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Abstract

This thesis provides a comparison of two adaptive image magnification algorithms selected

from the literature. Following implementation and experimentation with the algorithms,

a number of improvements are proposed.

The first selected algorithm takes an edge-directed approach by using an estimation of

the edge map of the high-resolution image to guide the interpolation process. It was found

that this algorithm suffered from certain inaccuracies in the edge detection stage. The

proposed improvements focus on methods for increasing the accuracy of edge detection.

The second selected algorithm takes a statistical approach by modelling the high-

resolution image as a Gibbs-Markov random field and solving with the maximum a poste-

riori estimation technique. It was found that this algorithm suffered from blurring caused

by the general way in which the clique potentials are applied to every sample. The pro-

posed improvements introduce a set of weights to prevent smoothing across discontinuities.

The two selected algorithms are compared to the enhanced versions to demonstrate

the merit of the proposed improvements. Results have shown significant improvements

in the quality of the magnified test images. In particular, blurring was reduced and edge

sharpness was enhanced.
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Notation

The following is a list of symbols that will be used throughout the document.

Symbol Description

HR High-resolution

LR Low-resolution

PDE Partial-differential equation

COSO Center-On-Surround-Off filter

Unit Cell Area between any four samples on a regularly spaced rectangular

grid

Mx Horizontal magnification factor

My Vertical magnification factor

XLR Horizontal dimension of the low-resolution image

YLR Vertical dimension of the low-resolution image

XHR Horizontal dimension of the high-resolution image

YHR Vertical dimension of the high-resolution image

v,M Bold face symbols represent a vector or matrix

vt,Mt Transpose of a vector or matrix

M ×N Dimensions of a matrix with M rows and N columns

α Loop gain parameter used in the original and improved edge-

directed algorithms

S Maximum slope of the edge model used in the improved edge-

directed algorithm

λ Regularization parameter applied to the data fidelity term used in

the statistical algorithm



Notation xii

T Threshold parameter applied to the smoothing term used in the

statistical algorithm

D Decimation operator used in the original and improved statistical

algorithms

‖ · ‖ Euclidean norm

∗ Convolution operator

· Inner (dot) product of a vector or matrix multiplication

λ1 Weight applied to regions without discontinuities used in the im-

proved statistical algorithm

λ2 Weight applied to regions with discontinuities used in the improved

statistical algorithm

f [x, y] Two-dimensional discrete-space signal

p(·) Probability density function

�x� Largest integer less than x
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Chapter 1

Introduction

Image magnification is among the fundamental image processing operations. Applications

are varied and range from the specialized to the mundane. In medical imaging, magnifica-

tion can serve to improve the chances of diagnosing problems by highlighting any possible

aberrations. Enhancing image details can also be useful for the purposes of identification,

whether for improving the quality of an image interpreted by a biometric recognition sys-

tem or trying to get a clearer view of the perpetrator of some crime. In entertainment,

magnification can be used to resize a video frame to fit the field of view of a projection

device, which may help to reduce blurring. Finally, the most obvious application of image

magnification is to simply allow one to enjoy a larger version of a favorite image obtained

from any commercially available digital imaging device such as a camera, camcorder or

scanner.

Conventional image magnification techniques use up-sampling by zero-insertion fol-

lowed by linear filtering to interpolate the high-resolution samples. The main drawback

of this approach is that the frequency content of the high-resolution image is the same

as the low-resolution image. This is due to the fact that linear techniques are incapable

of introducing new information into the image. The lack of new high frequency content

results in a variety of undesirable image artifacts such as blocking, staircase edges and

blurring.
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Adaptive image magnification techniques attempt to reconstruct the high frequency

content of the high-resolution image by making use of information in the low-resolution

image. With this approach, high frequencies, which promote sharp edges and minute

details, are integrated into the high-resolution image based on the specific content of a

particular low-resolution image.

1.1 Motivation

The problem of image magnification has been pursued in a variety of ways in the literature.

However, despite the wealth of existing work in the field, there are very few commercial

software packages that offer adaptive techniques. Most current digital imaging software

packages such as Adobe PhotoShop, as well as software included with digital cameras and

scanners, implement the conventional linear magnification algorithms. Currently available

adaptive techniques are provided in certain highly specialized applications, such as the S-

Spline package found at http://www.shortcut.nl 1. However, these applications have only

recently been brought to market and have yet to be included in the popular software

products.

The deficiency of adaptive techniques in commercial applications is due to the difficulty

involved in implementing and using adaptive algorithms, whose behavior are inherently

less predictable than their linear counterparts. Lack of predictability results from the use

of tuning parameters, which provide control over some aspect of an algorithm’s perfor-

mance. If not chosen correctly, the tuning parameters can significantly affect the magnified

result. By contrast, linear techniques are simple and will always function in a predictable

fashion. At the time of this research, there were no adaptive magnification algorithms that

provided an automatic means of determining the required parameters such that results

are as consistent as linear methods.

The current trends in research show that magnification algorithms are moving towards

the more sophisticated techniques offered by adaptive methods. Although linear tech-

1Valid at the time of this writing, May 2004.

http://www.shortcut.nl
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niques have shown the ability to generate adequate results at low magnification factors,

their deficiencies become blatantly apparent as magnification increases. These deficiencies

are seen by the introduction of blocking artifacts, blurring and jagged edges, to name

but a few. Adaptive techniques are generally targeted to correct such deficiencies, at the

expense of requiring tuning parameters.

The primary hurdle in bringing adaptive image magnification algorithms to practical

applications is in making the decision of which algorithm to use. Obviously, the best

algorithm or a selection of equivalent algorithms should be chosen. However, making

such a selection would require implementing and comparing the large variety of currently

available algorithms from the literature, since a comprehensive comparison of them has

yet to be performed. This solution is not viable due to the development costs needed to

produce such a comparison. For this reason, adaptive techniques are limited to highly

specialized applications used by research and professional groups that require the utmost

quality in image magnification.

1.2 Description of the Thesis Research

Although this work is by no means intended to be a comprehensive comparison of adaptive

magnification algorithms, the following document provides a comparison of two adaptive

image magnification algorithms selected from the literature. Based on experimentation

with the two algorithms, certain improvements were proposed.

This work has been performed in four phases: i) literature survey, ii) implementation,

iii) improvements, and iv) comparison.

The first phase required searching the current literature on the topic of adaptive image

magnification and extracting the two most promising algorithms for implementation and

comparison.

The second phase involved implementing the algorithms as described by the authors

of the selected literature. Following implementation, magnification tests were performed
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on a variety of images. The testing helped to highlight areas for possible improvement.

Implementation of the algorithms was executed using the Matlab scripting language.

The third phase was based on experience gained during the implementation phase.

Modifications were made in an attempt to improve on the quality of the magnified images

resulting from the original algorithms. The proposed improvements attempted to correct

any observed problems with the implementation of each algorithm.

The fourth phase involved a comparison of the quality of magnified test images using

the original and improved algorithms. The criteria used for determining the quality of

magnified images was purely subjective. This approach was chosen due to the inability of

numerical measures to quantify the subjective aspects of human visual perception. The

reasoning behind this choice is that an adaptive magnification algorithm must incorporate

new content into an image based on currently available information. In practical situations,

a high-resolution version of the original image is not given. Obviously, there would be

no need for magnification if a high-resolution version were readily available. Therefore,

any new content added to an image should be evaluated with respect to magnification

with equivalent algorithms. This would allow for comparing the merits of each respective

algorithm.

The first selected algorithm, [16], takes an edge-directed approach to image magni-

fication. Edge-directed algorithms focus on using the edges of the low-resolution image

to estimate the edges in the high-resolution image. The low-resolution image is then in-

terpolated such that blurring across the estimated edges in the high-resolution image is

avoided. This allows edges to remain sharp. It was found that this algorithm suffered from

certain inaccuracies in the edge detection stage. The proposed improvements attempt to

correct these inaccuracies by choosing a more sensitive second-order operator for the edge

detection and introducing a new strategy for estimating the path taken by the edges. Also,

the edge-directed rendering stage of the algorithm has been simplified.

The second selected algorithm, [29], takes a statistical approach to image magnifica-

tion. Statistical algorithms focus on estimating the samples of the high-resolution image
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from the samples of the low-resolution image by means of some a priori model which

incorporates information about features in the high-resolution image. The selected algo-

rithm models the high-resolution image as a Gibbs-Markov random field and estimates the

solution by means of a maximum a posteriori technique. It was found that this algorithm

suffered from blurring. The cause of the blurring was isolated to being the general way

in which the clique potentials are applied to every sample of the high-resolution estimate,

regardless of local contours. This general approach allows smoothing across discontinu-

ities. To eliminate the blurring, a set of directional weights were introduced that provide

a control mechanism for preventing smoothing across discontinuities.

As a final note, this work was performed in parallel with the research of [38], in which

a new adaptive interpolation algorithm is developed. This new algorithm is an iterative

technique which estimates the high-resolution image using a total-variation method. The

algorithm uses an objective function which minimizes the curvature of planar contours

in the high-resolution estimate. Emphasis is placed on the correct modelling of the data

fidelity term. A new technique for estimating the sensor model used in the acquisition of

the low-resolution image is proposed.

1.3 Structure of the Thesis

Chapter 1 introduces the concept of adaptive image magnification and discusses the mo-

tivation for this work. A brief description of the selected algorithms and the proposed

improvements are given.

Chapter 2 surveys the current research literature on the topic. Following a detailed

elimination process, two algorithms are then selected for implementation.

Chapter 3 gives a brief overview of the selected edge-directed algorithm of [16] and dis-

cusses the motivation for the proposed improvements. Improvements to correct problems

in the edge-detection and interpolation stages are then presented.

Chapter 4 gives a brief overview of the selected statistical algorithm of [29] and discusses
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the motivation for the proposed improvements. Improvements to help eliminate blurring

across discontinuities are then presented.

Chapter 5 presents a comparison of the selected and improved algorithms. The com-

parison provides several test images that were magnified with each respective algorithm,

as well as the standard bicubic interpolation method.

Chapter 6 will provide a summary of the results of this research and outline possible

avenues for future exploration on the topic.

Appendix A provides a detailed description of the theory and implementation of the

selected edge-directed algorithm as described in [16].

