1I1 and Wf20I2 and At̂2

is

the optimal affine transformation. f20 is the initial guess of f2, which also can be the

focal length initially estimated from camera calibration, or it can be the focal length

from a previous optimization of focal length adjustment applied on image I2 in an

iterative procedure.

The above optimization involves a large amount of computation. The proposed

alternative approach is to find the optimal focal length using the positions of matching

features in the overlap area. The optimization model for the feature-based approach

is then

f̂2 = arg min
f2

1

N

N∑
n=1

|U−1
f1

x1,n − S−1
t̂2

(U−1
f2

x2(x1,n))|2, (3.9)

which is a scalar optimization problem. Because warping transformation U−1
f2

is not

a linear transformation, the analytic solution of the above equation could be very
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complex. Thus, the algorithm of 1D searching around an initial value f2 is used. The

initial value f2 may be obtained from the manual of camera’s optical system or from

a simple calibration. If the optimizations are implemented in an iterative way, the

initial value of the current iteration is the optimized result from the last iteration.

After the optimal focal length f̂2 is found, warping with this focal length is applied

on I2 for updating the positions of the features in the feature-based approach, for

further processing. As we mentioned, focal-length adjustment is only applied on

de-warped images in the proposed algorithm.

In the matching-feature approach, areas with more matching features get better

registration. Usually, these areas are rich in texture and good stitching is required. On

the other hand, we can give different weights to the registration errors for matching

features at different locations in equation (3.4) and (3.6) to adjust residual registration

errors at different locations in the overlap area. This observation also supports the

following idea: a better registration result can be obtained if the matching features

on a narrow strip area are chosen (special weights assignment), as will be done later.

3.3.3 The overall overlap area registration algorithm

The overall optimization model to register the overlap area between two adjacent

images using the texture-based approach is

[t̂2, f̂1, f̂2] = arg min
t2,f1,f2

1

|W ′
12(d̂

′
0)

⋂
Γ|

∑

x∈W
′
12(d̂

′
0)∩Γ

|Wf1I1(x)−At2(Wf2I2)(x)| (3.10)

where W
′
12(d̂

′
0) is the overlap area between the images Wf10I1 and Wf20I2. f10 and

f20 are initial values of f1 and f2, respectively. In the feature-based approach, the

corresponding optimization model is

[t̂2, f̂1, f̂2] = arg min
t2,f1,f2

1

N

N∑
n=1

|U−1
f1

x1,n − S−1
t2

(U−1
f2

x2(x1,n))|2. (3.11)

Finding jointly optimal t̂2, f̂1, f̂2 requires the solution of a complex nonlinear op-

timization problem. Instead, the following alternating optimization algorithm can be

used iteratively:
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1) set f10 = f20 = f0 and g = 0.

2) The images I1 and I2 are warped using focal lengths f10 and f20, re-

spectively. The warped version of image I1 is Wf10I1 and that of I2 is

Wf20I2.

3) Apply affine adjustment on image Wf20I2 to obtain At̂2
(Wf20I2) after

registering the overlap area between Wf10I1 and Wf20I2.

4) Apply focal-length adjustment on I1 to obtain Wf̂1
I1, and based on

which the focal-length adjustment can be applied on I2 to obtainWf̂2
I2

after de-warping At̂2
(Wf20I2).

5) g = g + 1; stop? if not, set f10 = f̂1 and f20 = f̂2, go to 3).

The conditions to terminate the iterations can be: (1) the registration errors are small

enough compared to a predefined threshold; or (2) the change of the registration

errors is small enough compared to a predefined threshold; or (3) the number of

the iterations g has reached a predefined value. In practice, we used g to terminate

the iterations. The actual implementations were carried out using the feature-based

approaches. The globally optimal parameters for equation (3.8) may not necessarily

be found in the above alternating optimization. However, the simulation results show

that the solutions obtained are generally good enough for the current applications.

3.4 Choosing a narrow strip block for stitching to

minimize the discontinuities

The observation that the final stitching of the two images can be implemented just

on a narrow strip area is important. The idea of stitching on a strip block has been

appeared in [72] but the approach is based on a large quantities of images (video

sequence). We perform the optimization on all possible strip blocks with fixed size in

the overlap area, instead of over the whole overlap area, and thus a better registration
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result can be obtained. The updated overall optimization can be expressed as,

[t̂2, f̂1, f̂2, î] = arg min
t2,f1,f2,i

1

|W ′
12,i(d̂

′
0)

⋂
Γ|

∑

x∈W
′
12,i(d̂

′
0)∩Γ

|Wf1I1(x)−At2(Wf2I2)(x)|

(3.12)

where the strip block W
′
12,i(d̂

′
0) is a sub-area of the overlap area with fixed size,

i.e., W
′
12,i(d̂

′
0) ⊂ W

′
12(d̂

′
0). The subscript i denotes the location where the strip

block starts. We are looking for a strip block within the overlap area that gives

the minimum registration error after the proposed affine adjustment and focal-length

adjustment have been carried out on the image pair I1 and I2. Parameter vector t̂2

and parameters f̂1 and f̂2 on this strip block are the optimal ones. In practice, the

alternating optimization method can also be used by finding the optimal t̂2, f̂1, and

f̂2 for the whole overlap area and then searching for the optimal strip area within the

whole overlap area.

In the feature-matching-based implementation, the following observations have to

be considered:

• Due to the irregular distribution of the feature points in the overlap area, the

strip block for registration should be large enough to contain a sufficient number

of feature points.

• The strip block where the registration is carried out is not necessarily the same

as the block where the stitching will be implemented; the former can be larger

and contain the latter.

• There may be no matching features in the best strip block for stitching.

As a consequence, we define two types of strip blocks: strip blocks for registra-

tion and strip blocks for stitching. The optimal affine transformation parameters

and optimal focal length are obtained based on the position registration of the match-

ing features in the strip block for registration and the location of the optimal strip

block for registration is recorded. The strip block for registration should be large

enough to contain sufficient matching features.
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If the overlap area of two adjacent views is not very large, we can simplify the

algorithm by choosing one reasonable strip block for registration near the central

part of the overlap area. In this case, we will not search for the optimal strip block

for registration but simply search for the optimal strip block for stitching. In our

implementation, the width of the strip block for registration was usually selected to

be five to six times larger than that of the strip block for stitching. This is not

necessarily optimal but it gives good results and it reduces the computations. In this

way, the optimization on the strip block for registration including both focal-length

adjustment and affine transformation is

[t̂2, f̂1, f̂2] = arg min
t2,f1,f2

1

Ni

∑

n∈ξi

|U−1
f1

x1,n − S−1
t2

(U−1
f2

x2(x1,n))|2 (3.13)

where ξi is a set which contains an index list of all matching features that are located

in the selected strip block for registration. Ni is the number of matching features

in ξi. If we only select one strip block for registration, then i = 0. This is the case

we used here, or only one strip block for registration to obtain optimal parameters

for focal-length adjustment and affine transformation. Otherwise, the overlap area is

divided into many strip blocks for registration in one image (e.g. I1) if the overlap

area is very large. For the i-th strip block for registration, ξi is a set which contains an

index list of the matching features, where the feature points belonging to this image

(I1) are within this strip (i-th) block. These strip blocks for registration could be

overlapped with each other. Then, the optimization can be carried out regarding to

strip blocks for registration, or i.

Within the strip area for registration, we search for an optimal narrow strip block

for stitching, where the texture registration error is minimized. The strip blocks are

of fixed size and can overlap with each other. The location of the optimal strip block

for stitching can be obtained from

ĵ = arg min
j

1

|Wr,j

⋂
Γ|

∑

x∈Wr,j
⋂

Γ

|Wf̂1
I1(x)−At̂2

(Wf̂2
I2)(x)| (3.14)

where Wr,j ⊂ Wr is one possible strip block for stitching, with j standing for its start

position in horizontal direction. Wr is the strip block for registration. It can be the
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optimal strip block for registration W
′
12,̂i

(d̂
′
0), or specified as above, depending on the

size of overlap area.

In the algorithm, the position of the finally selected optimal strip block for stitch-

ing is determined by the texture difference on each possible strip block instead of the

difference between the positions of the matching feature points. The reason is that

the visual stitching discontinuities will be visible through texture discontinuities.

It is possible that a sharp intensity change might appear when stitching on a

narrow strip area if the luminance change between two adjacent images is very large.

For this kind of situation, a multi-resolution-based stitching method is suggested.

Each image for stitching is first decomposed into two sub-band components through

a complementary pair of 2D filters. The bandwidth of the lowpass filter is very narrow.

Then, the lowpass components of two images are stitched on the whole overlap area

and the highpass components of two images are stitched on the narrow strip area.

After obtaining the lowpass and highpass components of the stitched images, the

final stitched image can be obtained by adding its lowpass component and highpass

component. In this way, sharp luminance changes can be avoided in the stitched

images and the stitching quality is good due to the proposed stitching method on a

narrow strip area. The method has been tested with successful results. The stitching

is implemented through blending. The correspondent weighted pixels in the stitching

area but from different source images are added to generate the transition area in

the stitched images. The weights change linearly along the horizontal direction in the

stitching areas. The summation of correspondent weights at any pixel in the stitching

area equals one. Further details on this blending method can be found in [39]. Other

stitching algorithms [88] can also be used.

3.5 Resolution and computation considerations

Each transformation essentially changes the sampling structure where the discrete

image is defined. Thus interpolation will be used, which usually reduces the picture’s
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resolution due to the low-pass filtering effect in interpolation.

Fortunately, the above transformations in the registration procedure can be cas-

caded. Each transformation will only result in a new sampling structure defined on

the original continuous image. The interpolation from the original discrete image will

be applied only when it is necessary, for example when evaluating At̂2
(Wf̂2

I2)(x) =

(HI2)(St̂2
(U−1

f̂2
x)). Because the registration is implemented based on the positions of

matching features, no error due to re-sampling will affect the registration precision.

We use Wf̂1
I1⊕At̂2

(Wf̂2
I2) to represent the image resulting from stitching Wf̂1

I1

and At̂2
(Wf̂2

I2). In the applications of obtaining large FOV pictures by stitching

two adjacent views, the final de-warping process can also be cascaded as one of

the sampling structure changes. The de-warping processing can be represented by

W−1

f̂12
(Wf̂1

I1 ⊕At̂2
(Wf̂2

I2)) and we can see

W−1

f̂12
(Wf̂1

I1 ⊕At̂2
(Wf̂2

I2)) = W−1

f̂12
(Wf̂1

I1)⊕W−1

f̂12
(At̂2

(Wf̂2
I2)) (3.15)

since the same focal length f̂12 = (f̂1 + f̂2)/2 is used and the same reference point is

chosen, namely the center of the final stitched image which can be calculated before

stitching is actually carried out.

The views from panoramas can be obtained in a similar way. The reference center

for de-warping and a focal length have to be specified for a segmented view from the

panorama in order to implement de-warping.

The proposed method for overlap area registration based on matching feature

positions can save a large number of computations since the number of matching fea-

tures is much lower than the number of pixels in the overlap area. Once the match-

ing features are obtained, the amount of computation in the proposed optimization

model to find optimal affine parameters and focal length is negligible when using the

matching-feature approach compared with using the texture-based approach. In addi-

tion, the cost functions of the optimization models in the matching-feature approach

are directly related to the positions of the matching features. In the texture-based

approach, the sampling structures of the images are first changed through the applied

transformations and then required texture information is obtained from interpolation
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to evaluate the cost functions. As a consequence, the texture-based approach requires

more additional computations.

In the feature-based approach, there are extra computations in the feature detec-

tion and matching, which serve as overhead computations in the overall computation

amount. The amount of computation for feature detection and matching is different

from method to method. Usually, the searching for matching features is the most

expensive step. In the proposed method, the overlap areas are quite similar and thus

the searching windows can be set to relatively small sizes, which greatly reduces the

computation. In addition, a great deal of research, such as that in [89], is focusing on

robust algorithms with low cost. As a consequence, the overhead computations can

also be much lower compared with the optimizations in the texture-based approach.

3.6 Generating panoramic views

One of the most important applications for view mosaics is to generate panoramic

views for IBR applications. In order to generate a cylindrical panorama, we need to

stitch several images into one. Assume that images I1, I2, I3, ..., IM are taken in

different directions by a camera mounted on a tripod and rotated clockwise roughly

around the camera’s center. The pre-captured images are overlapped with each other,

and cover a 360◦ view. Thus the right part of IM overlaps with the left part of I1.

Usually, the overlap area in the images I1 and I2 is first registered through some

transformations, such as the proposed algorithm. The transformed images are I
′
1 and

I
′
2. I

′
1,2 represents the resulting image after stitching images I

′
1 and I

′
2. Then the

overlap area between the images I
′
1,2 and I3 is registered, while transforming I3 to

I
′
3. Image I

′
1,2,3 is obtained after stitching I

′
1,2 and I

′
3. Similar procedures are carried

out until the transformed image I
′
M has been stitched and the stitched image I

′
1,2,...,M

is obtained. Finally, the left side of image I
′
1,2,...,M has to be registered and stitched

with its right side in the overlap area to generate the full panorama. However, the

differences between these two parts in the overlap area are usually very large, due to
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the accumulated registration errors, making registration very difficult. The situation

is illustrated in Fig. 3.2, where we see that the transformation between IM and I
′
M is

Figure 3.2: Illustration of the effect of accumulated errors in 360◦ panoramic view
generation

very large due to the effect of accumulated errors, which brings significant changes on

image I
′
M . This makes the left side of I

′
1 and right side of image I

′
M in the overlap area

very different, and the registration of these two sides in the overlap area can be very

difficult. The registration errors usually remain very large. In [40], the accumulated

global rotation angle is assigned to the transformations on I1, I2, ..., IM after finding

this global rotation angle through an initial tentative registration. Then registrations

and stitching are carried out again considering the assigned rotation angles in each

transformation. This will affect the registration results and the way to assign the

accumulated global rotation angle on each transformation is tentative. Several trials

may be required to experimentally approach a good result. A global optimization is

essentially required to minimize the overall overlap-area registration errors. However,

the algorithm to obtain the solution of the global optimization may be very complex.

One observation associated with this kind of situation on panoramic view genera-

tion is that every adjacent image pair with overlap usually can be registered very well

individually. Based on this observation, a novel algorithm to approach the optimal

global registration results in an iterative fashion is proposed. In order to describe
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the proposed algorithm, the overlap area registration problem is first formulated as a

coordinate system conversion.