Appendix B provides a detailed description of the theory and implementation of the

improvements made to the edge-directed algorithm. The material in this appendix is based

on the descriptions given in Section 3.2 of Chapter 3.

Appendix C provides a detailed description of the theory and implementation of the

selected statistical algorithm as described in [29].

Appendix D provides a detailed description of the theory and implementation of the

improvements made to the statistical algorithm. The material in this appendix is based

on the descriptions given in Section 4.2 of Chapter 4.
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Chapter 2

Literature Survey

The following provides a survey of the current literature on adaptive image magnification.

To begin, a brief description of the information resources and the methodology used to

conduct the search will be given. The results of the search will then be classified and

the most promising among them will be presented. Finally, a choice of two algorithms

designated for implementation will be made.

To simplify the review, the search results were sorted into five categories according

to the approach taken by each respective solution. Papers within each category were

reviewed and compared to each other. The final choice was made by comparing the best

papers from each category and selecting the most promising among them from across the

categories. The five categories are:

Linear: Techniques involving up-sampling followed by a linear filtering operation (i.e.

bilinear, bi-cubic and spline interpolation).

Non-Linear: Techniques involving a non-linear optimization operation based on low-

resolution image features (i.e. optimization of a PDE description of image intensity

profile).

Transform: Techniques involving interpolation/extrapolation performed in the domain of

a selected transform (i.e. Fourier transform, wavelet transform, Laplacian pyramid).
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Edge-Directed: Techniques involving the use of edge information to guide the interpola-

tion process (i.e. bilinear interpolation guided by an estimation of the edge mapping

of the high-resolution image).

Statistical: Techniques involving the estimation of the high resolution image by the ap-

plication of a stochastic model (i.e. Gibbs random field model applied with priors

based on edges).

From these five categories, only the first is not an adaptive technique. Of the four

remaining categories, the volume of papers indicates a research trend towards transform

and edge-directed techniques. Non-linear and statistical techniques seem to have found

greater use in highly specialized applications such as super-resolution, where a sequence of

video frames are combined to form a single, high-resolution image, and medical imaging,

where the algorithms are tied to the underlying physics of the image-acquisition process

or are highly constrained by prior knowledge of image features. Although less common,

there are interesting papers taking a non-linear or statistical approach to the more general

area of image magnification.

2.1 Survey of Image Magnification Algorithms

2.1.1 Linear Methods

Linear techniques in the literature, [1]–[4], use linear space-invariant filters to interpolate

the high-resolution samples. Common choices of interpolation filter are nearest neighbor,

bilinear, bicubic, quadratic, Gaussian and various types of spline functions [1]. Since the

theory behind linear interpolation is well established, most of the research on this approach

is focused on finding new filters which reduce artifacts introduced by the traditional filters,

as well as more efficient implementations. In [2], a modified version of the B-spline is

used to obtain interpolation filters with better frequency responses, [3] proposes an FIR

filter design method that attempts to account for the properties of human vision, and [4]
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develops non-separable cubic convolution kernels to replace the traditional separable cubic

filter. Due to the relative simplicity and efficiency of linear interpolation techniques, they

are the most common approach provided by commercial software packages such as Adobe

PhotoShop and Matlab.

2.1.2 Non-Linear Methods

Non-linear techniques in the literature, [5]–[7], use non-linear optimization processes con-

strained by certain image features. In [5], a method which optimizes a convex cost func-

tion based on an approximation of the gradient of the high-resolution image from the

low-resolution image is presented. This method attempts to preserve edges by adding

constraints on their orientation. A different approach is taken by [6], in which the prob-

lem is viewed from a geometric perspective. In this method, an image is first linearly

interpolated. Then spatial regions of constant intensity are warped such that level curves

are smoothed, thereby sharpening boundaries between regions. In [7], a regularized image

interpolation method is proposed which focuses on the correct modelling of the image

acquisition and display processes.

2.1.3 Transform Methods

Transform techniques in the literature, [8]–[15], are primarily focused on the use of multi-

resolution decomposition, followed by interpolation applied to each level of the decomposi-

tion and/or extrapolation of higher resolution levels. These approaches aim at synthesizing

the high frequency components of the magnified image by adapting the interpolation to

suit the frequency content contained at each level of decomposition. In [8], higher res-

olution levels of a Laplacian pyramid decomposition are extrapolated from lower ones.

Another approach, taken by [9], makes use of a filter bank which extracts edge directional

components from the low resolution image and interpolates each sub-band in a directional

specific way as to enhance the edges it contains.
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2.1.4 Edge-Directed Methods

Edge-directed techniques in the literature, [16]–[28], use the edge information from the

low-resolution image to obtain an estimate of the edge mapping of the high-resolution

image. This estimate is then used to control some form of interpolation such that edges

are not smoothed. The solutions differ mainly in the accuracy of the estimation of the

edge mapping ([16] uses zero crossings resulting from a Laplacian operator to estimate

the edge locations, whereas [17] uses a simpler gradient operator and [18] uses a local

covariance measure) and the interpolation scheme ([16] uses variable order polynomials

fitted according to edge content within a neighborhood, [17] chooses between three different

types of polynomials depending on the location of a pixel with respect to edges and [18] uses

local covariance to compute the coefficients in a weighted average of four low-resolution

samples).

2.1.5 Statistical Methods

Statistical techniques in the literature, [29]–[31], attempt to estimate the high-resolution

image based on the properties of the given low-resolution image. In [29], the high-resolution

image is modelled by a Gibbs-Markov random field with specially selected clique poten-

tials to classify the properties of each neighborhood. The chosen potentials allow the

classification of pixels by degrees of smoothness or discontinuity, thereby being able to

properly handle edges. Another approach creates a set of pixel classifications gathered

from the statistics of pixels in typical training images [30]. Once trained, the algorithm

interpolates an image by estimating the best filter coefficients (in the mean-square sense)

for each neighborhood.

2.2 Selection of the Algorithms

Following the detailed review, the algorithms proposed by [16] and [29] were selected for

implementation.
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2.2.1 Eliminations

In the following, references will be eliminated in order to help clarify the selection of the

two previously mentioned papers.

In [5], the variational description of the interpolation problem is well formulated. Un-

fortunately, the authors greatly simplified their solution with the goal of achieving an

efficient interpolation by a factor of 2. Although the approach of [6] is interesting, the

final result relies entirely upon the initial magnification, which is performed using a linear

technique. This approach may serve best in the role of a post-processor used to remove

staircase artifacts and enforce smoothness in regions of constant intensity.

The technique proposed in [9] uses a directional filter bank to isolate edges oriented

along eight directions. This approach may encounter difficulties in large textured areas

due to the non-uniform treatment of the texture caused by splitting the area into different

sub-bands and interpolating each one differently. In [10], a linear MMSE estimator is used

for synthesizing the finer detailed coefficients at the next level in a wavelet decomposition.

[11] attempts to predict the LH, HL and HH sub-bands of the wavelet decomposition of

the high-resolution image using a trained hidden Markov tree. [12] uses the energy in

the wavelet coefficients located at an edge to extrapolate the finer detailed scales. Un-

fortunately, these three papers do not provide enough details allowing for an accurate

reproduction of their results. [13] proposes an approach to interpolation that separates a

particular set of features (objects, edges, textures, etc.) in an image, using a specialized

filter bank, and interpolates each one in a feature dependent fashion. The high-resolution

image is obtained by synthesizing the various features. Although the idea is very interest-

ing, the paper assumes that the features have already been selected. It does not provide

details regarding the implementation of such a system with regards to specific features.

The edge-directed algorithms proposed by [19, 20, 21] are superseded by [16]. They

differ primarily in the methods used for edge detection and interpolation. An interesting

approach developed in [22, 23] uses irregular sampling of a fitted surface to maintain edge

sharpness. At an edge, this idea allows samples to be taken near the extremities of the
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surface, which avoids interpolation across the edge. Unfortunately, since they both use

linear interpolation methods (nearest neighbor, bilinear or bicubic), the irregular samples

are still limited to a smooth, slow varying surface. Although this does allow for better

separation at edges, the slope of the surface will still cause blurring. Other methods

[24, 25, 26, 27] use edge directions to adapt the interpolation process. The main downfall

of this approach is that the number of directions are limited (each paper uses only four

directions), reducing the effectiveness of the algorithm for edges along general orientations.

2.2.2 First Selection

Compared to other edge-directed techniques, it was found that the algorithm proposed by

[16] was both more complete in its description and more general in its application. The

primary advantage of the proposed algorithm is that it interpolates by fitting polynomial

surfaces of arbitrary order to account for discontinuities. This is in contrast to [17], which

is limited to a choice of three polynomials, [18], which is an adaptive averaging filter,

[20], which only modifies linear space-invariant interpolation techniques to become space-

variant by adapting the filter coefficients to edges and [21], which post-processes a linearly

interpolated image to enhance edges using a weighted average of neighboring pixels chosen

using the Canny edge detector.

The choice of [16] was primarily based on experience with an implementation of the

edge-directed interpolation algorithm proposed by [19]. In [19], an iterative edge-directed

scheme uses an estimate of the edge mapping of the high-resolution image to guide a

bilinear interpolation such that interpolation across edges is avoided. It was found that

[16] dealt with all of the main flaws of [19]. To begin, [16] treats inaccuracies in the sub-

pixel edge estimation process by using a rotationally invariant filter, eliminating problems

with detecting edges of different orientations. Another improvement lies in using the edge

zero-crossings in an analytical fashion, as opposed to quantizing the linearly interpolated

edge estimates. This should help reduce the staircase edges and further errors in the

estimation of edge locations. With regards to the rendering stage, [16] has improved upon



2 Literature Survey 13

the interpolation of pixels near edges by fitting a variable order polynomial surface to

the existing low-resolution pixels surrounding the edge. The order of the polynomial is

determined by the magnitude of the discontinuity at the edge. This approach eliminates

the use of the heuristic replacement procedure used by [19] which introduces errors by

means of an inaccurate linear extrapolation of low-resolution pixels.

2.2.3 Second Selection

Compared to other statistical techniques, it was found that the algorithm proposed by

[29] appears to be more robust and general in its modelling of image features. Although

the ideas presented in [30] are very promising, the algorithm is dependent on the images

used in the training sequence. This means that to properly train the interpolator, it

is necessary to find training images that are representative of the type of images that

will be commonly processed. Also, the training images must come in pairs of low- and

high-resolution images. This can become problematic in situations where accurate high-

resolution images are inaccessible. The approach taken by [31] is limited by constraints

that enforce edges to lie along only four directions. Four directions are clearly not sufficient

for an accurate description of edges in natural images or in the ability to properly handle

textures.

The choice of [29] was based on the results presented by the authors of the paper. The

authors formulated the problem of image magnification in the context of regularization,

allowing them to draw on statistical estimation tools which incorporate a priori informa-

tion into the model. To this end, they used a Gibbs-Markov random field to model the

properties of pixels and their local neighborhoods. The authors chose the Huber function

for the clique potentials, which allows the estimation problem to be reduced to the opti-

mization of a convex objective function. This choice of clique potential adds constraints

that enforce smoothness in regions of small intensity variations while not smoothing the

discontinuities at edges. A compelling argument for this approach is in the use of the high

correlation between neighboring pixels in an image. This allows introducing properties of
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the physical process of image acquisition into the interpolation scheme. Also of partic-

ular interest is the incorporation of a Gaussian noise model into the estimation process.

This integrates a certain degree of robustness into the magnification of degraded images.

Further weight was given to this paper based on the success of Bayesian regularization

techniques applied in the medical imaging field.

Also, it is interesting to note that the work done for [29] served as a precursor to

work involving the extraction of a single high-resolution frame from a video sequence,

with applications to scan conversion of interlaced video, done in [32]. In effect, [32] uses

the same MAP estimation model as developed in [29]. It differs by the incorporation

of motion estimation into the sub-sampling matrix and by the introduction of mixing

parameters used to weight the influence of each frame in a sequence on the final high-

resolution frame. The authors have incorporated the estimation of these new parameters

into the same optimization algorithm used in [29]. Therefore, an implementation of [29]

can be extended to the multi-frame case to obtain the algorithm from [32]. It is also

interesting to note that the algorithm proposed in [32] was embedded within the MPEG

video compression standard (as explained in [33]).
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Chapter 3

Edge-Directed Algorithm

This chapter begins by providing a brief overview of the operation of the selected edge-

directed algorithm, as described by the authors of [16]. Following the description, certain

improvements to the algorithm will be proposed.

For a detailed description of the implementations, please refer to Appendix A, for the

edge-directed algorithm, and Appendix B, for the improved edge-directed algorithm.

3.1 Algorithm Description

The idea of edge-directed interpolation is illustrated in Figure 3.1. Essentially, an estima-

tion of the edge mapping of the HR image is used to guide an interpolation process such

that interpolation across edges is avoided.

As determined during the literature survey, the most promising edge-directed algorithm

is [16]. This algorithm can be divided into four stages: i) sub-pixel edge estimation, ii)

preprocessing, iii) rendering, and iv) correction.

The sub-pixel edge estimation stage estimates the edge mapping of the HR image by

linearly reconstructing edges based on the edge mapping of the LR image. The sub-pixel

edge estimation stage has two components: i) the LR edge detection filter, and ii) edge

estimation.
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Fig. 3.1 Top-Level Block Diagram of the Edge-Directed Interpolation
Scheme

Sub-Pixel Edge
Estimator

Edge-Directed
Interpolation

Original Image

Estimate of High
Resolution Edge Map

Interpolated Image

The edge detection filter is a Center-On-Surround-Off (COSO) approximation to the

Laplacian-of-Gaussian filter. This filter is designed to be rotationally invariant and have a

DC response of zero. The filter is specified as having dimensions of 5x5. Refer to Section

A.1.1 of Appendix A for the details involved in computing the filter coefficients.

Fig. 3.2 Piece-Wise Linear Estimation of Edges Within an LR Unit Cell

zero-crossings
estimated edge

actual edge
LR unit cell

Edge estimation attempts to reconstruct a piece-wise linear version of the actual edge,

as shown in Figure 3.2. The concept relies on using the filtered LR image to find zero-

crossings that indicate the presence of an edge passing through the LR unit cell. These

zero-crossings are then linked by straight line segments to obtain an estimate of the edge.

The zero-crossings are determined by first applying the COSO filter to the LR image.

Then, for every LR unit cell in the filtered image, the signs of the four corners are compared
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Fig. 3.3 Sign Configurations: a) Corner edges with 3 zero-crossings, b)
Vertical and horizontal edges with 2 zero-crossings, c) Intersecting edges with
4 zero-crossings
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to each other to find differences. A zero-crossing exists between two filtered samples if they

have different signs. There are three basic sign configurations (shown in Figure 3.3): i)

one corner has a different sign from the other three (part a of Figure 3.3), ii) two adjacent

corners have a different sign from the other two corners (part b of Figure 3.3), and iii) two

diagonal corners have a different sign from the other two (part c of Figure 3.3). In the first

case (part a), an edge separates one of the four corners from the other three. In the second

case (part b), an edge separates the unit cell in a horizontal or vertical fashion. In the

third case (part c), all four corners are separated from each other by two intersecting edges.

Once the sign configuration has been determined, the coordinates of the zero-crossings are

estimated by finding the position where the lines joining two corners of different signs is

zero. An example is depicted in Figure 3.4, for the leftmost sign configuration in part a

of Figure 3.3. Once the zero-crossings have been located, the edge is estimated by linking

two adjacent crossings by a straight line, resulting in a piece-wise linear edge. Refer to

Section A.1.2 of Appendix A for further details on estimating zero-crossings.

It is important to note that a global threshold is not applied to the filtered LR image

prior to the estimation of the zero-crossings, as is common practice with second-order

operators. The purpose of the threshold is to eliminate edges resulting from noise or weak

edges present in the background features of an image. Conventional edge detection is

oriented towards finding contours which delimit objects in an image. In this case, only
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Fig. 3.4 Estimating Zero-Crossings from the Second-Order Edge Filtered
LR Image
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foreground edges are important. Weak edges in background objects tend to clutter the

edge mapping.

In contrast, image magnification is concerned with obtaining the most accurate and

detailed edge map possible in order to give the interpolation scheme the best chances of

producing quality results. In this case, all edges are considered important. Although some

edges may result from noise, weak edges will not be eliminated. If noise in the LR image

is a concern, a de-noising technique should be applied prior to magnification.

The preprocessing stage is used to correct possible errors in the estimation of the HR

edge mapping. The piece-wise linear estimation of edges creates false separations between

HR samples within LR unit cells. This is due to the fact that the zero-crossings are only

computed using the four corners of the filtered LR cell. This results in a small number of

zero-crossings, which are insufficient to obtain a good estimation for the actual edge. The

approach taken by [16] computes a replacement value for samples of the filtered LR image

such that the zero-crossings are moved. Only samples that are part of LR cells containing

edges are replaced. The replacement value for a sample in the filtered image is computed



3 Edge-Directed Algorithm 19

as the mean of the eight LR nearest neighbors. If the mean is zero, then the median is

used.

The rendering stage uses the estimated HR edge mapping to guide the interpolation.

The new HR samples inserted into each LR unit cell are interpolated based on their

position with respect to the edge passing through the cell, as well as the type of edge.

Fig. 3.5 Types of Edges Passing through an LR Unit Cell
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The interpolation is performed using each group of four LR samples. If there is no

edge present within an LR unit cell, bilinear interpolation is applied. If an edge is present,

a variable order polynomial surface is fitted to the cell such that it interpolates the four

LR corner samples of the cell. The order of the polynomial is determined by a heuristic

which makes use of the magnification factor and the magnitude of the discontinuity at the

edge between samples. The polynomial surface is fitted differently for each type of edge.

From the sign configurations used during edge detection, there are seven distinct types of

edges (shown in Figure 3.5).

For each edge type, a variable order polynomial curve is fitted between any two corners

of an LR unit cell separated by a zero-crossing. Corners not separated by a zero-crossing

are interpolated linearly. The HR samples contained within the LR unit cell are interpo-

lated linearly using the boundaries or the diagonals of the LR unit cell as end points. For

every sample in the interior of the cell, a line segment parallel to the edge is determined.

This line segment intersects in at least two locations with the boundaries or diagonals

of the cell. The two intersections nearest the sample being interpolated are used as end

points for the linear interpolation. The value of the end points are determined by the

curve fitted to the boundaries or diagonals. Clearly, the geometry of each edge type must
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Fig. 3.6 Edge Interpolation: a) Interpolating the HR samples on the bound-
aries of an LR unit cell, b) Interpolating the HR samples within an LR unit
cell (case 1), c) Interpolating the HR samples within an LR unit cell (case 2)
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be considered separately. Figure 3.6 illustrates the process step-by-step in the case of a

corner edge (leftmost sign configuration of part a of Figure 3.3). Part a of Figure 3.6

shows how the variable order polynomial edge curve is fitted to the top, left and diagonal

boundaries of the LR unit cell where zero-crossings are present. Since the bottom and

right boundaries do not have any zero-crossings, linear segments have been fitted. Parts

b and c of Figure 3.6 illustrate the strategy for interpolating HR samples in the interior

of the LR unit cell. In both cases, a line segment parallel to the edge is used to linearly

interpolate HR samples in the interior of the LR unit cell. The two cases differ in the

location of the intersections with the boundaries. A distinction has been made in order

to clarify the steps needed to compute the values at the intersecting end points of the line

segment parallel to the edge. Refer to Section A.1.4 of Appendix A for further details on

rendering.
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Fig. 3.7 Block Diagram of the Edge-Directed Correction Stage Used to
Successively Approximate the HR Estimate
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The correction stage attempts to repair any damage to the original image data that

may have been incurred during the edge-directed interpolation process. The term damage

is meant to signify anything resulting from the interpolation which causes the HR estimate

to severely deviate from the actual HR version of the LR image. Naturally, since the actual

HR version is unknown, this stage can only perform corrections according to an assumed

model representing the desired properties of the actual HR version. In this case, the model

is assumed to be the standard moving average filter used to simulate the image acquisition

process of modern digital sensors. The damage is corrected by using a feed-back loop which

successively approximates the HR estimate. The goal of the feed-back loop is to minimize

the error between the original LR image and a decimated version of the HR estimate.