We associate a 2D coordinate system Gi with each pre-captured image Ii (i =

1, 2, ...,M). Without loss of generality, the origin of each 2D coordinate system is

located at the left-top corner of the corresponding image. On the top of Fig. 3.3, the

first three pre-captured images and the coordinate systems associated with them are

illustrated. In order to generate the panorama, the ideal transformations convert each

Gi into G
′
i so that there are only horizontal offsets between any two G

′
i. The bottom

of Fig. 3.3 shows the ideal relationship between G
′
i for the first three pre-captured

images after registration. Assume Mi represents the transformation defined on image

Ii which transfers the coordinates of points in Gi to their new coordinates in G
′
i. For

a scene point P , assuming the coordinate of its imaging point ip in Gi is ix, the

coordinate of its imaging point ip
′

in G
′
i is Mi(

ix). For the proposed registration

algorithm, Mi(
ix) = S−1

ti
(U−1

fi
(ix)) with affine parameter vector ti and parameter fi

for focal length adjustment defined on Ii.

Consequently, the overlap area registration problem is equivalent to a coordinate

system conversion. Suppose Ii and Ij are two adjacent images (where j = i + 1

mod M). Two sets of matching feature points i,jMPi = {ix(i,j),n|n = 1, 2, ..., Ni,j} and

i,jMPj = {jx(ix(i,j),n)|n = 1, 2, ..., Ni,j} are in the coordinate systems Gi (in image Ii)

and Gj (in image Ij), respectively. i,jMPi denotes the set of matching features between

Ii and Ij and ix(i,j),n denotes the coordinate in Ii (Gi coordinate system) of one of

these features. Its corresponding matching feature in Ij is at position jx(ix(i,j),n) in

the coordinate system Gj. The total number of the matching features between Ii and

Ij is Ni,j. The ideal transformations Mi and Mj are defined such that,

Mi(
ix(i,j),n) = Mj(

jx(ix(i,j),n)) + i,jx0 (3.16)

on all matching features. ix(i,j),n denotes the coordinate of one matching feature be-

tween Ii and Ij in Gi with its corresponding matching feature at position jx(ix(i,j),n) in

Gj.
i,jx0 = [i,jx0, 0] denotes the horizontal translation between G

′
i and G

′
j. In practice,

Mi, Mj and i,jx0 are found by minimizing
∑Ni,j

n=1 |Mi(
ix(i,j),n) −Mj(

jx(ix(i,j),n)) −
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Figure 3.3: Illustration of new local minimization model

i,jx0|2, such as in the proposed algorithm to register two adjacent overlapped images.

In order to generate the panoramas, the above minimization has to be carried out on

all pairs of adjacent overlapped images. The objective function for overall optimiza-

tion is
∑M

i=1(
∑Ni,j

n=1 |Mi(
ix(i,j),n) −Mj(

jx(ix(i,j),n)) − i,jx0|2). A very complex global

optimization algorithm might be required to solve this problem.

An efficient algorithm is proposed to solve the above optimization problem iter-

atively. A set of local optimizations are carried out to approach the solution of the

global problem. One local optimization can be illustrated using Fig. 3.3. In the follow-

ing description, the goal is to obtain the optimal transformation defined on Ij (where

j = 2 in Fig. 3.3). Instead of searching for the optimal transformation applied on Ij

to only match the overlap area between image Ii (i = j − 1 mod M , where i = 1 in

Fig. 3) and Ij, the optimal transformations applied on Ij are defined to minimize the

registration errors both between Ii and Ij and between Ij and Ik (k = j +1 mod M ,

where k = 3 in Fig. 3.3). In the proposed feature matching approach, the matching
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features on both left and right sides of Ij are matched with their correspondences in

the adjacent images, Ii and Ik. For example, on the top of Fig. 3.3, 1p1 and 2p1 are a

pair of matching features between I1 and I2 on the left side of I2 and 2p2 and 3p2 are

a pair of matching features between I2 and I3 on the right side of I2. Ideally, for all

matching features, both between Ii and Ij and between Ij and Ik, the relationships

Mi(
ix(i,j),n1) = Mj(

jx(ix(i,j),n1)) + i,jx0

Mj(
jx(j,k),n2) = M′

k(
kx(jx(j,k),n2)) + j,kx0

(3.17)

are satisfied, where jx(j,k),n1 denotes the coordinate of one matching feature between

Ij and Ik in Gj with its corresponding matching feature at position kx(jx(j,k),n1) in Gk.

We are looking for the optimal transformation Mj, and thus both Mi and M′
k are

temporarily fixed. Mi is the updated transformation applied on image Ii. M′
k is the

transformation that will be updated after we obtained the optimal Mj using equation

(3.17). M′
k could be the initial transformation or the optimal transformation found

in the last iteration when using an iterative method. The correspondent objective

function for optimization over the parameters of Mj,
i,jx0 and j,kx0 is

1

Ni,j

Ni,j∑
n=1

|Mi(
ix(i,j),n)−Mj(

jx(ix(i,j),n))− i,jx0|2+

1

Nj,k

Nj,k∑
n=1

|Mj(
jx(j,k),n)−M′

k(
kx(jx(j,k),n))− j,kx0|2. (3.18)

The overall procedure to generate panoramas using the matching-feature approach

is as follows:

1) Apply warping with initial focal length f0 on all pre-captured images

I1, I2, ..., IM . These are the initial transformations M′
1, M′

2, ... M′
M ;

set g = 0.

2) Set j = 2 and M1 = M′
1.

3) Search for the best transformation Mj (including both affine trans-

formation and focal length adjustment) for Ij by minimizing equation

(3.15).
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4) j = j + 1 mod M .

5) j = 2 ? if not, go to step 3); otherwise, go to step 6).

6) g = g + 1; stop? if not, set M′
1 = M1, M′

2 = M2, ..., M′
M = MM go

to step 2).

The condition to terminate the iteration can be: (1) the registration errors are small

enough compared to a predefined threshold; or (2) the change of the registration errors

is small enough compared to a predefined threshold; or (3) the number of the overall

iterations g has reached a predefined value. In our experiments, we used g to terminate

the iteration. Good results can be obtained by three to five overall iterations. The

techniques of registration and stitching on a strip area can be incorporated in the

above algorithm in a straightforward manner.

3.7 Experimental results

In this section, we first test the proposed algorithm for the stitching of two adjacent

images with some overlap area. In this test, a pair of adjacent images is stitched to

synthesize a view with a larger FOV. Then, the results are shown when stitching two

registered adjacent images on stitching areas with different widths. The registration

is implemented using both the traditional approach (note: by traditional approach,

we mean the algorithms using equation (3.2) for registration and blending on a wide

overlapped area) and the proposed approach for comparison. The mean square errors

(MSE) between the positions of matching features in the overlap areas (equivalent

to the obtained minimum in equations (3.4), (3.9), etc.) will be used to evaluate

the registration results. Using the changes of these MSE values, the contributions

from different adjustments that have been presented can be illustrated. Then, the

proposed multi-resolution stitching algorithm will be tested. Finally, the proposed

algorithm for generation of 360◦ panoramas is implemented as one application for

view mosaicking. In all experiments, the original images were captured by a digital

camera mounted and rotated on a tripod, at different rotation angles. The camera
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poses were just roughly adjusted to be levelled by hand. The image size for all pre-

captured images is 1024 pixels in width and 768 pixels in height. Informal subjective

evaluation will be used to observe and compare the artifacts, the discontinuities, or

the intensity changes in the stitched images. This is adequate because these artifacts,

discontinuities, or intensity changes are very obvious.

Fig. 3.4 shows the results obtained in experiment 1. The overlap images I1com

and I2com with detected Harris corners are shown in Fig. 3.4 (a), (b). The geometric

relationships between the matching features after registration using equation (3.2) are

shown in Fig. 3.4 (c). The geometric relationships between these matching features

after overlap area registration using the proposed algorithm are shown in Fig. 3.4 (d).

If we simply warp the images with the initial focal length and adjust the two im-

ages through shifting along horizontal and vertical directions (traditional registration

approach), the stitched results are shown in Fig. 3.4 (e). The stitching was carried

out in the indicated strip area. Fig. 3.4 (f) shows the stitching result after applying

the proposed registration algorithm and blending on the indicated strip block. The

blending is carried out in the area between the two vertical lines in each stitched

image. It is clear that the match of the two image at the overlap area is much better

and that the stitched view is significantly improved with the proposed registration

algorithm (for example as the edges of the shelves near the bottom).

Fig. 3.4 (g) shows the stitching result using the proposed approach but blending

on a wide overlapped area in Experiment 1. Although the matching between two

images at the entire overlapped area is much improved and there is no significant

mismatched place (which may show obvious “ghost image”), we can notice that the

image in Fig. 3.4 (g) looks blurred compared to Fig. 3.4 (f). This is due to the blending

of the overlap area with generally small mismatching. The small mismatching will

not bring significant difference (or disparities) between the overlapped areas before

stitching. Thus there is no obvious “ghost image” appearing in the stitched image

but the image quality will be generally degraded. For the sake of comparison, Fig. 3.4

(h) shows the stitching result with traditional registration approach and blending on
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a wide overlapped area. This is the worst case scenario. We can notice that there are

lots of significantly mismatched places which bring the “ghost image” in the resulting

images (for example, in the lower and central area of the image).

As a conclusion, the image Fig. 3.4 (f) gives the best stitching result. In this

experiment, we can notice that there is a possible faulty matching feature at the tops

of the images, which are low texture areas. However, it does not significantly affect

the proposed registration algorithm and the stitching result because the number of

matching features in the low texture area is very small.

Experiment 2 was carried out on a pair of images intentionally chosen to have large

depth variations. Due to the large depth variations for these two adjacent images, it is

very difficult to get a good registration result in the overlap area. The overlap images

are shown in Fig. 3.5 (a), (b). Fig. 3.5 (c) shows the stitching result using traditional

registration approach and blending in a wide area, with the stitching result using a

traditional registration approach but blending in a strip area as shown in Fig. 3.5 (d).

Fig. 3.5 (e) shows the stitching result after registration using the proposed method but

blending in a wide area, with the stitching result after registration using proposed

method and blending on a strip area shown in Fig. 3.5(f). We can see that the

proposed method can give better registration results and the technique of stitching

on a strip area can significantly improve the visual quality of the stitched images.
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(a) (b)

Figure 3.4: Results for experiment 1. (a) The matching features in I1com. (b) The
matching features in I2com.
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(c) (d)

Figure 3.4 Results for experiment 1 (continued). (c) The relationships between

matching features after registration using the traditional approach. (d)The

relationships between matching features after registration using the proposed

algorithm.
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(e) (f)

Figure 3.4 Results for experiment 1 (continued). (e) Stitching result with

traditional registration approach but blending on a strip block. (f) Stitching

result after registration using proposed method and blending on a strip block.
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(g)
 

 

(h)

Figure 3.4 Results for experiment 1 (continued). (g) Stitching result with

the proposed registration algorithm but blending on a wide overlapped area.

(h) Stitching result after registration using traditional method and blending

on a wide overlapped area.
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(a) (b)

Figure 3.5: Results for experiment 2. (a) I1com. (b) I2com.
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(c) (d)

Figure 3.5 Results for experiment 2. (c) Stitching result with traditional registration

approach and blending in a wide area. (d) Stitching result using traditional registration

approach but blending in a strip area.
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(e) (f)

Figure 3.5 Results for experiment 2. (e) Stitching result after registration using

proposed method but blending in a wide area. (f) Stitching result after registration

using proposed method and blending on a strip area.
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Table 3.1: MSE between the positions of matching features in Experiment 1 and 2.
(1) After relative shifting. (2) After initial warping and relative shifting. (3) After
applying affine adjustment on I1. (4) After applying focal-length adjustment on I1.
(5) After applying focal-length adjustment on I2.

Experiment (1) (2) (3) (4) (5)

1 0.3364 0.3063 0.2182 0.2176 0.2158
2 1.1798 0.6034 0.5872 0.5743 0.5675

Table 3.1 shows the MSE between the positions of matching features during the

registrations in Experiment 1 and 2. The values were calculated based on the same set

of matching features in the overlap area in each experiment, respectively. The data in

column (1) are the minimal MSE values between the positions of the matching features

after applying the traditional registration approach (equation (3.2)). The data in

column (2) show minimal MSE values between the positions of the matching features

after initial warping and relative shifting of two adjacent images along horizontal and

vertical directions. The data in column (3) show the MSE between the positions of the

matching features after affine adjustment. The data in column (4) and (5) show the

MSE between the positions of the matching features after focal length adjustments on

two adjacent images, respectively. Because the widths of overlap areas, distributions

and numbers of detected matching features are different in Experiment 1 and 2, the

MSE values between Experiment 1 and 2 are not comparable.

The multi-resolution-based stitching algorithm was tested in Experiment 3. Two

adjacent images with large luminance change are shown in Fig. 3.6 (a) and (b). If

these two images are stitched on a narrow strip block using the proposed method,

the significant luminance change can be observed in the resulted image. Fig. 3.6 (c)

shows the stitched overlapped area.

Using the proposed multi-resolution approach, one pair of frequency-complementary

filters (one high pass filter and one low pass filter) are designed. Each original image is

decomposed into two sub-band images. Then, the low resolution images are stitched
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on a wide overlapped area while high resolution images are stitched in a narrow strip

area. Then two stitched images with different resolutions are composed to generate

the final stitched image. As a consequence, the rapid luminance change doesn’t exist

anymore. Fig. 3.6 (d) shows the stitched overlapped area.

In the last experiment, we tested the proposed registration algorithm in generat-

ing 360◦ panoramas. A tentative panoramic view is generated using the traditional

approach in order to check the imaging conditions of the pre-captured images. The

procedure was described in Section (3.6) with M = 12. We found that there is a huge

vertical offset (around 200 pixels) between the left side and right side of the stitched

images I
′
1,2,...,12 due to the accumulated errors. A simple global rotation introduced

severe distortion, bringing significant difference between the left side and right side

of I
′
1,2,...,12 in the overlap area.