The idea is that when the error reaches zero (i.e. the decimated HR estimate matches

the original LR image exactly), the HR estimate has been reconstructed to match the

actual HR version as closely as possible (given the assumed sensor model). Although the

HR estimate may not be unique, it is assured to be a valid representation of the actual

HR version. The degree to which the LR image input to the rendering stage is corrected

is determined by the parameter α. This parameter is a weight which defines the step

size of the applied change at each iteration. The correction stage is illustrated in Figure

3.7. At each iteration it, the LR input is obtained by correcting the LR input from the

previous iteration (it-1) with the weighted difference between the down-sampled version

of the HR estimate from the previous iteration and the original LR image. Convergence of

the algorithm was proven in [37]. Refer to Section A.1.5 of Appendix A for further details
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on correction.

3.1.1 Algorithm Parameters

The choice of this algorithm’s single parameter, α, controls the degree to which the LR

image being magnified is corrected. This regularization parameter is the gain applied to

the feedback loop used to perform the successive approximations. Note, that although

not an explicit parameter, the maximum number of iterations can also be used to control

convergence.

The images in Figure 3.8 illustrate the effect of α. The same test image was used in

order to provide a better comparison of the effects of varying the parameter.

Fig. 3.8 Effects of Varying the Regularization Parameter of the Edge-
Directed Algorithm (16× Surface Magnification): a) Original LR image, HR
estimate using b) α = 0, c) α = 0.25, d) α = 0.75, e) α = 1
a b c d e

The original LR image is shown in part a) of Figure 3.8. Note that all HR estimates

were performed for 10 iterations.

Images b) to e) show the effect of allowing α to vary. Observe how increasing α

introduces significant ringing around edges. The ringing is caused by the use of the

moving average sensor model.

3.1.2 Algorithm Observations

Results from the implementation of the edge-directed algorithm of [16] revealed that the

algorithm has difficulty in correctly estimating edges to sub-pixel accuracy. This is shown

in Figure 3.9, where the original LR image is shown on the left, and on the right, is the
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edge-directed HR estimate for a factor of 100× surface magnification. The estimated HR

edge mapping has been overlayed onto the HR estimate in order to clearly show the edge

information being used during interpolation.

This particular LR image was selected due to its edge content, which boasts narrow

edges of one sample in width (in the bottom-left area), as well as wide edges of more than

one sample in width (in the top-right area). The regularly spaced black samples indicate

the positions of the original LR samples and the white lines are the estimated edges.

Fig. 3.9 Difficulties with the Edge-Directed Algorithm (100× Surface Mag-
nification): a) Original LR image, b) Edge-directed HR estimate overlayed
with estimated edge mapping

a b

There are three important observations to be made from Figure 3.9. The first ob-

servation is that the estimated edges do not coincide with the narrow edges. In fact, the

estimated edges are shifted by one LR unit cell away from the correct location. Clearly, the

edge detection filter does not possess sufficient sensitivity for accurate edge localization.

The second observation is that many LR unit cells are improperly classified. From

Figure 3.3, a unit cell with an edge must have two or four zero-crossings on its borders.

However, in Figure 3.9, there are many cells with a single zero-crossing. This occurs when
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an adjacent unit cell is classified as having four zero-crossings instead of two, leaving a

single zero-crossing, that should not be present, along a cell boundary.

A third observation can be derived from the first two. If the location of the edges are

not properly known, the rendering will be faulty. This is due to the fact that the rendering

is blind to the actual features of the image. It is only responsible for the interpolation

of the samples on the HR grid. It can not perform any manner of correction. Adding

complexity to the rendering stage will not help in correcting errors in the estimated edge

map. Therefore, a simpler strategy should be used for the rendering stage.

3.2 Improved Algorithm

This section proposes methods for improving the sub-pixel edge estimation and rendering

stages of the edge-directed algorithm (as discussed in Section 3.1.2).

3.2.1 Improved Sub-Pixel Edge Estimation

Zero-Crossing Estimation

The first step in improving the accuracy of the edge estimation is to take a closer look at

the filter used for detecting the presence of edges in the LR image. The filter designed

in [16] is a circularly symmetric version of the COSO filter proposed by [19]. This filter,

specified by a constant, positive disk surrounded by a constant, negative, ring, is essen-

tially a thresholded version of the standard Laplacian-of-Gaussian (LoG) filter. Following

experimentation, it was found that the COSO filter was unable to properly track edges

that were too narrow. To demonstrate, Figure 3.10 illustrates the result of filtering a set

of ideal step edges using the COSO and LoG filters (each filter has dimensions 5× 5).

For the first two step edges, both filter types are able to properly estimate the loca-

tion of the transitions (indicated by sign changes between samples in the filtered image).

However, in the case of a step edge of one sample wide, only the LoG filters of standard

deviation 1.0 and 0.5 are able to correctly estimate the transitions. It can be seen that the
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Fig. 3.10 Accuracy of the Edge Detection Filter for Ideal Step Edges
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COSO filter actually shifts the location of the edge by one sample away from the correct

location, which widens the one sample step edge to three samples. Clearly, the low-pass

filtering being performed by the COSO filter is excessive. Furthermore, the test images

represent an ideal artificial case. For natural images with varying gray levels and noise,

the performance deteriorates significantly by causing shifts in edge locations of two or

three samples. In many cases, edges are smoothed to the point of non-existence.

From Figure 3.10, it can be observed that the result of applying the COSO and LoG of

standard deviation 1.5, are very similar. In fact, they differ primarily by a scaling factor.

To achieve better accuracy in the localization of edges, the LoG filter of standard
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deviation 0.5 will be used. From Figure 3.10, the LoG filter of standard deviation 1.0 is

just barely able to detect the one sample wide step edge. Therefore, the LoG of standard

deviation 0.5 would have the best chance of properly estimating the location of edges in

natural images. Also, it is important to note that noise immunity in image magnification is

less important than the accurate localization of edges. Although a sensitive edge detection

filter may consider noise to be an edge, it is of greater importance to ensure that edges

are not missed. Even false edges, caused by nearly homogenous regions located close to a

transition (as in the first step edge of Figure 3.10) are tolerable. Although the edge may

be false, the edge-directed rendering will model the edge with a straight line of slope zero,

reducing the interpolation to the case of no edge.

The dimensions of the LoG filter were experimentally chosen to be 5× 5. It was found

that a smaller filter produced errors in the position of zero-crossings due to the lack of local

information resulting from it’s small coverage area. Larger filters tended to miss edges, as

well as shift them, due to over-smoothing caused by incorporating too much information

beyond the local edge.

Fig. 3.11 Inaccurate Detection of Weak Edges in the Presence of Stronger
Edges
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Although the LoG filter has increased the accuracy of the edge localization, there are

certain situations in which it fails to properly detect edges. These situations arise when

a weaker edge is in the presence of a stronger one. For example, consider Figure 3.11, in

which a one sample wide shadow has been added to the step edge. This shadow should

be interpolated as an edge and would be if the stronger edge were not present. However,

the strong edge has the effect of biasing the edge detection in its favor. Unfortunately, a
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solution to this problem was not found.

Edge Classification

Following the filtering, the position of edges are found by estimating the zero-crossings

between all pairs of samples of different signs. Then, the edge passing through an LR

unit cell is classified according to its type and topology. The type of an edge defines how

the LR corner samples are separated by the edge. To determine the edge type, it is only

necessary to compute the four zero-crossings along the borders of an LR unit cell. From

the possible sign configurations resulting from the filtering operation (Figure 3.3), only

configurations with two or four zero-crossings on the borders are possible. The topology

specifies how the zero-crossings are linked to form the edges. Figure 3.5 illustrates the edge

types used by [16]. In the case of the four corner edge types, the topology is determined

by the diagonal zero-crossing. The other edge types only admit one topology.

It was found that zero-crossings in the horizontal and vertical directions were far more

accurate than in the diagonal directions. Zero-crossings in the diagonal directions tend to

overshoot the position that visual inspection would claim to be the correct one, causing

edges to become jagged. To correct this, [16] uses a pre-processing stage which executes

a replacement strategy on the filtered LR image. However, following implementation, it

was found that the correction is not uniform. Although the location of certain diagonal

zero-crossings are improved, others that were correct prior to the pre-processing become

incorrect. Overall, no noticeable improvement was made.

Due to the difficulty in accurately estimating zero-crossings in the diagonal directions,

it was decided to only use the zero-crossings in the horizontal and vertical directions. This

change does not affect the determination of the edge type, however a new strategy for

estimating the topology will have to be introduced.

In the following, the new topology estimation strategy will be outlined for the case of a

corner edge type. This strategy will then be generalized for the case of four zero-crossings.

The new topology strategy must avoid introducing jagged edges in areas where the
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Fig. 3.12 Edge Topologies for a Top-Left Corner Edge Type
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edge should be straight, while not straightening sharp corner edges. To accomplish this,

the new strategy will need to estimate the direction of the edge by finding trends in the

local area of the isolated corner. Figure 3.12 illustrates the possible topologies in the case

of a top-left corner edge type.

By observation, the direction of an edge can be determined by classifying the local

variations between the corner sample and some of its nearest neighbors. Figure 3.13

illustrates the quantities of interest. Every di is the difference between the corner sample

and the local sample indicated by the arrow. The trends indicating the direction of an

edge are given by the magnitude of each di. Small magnitudes indicate the similarity of

the local samples to the corner sample, which in turn indicate the high probability that

a local sample is on the same side of the edge as the corner sample. Large differences

indicate that the corner and local samples are on opposite sides of the edge. Note that

two of the eight nearest neighbors are not included in the set of di’s. This decision was

made in order to properly classify topologies for edges that are only one sample wide. For
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Fig. 3.13 Quantities Used in Estimation of the Edge Topology
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such edges, looking across the edge would not provide a valid estimate of the direction of

the edge. Edges that are wider than one sample are not affected by this decision, since

the topology taken from the perspective of the corner sample should not recognize edge

width, only direction.

From the above, a measure of the similarity between the corner sample and a local

sample can be expressed as

δi = 1− |di| (3.1)

where i = 0, 1, 2, 3 and the di are as indicated in Figure 3.13.

Table 3.1 Edge Topology Matrix (T)

δ0 δ1 δ2 δ3

Topology 1.1 1/2 1/2 -1/2 -1/2
Topology 1.2 1/4 1/4 1/4 1/4
Topology 1.3 -1/2 1/2 1/2 -1/2
Topology 1.4 -1 1/3 1/3 1/3
Topology 1.5 1/2 -1/2 -1/2 1/2
Topology 1.6 1/3 -1 1/3 1/3
Topology 2 -1/2 -1/2 1/2 1/2

To classify a particular configuration of the δi as a topology, a simple matrix can be

used to perform correlation with respect to the ideal edge types in Figure 3.12. Let T be
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the 7 × 4 matrix which classifies the local trends 4× 1 column vector, δ = [δ0, δ1, δ2, δ3]
t,

into two distinct topologies: i) a straight line between the two zero-crossings, and ii) a

sharp corner formed by the intersection of horizontal and vertical line segments. Table 3.1

provides the coefficients of the matrix for each of the possible topologies in Figure 3.12.

Positive coefficients reward local samples that are on the same side of the edge as the

corner sample, whereas negative coefficients penalize local samples that are on opposite

sides of an edge. The same matrix can be used for the other three corner edge types by

simply rotating the LR unit cell along with the definition of the di (see Figure 3.13).

The scaling coefficients in matrix T were chosen empirically such that measures along

the direction of the edge are averaged together. Similarly, measures across an edge are

also averaged. The goal of the averaging is to introduce robustness. It was found that

using the raw measures directly had a tendency of biasing the results towards incorrect

topologies when gray values along the direction of an edge did not exactly match. Since

grey values will vary in natural images, it is important to take into consideration the fact

that samples on an edge may themselves be changing. The importance lies in the relative

magnitudes of these changes.

The topology is determined by the row with the maximum of the correlation, T · δ.
Note that Figure 3.12 contains seven topologies in total. However, viewed from within the

LR unit cell, all of the topologies are of the straight line type except the last. Hence the

labelling, topology 1.x, where x represents a variant of the straight line topologies. The

sharp corner topology (topology 2) has no variants. Therefore a maximum at any topology

other than the sharp corner should be considered a straight line. Figure 3.14 shows the

set of edge types and topologies for two zero-crossings. The procedure for determining the

edge topology in the case of two zero-crossings can be summarized as follows:

1. Apply the 7 × 4 topology matrix, T, to the 4 × 1 column vector δ of local trends.

The product is tδ = T · δ.

2. Estimate the topology of the corner edge by finding the row of tδ with the maximum



3 Edge-Directed Algorithm 31

correlation. All topologies are of the straight line type unless topology 2 is the

maximum.

Fig. 3.14 Expanded Set of Edge Types and Topologies in the Case of Two
Zero-Crossings
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Fig. 3.15 Expanded Set of Edge Types and Topologies in the Case of Four
Zero-Crossings
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In the case of an LR unit cell with four zero-crossings, the above strategy will be applied

to each of the four corners independently. This will result in an expansion of the set of

edge types and topologies for four zero-crossings. Figure 3.15 illustrates the expanded set

of edge types, along with the possible topologies for each type. Once the topologies have
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been determined for each of the four corners, they must be combined to allow classifying

the edge type.

The procedure is as follows:

1. Apply the 7×4 topology matrix, T, to a 4×4 matrix ∆ whose jth column is the local

trends vector δj for the jth corner. The corner index j is taken in the anti-clockwise

direction starting at the top-left corner. The product is T∆ = T · ∆.

2. Estimate the topology of each corner by finding the row with the maximum corre-

lation.

3. Form a 1 × 4 row vector, t∆max, whose elements are the value of the maximum

topology correlation at each corner (i.e. the maximum of the row elements in each

column of T∆).

4. If the topologies at all four corners are sharp corners, then the edge type is classified

as intersecting edges (edge type 3 in Figure 3.15). Otherwise, apply the 4× 2 edge

type classification matrix E, given in Table 3.2, to the 1× 4 row vector t∆max. The

edge type is determined by finding the column with the maximum. The column

numbers correspond directly to the edge types in Figure 3.15.

5. Once the edge type is known, the topology is determined by simply combining the

individual topologies of the corners to form one of the possibilities from Figure 3.15.

Table 3.2 Edge Type Classification Matrix in the Case of Four Zero-
Crossings (E)

Edge Type 1 Edge Type 2

Maximum of Topology Correlation for Top-Left Corner 1/2 -1/2
Maximum of Topology Correlation for Bottom-Left Corner -1/2 1/2
Maximum of Topology Correlation for Bottom-Right Corner 1/2 -1/2
Maximum of Topology Correlation for Top-Right Corner -1/2 1/2
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As a final note, this new sub-pixel edge estimation scheme no longer requires the pre-

processing stage used by [16] to correct errors in the estimation of diagonal zero-crossings.

3.2.2 Improved Edge-Directed Rendering

The approach to the edge-directed rendering stage taken by [16] is quite complex. This is

due to the fact that each sample on the HR grid contained within an LR unit cell with

an edge passing through it must be fitted to a line segment which is parallel to the edge

and passes through the coordinates of the sample. Then, the intersection of this line with

the nearest borders and/or diagonals of the cell must be computed. Finally, the sample

is interpolated linearly between the values at the intersecting end-points. The final result

is that each LR unit cell is fitted with a surface that maintains borders and/or diagonals

with edges and everywhere else is interpolated smoothly based on which side of an edge

the sample is located.

This same effect can be achieved using a modified version of the simpler approach

developed in [19]. The authors of [19] apply bilinear interpolation to groups of samples, as

opposed to treating each sample individually. The groups are collections of samples that

reside in regions separated by the edges passing through an LR unit cell. For all samples

in a region, bilinear interpolation is applied by determining replacement values for the LR

corner samples that are not contained in the region. The replacement strategy uses linear

extrapolation based on the values of LR samples from the surrounding unit cells.

The primary flaw in this approach is that the replacement strategy needs to look outside

of an LR unit cell in order to find replacement values. This can cause problems when

surrounding cells also have edges between the LR samples. In such cases, the replacement

strategy becomes ambiguous.

To avoid the necessity of using adjacent cells for computing the replacement values,

a scheme was developed which combines the variable order polynomial edge modelling

of [16], with the edge separated region interpolation of [19]. The idea is to compute the

replacement values for the LR corner samples by linearly extrapolating between the LR
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corner samples contained in the region and the value of the polynomial at the HR sample

that is nearest the edge and also contained in the region. Since the location of the edge

is given by the estimated zero-crossing, the HR sample nearest the edge and contained

in the region can be found by simply rounding the zero-crossing towards the LR corner

sample in the region.

Since the improved sub-pixel edge estimation described in Section 3.2.1 only estimates

zero-crossings in the horizontal and vertical directions, edge types that have a single corner

separated from the other three can only perform the linear extrapolation along those two

directions. This leaves the replacement value for one corner undetermined. To determine

this value, the replacement values at the two other corners can be averaged. This is a

simple way of ensuring that smoothness is maintained along outer cell borders that do not

have edges.

The interpolation of two regions is illustrated in Figure 3.16 for the case of a corner

edge. Part a of Figure 3.16 gives a topological view of the LR unit cell and the edge

passing through it. Note that the edge separates the cell into two regions. Part b of

the figure illustrates the methodology used for computing the replacement values for the

LR corner samples labelled c2, c3 and c4. For example, the replacement value for c4 is

obtained by a linear extrapolation between c1 and the HR sample nearest the zero-crossing

at the top border of the unit cell. The replacement value for c3 is obtained by averaging

the replacement values for c2 and c4. Part c illustrates the same process for the second

region. In this case, the replacement value for c1 is the average of the linear extrapolations

between c4 and the HR sample nearest the zero-crossing at the top border, and c3 and the

HR sample nearest the zero-crossing at the left border.

The edge model used is a variation of the one developed by [16]. In [16], edges are

modelled by a variable order polynomial composed of two segments joined at the zero-

crossing. Each segment uses samples from surrounding cells to determine the slope at the

corner points and relies on a heuristic to determine the order. The order of each segment

is the same and is tied to the magnification factor.
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Fig. 3.16 Improved Edge-Directed Interpolation Scheme
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It was found that the two curve segments were unable to properly bend when the

zero-crossing approached one of the corners. This is due to the heuristic, which limits the

maximum order of the polynomial segments to the magnification factor. By observation,

as the zero-crossing approaches one of the corners, the order of the longest polynomial

segment should be large in order to allow it to bend sharply, while the order of the shorter

segment can be lower due to its more gradual transition. This provides motivation to

correct the problem by allowing each curve segment to have its own order, allowing them

to bend differently according to need. The order of each segment is based on the distance

of the zero-crossing from each respective corner and the slope at the zero-crossing. It is
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computed such that continuity of the slope at the zero-crossing is maintained. Figure

3.17 compares the bending ability of the two edge models as the zero-crossing approaches

the corners. Note how the new edge model can bend more sharply. Also, this test was

conducted with the maximum slope at the zero-crossing set to one. Larger slope settings

will allow for even sharper bends.

Fig. 3.17 Comparison of the Original and New Variable Order Polynomial
Curves Used to Model Edges
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The slope at the zero-crossing is specified by applying a slope control function to the

difference between the values at the two LR corner samples. The selected slope control

function was determined by observation to have the following properties. When the step

between the two corners is small, the slope should be almost linear. When the step is large,

the slope should approach some specified maximum value. Following experimentation with

linear, quadratic and cubic control functions, the cubic function was selected. It was found

that the S shape of a cubic polynomial whose end-point derivatives are zero, provided the
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best separation between regions of high contrast.

The maximum slope, labelled S, has been made a parameter of the algorithm in order

to allow control over the sharpness at edges. When S is small, the polynomial curves

approach straight lines, and when it is large, the curves tend towards ideal step functions.

Therefore, the larger S, the sharper the edges. Specifying a large slope is equivalent to

performing an edge-directed version of the zero-order hold interpolation.