The proposed algorithm for global registration in generating panoramas was im-

plemented and the final stitching results on the overlap area between the first image

and the last image are shown in Fig. 3.7. Fig. 3.7 (b) shows the reference view, or

ground truth, from the original view. Fig. 3.7(b), Fig. 3.7(c), and Fig. 3.7(d) show the

stitching results after one iteration, two iterations and three iterations, respectively.

The results show that the proposed algorithm converges very quickly in obtaining an

optimized solution. Fig. 3.8 shows two final panoramas generated using the proposed

algorithm for different scenarios (indoor and outdoor).
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(a)

(b)

Figure 3.6: The source images: (a) left image (b) right image
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(c) (d)

Figure 3.6 The stitched image on the overlapped area: (c) stitching on a strip block

(d) stitching on a strip block using the proposed multi-resolution-based approach
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(a) (b)

Figure 3.7: The stitching results in the overlap area between the first image and the
last image in generating panoramas with different iterations using proposed algorithm:
(a) reference view (ground truth) (b) after 1 iteration
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(c) (d)

Figure 3.7 The stitching results in the overlap area between the first image and the

last image in generating panoramas with different iterations using proposed algorithm:

(c) after 2 iterations (d) after 3 iterations
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3.8 Summary

This chapter has proposed an overlap-area registration technique for view mosaick-

ing using an affine transformation adjustment together with a nonlinear refinement

through focal length adjustment. A feature-based overlap-area registration algorithm

has been described for implementation of the proposed method. The principle of us-

ing matching feature points as control points for view transformations can be applied

more broadly. One major advantage of using matching feature points as control points

is that the amount of computation can be greatly reduced. Moreover, the strategy

of registration and stitching on a strip block within the overlap area can significantly

improve the visual quality of the mosaicked images.

In our approach, the registration of the adjacent images was formulated as a gen-

eral coordinate-system transformation module which is independent of the particular

registration methods. The framework for generating panoramas through adjacent

image registration can then be clearly illustrated. Due to the complexity in obtaining

a global optimization solution for the registration errors in the overlap areas of all

pre-captured images, a novel simple iterative algorithm was proposed with the exper-

imental results showing that the results converge to a good solution very quickly.

In addition, we observe that these view transformations can be considered as

sampling structure changes which can be combined into one step in order to avoid

unnecessary interpolation, which will generally reduce the texture resolution of the

images. The principle can be applied to other applications involving multiple trans-

formations on the images, when some or all of these transformations can be combined

into a single one.

Finally, the simulation results show that the proposed algorithm can obtain panora-

mas 360◦ of good quality.



81

Figure 3.8: The generated panoramas using the proposed method: left (indoor scene)
and right (outdoor scene)



Chapter 4

View interpolation from adjacent

views

View interpolation from adjacent views is another approach for the IBR application.

This approach requires dense disparity maps between the pre-captured images. It is

well-known that precise dense disparity maps are very difficult to obtain in practice

[90]. In the literature, view-interpolation algorithms have been developed for the

applications of interpolating the intermediate views in stereo pairs or interpolating

the images within a video sequence, etc. For these types of applications, the view

changes are usually small and the existing algorithms in the literature for optical flow

or disparity estimation can give acceptable results. However, in IBR applications, the

view changes may be large and forward or backward motions of the camera may be

involved.

In this chapter, we will study the methods for disparity-based view interpola-

tion. The main topics will be dense disparity estimation for different camera-motion

situations used in IBR applications. Methods will be developed to relate such camera-

motion situations to the conditions in the existing methods for dense disparity es-

timation in the literature. A triangulation-based view interpolation method will be

introduced.

Fig. 4.1 shows the general scenario where view interpolation is required. Images

82
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Figure 4.1: view interpolation from the adjacent pre-captured images: Sk is the
position at which image Ik is taken, k = 1, 2, 3.

I1, I2, and I3 from camera positions S1, S2 and S3 with similar view directions are

pre-captured. Si is the virtual camera position where the interpolated view Ii would

have to be taken if no view-interpolation were applied during navigation.

View interpolation from multiple source images has been studied in [15], [16] which

is implemented by a tri-linear tensor-based approach. However, this method assumes

that the dense disparities between different views are known. It is known that the

precise dense disparities between multiple views are very difficult or expensive to

obtain. Thus, the simulations for this method in [15], [16] were carried out in the

scenario of the scenes with only a single object.

In Section 4.1, a triangulation-based view interpolation algorithm is proposed for

such a general scenario. Experimental results which are based on such an algorithm

will be given for both the above three-camera scenario and the special scenario where

there are only two pre-captured images available. In this two-camera situation, we

assume that the two cameras are parallel (or roughly parallel) with each other and

are located side by side.

In Section 4.2, another special situation will be studied. In this situation, two

images are captured at two positions along the camera axis with the same view direc-

tion. This is very similar to a zooming effect. This two-camera scenario simulates the

camera forward/backward motion when taking pre-captured images in the direction
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of camera motion. No research work dealing with such camera motion scenario has

been reported in the literature. The proposed view interpolation algorithm is novel.

4.1 Scenario I: A triangulation-based view inter-

polation algorithm

Triangulations have been used in computer graphics for texture mapping [91] and

recently have been applied in view interpolation [92]. However, in [92], quasi-dense

matching points have to be detected instead of matching features, and a complex

rendering strategy is used.

The proposed view interpolation algorithm is based on triangulation together

with affine transformation for each triangular patch instead of dense disparities. As

a consequence, it requires a large number of approximately uniformly distributed

feature matchings. We develop a multi-view matching detection algorithm based

on a new view-matching relationship constraint, along with some other traditional

epipolar constraints commonly used in computer vision.

4.1.1 A view-consistent model for IBR application

Assume that Π denotes a specified navigation area, and Isk
, k = 1, 2, ..., K, are pre-

captured images with the camera projection center at positions s1, s2, ..., sK . Π is a

polygon that is the convex hull of s1, s2, ..., sK and s1, s2, ..., sK ∈ Π. These images

have similar, but not necessarily identical, viewing directions of the scene. For the

IBR application, the objective is to synthesize an arbitrary view at some position

sa ∈ Π with a similar viewing direction, while satisfying the following consistency

conditions:

Isa = Isk
, if sa = sk, for any k ∈ {1, 2, ..., K}. (4.1)

In a more general situation, for any of the two views Isa and Isb
within Π,

limsa→sb

∑
m

∑
n

|Isa(m,n)− Isb
(m,n)| = 0. (4.2)
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where, Isa and Isb
can be pre-captured or interpolated views.

Based on this view-consistent interpolation model, the synthesized virtual views

may be different from the real physical ones, but will look reasonable during the

navigation.

4.1.2 Interpolation model with consistent feature positions

A matching-based view interpolation algorithm is proposed. Matching features among

pre-captured images are first detected and used as control points [93]. The above

texture-consistent interpolation model is converted to the feature-position-consistent

interpolation model.

Assume that N feature points have been found in all of the K pre-captured images

and that there is a unique one-to-one corresponding relationship of these N feature

points among the K pre-captured images. Further assume that the corresponding

points of these N feature points will appear in any of the views in the navigation

region Π that will be synthesized from these K pre-captured images.

We use the feature points xs1,n, (n = 1, 2, ..., N) in Is1 as the reference points.

The matchings between views Isa and Isb
are represented as two sets of feature points

MPa = {xsa(xs1,n)|n = 1, 2, ..., N} and MPb = {xsb
(xs1,n)|n = 1, 2, ..., N} in Isa and

Isb
, respectively. For any feature point xsa(xs1,n) ∈ MPa, its matching point in Isb

is denoted as xsb
(xs1,n) ∈ MPb. Then the correspondent feature-position-consistent

interpolation model can be represented as

xsa(xs1,n) = xsk
(xs1,n) n = 1, 2, ..., N, if sa = sk (4.3)

for any k ∈ 1, 2, ..., K. xsk
(xs1,n) denotes the matching points in the pre-captured

image Isk
. Also, in more general situations,

limsa→sb
|xsa(xs1,n)− xsb

(xs1,n)| = 0, n = 1, 2, ..., N. (4.4)

It is obvious that the feature-position-consistent interpolation model will converge

with the texture-consistent interpolation model when the number N of matching

points becomes large enough and distributed on the entire image.
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We will address the scenario that the sub-area is a triangle, and that K = 3.

The triangular area is specified by its vertices, the positions where three pre-captured

images are taken. Assume that the three pre-captured images with similar viewing

directions are IsA
, IsB

, and IsC
, taken at positions sA, sB, and sC (i.e., s1 = sA,

s2 = sB, s3 = sC according to the above representations). The matching feature

points in these three images form the sets MPA, MPB, and MPC . We will describe

the procedure to generate an arbitrary view Isa with the similar viewing direction at

position sa, which is within the triangle with vertices sA, sB and sC .

Following the feature-position-consistent view interpolation model, the positions

of the feature matchings in Isi
can be calculated as

xsa(xsA,n) =
(1 + ηA) · xsA,n + ηB · xsB

(xsA,n) + ηA · ηB · xsC
(xsA,n)

(1 + ηA)(1 + ηB)
(4.5)

for n = 1, 2, ..., N . This is inherited from the geometric relationship

sa =
(1 + ηA) · sA + ηB · sB + ηA · ηB · sC

(1 + ηA)(1 + ηB)
(4.6)

with

ηA =
|sB − sP |
|sP − sC |

ηB =
|si − sA|
|sP − si|

(4.7)

where, sP is the intersection of line sAsa with sBsC . The geometric relationships

between sA, sB, sC , sP and sa are illustrated in Fig. 4.2.

Thus, all points xsa(xsA,n) form the matching set MPa for the new image Isa .

Different ways to obtain the weights ηA and ηB may exist in order to satisfy the

feature-position-consistent interpolation model in equation (4.5).

4.1.3 Tri-view feature matching

A large number of approximately uniformly distributed matchings are required for

our affine transformation based view interpolation method. The Harris corners are
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Figure 4.2: The geometric relationships between sA, sB, sC , sP and sa.

first detected in the images IsA
, IsB

and IsC
. Then, the two-view matchings be-

tween IsA
and IsB

, IsB
and IsC

, and IsC
and IsA

are found from the detected corners

through normalized correlation and refined through the fundamental matrices. From

the matchings between IsA
and IsB

, and IsB
and IsC

, we can set up the tri-view

matching relationship among IsA
, IsB

and IsC
, related through the common feature

points in image IsB
. Finally, we use the matchings between IsC

and IsA
to check

the validity of the above tri-view matchings. Experiments show that a set of good

matchings can be obtained through the above methods. It is obvious that the pro-

posed ABCA law can easily be extended to multi-view (more than three) matching

detection.

In order to increase the number of matching feature points, we calculate the

fundamental matrices between each two-view pair and the tri-view tensor from the

above matchings. The matchings between each two-view pair will be checked with

the correspondent new fundamental matrix and then more matchings can be obtained

using tensor-based transferring from two-view matchings to the third view [15], [16].

In addition, the matchings that are inconsistent with their neighbors are removed.

We have obtained the feature matching relationship among the pre-captured views

IsA
, IsB

, IsC
and new view Isa . Now we want to set up the relationship between

triangular patches among these views.

The new view without texture is first partitioned using Delaunay triangulation [94]
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through the points xsa(xsA,n). The corresponding triangular patches in pre-captured

image IsA
, IsB

and IsC
can thus be obtained based on the Delaunay triangulation of

the view Isa . The corresponding matchings (in IsA
, IsB

, IsC
) of the three vertices

of one triangular patch in Isa construct the corresponding triangular patches in IsA
,

IsB
, IsC

. Obviously, the triangulations of pre-captured images generated in this way

may not be exactly the Delaunay triangulations, but are approximate ones.

In this way, we set up the triangular patch relationships among the pre-captured

images and the new view. Assume T m
sa

(xsa,n1 , xsa,n2 , xsa,n3) denotes a triangular

patch in image Isa with three vertices xsa,n1 , xsa,n2 and xsa,n3 , m = 1, 2, ...,M with

M the total number of Delaunay triangles. The corresponding triangular patches in

IsA
are T m

sA
(xsA

(xsa,n1), xsA
(xsa,n2), xsA

(xsa,n3)), and similarly T m
sB

, T m
sC

for images

IsB
and IsC

. From now on, we will use T m
sa

, T m
sA

, T m
sB

and T m
sC

to denote a set of

corresponding triangular patches.

4.1.4 Texture rendering methods for different categories of

triangular patches

The affine transformation is used for texture mapping. The affine transformation for

texture mapping is a good model under the following conditions: 1) the triangular

patch is physically located in a plane in the scene; or 2) the triangular patch is

small enough; or 3) the separations between the camera positions where pre-captured

images are taken are small enough. Then the corresponding texture of the triangular

patch in the new view can be mapped from the three pre-captured images. The

affine transformation can be determined from the geometric relationship between the

positions of the three corresponding vertices.

A six parameter affine transformation tA
m can be obtained from the geometric

relationship between three corresponding vertices of triangular patches T m
sa

and T m
sA

,

i.e., between (xsa,n1 , xsa,n2 ,xsa,n3) and (xsA
(xsa,n1),xsA

(xsa,n2), xsA
(xsa,n3)). The

relationship can be represented by
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xsa,n1 =

[
tAm,1 tAm,2

tAm,3 tAm,4

]
xsA

(xsa,n1) +

[
tAm,5

tAm,6

]

xsa,n2 =

[
tAm,1 tAm,2

tAm,3 tAm,4

]
xsA

(xsa,n2) +

[
tAm,5

tAm,6

]

xsa,n3 =

[
tAm,1 tAm,2

tAm,3 tAm,4

]
xsA

(xsa,n3) +

[
tAm,5

tAm,6

]
(4.8)

where tA
m = [tAm,1 tAm,2 tAm,3 tAm,4 tAm,5 tAm,6]

T . There are 6 unknown variables in the above

6 equations, thus we can obtain tA
m by solving these 6 linear equations for a particular

triangular patch T m
sa

.

If we use Esa(x) (x ∈ T m
sa

) to denote the texture within the triangular patch T m
sa

,

then EsA
(x) = F (x, IsA

, tA
m) (x ∈ T m

sa
) represents obtaining the texture of T m

sa
from

IsA
through affine transformation tA

m.

EsA
(x) = (HIsA

)(

[
tAm,1 tAm,2

tAm,3 tAm,4

]
x +

[
tAm,5

tAm,6

]
), x ∈ T m

sa
(4.9)

where H is a linear interpolation operator.