Fig. 3.18 Demonstration of the Bending Ability of the New Edge Model
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In order to avoid looking outside the cell to compute the slopes at the corners, it was

decided to set them to zero. This decision removes complications in dealing with how

to compute slopes when edges are present in adjacent cells. Although the slopes at the

corners are now zero, the effect of having non-zero slopes can be achieved by properly

choosing the maximum allowable slope used by the slope control function. Figure 3.18

depicts the edge model applied to a step size of one with the zero-crossing located at
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the half point between the corner samples. The edge is shown for various choices of the

maximum slope. Note how the curves are able to bend sharply as the slope is increased,

allowing the transition at the edge to be maintained without blurring.

3.2.3 Improved Algorithm Parameters

The choice of the algorithm’s two parameters will determine the quality of the HR estimate.

The first parameter is the maximum allowable slope S of the edge model, and the second

is the regularization parameter α.

The choice of S affects the sharpness of edges in the HR estimate. Small S will result

in more gradual edges, which for some images this may cause blurring. Large S will make

edges sharp. However, this may also introduce blocking artifacts in images with many

large and highly localized edges. This is due to the fact that the edge curve approaches

an ideal step-edge as S increases.

The effect of α is as discussed in Section 3.1.1. Note that it is possible to use the

iterations to soften blocking resulting from large S.

The images in Figure 3.19 illustrate the effect of the parameters. The same test image

was used in order to provide a better comparison of the effects of varying both parameters.

The original LR image is shown in part a) of Figure 3.19. Note that the HR estimates

b) to c) were obtained with 1 iteration, where as f) to i) were obtained with 10 iterations.

Images b) to e) show the effect of ignoring α (by performing only 1 iteration), while

allowing S to vary. Note how the increase in S sharpens the rendering at the edges. This

is caused by allowing the edge curve to make use of larger slopes at the zero-crossing.

Images f) to i) show the effect of setting S = 10, while allowing α to vary. Observe

how increasing α introduces artifacts and a slight ringing around edges. The ringing is

caused by use of the moving average sensor model.
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Fig. 3.19 Effects of Varying the Parameters of the Improved Edge-Directed
Algorithm (16× Surface Magnification): a) Original LR image, HR estimate
using b) S = 0.1, α = 0.75, c) S = 1, α = 0.75, d) S = 5, α = 0.75, e)
S = 10, α = 0.75, f) S = 10, α = 0, g) S = 10, α = 0.25, h) S = 10, α = 0.75
and i) S = 10, α = 1
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3.2.4 Improved Algorithm Observations

Results from the implementation of the improved edge-directed algorithm show that the

problems discussed in Section 3.1.2 have been resolved. This is shown in Figure 3.20,

where the regularly spaced black samples indicate the positions of the original LR samples

and the white lines are the estimated edges.

Clearly, the proposed sub-pixel edge estimation stage has greatly improved the accu-

racy of edge localization. This is seen by comparing the bottom left and right images in

Figure 3.20. Note how edges in the right image are no longer shifted away from the correct

position. Also, LR unit cells are now being properly classified. There are no unit cells

with only one zero-crossing.

Further examples of the two edge-directed algorithms will be provided in Chapter 5.
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Fig. 3.20 Comparison of the Original and Improved Edge-Directed Algo-
rithms (100× Surface Magnification): a) Original LR image, HR estimate
overlayed with estimated edge mapping using b) Original algorithm, c) Im-
proved algorithm
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Chapter 4

Statistical Algorithm

This chapter begins by providing a brief overview of the operation of the selected sta-

tistical algorithm, as described by the authors of [29]. Following the description, certain

improvements to the algorithm will be proposed.

For a detailed description of the implementations, please refer to Appendix C, for the

statistical algorithm, and D, for the improved statistical algorithm.

4.1 Algorithm Description

The primary difficulty in image magnification is that there is no unique HR estimate for

any given original LR image. In fact, there are an infinite number of possible solutions.

The idea behind statistical image magnification is to construct a statistical model which

best describes the a priori information about the HR image being estimated. The choice

of this model will determine the properties of the solution. For example, the model can be

designed to give the magnified image an overall smoothness, while keeping edges sharp.

The statistical approach also allows integrating noise models into the algorithm.

The statistical algorithm of [29] formulates image magnification as Bayesian estimation.

The goal is to determine the most likely HR image that meets the requirements of the a

priori knowledge and would have resulted in the given LR image after being decimated
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by a moving average filter. The estimated HR image is defined as,

HRmin = argmin
HR

{−L(HR|LR)} (4.1)

where,

L(HR|LR) = ln p(HR|LR) (4.2)

= ln p(LR|HR) + ln p(HR)− ln p(LR) (4.3)

is the likelihood that an estimated HR image would result from a given LR image. p(·)
denotes the probability density of its argument.

In Equation 4.2, the term p(HR|LR) is the conditional probability density function

that gives the probability that a particular HR image resulted from the given LR image.

According to probability theory, this term can be re-written as

p(HR|LR) =
p(LR|HR)p(HR)

p(LR)
. (4.4)

In Equation 4.3, the term P (LR|HR) represents the likelihood that a decimated ver-

sion of the estimated HR image could produce the given LR image. The term P (HR)

represents the degree to which the estimated HR image meets the criteria established by

the a priori knowledge. Note that since the term P (LR) does not depend on the HR

image being estimated, it will be constant throughout the minimization. Therefore, this

term will not affect the estimation process.

The authors of [29] assume that the original LR image will be corrupted by white

Gaussian noise. This defines the relationship between the LR and estimated HR images

to be

p(LR|HR) =
1

(2πσ2)
XLRYLR

2

exp

(
−‖LR − D(HR)‖2

2σ2

)
. (4.5)

The a priori information about the estimated HR image is modelled by the Gibbs-
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Markov random field such that

p(HR) =
1

Z
exp

(
− 1

β
Ω[HR, T ]

)
. (4.6)

Substituting the right-hand side of Equations 4.5 and 4.6 into Equation 4.3 and eval-

uating the logarithms results in

L(HR|LR) = −XLRYLR
2

ln(2πσ2)− 1

2σ2
‖LR − D(HR)‖2 − ln(Z)− 1

β
Ω[HR, T ] (4.7)

As before, the constant terms in Equation 4.7 will not contribute to the minimization.

From the above, the estimation problem reduces to the following minimization:

HRmin = argmin
HR

{M [HR, T, λ]} (4.8)

where,

M [HR, T, λ] = Ω[HR, T ] + λ‖LR − D(HR)‖2. (4.9)

Let XLR and YLR be the horizontal and vertical dimensions of the LR image, respectively.

Similarly, XHR and YHR are the dimensions of the HR image. Note that in the above,

LR is a XLRYLR × 1 column vector representation of the LR image, HR is a XHRYHR × 1

column vector representation of the HR image and D is a decimation operator in the form

of an XLRYLR ×XHRYHR matrix, which reduces the HR estimate to the dimensions of the

LR image by performing an area averaging of the HR samples contained in an LR unit

cell. The single constant λ in Equation 4.9 is the synthesis of the constants 1
2σ2 and 1

β

from Equations 4.5 and 4.6, respectively. The authors of [29] rearranged and merged the

two in order to eliminate a extra parameter to the algorithm. Also, note that contrary

to tradition, λ is applied to the data fidelity term instead of the smoothing term. It is

believed that this choice was made in order to allow controlling the smoothing solely with

T.

The objective function M [HR, T, λ] has two components: i) the smoothing term
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Ω[HR, T ], and ii) the data fidelity term ‖LR − D(HR)‖2.

Fig. 4.1 Cliques at a Sample

x

y

Clique 0

Clique 1
Clique 2

Clique 3

The smoothing term constrains the sharpness of the image. A second-order derivative

operator is used as a measure of how smooth an image is at a sample. The decision to

use a second-order operator is motivated by the fact that it is zero in smooth regions and

non-zero in regions containing discontinuities. Therefore, it provides a simple mechanism

for measuring the smoothness of a sample with respect to it’s neighbors. For each sample,

a measure is taken in each of the four directions shown in Figure 4.1: horizontal (clique

0), anti-diagonal (clique 1), vertical (clique 2) and diagonal (clique 3). A clique is defined

as a group of samples used to measure some local property of an image. In this case,

the cliques measure the smoothness by using three adjacent samples along one of the four

directions shown in Figure 4.1. Since only the eight nearest neighbors of a sample are

used, the four cliques are said to be defined on a second-order neighborhood. Smooth

regions possess small second-order derivatives, whereas regions containing discontinuities

will result in larger values. Refer to Section C.1.1 of Appendix C for further details on

the smoothness measures.

A potential function is then used to transform the smoothness measures. The goal of

this transformation is to obtain a new measure which simplifies the optimization. When

choosing a potential function, it is desired that it transforms the smoothness measures in

such a way as to create greater separation between values. This greater separation allows

the optimization procedure to target those regions which will have the greatest overall
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effect on reducing the objective function.

Traditionally, the quadratic function is chosen as the potential, which results in a

least-squares estimation of the HR image. Unfortunately, the quadratic function tends to

cause excessive blurring by severely penalizing discontinuities. Although it is desirable to

create separations between smoothness measures, the quadratic is unable to be adapted to

permit various degrees of discontinuities. Essentially, any discontinuity will be smoothed

in order to reduce the objective function, regardless of its perceptual significance. Clearly,

a better choice for the potential function should be made.

Fig. 4.2 Huber Function

-T T
x

pT(x)

This new potential function should continue to ensure that smooth regions with small

second-order derivatives have a weak influence on the global objective. However, regions

containing discontinuities should be limited in some way as to reduce their influence, and

hence the blurring. From previous research on discontinuity preserving potential functions

performed in [39], the authors of [29] chose the Huber function (illustrated in Figure 4.2),

which is piece-wise smooth and possesses a continuous first order derivative. This function

is defined as

ρT (x) =


 x2 , |x| ≤ T

T 2 + 2T (|x| − T ), |x| > T
. (4.10)

Note that this function becomes purely quadratic as the threshold T becomes arbitrarily

large. This means that large values of T will reduce the Huber function to a least-squares

solution for the HR estimate.
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The strength of the Huber function lies in the ability to select the threshold T. This

threshold can be chosen such that discontinuities are not severely penalized, thereby re-

ducing excessive blurring. The threshold serves as a control mechanism which allows the

final estimated solution to differ from the least-squares solution, while at the same time

remaining relatively similar to it. Expanding the smoothing term gives,

Ω[HR, T ] =

XHR−1∑
x=0

YHR−1∑
y=0

3∑
c=0

ρT (d
t
x,y,cHR), (4.11)

where dx,y,c are the directional smoothness measures for the four cliques.