Similarly, we can have EsB
(x) = F (x, IsB

, tB
m) and EsC

(x) = F (x, IsC
, tC

m),

x ∈ T m
sa

. The desired texture E(x), x ∈ T m
sa

, can be obtained from EsA
(x), EsB

(x),

EsC
(x) or a combination of them. One simple way to generate the texture in trian-

gular patch T m
sa

is

E(x) = αA · EsA
(x) + αB · EsB

(x) + αC · EsC
(x) (4.10)

for any x ∈ T m
sa

. αA = 1/(1 + ηB), αB = ηB/(1 + ηA)(1 + ηB) and αC = ηA · ηB/(1 +

ηA)(1 + ηB). ηA and ηB are calculated based on equation (4.7).

However, the texture differences between EsA
(x), EsB

(x) and Esc(x) in equation

(4.10) are potentially significant for some triangular patches. This may bring ghosting

artifacts [43] in the synthesized images. In order to avoid such side effect and thus



90

to minimize the discontinuities between the triangular patches in the new view, the

following rendering strategy is used,

E(x) =





EsA
(x) if dA ≤ min(dB, dC)

EsB
(x) else if dB < min(dA, dC)

EsC
(x) otherwise

for any x ∈ T m
sa

. dA = (
∑N

n=1 |xsa(xsA,n) − xsA,n|), dB = (
∑N

n=1 |xsa(xsA,n) −
xsB

(xsA,n)|), and dC = (
∑N

n=1 |xsa(xsA,n) − xsC
(xsA,n)|). Similar idea for texture

mapping appears in [95], [96], [13].

4.1.5 Simulation results

Simulations of the proposed view interpolation algorithm include three parts. The

first part is algorithm validation. In this part, we apply the proposed method on

the situation with only two pre-captured images. A view in-between these two views

is known and represents ground-truth. The in-between view is first interpolated

by the proposed algorithm and then compared to the ground-truth. The second

part is algorithm illustration. Three pre-captured images are used to illustrate the

procedure as to how the interpolated view can be obtained. In the last part, or

algorithm application part, the proposed algorithm is applied on three pre-captured

images that were taken in a real environment.

Due to the nature of IBR applications, physically valid views are not necessarily

required during navigation, if obtaining such views is impossible or too expensive.

When a user navigates in a real-image-based virtual environment, the corresponding

view changing during navigation is the desired experience that he (she) expects. Thus,

the two important requirements are : (1) the views are of good quality, and (2) view

changing during navigation is done in a natural fashion. If these two requirements

are met, it is likely to be acceptable for most IBR applications.

For traditional image and video processing applications, the evaluation methods

include both subjective evaluation methods and objective evaluation methods.
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One of the widely-used objective evaluation methods is based on PSNR (peak signal

to noise ratio) if the ground-truth images for comparison are known. However, the

PSNR may not be an appropriate metric to evaluate the synthesized views for IBR

applications even if the ground-truth views are known. The higher PSNR values of

the synthesized views (comparing to the ground-truth views) may not necessarily

mean that the synthesized views are of better subjective quality. In addition, it is

very difficult or expensive to obtain the ground-truth views for comparison in the

scenario of view interpolation that we discussed here. Thus, we will use informal

subjective evaluation to evaluate our simulation results.

Algorithm validation

View interpolation based on two source images has been studied for a long time.

The methods in the literature are usually based on dense disparity maps between the

two source images. For algorithm validation purpose, we implement the proposed

algorithm on this situation to show that the proposed method can generate valid

interpolated views.

We choose images No. 21 and No. 23 in the flower garden sequence as the source

images I1 and I2 (these images are individual frames which have been reconstructed

from the original interlaced sequence and downsampled). The source images are

shown in Fig. 4.3.

We can interpolate the images between I1 and I2 based on the proposed algorithm.

For this comparison, we interpolate the middle view corresponding to image No.

22 in the sequence. The interpolated view is shown at the top of Fig. 4.4. For

visual comparison, the original intermediate image, image No.22 in the garden flower

sequence, is given at the bottom of Fig. 4.4. From the above simulation results, we

can see that the proposed algorithm can generate a valid interpolated intermediate

view.

Due to the fact that the matching features may not be found at the border areas in

the original images (i.e., I1 and I2), the texture at the border areas in the synthesized



92

Figure 4.3: Source image I1 (flower garden 21) and image I2(flower garden 23)
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views is missing. This issue will be addressed later. The image looks blurred near the

edge of trunk area (the area within the circle shown in the figure). This is caused by

occlusions between I1 and I2. The occlusion detection is not a research topic in this

thesis. The image is generally of good quality in the other areas.

In fact, the proposed algorithm is equivalent to the dense-disparity-based view in-

terpolation method for view interpolation with two source views. The dense disparity

is obtained by piecewise planar interpolation of the feature-point disparities. For the

scenarios that there are more than two source images, the dense disparity maps are

usually very difficult to obtain but the proposed algorithm can avoid these difficulties

due to the use of the matching features.

Algorithm Illustration

In the second simulation, the procedure of the proposed view interpolation algorithm

is illustrated on a scene of a model house on a table (obtained from [97]), shown

in Fig. 4.5, where different views of the model house were captured. In Fig. 4.6,

the original images (pictures that were taken at different viewing positions and from

different viewing directions) are shown in Fig. 4.6(a), Fig. 4.6(b) and Fig. 4.6(c). We

have no information regarding to the relative positions where the image sequence are

taken. From the view changing, we can reasonably estimate that the camera was

moving on a trajectory which is similar to that shown in Fig. 4.5. The arrows show

the imaging directions at different camera positions. The matching features among

three original images are found and the corresponding features located in the view to

be interpolated (the position sa is selected as the center of the triangle sAsBsC) can

be computed, as shown in Fig. 4.6-(d).
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Figure 4.4: The view interpolated from I1 and I2 using the proposed algorithm (top);
the original intermediate image(bottom)
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Figure 4.5: Illustration of the estimated camera trajectory.
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(a)

(b)

Figure 4.6: Illustration of the proposed view-interpolation algorithm. (a) The first
original image (with triangular mesh). (b) The second original image (with triangular
mesh).
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(c)

Figure 4.6 Illustration of the proposed view-interpolation algorithm. (c) The third

original image (with triangular mesh). (d) The triangular mesh on the view to be

interpolated (no texture).
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(e)

(f)

Figure 4.6 Illustration of the proposed view-interpolation algorithm. (e) Filling texture

within each triangular area one by one. (f) The final interpolated view (after all

triangular areas have been filled with texture from original view).
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The view to be interpolated is triangulated with the above matching features, as

shown in Fig. 4.6-(d), but without any texture. The original images in Fig. 4.6-(a),

Fig. 4.6-(b) and Fig. 4.6-(c) are segmented into the triangular areas, respectively, in

the same way as that of the view to be interpolated. The triangulation results are

superimposed on the images in Fig. 4.6-(a), Fig. 4.6-(b) and Fig. 4.6-(c). In this way,

the relationship between corresponding region in different views is built and thus the

texture mapping can be implemented.

Fig. 4.6-(e) shows the view to be interpolated, which is only partially filled up

with texture. The final interpolated view is shown in Fig. 4.6-(f). We can see that

the synthesized image is a valid view of good quality except the missing texture at

the border areas.

Algorithm applications

The third simulation was implemented on three pre-captured images of size 1024×768,

taken at three positions in the VIVA lab at the University of Ottawa. The relative

camera positions are shown in Fig. 4.7 with sAsB ' sAsC ' sBsC ' 50(cm). The

three pre-captured images (with similar imaging directions) are shown in Fig. 4.8(a),

Fig. 4.8(b) and Fig. 4.8(c). 3595 matching features were detected and the images

were segmented into 7893 triangular patches. Thus the area of each triangular patch

is relatively small, which is suitable for the affine transformation model. View inter-

polation using the proposed algorithm is thus implemented. One of the interpolated

views is shown in Fig. 4.8(d). From the figure, we can see that the synthesized view is

of good quality and can represent the corresponding change of view. Thus, it satisfies

our objective. Discontinuities appear around some areas (highlighted by the circles

in the figure) in the synthesized view such as the table border area (central bottom

area in the image). This is caused by potential faulty matching points near the image

border.

We note that there is missing texture in the border part of the interpolated views.

This is due to the lack of matching features in these areas. It will be not an issue if
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Figure 4.7: The illustration of the camera positions where the pre-captured images
were taken (sA, sB and sC)and the virtual camera position where the synthesized
view is captured sa.

the source images are large enough, and in particular if panoramas are used as source

images in IBR applications.
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(a)

(b)

Figure 4.8: The simulation result in a real environment using the proposed view-
interpolation algorithm. (a) The first original image. (b) The second original image.
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(c)

Figure 4.8 The simulation result in a real environment using the proposed

view-interpolation algorithm. (c) The third original image. (d) One of the

synthesized views using the proposed method.
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4.2 Scenario II: A new dense disparity estimation

model for IBR applications

Disparity estimation between multiple views is a fundamental problem that has been

studied for applications in 3D reconstruction [98], [99], view interpolation [100], multi-

view coding [101], etc. Much research has been carried out and different methods for

optical flow estimation or dense disparity estimation have been proposed over many

years. In most methods, the disparities between multiple views are assumed to be

small in order to use a gradient-based approach. In many special applications, two

source views are even assumed to be taken under a parallel-camera-configuration and

thus dense matching sometimes refers to stereo matching [23].

View interpolation under more general camera movement situations is desired for

IBR applications. Often, the small-disparity assumption may not be satisfied. Al-

though methods have been proposed to obtain an initial coarse estimation before

applying the above gradient-based approaches, these algorithms can fail in some sit-

uations in IBR applications. In this section, a new dense disparity estimation model

is proposed in order to use the traditional methods to solve dense disparity estima-

tion problems in such new situations. In the proposed method, the dense disparity

estimation is implemented using transformed views which are obtained through min-

imizing the difference between the source views. The dense disparity maps between

two original source images are computed afterward from an inverse transformation

from the above estimates. In this thesis, we use transformed views to estimate the

disparities instead of using two source views based on an initial estimation because

experiments show that the large difference of sampling densities between two source

views makes the matching unreliable.
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4.2.1 Review of previous major dense disparity estimation

methods and their limitations

Assume that we want to estimate the disparities between two discrete images (for

example, the left and right images in a stereo pair) Il(m) and Ir(m). The disparities

{d(m)}m∈W∩Λ are defined on a lattice Λ in the common area W of image Il(m) and

Ir(m). The disparities between these two images are usually estimated by minimizing

a cost function,

ED(d) =
∑

m∈W∩Λ

Em
D (d) (4.11)

where

Em
D (d) =

∑
n∈Cm

Ψ(Il(n)− (HIr)(n + d(m))) (4.12)

Ψ(·) represents a metric function, such as | · | or (·)2. We will use (·)2 here but the

method is not limited to this metric function. H represents a linear interpolation

operator to obtain a continuous version of image Ir since in general n + d(m) does

not lie on the sampling lattice Λ. Cm ⊂ Λ is a neighbor area around m. In some

algorithms, a filter or filter banks are used to process the original images in order to

make better use of the neighborhood feature information. In this thesis, the proposed

algorithm will be illustrated using the basic format in Eq. (4.12).

Eq. (4.12) provides the data fidelity term in disparity estimation. In order to ob-

tain a reliable result, some constraints have to be added as a regularization term, de-

noted by ES(d). Thus, the cost function for optimization is E(d) = ED(d) +λES(d),

where λ is a regularization coefficient. There are many ways to select the regulariza-

tion term ES(d) proposed in the literature. A simple and commonly used constraint

on 5d is chosen without loss of generality in this thesis.

One major method [102] to minimize Eq. (4.12) is expanding (HIr)(n + d(m))

around n using methods such as Taylor series expansion [103]. Other methods such

as using the gradient-descent-based algorithm to solve the associated Euler-Lagrange

equation [100] are also widely studied. All these methods must start with some initial

disparity estimates when the disparities between views are large. The estimation is
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then implemented in a coarse-refine routine. Obtaining a good coarse estimation of

the disparity field is very difficult and expensive when the disparities between views

are large. The situation is even worse when the disparity variations are large. On the

other hand, the initial disparity estimates may be obtained considering the physical

imaging conditions.

The previous algorithms in the literature do not work well in some situations, such

as when two views are taken by a camera moving forward or backward with a large

relative distance. In such situations, matching of the areas with different sampling

densities in the source views of the similar scenes is not reliable even though a good

estimation is available.

Based on the above observation, a new disparity estimation method is proposed.

The sampling-density difference of two source views is first minimized through a

suitable transformation which is determined by the physical imaging conditions. The

proposed method is currently focused on view interpolation between two views taken

by a camera moving forward or backward.

4.2.2 The proposed new dense disparity estimation model

From the above analysis, we find that a general pre-processing to reduce the difference

between Il and Ir will be very helpful. A new image is defined through changing the

sampling structure of image Il as Ĩl(m) = (HIl)(Mm). M is a general transforma-

tion which is selected to reduce the disparities between Ĩl and Ir. Then, the dense

disparities can be calculated between Ĩl and Ir using the previous methods such as

the algorithms in [103], [100] (based on equation (4.11) and (4.12)),

Em
D (d̃) =

∑
n∈Cm

(Ĩl(n)− (HIr)(n + d̃(m)))2 (4.13)

Assume that the optimal disparity field between Ĩl and Ir is {ˆ̃d}, or Ĩl(m) ∼= (HIr)(m+
ˆ̃
d(m)). Then, the disparities d between Il and Ir can be obtained as

d = M−1m−m + (Hˆ̃
d)(M−1m) (4.14)
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whereM−1 denotes the inverse transformation ofM. Similarly, because the disparity
ˆ̃
d is defined on a lattice, we need a linear interpolator to get its values at the positions

off the lattice.

Some previous work in the literature can be essentially included in the above pre-

processing strategy. For example, view rectification is applied for view interpolation

through view warping [35]. After rectification, two rectified views can be regarded

as being taken by a pair of parallel camera. Then the disparity estimation can be

converted from 2D to 1D.

4.2.3 Two Major transformations for view interpolation in

IBR applications

Two major types of camera movement, i.e., translation perpendicular to the camera

axis and forward or backward motion, are of interest for view interpolation in IBR.

The previous algorithms in the literature (such as [103], [100]) can usually obtain good

results if the camera movement is translation. We reformulate these previous methods

into our model and use a region-based approach, which is more stable compared

to pixel-based or block-based (assuming the block size is much smaller than the

region) approaches. The significant contribution of the above disparity-estimation

model is for the situation of forward or backward camera movement, which may

make previous algorithms fail. In such situations, the proper transformation, or

zooming (up-sampling or down-sampling), is selected considering the physical imaging

conditions. In addition, the difference of the two source views’ sampling densities is

minimized by warping one view, where the disparity estimation is actually carried

out based on such a warped view. More general transformations, such as affine

transformation, can also be used in some other imaging conditions.

Region-based dense matching

Block-based motion estimation algorithms [104], [105], [106] have been widely used

in video compression applications [107]. For these applications, the sizes of blocks
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are usually small (such as 16 × 16, 8 × 8, 4 × 4). The estimated motion vector on a

particular block is used to represent the motion of this whole block. In the proposed

region-based dense matching algorithm, the sizes of the regions are large than the

sizes of the above blocks. The dense matching is carried out between corresponding

regions in the different images.

In region-based dense matching, one of the two source images (i.e., left image Il) is

divided into overlapped regions. These overlapped regions can be of arbitrary shape.

They are partial images (sub-images). To simplify the algorithm, we use rectangular

area to select these overlapped regions. In this way, the overlapped regions can be

regarded as overlapped blocks with large size. One example of how to select these

overlapped regions will be provided in the following simulations. The corresponding

regions in the other image (i.e., right image Ir) can be found through a correlation-

based search. Then, the disparities can be estimated on each pair of sub-images (or

regions) and the disparities between two original images Il and Ir can be recovered.

The approach is very similar to the block-based approach. However, since the sizes

of regions are very large, the disparities between each region pair are stable and

thus the disparities for each pixel between each region pair are consistent with those

between the original images. That is the reason we name our approach as region-based

approach instead of block-based approach.

For the i-th region pair Il,i and Ir,i, assume that the approximate translation

between this region pair is d0,i. Then the disparity estimation is carried out between

Ĩl,i(m) = (HIl,i)(m + d0,i) and Ir,i(m). The transformation M is defined as Mm =

R0 ·m+d0,i, where R0 is identity matrix. The disparities between original images at

corresponding pixels can be calculated through an inverse transformation. Because

the regions are overlapped, the boundary problem (some scene areas may appear in

one sub-image but do not appear in the other if the region sizes are equal) can be

avoided by discarding the estimates in the boundary areas in each region pair.
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Zooming-based transformation

The disparities between two views taken by a camera moving forward or backward

have some special distributions. Even if there is no depth variation in the scene,

the disparities are not uniform. The central part has very small disparities and

the boundary part has large disparities; the situation is exactly the same as the

disparities between an image and its zoomed version. Moreover, the differences of

sampling densities at the boundary areas of such two images are usually very large,

which makes matching very difficult due to interpolation H. The situation becomes

more complex with depth variations of the scene. However, a zooming function (up-

sampling or down-sampling) usually provides a good transformation model for this

kind of camera movement and the proposed disparity estimation model can avoid

such difficulties.

Assume two images If (front image) and Ib (back image) are taken by a camera

that moves backward (the center of the image is along the camera axis of zoom). An

optimal zooming factor η̂ is first found through

η̂ = arg min
η
|Ib(m)− (HIf )(ηm)|2. (4.15)

The correspondent transformation is Mm =

[
η̂ 0

0 η̂

]
·m = η̂m. The disparity field

between Ib(m) and (HIf )(η̂m) can be estimated using the previous methods [100],

[103]. The disparity field between two original images If and Ib can then be calculated

through the correspondent inverse transformation.

4.2.4 Simulation results

The simulations were implemented on a pair of images that were taken by a camera

which moved forward and translated along both horizontal and vertical directions.

The camera movement was manually controlled, so that the imaging planes of the

camera at two different positions are roughly parallel. The two source images If and

Ib are shown in Fig. 4.9 in reduced size. The image size is 1024x768. For similar
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reasons that we discussed in the previous section, we will use informal subjective

evaluation to evaluate our simulation results.

The optimal zooming factor η̂ is first searched using Eq. (4.15). Based on this op-

timal zooming factor η̂ = 0.97, the front image If is re-scaled to match with Ib and the

resulting image is (HIf )(η̂m). Then the disparities between Ib(m) and (HIf )(η̂m)

are estimated using a region-based approach to obtain an initial estimation using

the following steps. Image Ib(m) is divided into 16 similar size regions with some

overlapped areas between adjacent regions. Fig. 4.10 illustrates the way to generate

such overlapped regions (blocks). The image is divided into 16 regular blocks with

the same size (for an image with size of 1024x768, the size of each block is 256x192).

These blocks are illustrated by the light-dashed lines in the figure. Three types of the

overlapped regions (blocks B1, B2, B3 in dark-dashed line) are generated based on

the above regular blocks. There are 16 such overlapped regions in total. Generally,

the disparities are estimated on these overlapped regions but only the disparities on

the correspondent regular block are consider to be valid.

The corresponding region in (HIf )(η̂m) of each region in Ib(m) is found through

a cross-correlation-based searching. After the disparities between corresponding re-

gion pairs have been estimated using optic flow estimation, the disparities between

(HIf )(η̂m) and Ib(m) can be obtained. We use the method in [100] to calculate

dense disparities between the corresponding regions. Some block effects exist in the

current disparity maps. Using these disparities as coarse estimations, more accurate

disparity maps can be obtained by the proposed algorithm. The disparities between

If and Ib can then be calculated through the correspondent inverse transformation.

Fig. 4.11 shows the disparity maps along both horizontal and vertical directions with

this approach. The images of the disparity maps are obtained by mapping the dispar-

ity values to image intensities for illustration purpose. We can find that the object

structures appear very clear in the disparity maps. For comparison, the disparity

maps obtained by the dense disparity estimation method [100] are shown in Fig. 4.12.
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Figure 4.9: The original images
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Figure 4.10: three typical regions (dark-dashed blocks B1, B2, B3)

One view with a virtual camera located between the camera positions where If and

Ib were taken was interpolated is shown at the top part in Fig. 4.13. The interpolated

view looks good although there are some defects on the boundary area. The boundary

defect is not a significant problem for IBR applications because the overlap areas

between pre-captured images can be controlled during acquisition. The approach of

using dense matching algorithm directly on the original images [100] has been tested

and one of the results is shown at the bottom part in Fig. 4.13 (the circular area

shows some artifacts that this algorithm brings). We find that the result generated

by the traditional approach is of very poor quality for such situations.

4.3 Chapter summary

In this chapter, two different view interpolation algorithms are proposed for IBR

application. Generally, the navigation area can be triangulated by a set of positions,

where the pre-captured images are taken, and consequently, a view interpolation

algorithm based on three source images has to be used. Thus, a matching-feature-

based view interpolation algorithm is proposed to deal with such a general scenario.

This leads to our first view interpolation algorithm discussed in this chapter.

In some particular scenarios, the view interpolation has been applied based on
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Figure 4.11: Disparity map along horizontal (top) and vertical (bottom) directions
obtained from the proposed algorithm
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Figure 4.12: Disparity map along horizontal (top) and vertical (bottom) directions
obtained from the comparison method
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Figure 4.13: Interpolated in-between view generated by the proposed algorithm (top)
and by the comparison method (bottom)
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two source images. Previous work that has been published in the literature only

considers the situation where two source images are taken side by side. This is not

enough for IBR application. The two source images could be taken where the camera

moves forward or backward, or even with more general motions. This brings us to

our second view interpolation algorithm discussed in this chapter.

In the first view interpolation algorithm, the triangulation of the images and the

affine transformation models are used. In this way, feature matchings instead of dense

disparities are required because the feature matchings are usually more reliable. A

multiple view matching detection strategy is described, which can obtain a large

number of approximately uniformly distributed matchings.

In the second algorithm, view interpolation under the special circumstance, the

camera moving forward or backward, is described. After studying the physical imag-

ing condition for such a situation, a new disparity estimation model for IBR applica-

tion is proposed by applying warping on one of the source views. The transformations

are specified from physical imaging conditions of camera movement, which can be (but

are not limited to) translation, zooming, affine transformation, etc. Simulation results

show the proposed method can yield good results compared to applying traditional

dense matching algorithm directly on the source views in some scenarios of camera

movement such as forward or backward motion.



Chapter 5

Column-based view synthesis:

Simplified Concentric Mosaics

In the Light Field description approach, the rendering can be almost scene indepen-

dent and thus it is reliable, robust and relatively simple. However, a large number of

pre-captured images is needed and the technical requirements are relatively expensive

due to the precise control of camera movements that is required in the image acquisi-

tion phase. The Concentric Mosaics (COM) technique [17] is a clever way to reduce

such technical requirements within the class of techniques using the Light-Field de-

scription. In order to further reduce the technical requirements for implementation,

rendering with non-uniform approximate Concentric Mosaics [108] has been proposed

in the scenario that the pre-captured images are obtained by a hand-held camera and

the camera positions are estimated through general camera-position estimation tech-

niques of computer vision. However, the precision of such estimates of the camera

positions moving in 3D space based on the current techniques in computer vision

are usually inadequate to satisfy the requirements of this application, significantly

affecting the quality of the rendered novel views.

In this chapter, a simplified Concentric Mosaics technique with non-uniformly-

distributed pre-captured images is addressed. Comparing to a similar approach in

[109], camera calibration is not required. On the other hand, the constraint that

116
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the camera’s movement is on a circle, as in the conventional Concentric Mosaics

technique, remains, thus providing the potential to considerably simplify the camera-

position estimation compared to the method in [108], and also significantly reducing

the estimation errors because the camera positions are estimated in a reduced di-

mension, i.e., one dimension. We call our method the Simplified Concentric Mosaics

(SCOM) technique.

5.1 Problem formulation and basic approach

A concentric-mosaics dataset is obtained by recording an image sequence as a camera

moves on a circular path, with the camera pointing in the outward radial direction.

Typically, the camera is mounted at one end of a long bar while the other end of the

bar is pivoted on a tripod or other more stable platform [17]; the bar rotates about

this pivot point to capture the image sequence.

The capturing procedure in the Concentric Mosaics technique can be illustrated

with Fig. 5.1. The camera is mounted at one end E of the rotation beam CE. When

CE rotates around C at a constant velocity, the video camera takes a sequence of

images. A set of pre-captured images are obtained after CE has completed one

circle. One practical device to implement the Concentric Mosaics technique built by

Microsoft Research [110] is shown in Fig. 5.2.

While the rotation can be precisely controlled by a motor to generate a uniform

sampling of the circle, we consider here the situation where the bar is (slowly) rotated

manually, thus generating a non-uniform sampling. In order to be able to reconstruct

the image at arbitrary points of view in the navigation area, the position of the camera

at each of the sampling positions must be accurately known.

Assume that N non-uniformly spaced images I1, I2, . . . , IN pointing in the radial

direction are captured on one full revolution over the circular path. The camera

position is considered as the camera projection center and is assumed to lie on a

circle in a horizontal plane. Typically N is of the order of hundreds, or even several
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Figure 5.1: The illustration of capture procedure for Concentric Mosaics technique

Figure 5.2: The Concentric Mosaics capture device (Microsoft Research)
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thousands, of images. The angle between adjacent images Ik and Ik+1 is denoted θk.

Then,
∑N

k=1 θk = 2π, where we set IN+1 = I1. The position of the jth image is given

by the cumulative angle with respect to the initial or reference image,

φj =

j∑

k=1

θk (5.1)

where φ0 = 0 and φN = 2π. The problem is to estimate φj, j = 1, . . . , N − 1 from the

N captured images.

Our approach is based on matching features in triples of adjacent images, say Ik,

Ik+1 and Ik+2. Using standard techniques, we select feature points that can be reliably

matched in the three images. From the geometry of projective image formation, we

can find an expression for the ratio of the two adjacent angles θk+1/θk in terms of the

disparities of these feature points between images Ik and Ik+1, and between Ik+1 and

Ik+2. Using multiple sets of matching features per image triple, we can then estimate

ηk = θk+1/θk for k = 1, 2, . . . . This leads to a set of linear equations that can be

solved for the θk and thus the φk can be estimated.

5.2 Estimation of the camera positions from the

non-uniformly-sampled images

Camera position estimation from an image sequence has been extensively studied in

computer vision [111]. Assume that an image sequence has been taken by a cali-

brated camera. By tracking the positions of a number of feature points in the image

sequence, the projection matrices can be obtained. The relative camera positions

can be calculated as external parameters after decomposing the projection matrices.

Then, bundle adjustment is applied in the camera position estimation refinement to

get the converged solutions. A large amount of computation is required to obtain

the camera position using this technique. Moreover, when the differences between

the camera positions are too small, the epipolar constraints are not reliable and the
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bundle adjustment algorithms that are commonly used in computer vision may not

converge in this situation.

Fortunately, the camera position estimation can be greatly simplified due to the

special 1D trajectory of the camera movement in SCOM. In this chapter, we propose

a simple stereo approach to estimate the camera positions.

5.2.1 Relationship between the angular spacing and dispari-

ties on a circular camera path

We use the stereo technique for depth estimation [112], as illustrated in Fig. 5.3.

The positions (projection center) of the camera at two adjacent points on a circular

trajectory are denoted C1 and C2. Images I1 and I2 are captured at these two posi-

tions. A scene point P1 is projected at positions P1,1 and P1,2 in the images I1 and

I2, respectively. The line segment C1C2 is called the baseline for the stereo pair I1,

I2 and its length is denoted by b1,2. The camera coordinate systems (X, Y, Z) at the

two camera positions are shown in the figure, with the Y directions pointing out of

paper. (X1L, Z1L) and (X1R, Z1R) denote the (X, Z) coordinates of the scene point P1

in the two camera systems. The angle between the optical axis (in the same plane)

of the two cameras is θ. Because the scene point is far away and the angle θ is small,

depth values Z1L and Z1R can be approximated by [112]

Z1L ≈ Z1R ≈ f · b1,2

d(P1,1, P1,2)− f · θ (5.2)

where d(P1,1, P1,2) = X1L − X1R is the horizontal disparity between points P1,1 and

P1,2 and f is the focal length of the camera.