The data fidelity term constrains the solution space by ensuring that the HR estimate

does not deviate radically from the original LR image. This is accomplished by making

certain that a decimated version of the HR estimate remains close to the original LR image.

The degree of the allowable deviation is determined by the regularization parameter λ.

The importance of the data fidelity term lies in the need to maintain the information of

the original image. Without data fidelity, the algorithm would allow the smoothing term

to seek the minimum solution, which would result in an image of constant and uniform

intensity. The choice of λ must be made such that an acceptable level of data fidelity is

maintained while not overly restricting the smoothing term from removing any undesirable

artifacts in the HR estimate or from improving desired features such as discontinuities.

The decimation is performed using a moving average filter, followed by down-sampling.

This filter was selected to model image acquisition performed using modern digital sensors

such as CCD or CMOS devices.

The optimization of the objective function is accomplished using the gradient descent

technique. Using this technique, the implementation of the algorithm is segmented into

three components: i) gradient of the objective function, ii) optimal step size, and iii)

correction. A block diagram of the implementation is given in Figure 4.3.

The computation of the gradient of the objective function requires the gradients of

the smoothing and data fidelity terms. The gradients are computed with respect to each



4 Statistical Algorithm 47

Fig. 4.3 Block Diagram of the Bayesian Optimization
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sample in the HR estimate to generate vectors of the same dimensions as the HR estimate.

The gradient vector determines the optimal direction in which to change the HR estimate.

This means that the estimated sample’s grey-levels will be increased or decreased by

some amount in order to force them closer to their optimal values. The gradient at every

sample is computed solely from it’s neighboring samples in the current HR estimate. Refer

to Sections C.1.2, C.1.3 and C.1.4 of Appendix C for further details on the gradient of the

objective function.

The step size is the constant factor which determines the magnitude of the change of

the HR estimate in the direction of the gradient. The choice of the step size is crucial in

determining the convergence of the algorithm. A small step will converge slowly, whereas a

large step may overshoot the estimate. The solution used by [29] computes the optimal step

size at each iteration. This is done by choosing the step size that minimizes the objective

function with respect to the gradient corrected HR estimate. Using this approach ensures

that the change at each iteration will be uniquely adapted for the gradient at that iteration.

Refer to Section C.1.5 of Appendix C for further details on the optimal step size.

The correction is simply the modification of the HR estimate by the gradient vector

weighted with the optimal step size to produce the next best estimate. Samples in the
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HR estimate are updated simultaneously by their respective gradients. The correction

is only performed provided that the squared magnitude of the correction term is greater

than some specified value. Otherwise, the algorithm terminates. Refer to Section C.1.6 of

Appendix C for further details on correction.

Naturally, the algorithm will require a starting point of some sort. In [29], the authors

chose the zero-order hold expansion of the LR image as the initial condition. This choice of

initial condition is reasonable given that the sensor model is the area averaging. The initial

condition does not affect the result provided that the algorithm is allowed to converge to

zero. However, it should be noted that halting the iterations before convergence results in

a sharper HR estimate.

4.1.1 Algorithm Parameters

The choice of the algorithm’s two parameters will determine the quality of the HR estimate.

The first parameter is the threshold T of the Huber function, and the second is the

regularization parameter λ.

The choice of T affects the amount of smoothing performed. For a fixed λ, increasing

T will increase the amount of smoothing performed at each iteration.

The choice of λ determines the degree of data fidelity. Since the sensor model is the

moving average, it should be clear that making λ large will result in blocking artifacts. In

the limit, λ will cause the HR estimate to remain in the zero-order hold state. Note, that

although not an explicit parameter, the maximum number of iterations can also be used

to control convergence.

The images in Figure 4.4 illustrate the effect of the parameters. The same test image

was used in order to provide a better comparison of the effects of varying both parameters.

The original LR image is shown in part a) of Figure 4.4. Note that all HR estimates

were performed for 100 iterations. This number was chosen in order to allow all estimates

to converge fully. Further iteration beyond this point would not result in improvements.

Instead, the algorithm would continue oscillating around the solution.
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Fig. 4.4 Effects of Varying the Parameters of the Statistical Algorithm
(16× Surface Magnification): a) Original LR image, HR estimate using b)
T = 0, λ = 0, c) T = 0.05, λ = 0, d) T = 0.1, λ = 0, e) T = 1, λ = 0, f)
T = 0.1, λ = 0, g) T = 0.1, λ = 1, h) T = 0.1, λ = 10 and i) T = 0.1, λ = 100

a

b c d e

f g h i

Images b) to e) show the effect of setting λ = 0, while allowing T to vary. Clearly,

the contribution of T is responsible for smoothing. Note how the HR estimate becomes

gradually more blurred as T is increased.

Images f) to i) show the effect of setting T = 0.1, while allowing λ to vary. The

contribution of λ is responsible for ensuring data fidelity. Note how increasing the data

fidelity begins to introduce ringing. This effect results from the use of the moving average

filter as the sensor model.

4.1.2 Algorithm Observations

From the implementation of the statistical algorithm of [29], it was observed that despite

the use of the Huber function to reduce the amount of smoothing, discontinuities were

still being smoothed. Figure 4.5 clearly shows the smoothing effect near edges.
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Fig. 4.5 Difficulties with the Statistical Algorithm (100× Surface Magnifi-
cation): a) Original LR image, b) Bayesian HR estimate

a b

In addition to the smoothing, blocking artifacts are visible along discontinuities. These

are caused by the zero-order hold of the LR image, which is used as an initial condition.

The smoothing is clearly not sufficient to remove them. Also, the fact that the sensor

model is a moving average places a limit on the degree to which the blocking artifacts can

be removed. This is due to the fact that the moving average would force the HR estimate

towards the zero-order hold solution, and not a solution with straighter lines.

A first attempt at solving this problem focused on using smaller thresholds for the

Huber function. However, it was discovered that when the threshold became too small,

the algorithm becomes numerically unstable. To solve this, it was decided to approximate

the step size by the optimal step size obtained by allowing the Huber function’s threshold

to be infinite (i.e. a least-squares solution). This approach eliminates the dependency on

the threshold. However, since the step size is no longer optimal, the algorithm will require

more iterations before converging.

Although the redefinition of the step size did help reduce some of the blurring, the
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solution was still lacking. As the threshold was reduced, blocking artifacts began to be

introduced. Eventually, the threshold would reach a state in which the optimal solution

was the zero-order hold initial condition. The only way to reduce the blocking artifacts was

to reduce the regularization parameter, which reduces data fidelity. This in turn allows for

more smoothing. Essentially, there was a trade-off to be made between smoothness and

data fidelity. It became clear that the Huber function did not provide sufficient control

over the amount of smoothing applied to each region of the HR estimate. Naturally, the

question arose as to what are the properties that would allow such a control mechanism

to find the ideal trade-off between smoothness and data fidelity, while at the same time

maintaining sharpness at discontinuities? This question led to the improvements presented

in the next section.

4.2 Improved Algorithm

To answer the question of Section 4.1.2, it was necessary to return to the basic least-squares

algorithm upon which [29] is based. Analysis of the least-squares algorithm revealed that

the primary factor responsible for the blurring of discontinuities was the generality with

which all four clique smoothness measures are applied to every sample in the HR estimate.

To demonstrate this idea, simple tests were conducted where four HR estimates of the same

LR image were obtained using only one of the four directional smoothness measures during

each test (the contribution of the others were set to zero). This gives four HR estimates

which clearly show the contribution of each of the four cliques to the overall smoothing

of the HR estimate. Figure 4.6 depicts the four directional smoothing components for

an image containing a diagonally oriented discontinuity. The original image, a), was

interpolated by a factor of 5 in each dimension, resulting in a 25× surface increase.

Note that the clique smoothness measures used by [29] are not weighted the same for

each clique. The two diagonal cliques have half the weight of the horizontal and diagonal

cliques. In order to obtain an accurate idea of the effect of each clique, it was decided to
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give them all the same weight. This way, an equal amount of smoothing will be performed

by each clique.

Fig. 4.6 Effects of Using One Clique on the HR Estimate (25× Surface Mag-
nification): a) Original LR image, HR estimate using smoothness measure b)
d0 (horizontal), c) d1 (anti-diagonal), d) d2(vertical) and e) d3 (diagonal)

a b c d e

For the particular image in Figure 4.6, it is clear that of the four estimates, the fourth

(image e) gives the most accurate estimation near the discontinuity. This is due to the

fact that the other directional components are smoothing across the discontinuity and not

along it. In particular, observe the effect of the smoothing term that is perpendicular to

the discontinuity (image c). By smoothing directly across the discontinuity, this smoothing

term creates jagged artifacts. For the case of this particular image, it is clear that only the

fourth smoothing component should be allowed to affect regions near the discontinuity,

whereas for regions beyond it, all four should be applied.

As a result of these tests, it became clear that the control mechanism should in some

way permit or block each of the four directional smoothing components based on the

presence of local discontinuities. Smoothing would therefore only be conducted along the

discontinuity and not across it.

A simple way of achieving such a control mechanism is to introduce a set of weights

which would scale each of the four smoothness measures taken at every sample in the HR

estimate. These weights would be designed specifically for the direction in which each of

the smoothing terms operates.

An obvious choice in designing the weights would be to base them on an estimate

of the HR edge map. The edge map would provide a binary estimate of the location
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of the discontinuities in the HR image, where a value of one indicates the presence of

a discontinuity. From these locations, a simple scheme can be applied to determine the

weights for each directional smoothing term.