We now consider three consecutive views I1, I2, and I3 on a circular arc at positions

C1, C2, and C3 respectively, as shown in Fig. 5.4. The angle between C1 and C2 is θ1,

and the angle between C2 and C3 is θ2. Assume that the scene point P
(1)
i is projected

into images I1, I2 and I3 at positions P
(1)
i,1 , P

(1)
i,2 and P

(1)
i,3 respectively, i = 1, 2, . . . M1,

where M1 feature points visible in images I1, I2, and I3 have been identified. Applying
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Figure 5.3: Setup for depth estimation using the stereo technique with two views

(5.2) for the image pairs I1, I2 and I2, I3 respectively, we obtain

Z
(1)
i,1L ≈ Z

(1)
i,1R ≈

f · b1,2

d(P
(1)
i,1 , P

(1)
i,2 )− f · θ1

(5.3)

and

Z
(1)
i,2L ≈ Z

(1)
i,2R ≈

f · b2,3

d(P
(1)
i,2 , P

(1)
i,3 )− f · θ2

(5.4)

where Z
(1)
i,1L and Z

(1)
i,1R are the Z coordinates of scene point P

(1)
i in the stereo system

with camera positions at C1 and C2, and Z
(1)
i,2L and Z

(1)
i,2R are the Z coordinates of

scene point P
(1)
i in the stereo system with camera positions at C2 and C3. Image I2 is

the right image for stereo pair (I1, I2) and the left image for stereo pair (I2, I3), and

thus Z
(1)
i,1R = Z

(1)
i,2L. Because the camera is moving on a circle, we have θ1 ≈ b1,2/R

and θ2 ≈ b2,3/R, where R is the radius of the circle. Substituting these relationships

into equations (5.3) and (5.4), we obtain

θ1

d(P
(1)
i,1 , P

(1)
i,2 )

≈ θ2

d(P
(1)
i,2 , P

(1)
i,3 )

, (5.5)
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or equivalently,

θ2 = η1θ1 where η1 ≈
d(P

(1)
i,2 , P

(1)
i,3 )

d(P
(1)
i,1 , P

(1)
i,2 )

, i = 1, . . . ,M1. (5.6)

For a general consecutive pair of angles, this can be expressed

θk+1 = ηkθk where ηk ≈
d(P

(k)
i,k+1, P

(k)
i,k+2)

d(P
(k)
i,k , P

(k)
i,k+1)

, i = 1, . . . , Mk. (5.7)

Figure 5.4: Setup for depth estimation using the stereo technique with multiple views

The angle ratio ηk = θk+1/θk can be estimated using least squares over the Mk
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sets of matching features as

η̂k = arg min
η

Mk∑
i=1

(d(P
(k)
i,k+1, P

(k)
i,k+2)− ηd(P

(k)
i,k , P

(k)
i,k+1))

2. (5.8)

Solving this standard linear least-squares problem [86],

η̂k =

∑Mk

i=1 d(P
(k)
i,k+1, P

(k)
i,k+2) · d(P

(k)
i,k , P

(k)
i,k+1)∑Mk

i=1 d(P
(k)
i,k , P

(k)
i,k+1)

2
. (5.9)

Although total least squares may be more appropriate to solve this problem since

there are measurement errors in both variables d(P
(k)
i,k , P

(k)
i,k+1) and d(P

(k)
i,k+1, P

(k)
i,k+2),

this approach was tested and did not provide any significant improvement. So it was

not used further.

Matching errors are unavoidable and play a very significant role in the proposed

stereo-based camera position estimation method. Reliable methods such as RANSAC

[113] have been developed to robustly solve such problems by discounting outliers

due to faulty matches. Under this special circumstance, we use a method we call

ratio-fitting to select good matching features from the matching feature pool. Be-

cause we know that the disparity ratio between two adjacent stereo pairs should be

a constant, we select the majority of matching features that respect this constant-

ratio principle as good matching features. The method can be illustrated using the

above set, denoted as Πk, of Mk sets of matching features. For each pair of dispar-

ities d(P
(k)
i,k+1, P

(k)
i,k+2) and d(P

(k)
i,k , P

(k)
i,k+1), the individual disparity ratio is calculated

as ηi,k = d(P
(k)
i,k+1, P

(k)
i,k+2)/d(P

(k)
i,k , P

(k)
i,k+1). According to the proposed theory, all ηi,k

should be a constant in the ideal situation, which is usually not the case due to match-

ing errors. The mean of ηi,k, denoted as ηk, is calculated. We define a confidence

factor χ. Set Πk is separated into two subsets, subset Πg
k containing good matching

features and subset Πf
k containing faulty matching features, with Πg

k ∩ Πf
k = ∅ and

Πg
k ∪ Πf

k = Πk, where ∅ represents the empty set. There are χMk matching features

in Πg
k and (1−χ)Mk matching features in Πf

k . For all ηp,k ∈ Πg
k and for all ηq,k ∈ Πf

k ,

|ηp,k−ηk| < |ηq,k−ηk|. (The confidence factor χ = 0.95 was used in our experiments.)
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Then Πk is updated by Πg
k while Mk is updated to χMk (Mk = χMk). It is straight-

forward that the ratio-fitting algorithm can be applied on updated Πk and Mk with

the same (or a different) confidence factor χ. Thus, the above ratio-fitting method to

find good matching features can be implemented in an iterative way. The idea here

is similar to the one used in vector quantization [114].

Moreover, because the camera motions are almost in the horizontal plane and the

range of the disparities between matching features can be roughly estimated due to

the regular motion of the camera, the search window can be consequently specified.

In Fig. 5.5, points P1,1 and P1,2 are a pair of matching features in image I1 and image

I2. The searching window (the dashed area in image I2) can be relatively small, and

narrow in the vertical direction, for the above camera motion scenario. This greatly

reduces the number of possible faulty matching features.

Figure 5.5: Illustration of searching window to detect matching features in the SCOM.

Although some approximations have been made to arrive at the fundamental rela-

tion (5.7) that relates the ratio of adjacent angles to the ratio of horizontal disparities

of corresponding points, we expect these to be minor in normal circumstances and

for errors to be mainly due to imprecision in measuring the disparities. To verify the

linear relationship (5.7), we carried out a test with the concentric mosaics dataset

‘kids’ provided by Microsoft Research [17]. In this dataset, the images were acquired

using a precision motor and thus we assume that the images are uniformly distributed

over the circle. The sequence consists of N = 2967 images that we assume are equally

spaced with angular separation 2π/2967 rad. The sequence was subsampled by 15 to

get a uniform sequence with angular spacing of 2π/198 rad or about 1.82◦. Triples of
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matching features were detected using the projective vision toolkit (PVT) [84] (the

proposed ratio-fitting technique is not applied to remove outliers). Fig. 5.6(a) shows

a scatterplot of the corresponding pairs of disparities (d(P
(k)
i,k , P

(k)
i,k+1), d(P

(k)
i,k+1, P

(k)
i,k+2))

over a set of 194 image triples, where there is a variable number Mk of feature sets

per image triple (mean = 39.8 , standard deviation = 13.8 ). It is clear visually that

the trend is linear; the least-squares line with η = 0.997 is also shown. Fig. 5.6(b)

shows a similar scatter plot for one particular triple of images. Again the trend is

linear and the least-squares line with η̂ = 0.958 is shown. Over the entire set of image

triples, we obtain mean(η̂k) = 0.998 and std(η̂k) = 0.035.

This experiment was repeated with different angular spacings (namely 1, 4, 8),

and the results are summarized in Table 5.1. In this table, the means and standard

deviations of the estimated angle ratios are given for the different angular spacings.

The means and standard deviations of the number of matching features that were

used for the correspondent estimations are also given for different angular spacings.

The linear trend was observed in all cases, but the bias is seen to decrease as the angle

increases, since the relative importance of the disparity errors decreases. In particular,

the angular spacing of 2π/2967 has the largest bias and standard deviation of the

error. The explanations will be given in the following section (Section (5.3.1): analysis

of the ratio estimation errors). As a consequence, the angle grouping technique will

be proposed in the subsequent section (Section (5.3.2)).

Table 5.1: experimental data on angle ratio: for different angular spacings, the means
and standard deviations of the estimated angle ratios, the means and standard devi-
ations of the number of matching features used for the correspondent estimations

angular spacing estimated angle ratio number of matches
mean std mean std

1 0.873 0.103 18.5 4.1
4 0.981 0.026 52.7 15.0
8 0.992 0.028 53.7 15.8
15 0.998 0.035 39.8 13.8
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Figure 5.6: Scatterplots of pairs of disparities. (a) Over a set of 194 image triples.
(b) For one specific image triple.
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5.2.2 Estimation of the camera positions on a circle

From equation (5.7), and with the estimated values of η̂k from equation (5.9), we

obtain

θ2 = η̂1θ1 (5.10)

θ3 = η̂2θ2 = η̂1η̂2θ1 (5.11)

and in general

θk+1 =

(
k∏

i=1

η̂i

)
θ1, k = 1, 2, . . . , N − 1. (5.12)

The one remaining unknown θ1 can be obtained by imposing the constraint
∑N

k=1 θk =

2π to yield

θ1 =
2π

∑N
k=1

(∏k
i=1 η̂i

) , (5.13)

and from there we can compute the φj using equation (5.1).

Although these N linear equations in N unknowns will give an exact solution if

the correct values of ηi are used, the estimation errors in the η̂i will cause increasing

errors in the θk, as can easily be appreciated from equation (5.12), and these errors

will be further accumulated in the computation of the φj. Since the circle constraint

assures that φN will be 2π, the largest errors are found in the center of the range.

However, we note that one additional independent constraint can be applied, namely

θ1 = ηNθN , (5.14)

applying a constraint to the ratio of the last angle to the first. By adding this

constraint, we obtain an overdetermined set of N + 1 equations in N unknowns

Aθ = g (5.15)

that can be solved in the least-squares sense. The solution for the individual angles

and cumulative angles can then be expressed in matrix notation as

θ = (ATA)−1ATg, (5.16)

φ = Cθ, (5.17)
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where φ =
[
φ1 φ2 . . . φN−1

]T

, θ =
[
θ1 θ2 . . . θN

]T

, g =
[
0 0 ... 0 2π

]T

,

C =




1 0 0 . . . 0 0

1 1 0 . . . 0 0
...

1 1 1 . . . 1 0




A =




η̂1 −1 0 0 . . . 0 0

0 η̂2 −1 0 . . . 0 0
...

0 0 0 0 . . . η̂N−1 −1

−1 0 0 0 . . . 0 η̂N

1 1 1 1 . . . 1 1




(5.18)

5.3 Obtaining a stable numerical solution

The method described in Section 5.2.2 involves the solution of equation (5.16) for N

on the order of 3000. It is not suitable if the errors of the coefficients in matrix A,

which are mainly due to the relative errors in the disparity estimates of the feature

points, are becoming large.

5.3.1 Analysis of the ratio estimation errors

Considering the estimation errors in the disparity estimate, a more precise represen-

tation for the equation η1 ≈ d(P
(1)
i1,2,P

(1)
i1,3)

d(P
(1)
i1,1,P

(1)
i1,2)

should be

η1 ≈
d(P

(1)
i1,2, P

(1)
i1,3) + ∆d(P

(1)
i1,2, P

(1)
i1,3)

d(P
(1)
i1,1, P

(1)
i1,2) + ∆d(P

(1)
i1,1, P

(1)
i1,2)

, (5.19)

where the ∆d(P
(1)
i1,2, P

(1)
i1,3) and ∆d(P

(1)
i1,1, P

(1)
i1,2) are estimation errors on d(P

(1)
i1,2, P

(1)
i1,3)

and d(P
(1)
i1,1, P

(1)
i1,2), respectively. The disparity errors depend on the precision of the

positions of the detected matching features but are almost independent of the dis-

parity values. In this situation, the variance of the ratio estimate η varies inversely

as the variance of the disparity values. For very small angles, and correspondingly

small disparities, this disparity variance will be smaller than for larger angles having

larger disparities. We found that better angle-ratio estimates could be obtained with
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disparities of the order of about 20 pixels, or angles in the vicinity of 2◦; this gives

a sufficiently large disparity variance without compromising the small angle approxi-

mations required for equation (5.7). Thus if we can choose the matching features in

a way that d(P
(1)
i1,1, P

(1)
i1,2) À ∆d(P

(1)
i1,1, P

(1)
i1,2) and d(P

(1)
i1,2, P

(1)
i1,3) À ∆d(P

(1)
i1,2, P

(1)
i1,3), the

ratios should be more reliable and accurate.

In the proposed SCOM technique, the camera positions between two adjacent

images are very close, so the disparities between the matching features of two adjacent

images are usually very small.

5.3.2 Angle grouping technique

Based on the above reasoning, we perform the ratio estimation on grouped angles in

order to increase rotation-angle estimation precision. A set of grouped angles can be

obtained by grouping L successive angles, or

Θi,j =
L−1∑

k=0

θi+(j−1)∗L+k, i = 1, 2, ..., L; j = 1, 2, ..., N
′

(5.20)

for the j-th grouped angle in the i-th set. There are L such sets where each set has

N
′
= dN

L
e grouped angles (dxe means rounding x to the nearest integer not less than

x). The index for the rotation angles are interpreted modulo N , or N + i ≡ i. As a

consequence, we can calculate N ′ grouped angles in each set using equation (5.16) as

described in Section 5.2.2.

After arranging the rotation angles and grouped angles into vector format, we can

easily establish the relationship

Bθ = Θ (5.21)

where Θ =
[
Θ1,1 Θ1,2 ... Θ1,L Θ2,1 Θ2,2 ... Θ2,L ... ΘN

′
,L

]T

and B is a matrix

consisting of ones and zeros as determined by equation (5.20).

Equation (5.21) contains N unknowns and N
′ · L equations (N

′ · L ≤ N). The

solution for θ is not unique if N
′ ·L < N . In addition, we found that the solution for

θ is very unstable if we solve equation (5.21) directly or using the least square method
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even under the condition of N
′ · L = N . This is because N is usually very large (the

order of 3000) and thus the estimation errors in grouped angles Θ have significant

affect on the solutions for θ. Thus, the solutions for θ using constrained least squares

method and total least squares method will be used in the following section. As a

consequence, the condition N
′ · L < N is no longer an issue, which prevents us from

obtaining a unique solution for θ.

Another option is to obtain the position information for only one of the sets

of grouped angles. Since the camera acceleration is small, we can assume that the

velocity is nearly constant over each grouped angle of about 2◦ and simply interpolate

the intervening positions linearly.

5.3.3 Solution of the linear equations with noisy disparity

estimates

Due to the large N (number of angles), the rotation angles in equation (5.21) are

usually very small and thus the solutions are very sensitive to the noisy matrix Θ, even

though the angle grouping technique can somewhat relieve the problem caused by the

noisy estimation data of the disparities. Some other methods, such as the steepest

descent algorithm and conjugate gradient algorithm, can be used. The following

two methods are suggested and have been tested to obtaining stable solutions of

equation (5.21).

The first method is using the constrained least squares (CLS) method by adding

a regularization constraint, which is typically used in image restoration [115]. The

solutions are obtained by

θ̂ = arg min
θ
{‖Bθ −Θ‖2 + ‖α · Tθ‖2} (5.22)

where T is a matrix which applies a constraint on local rotation angle. It can be

formed by some high-pass filters, such as the filter coefficients [-0.5 1 -0.5]. α is a

regularization factor. The minimization problem can be solved by

(BT B + αT T T )θ = BTΘ. (5.23)
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The second method is using the total least squares (TLS) method to obtain stable

solutions of the large scale set of linear equations. In equation (5.15), matrix A is

noisy; in equation (5.21) matrix Θ is noisy. We use Φθ = Γ to represent these two

equations, where in general, both Φ and Γ may contain errors. We are looking for a

stable solution of the equation

(Φ + ∆Φ)θ = Γ + ∆Γ (5.24)

to estimate the solution of the original equations Φθ = Γ with minimal ‖∆Φ‖F

and ‖∆Γ‖F . ‖ · ‖F denotes Frobenius norm of a matrix. ∆Φ and ∆Γ are the error

matrices. The Frobenius norm of matrix ∆Φ is defined as

‖∆Φ‖F = (
∑

i

∑
j

|∆Φ(i, j)|2)1/2 (5.25)

and similarly for ‖∆Γ‖F . An algorithm to solve the TLS problem using singular value

decomposition is well known and further details can be found in [116].

There is no analytical method to determine the regularization factor because of a

lack of knowledge about the noise, or disparity estimation errors. A suitable regular-

ization factor for this application can be obtained through observing the distribution

of rotation angles. During the acquisition of pre-captured images using SCOM, we

try to rotate the long beam as slowly as possible, and also try to keep the rotation

velocity as a constant. As a consequence, we know that the rotation angle should

be smoothly changing. Thus, the regularization factor can be selected that gives a

reasonably smooth solution.

5.3.4 Summary on solution of the linear equations

In this chapter, one major task is to find the stable solution of the linear equations. For

different situations, we have introduced different methods for solution such as least-

squares method, constrained least-squares method and total least-squares method.

If the number of unknown angles is on the order of 300 (or least), the least-squares

method can give good enough solution. The small number of unknown angles means
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the large angular spacing. This is the scenario of obtaining the grouped angles (Θ in

equation (5.21)). When we solve equation (5.21), the number of unknown angles is

on the order of 3000 (or more). Then, the constrained least-squares method or the

total least-squares method has to be used to obtain stable solutions.

5.4 Pre-processing of the pre-captured images

In the above discussion, we assume that there are no vertical disparities between any

two of the pre-captured images. However, it may not be the case in practice. The view

rendering in the Concentric Mosaics technique is a column-based view interpolation.

Thus, the vertical motions, and any other motions that deviate from the ideal ones,

in the pre-capturing procedure will significantly affect the quality of the synthesized

images.

In this section, we give a method to eliminate or at least reduce the possible

vertical offsets and distortions in the pre-captured images. Because the distance

between the camera positions where two adjacent images were taken is very short

and the camera is pointing outward along the long bar, the two adjacent images are

captured approximately in parallel directions. The view rectification technique of

computer vision can be used.

In this chapter, affine transformations are used to reduce such offsets and distor-

tions. The correspondent camera motions may generally include rotations around its

center in the vertical plane and vertical movements. Thus the approach is similar to

what we proposed in [79].

Affine transformations are originally defined on continuous-space images. For a

discrete image I, the affine transformation is defined as follows. Assume that a contin-

uous image corresponding to I can be obtained using a linear interpolation operator

H. Then the discrete affine transformation operator with parameter t, denoted At, is

defined by (AtI)(x) = (HI)(T (x−x0)+d+x0),x ∈ Λ. Thus, there are six parame-

ters to define an affine transformation, namely the vector t = [t11 t12 t21 t22 d1 d2]
T ,



133

where d1 and d2 denote the translations along horizontal and vertical direction re-

spectively, T = [ t11 t12
t21 t22 ] and d = [d1 d2]

T . x0 is a reference point based on which

the transformations are applied, such as the image center. Λ is the sampling lattice

where image (AtI)(x) is defined. Of course, (HI)(x
′
) is only computed at the points

x
′
= T (x − x0) + d + x0,x ∈ Λ, using any suitable interpolation such as bilinear,

bicubic, spline, etc.

Assume that I1, I2, ..., IN are the pre-captured images. For any image Ii, the

optimal global affine transformation is first found as

t̂i = arg min
ti

∑
x

|(Ati
Ii)(x)− Ĩi−1(x)| (5.26)

where, Ĩi−1 = (Aˆ
t
′
i−1

Ii−1)(x) and Ĩ1 = I1. The parameter vector t̂′
i−1 is given by

t̂′
i−1 =

[
t11(i− 1) t12(i− 1) t21(i− 1) t22(i− 1) 0 d2(i− 1)

]T

(5.27)

if

t̂i−1 =
[
t11(i− 1) t12(i− 1) t21(i− 1) t22(i− 1) d1(i− 1) d2(i− 1)

]T

(5.28)

The above pre-processing is applied for i = 2, 3, ..., N . If the vertical disparities are

the only issue of concern, the rotation matrix will be an identity matrix. The method

has been tested on a sequence taken by a video camera and the camera movement

was slightly fluctuated in the vertical direction on the SCOM setup.

5.5 Rendering with irregular image samples

The capturing and rendering procedure of the Concentric Mosaics technique is ab-

stractly illustrated in Fig. 5.7. The camera is mounted on one end of the long rotation

bar CE. When CE rotates around C at a constant velocity, the video camera takes

images. The navigation area is the area within the inner dashed circle shown in

Fig. 5.7, within which any arbitrary views can be synthesized through the Concentric



134

Mosaics rendering algorithm. The radius rNA of the dashed circle is,

rNA = R · sin(
δc

2
) (5.29)

where R is the effective length of the rotation beam, which is the distance from the

rotation center to the position of the camera on the beam, or CE in the figure and

the angle δc is the camera’s horizontal field of view.

Figure 5.7: The capturing and rendering procedure

In the Concentric Mosaics technique, the pixels in one column of the pre-captured

images are grouped into one condensed-light-ray, namely a sampled-ray. (The word

“light-ray” has lost its physical meaning here) The positions at which the images are

captured on the camera path are sampled points. In Fig. 5.7, SP is a sampled point

and SR is a sampled-ray, which corresponds to one column in the image I taken by

the camera at the rotation angle σ. The sampled-ray SR corresponds to a condensed-

light-ray through angle β with CF , where CF is perpendicular to image I and passes

through its center.

By stacking the pixels of each column into one element, the pre-captured image

has a one-dimensional data structure. Thus the data structure of the whole set of

pre-captured images can be represented in a σ-β plane as shown in Fig. 5.8. Each dot
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in Fig. 5.8 denotes a column within the entire set of pre-captured images. All dots in

the same horizontal row correspond to one pre-captured image.

Figure 5.8: The data structure of pre-captured images in σ-β plane for the Concentric
Mosaics technique

The rendering procedure can also be illustrated with Fig. 5.7. P is an arbitrary

position within the navigation area (the dashed circle) and Li is one condensed light

ray toward P . An arbitrary view at position P is constructed by a set of condensed-

light-rays when the viewing direction is given, just like putting a virtual camera at

P .

The condensed-light-ray Li is determined by two angles σi and βi as shown in

Fig. 5.7. If the intersection point Q of Li with the camera path happens to be a

sampled point and there is a sampled-ray corresponding to βi, that sampled-ray can

be directly put into the final image. However, that is not generally true. For a general

case, Li is one point illustrated in Fig. 5.8. Li will be interpolated from its nearby

sampled-rays SR1, SR2, SR3 and SR4 in the figure as

Li = ω1SR1 + ω2SR2 + ω3SR3 + ω4SR4, (5.30)

where ω1, ω2, ω3, and ω4 are weights for interpolation.

Depth information of the environment, which is difficult to obtain, is required to
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correctly compute the weights for interpolation [117]. Thus the infinite depth as-

sumption and the constant depth assumption are used; further details can be found

in [118]. The nearest point approximation can also be classified in the above interpo-

lation formula, with only one weight equal to one while the others are zero.

In the proposed SCOM technique, the data structure of image samples is very

similar to the standard Concentric Mosaics technique and thus so are the rendering

methods. The only difference is that the dots, which represent sampled-rays, are no

longer uniformly distributed along the σ direction, but are irregularly distributed as

shown in Fig. 5.9. However, this will cause little difference in rendering. Deeper

Figure 5.9: The data structure of pre-captured images in σ-β plane for the SCOM
technique

discussions on rendering with non-uniform approximate concentric mosaics can be

found in [108].

5.6 Experimental results

The first two simulations to test the proposed camera-position estimation algorithm

were carried out using Concentric Mosaics data (the ‘kids’ sequence in [17]) that was

provided by Microsoft Research. In the Concentric Mosaics technique, the camera
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rotation is controlled by a motor and the camera positions are supposed to be uni-

formly distributed along the circle. We have no knowledge of the precision of the

motor controller that was used by Microsoft Research. We assume that the camera

positions are uniformly distributed on the circle and use the set of data as a bench-

mark to verify the proposed algorithm. Thus, we have ground truth to evaluate our

estimation results in these two simulations.

In the first simulation, camera positions which are non-uniformly distributed on a

circle were estimated and compared with the ground truth. The purpose is to test the

relationship between the disparity ratios of matching features and the rotation angles.

This relationship is the fundamental principle used in the proposed camera rotation-

angle estimation algorithm. In the second simulation, the camera positions were

estimated using the Concentric Mosaics data (the ‘kids’ sequence). All estimation

results of 15 groups are provided for evaluation of the estimation precision of the

proposed algorithm. It should be noted that the sets of linear equations involved are

directly solved without any other regularization except the closed-loop constraint in

the above experiments. Thus, it gives reliable tests on the proposed principle.

The dense rotation angles were then estimated using both the constrained least

squares method and total least squares method using the above estimated 15 sets of

group angles. The third simulation involved rendering novel views using the proposed

SCOM technique for evaluation. In all the simulations, the initial matching features

were found using the publicly available PVT software [84], [119].

5.6.1 Simulation I: Test of the proposed camera-position es-

timation algorithm

In order to test the proposed camera position estimation algorithm in the non-uniform

camera position scenario, we selected a sub-sequence of images from the ‘kids’ se-

quence in the following way. There are 2967 images in the original sequence. The

first 50 images of the sub-sequence were spaced by 8 images, the second 50 images

were spaced by 16 images, the third 50 images were spaced by 24 images, and the
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Table 5.2: The RMSE value and relative error of estimated angles in each individual
segment

Segment number spacing of images ground truth RMSE relative error

1 8 0.017(rad) 0.00073(rad) 4.28%
2 16 0.034(rad) 0.00115(rad) 3.38%
3 24 0.051(rad) 0.00158(rad) 3.10%
4 8 0.017(rad) 0.00059(rad) 3.49%

remaining images were spaced by 8 images again, resulting in four segments. Assum-

ing the positions in the original sequence were uniform, the angles between adjacent

images in these segments was 0.017 rads, 0.034 rads, 0.051 rads and 0.017 rads, re-

spectively. Fig. 5.10 shows the simulation results using the proposed method with the

closed-loop constraint and the ratio fitting criterion (only apply ratio fitting criterion

once with χ = 0.95). The solutions are obtained by least square method (Equation

(5.16)) because the angular spacings in the simulation are large enough. The cumu-

lative angles are shown in the top of the figure. The cumulative angle is defined as

the angle between the camera position where the current image was taken and the

camera position where the first image was taken. The individual angles between two

adjacent camera positions are shown in the bottom of the figure. The solid line is the

ideal case, assuming the original pre-captured images are uniformly distributed, and

the dashed line shows angles obtained using the proposed camera angle estimation

algorithm. The RMSE (root mean square error) of the estimated angles is 0.0010440

rads. The RMSE and relative error of estimated angles in each segment is given in

Table 5.2. This simulation shows that the relationship between the disparity ratios

of matching features and the rotation angles derived from the theoretical analysis is

correct. In addition, we find that this relationship is still valid even though the angles

between adjacent images are relatively large.
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Figure 5.10: The results for simulation I using the proposed method: cumulative
angular position (top) and angles between adjacent camera positions (bottom)

5.6.2 Simulation II: camera-position estimation using prac-

tical concentric mosaics data

In the second simulation, we tested the proposed camera position estimation algo-

rithm using the full concentric mosaics data as a benchmark. Using the technique in

Section (5.3.2), the grouped angles with L = 15 (number of groups) were estimated

first. For a total number of 2967 images in the sequence, there are 198 angles in

each group. Fig. 5.11 shows the distributions of estimated angles in each group. The

RMSE values of the estimated angles and the relative errors in each group are given

in Table 5.3. Here, equation (5.15) was solved in the least squares sense (Equation

(5.16)), with no regularization constraint applied.

The actual rotation angles were solved from equation (5.21). This large scale

sparse set of linear equations cannot be solved directly due to the singularity with-

out any regularization. The constrained least squares method which is described in

Section 5.3.3 was used with the kernel filter [−0.5 −0.5 2 −0.5 −0.5] to form the
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Table 5.3: The RMSE values and relative errors of grouped angles

Group number RMSE of estimated angles relative error (%)

1 0.0016861 5.31
2 0.0014462 4.56
3 0.0014283 4.50
4 0.0013797 4.35
5 0.0014899 4.70
6 0.0014805 4.67
7 0.0014724 4.64
8 0.0018763 5.91
9 0.0016849 5.31
10 0.0017577 5.54
11 0.0014667 4.62
12 0.0014127 4.45
13 0.0014521 4.58
14 0.0012044 3.80
15 0.0013487 4.25

constraint matrix T . The individual rotation angles between two adjacent camera po-

sitions are shown in the top of Fig. 5.12. If the rotation angles are ideally uniformly

distributed, the angle between two adjacent camera positions should be ϕ = 0.0021

rads, or ( 2π
2967

) rads. The horizontal line is the ideal angle, or ϕ (rad). The RMSE of

estimated angles is 0.00011739 rads, or 5.54% in relative error.

Graphs of the cumulative angles estimated by the proposed method and the cu-

mulative angles assuming that the camera positions are uniformly distributed are

not shown because the two lines are too close to each other to be distinguished. A

similar result can be obtained by using the total least squares method to solve equa-

tion (5.21), as shown in the bottom of Fig. 5.12. The RMSE of estimated angles

is 0.00010992 rads, or 5.19% in relative error. We see that both methods give good

results.
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Figure 5.11: The distributions of estimated angles in different groups
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Figure 5.12: The estimated angular positions in simulation II: estimated by
constrained least square method (top) and estimated by total least square
method(bottom)
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5.6.3 Simulation III: rendering with SCOM through non-

uniformly distributed pre-captured images

In the last simulation, we tested the proposed rendering algorithm with non-uniformly

distributed pre-captured images. The pre-captured images were captured by a CCD

web-camera with selected resolution 320x240. The camera was mounted on one end of

a long bar, with the other end of the long bar bolted to a desk at its center. The long

bar was about 1.5 meters in length and could be manually rotated around the center

of the desk. The camera was forced to rotate on a levelled circle because the long

bar was held firmly against the desk surface. There were 2309 images taken during

one loop. The cumulative angles for the estimated camera positions are shown in

Fig. 5.13.

The navigation area is a circular area with a radius of 0.5 meter according to our

simulation setup. One of the novel views within the navigation area generated by

the proposed rendering algorithm under the constant depth assumption is shown in

Fig. 5.14. The rendered image was taken by a virtual camera located at position

(0.18m, 45◦) in a polar coordinate system, with the polar axis starting from the

rotation center and pointing to the position where the first image was taken. The

viewing direction is along the 120◦ direction with respect to the radial direction. We

can find that the rendered image is of good quality.
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Figure 5.13: Results for simulation III: cumulative angular positions (rad)
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Figure 5.14: Results for simulation III: one of the synthesized views

5.7 Chapter summary

In this chapter, a method to simplify the implementation of the Concentric Mosaics

technique has been proposed. This SCOM technique is oriented for an ordinary user

to capture Concentric Mosaics data and put it into the Concentric Mosaics rendering

framework.

The key issue is to estimate the camera positions, which are on a circle, from

the pre-captured images. This strong constraint on camera movement largely sim-

plifies the position estimation compared with the general camera-position estimation

problems in computer vision. A stereo-based camera position estimation algorithm

is proposed through the solution of a large scale sparse set of linear equations. The

coefficients in these linear equations may be noisy due to the estimation errors in

the disparity between the matching features and this can possibly make the solution

unstable. With a set of associated techniques such as the closed-loop constraint, the

method of using ratio-fitting to select good matching features, and the angle grouping

technique to reduce the influence from the disparity estimation errors, the effect of

the noise in the coefficients can be largely reduced. Moreover, optimization methods,

such as applying regularization and using the total-least-squares method, have been
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proposed to obtain more stable solutions.

The additional error sources that may lower the quality of the synthesized views

other than the camera position estimation errors have been illustrated and the cor-

respondent strategies proposed, such as over-sampling the scene and pre-processing

the captured images. The synthesized novel views based on the proposed SCOM are

of good quality.



Chapter 6

Conclusions and future work

IBR is a relatively new research topic, which requires the combination of the tech-

niques from image processing, computer vision, computer graphics, etc. The fun-

damental question is how to collect and organize the pre-captured images that are

sufficient to represent an environment. Thus, one of the most important issues in IBR

is view synthesis, or generating arbitrary novel views in a certain navigation area us-

ing the pre-captured images. This thesis focused on various view synthesis methods

which could be used for IBR applications. These methods include view mosaicking,

view interpolation from adjacent views and view synthesis based on a specific IBR

system, Concentric Mosaics.

6.1 Thesis summary

The panoramic view is the simplest method of scene representation for IBR and has

been widely used on the Internet. Compared to other techniques for IBR appli-

cations, the panorama technique has its own advantages that make it popular and

successful. The technical requirements to obtain the pre-captured images are rela-

tively simple and the methods are easy to implement for ordinary users. The quantity

of pre-captured image data is relatively small, and can be handled by an ordinary

computer. In addition, the methods to generate panoramas are straightforward and

146
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many commercial software packages are available.

However, the problems of generating panoramas of high quality and with high

resolution are still open due to the non-ideal motions of the camera during the

procedure of taking the pre-captured images. Most current software packages and

algorithms to generate panoramas work well for low resolution pre-captured images.

In this thesis, the algorithm of generating cylindrical panoramas of good quality using

high resolution pre-captured images is studied. The possible registration errors are

analyzed and a novel algorithm has been proposed, implemented and tested.

The pre-captured images are taken by a camera mounted on a tripod and rotating

around its projection center and the only required calibration parameter of the camera

is the camera’s focal length. The camera motions that deviate from the ideal ones

bring registration errors before stitching. In order to reduce these registration errors,

an optimization model is proposed. Based on this model, the methods consisting

of a non-linear focal length adjustment and affine transformation are jointly used

to minimize the registration errors between two adjacent images. In generating a

panoramic view, the registration errors between adjacent images have to be reduced.

This usually causes difficulties when registering the first and last pre-captured images

at the final step due to lack of the transformation freedom that could be applied.

Thus, an algorithm to resolve the above issue is proposed by developing a general

coordinate-system-conversion framework. The studies have shown that the proposed

algorithms can give good results, compared with some other methods especially in

the indoor scenario where the depth variations of the scene are usually quite large.

A large number of panoramic views, or panoramic sequences, is required to build

an IBR system with more navigation freedom. However, it is very expensive with

current techniques to obtain the required number of panoramas in order to build such

an IBR system. Thus, an IBR system with more flexible navigation capability and

using fewer pre-captured images is possible if combining the techniques of panoramic

view representation and view interpolation.

View interpolation on ordinary planar images is still an open research topic due
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to the difficulties of obtaining disparity fields between multi-views with similar imag-

ing directions. Moreover, the view interpolation methods in the literature aim at

interpolating an intermediate frame in the view sequence or an intermediate view

between two images of a pair of stereoscopic images, due to the nature of application

requirements. More general camera motion scenarios, including not only translation

and rotation but also backward and forward movement, have to be studied due to

new IBR application requirements. In this thesis, a new matching-feature-based view

interpolation algorithm is first proposed. The algorithm provides a new approach to

estimate the disparities between these multi-views with similar imaging directions.

Matching features are used in this approach and the simulation results show that this

method can interpolate intermediate views of good quality. Then view interpolation

when the camera is moving forward and backward is studied. To the author’s knowl-

edge, no view interpolation work, addressing such special camera motion scenarios,

has been reported in the literature. By upgrading the optical-flow-based disparity

estimation approach, a novel disparity estimation and view interpolation algorithm

has been proposed and the simulations show that the method can obtain good results.

Light-field-based methods are the recently proposed approaches for IBR. In such

approaches, representative light ray sets of the scenes are obtained through the pre-

captured images and stored in the database in a specially organized way. The novel

views can then be synthesized by combining the light rays from such database.

Special equipment is usually required to build the above databases from the pre-

captured images. The cameras that are used to take the pre-captured image are

controlled to move along the pre-defined trajectories. Light Field Rendering and

Concentric Mosaics are two examples within this category.

However, the technical requirements are too expensive for the ordinary users and

this may prevent such approaches from being widely used. A new method, namely

Simplified Concentric Mosaics technique, is proposed in this thesis. In the proposed

method, the technical requirements for taking pre-captured images are largely reduced

compared to the conventional Concentric Mosaics technique. Instead of requiring
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precisely-controlled mechanical parts, the rotation of the long bar during pre-captured

image acquisition in SCOM can be carried out manually. This greatly reduces the ap-

plication requirements. The proposed novel algorithms to compute camera positions

where the pre-captured images are taken require no camera calibration information

as opposed to other methods to calculate camera positions in the literature. The al-

gorithms take advantage of the specific camera motion in the SCOM setup to simplify

the camera-position-estimation model, which provides efficient solutions for camera

position estimation.

6.2 Thesis contributions

The contributions of this thesis are identified below:

• A novel method to stitch two adjacent images with an overlapping area, which

are taken by a camera mounted on a tripod and rotated around the camera

center, was developed. A model based on affine adjustment together with focal-

length adjustment was proposed in this method. This work was published

and presented at the IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP) 2004 [79]. The application of this algorithm in

virtual environments was published and presented at the IEEE International

Workshop on Haptic, Audio and Visual Environments and their Applications

(HAVE) 2003 [120]. An algorithm based on matching features in the overlap

area was implemented.

• In many algorithms for IBR applications, various transformations are involved

that need to re-sample the original images. These transformations may include

affine transformation, perspective transformation, warping, texture mapping,

etc. Different types of transformations sometimes need to be applied on the

same images. In this thesis, these transformations are formulated as sampling
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structure changes that can possibly be cascaded together to minimize the num-

ber of interpolation steps and thus minimize the low-pass effect from inter-

polation procedures. The idea was illustrated in the proposed view-mosaics

algorithm.

• When generating panoramas, a set of images that cover a 360◦ view have to be

stitched one by one. These images are usually taken by a camera mounted on a

tripod and rotated around its projection center. The accumulated registration

errors in the overlap area between the first image and the last image are usually

very large when the adjacent images are registered from the first image to the

last image. In this case, a complex global optimization algorithm is required

to solve the problem. Thus, a novel algorithm was developed and implemented

to approach this global minimization solution iteratively without solving the

global optimization problem.

• A paper describing a complete study based on the above techniques (for view

mosaicking and panorama generation) with the experimental results has been

submitted to the IEEE Transactions on Circuits and Systems for Video Tech-

nology (CSVT) and is under revision.

• A novel method for view interpolation through triangulation has been devel-

oped. It is based on sparse matching features instead of dense disparities and in

the scenario that novel views are interpolated from multiple source images (three

reference images were used for the experiments). This work was published and

presented at the IEEE ICASSP 2005 [121]. Similar work on view interpolation

through triangulation with an optimization method to reduce the discontinu-

ities between adjacent triangular patches was published and presented at the

SPIE conference Image and Video Communications and Processing (IVCP) 2005

[122].

• A novel algorithm for view interpolation, which addresses the special scenarios

that the camera is moving forward and backward, has been proposed. The novel
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work comes from the new requirements for IBR applications, which was not the

case for the view interpolation algorithms in the literature.

• A Simplified Concentric Mosaics (SCOM) technique has been proposed to sig-

nificantly reduce the technical requirement in the Concentric Mosaics (COM)

technique in order to allow an ordinary user to use COM-based technique. The

pre-captured images are non-uniformly distributed but a similar rendering al-

gorithm can still be used.

• A novel camera-position-estimation algorithm was implemented for SCOM ap-

plications, which requires no camera-calibration information. The algorithm

aims at the special camera motion scenario and thus it is more efficient com-

paring to any other camera-position-estimation algorithms in the literature for

SCOM applications. This work was published and presented at the SPIE confer-

ence Visual Communication and Image Processing (VCIP) 2005 [123]. Further

studies and results with improved algorithms have been submitted to the IEEE

Transactions on Circuits and Systems for Video Technology (CSVT) and is

under revision.

6.3 Future work

Image-based rendering is a relatively new research topic brought by multimedia ap-

plication requirements. The techniques are supported by the increasing computing

power and data communication capabilities. Although the current research topics

are mainly in developing concrete and well-designed methods for various applica-

tion requirements, the fundamental problem is how to generally collect sufficient

pre-captured images to represent an environment.

The basic element for scene sampling and reconstruction is the light ray, accord-

ing to the theory of plenoptic function representation of the scene. A general theory

of scene sampling and reconstruction is one objective for future research. This may

possibly only be determined after developing particular concrete techniques, which
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define various ways of sampling the scenes for arbitrary view reconstruction (synthe-

sis). This thesis is intended to make a contribution in the above directions. The

research goal is oriented to the methods which can provide low-cost implementations

and generate synthesized views with high quality.

The view interpolation theory and methods developed in chapter 4 and the ap-

proaches based on light-field description in chapter 5 are very different techniques.

They may be used for different application requirements. The future work following

this thesis may include:

1) Further theory and methods for view interpolation from pre-captured images

can be studied. By using the techniques from computer vision, the camera positions

and shooting directions can be retrieved from the pre-captured images (which can

possibly be video sequences). Together with camera calibration information, the 3D

structure of the scene can be partially reconstructed if the perfect and full reconstruc-

tion is impossible or too expensive. With the obtained 3D model of the scene, the

pre-captured image database may be organized in a way that view-interpolation can

be implemented more efficiently.

2) The theory and methods for view interpolation studied in this thesis are within

the scenarios that the camera positions, from where the pre-captured source images

are taken, are close to each other. In the pre-captured image database, many pre-

captured images may possibly be taken by the camera at different positions (the

distances between these camera positions might be large) but in similar imaging

directions (or the imaging directions of the camera towards similar areas of the scene).

These pre-captured images are the images of similar scene areas, which are captured

at different resolutions, and they could be potentially used jointly to generate one

particular view. Thus, view interpolation through the pre-captured images of multiple

resolutions is a very important and interesting research topic for future work.

3) Concentric Mosaics is one technique within the category of light-field descrip-

tion. The approaches in this category are promising research directions because they
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can almost be scene-independent. This is a good property due to the potential re-

quirement on the hardware/software which can be standardized in the future. In this

way, the methods will be easily adapted in the corresponding industries and then will

possibly be widely used. The idea of reducing technical requirements for the meth-

ods within this category can be extended, such as a Light-Field-rendering technique

where the camera is moved in a 2D plane to obtain the pre-captured images.
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