The idea is to eliminate the smoothing only at samples for which the smoothing term

is crossing a discontinuity. If a smoothing term is applied along a discontinuity, smoothing

should be permitted. To achieve this, note that the directional smoothing operators are

all second-order operators. Filtering the binary edge map with a particular operator

will result in non-zero values only for those samples whose clique extends to include a

discontinuity. Samples whose clique follows a discontinuity will result in zero. Therefore,

taking the absolute value of the filtered edge map and then applying a threshold such

that anything greater than zero is set to one, will result in the location of all samples

that should not be smoothed using that particular operator. The weights are therefore

the logical inverse of such binary maps.

Fig. 4.7 Spreading Edges for Diagonal Operators

Binary Edge Map Weights
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A problem arises in the case of the two diagonal measures. Figure 4.7 illustrates a

binary edge map with two crossing diagonal edges. When applying either of the two

diagonal smoothing measures, certain holes appear that will permit smoothing across

discontinuities. To ensure that the holes are properly dealt with, they should be filled

in by spreading the edge. The spreading of the edge map can be accomplished by the

application of a simple morphological operator that searches the edge map for groups of

four samples with the two patterns shown in Figure 4.8. If a match is found, the operator

fills in the holes.

Fig. 4.8 Morphological Operator for Spreading Diagonal Edges
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Search
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The determination of the weights can be summarized as,

wc[x, y] = 1− ec[x, y] (4.12)

where, the subscript c denotes the clique and

e0[x, y] = |d0[x, y] ∗ e[x, y]| > 0, (4.13)

e1[x, y] = |d1[x, y] ∗ s(e[x, y])| > 0, (4.14)

e2[x, y] = |d2[x, y] ∗ e[x, y]| > 0, (4.15)

e3[x, y] = |d3[x, y] ∗ s(e[x, y])| > 0. (4.16)

In the above, e[x, y] denotes the binary estimate of the HR edge map, ∗ denotes the

convolution operator, di[x, y] denotes the 3×3 filter for ith directional smoothness measure
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and s(·) is the morphological operator used for spreading edges.

Fig. 4.9 Determination of the Weights
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Figure 4.9 illustrates the weights for a simple binary edge map. Note how the weights

permit smoothing along discontinuities that are parallel to the direction of the smooth-

ness measure, and block smoothing across discontinuities that are perpendicular to the

smoothness measure. Also, due to the width of the smoothness measures, every discon-

tinuity has a region of at least a single sample on either side of it that will be smoothed

using the same measure that is used on the samples that lie directly on the discontinuity.

This buffer zone around the discontinuities adds robustness to the algorithm by allowing

for the correction of one sample deviations in the estimated edge map. Basically, a three

sample wide area is smoothed using a single measure, which will maintain sharpness of

discontinuities despite errors in the estimated edge map.

Since the edge map is binary, the weights will never allow smoothing across discon-
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tinuities. In order to relax this constraint and add flexibility, the single regularization

parameter, λ, used by [29] will no longer be applied to the data fidelity term. Instead,

two independent parameters, λ1 and λ2, will be applied to the smoothing term such that

the weight in smooth regions is λ1 and the weight in regions of discontinuity is λ2. This

allows for greater control over the degree of smoothing that is performed. Note that the

two new parameters λ1 and λ2 are fundamentally different from the single parameter λ

used in [29]. The new parameters are applied to the smoothing term, where as λ is ap-

plied to the data fidelity term. For the original algorithm, changes in λ affect the degree

to which a down-sampled version of the HR estimate matches the original LR image. In

the improved algorithm, changes in λ1 and λ2 affect the amount of smoothing performed

in their respective regions. The parameters of the original and new algorithms are not

related, hence they will affect the convergence of each algorithm in different ways.

In addition, the improved algorithm will no longer use the Huber function. Instead,

the clique potential function will be a simple quadratic. This change was made following

experimentation with the Huber function. It was found that the threshold of the Huber

function needed to be large in order to avoid blocking artifacts. The combination of

the weights and the Huber function’s further reduction of the smoothness measures was

causing the solution to be reached too soon. The large threshold was such that only the

quadratic segment of the Huber function was being applied to the smoothness measures.

From the above, the objective function for the algorithm becomes,

M [HR, λ1, λ2] = Ω[HR, λ1, λ2] + ‖LR − D(HR)‖2 (4.17)

where,

Ω[HR, λ1, λ2] =

XHR−1∑
x=0

YHR−1∑
y=0

3∑
c=0

wc[x, y, λ1, λ2](d
t
x,y,cHR)2, (4.18)
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and

wc[x, y, λ1, λ2] = (λ2 − λ1)ec[x, y] + λ1. (4.19)

The estimation of the HR edge map will be performed using the improved sub-pixel

edge estimator of Section 3.2.1. However, the estimator does not generate a binary edge

map. Therefore, an additional step must be included to convert the zero-crossing struc-

tures into a binary map. Since the edges are approximated by piece-wise linear segments,

this step need only quantize the straight line segments joining adjacent zero-crossings to

the HR grid within every LR unit cell.

4.2.1 Algorithm Parameters

The choice of the algorithm’s two parameters will determine the quality of the HR estimate.

The first parameter, λ1, is the weight applied to smooth regions, and the second, λ2, is

the weight applied to regions containing discontinuities.

The choice of λ1 affects the amount of smoothing performed in all regions that do not

cross any discontinuities. If λ1 is set to zero, then no smoothing will be performed. This

means that samples not located near a discontinuity will maintain the same value given

to it by the zero-order hold initial condition, regardless of the number of iterations. As λ1

increases, more smoothing will be performed by increasing the contribution of the smooth

regions to the global objective.

The choice of λ2 affects the amount of smoothing performed across discontinuities. If λ2

is set to zero, then no smoothing across discontinuities will be performed. As λ2 increases,

discontinuities will become increasingly blurred. It should be noted that using λ2 = 0 for a

small magnification factor will result in blocking. The problem is that the resolution of the

estimated edge mapping will be low. This means that areas with high edge content will be

predominantly smoothed using the λ2 parameter instead of λ1. For images with high edge

content, the blocking will be persistent across the entire HR estimate. The solution is to

allow smoothing to be performed across edges or to use a greater magnification factor.
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The images in Figure 4.10 illustrate the effect of the parameters. The same test image

was used in order to provide a better comparison of the effects of varying both parameters.

Fig. 4.10 Effects of Varying the Parameters of the Statistical Algorithm
(16× Surface Magnification): a) Original LR image, HR estimate using b)
λ1 = 1, λ2 = 0, c) λ1 = 0.5, λ2 = 0, d) λ1 = 0.01, λ2 = 0, e) λ1 = 0, λ2 = 0,
f) λ1 = 0.1, λ2 = 0.5, g) λ1 = 0.1, λ2 = 0.1, h) λ1 = 0.1, λ2 = 0.05 and i)
λ1 = 0.1, λ2 = 0

a

b c d e
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The original LR image is shown in part a) of Figure 4.10. Note that all HR estimates

were performed for 100 iterations.

Images b) to e) show the effect of setting λ2 = 0, while allowing λ1 to vary. Note

how the reduction of λ1 is responsible for introducing blocking artifacts. This is due to

insufficient smoothing.

Images f) to i) show the effect of setting λ1 = 0.1, while allowing λ2 to vary. Observe

how decreasing λ2 has the effect of sharpening of discontinuities.
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4.2.2 Improved Algorithm Observations

From the implementation of the improved statistical algorithm, it can be observed that

smoothing at discontinuities has been significantly reduced. The image on the bottom-

right of Figure 4.11 shows the improvements compared to the image on the bottom-left.

Fig. 4.11 Comparison of the Original and Improved Statistical Algorithms
(100× Surface Magnification): a) Original LR image, HR estimate using b)
Original algorithm, c) Improved algorithm

a

b c

Clearly, the decision to perform directional smoothing based on the orientation of the

discontinuities in an image has had a positive effect on the overall sharpness of the image.

Also, the directional smoothing has helped to remove much of the blocking artifacts along

discontinuities. By only allowing samples that lie on the same side of a discontinuity to

affect each other, a more uniform spreading of the intensity is achieved. This forces the

samples in a blocking artifact to converge to an intensity that is closer to those on the

same side of the discontinuity.
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Further examples of the two statistical algorithms will be provided in Chapter 5.
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Chapter 5

Algorithm Comparison

This chapter provides a comparison of the two selected magnification algorithms of Chap-

ters 3 and 4, as well as their respective improvements. The standard bicubic interpolation

is also included as a benchmark.

For consistency, it was decided to use the same set of parameters for all test images.

The parameters for each of the four algorithms are shown in Table 5.1.

Table 5.1 Parameters Used for Comparing the Algorithms

Algorithm Parameters Reference

Edge-Directed α = 0.25 Section 3.1, Chapter 3
Improved Edge-Directed S = 10, α = 0.25 Section 3.2, Chapter 3

Statistical T = 0.05, λ = 10 Section 4.1, Chapter 4
Improved Statistical λ1 = 0.1, λ2 = 0 Section 4.2, Chapter 4

The edge-directed algorithms performed 10 iterations before producing the final HR

estimate. The statistical algorithms performed 200 iterations before producing the final

HR estimate. The iterations were allowed to run until completion. The choice of itera-

tions was made to allow each algorithm to converge. Since the various images converge

differently, the iterations were chosen based on the convergence of the slowest image. The

slowest to converge is shown in Figure 5.7.
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The above parameters were chosen based on previous experimentation across a variety

of test images, many of which are not included in the following comparison. These pa-

rameters were found to provide the best subjective results for a magnification factor of 5

in the horizontal and vertical directions (25× surface magnification).

The average time required by each of the algorithms to magnify images of various sizes

is given in Table 5.2. Although the implementation of the algorithms was not optimized

for speed, the timing has been listed to give a general idea of their relative speeds. The

tests were performed on a PC with an AMD Athlon XP 2100+ processor running at 2.0

GHz with 512 Mb of RAM.

Table 5.2 Average Time Required to Magnify Various Sized Images by a
Factor of 25× Surface Increase

Time (seconds)

Algorithm 10× 10 50× 50 100× 100

Edge-Directed 5.31 177.74 496.56
Improved Edge-Directed 0.66 34.61 408.70

Statistical 3.59 128.31 631.45
Improved Statistical 1.89 53.89 307.30

Throughout the development of the algorithms, noise sensitivity was not explicitly

accounted for. If excessive noise in an image is a concern, a de-noising technique should

be applied prior to magnification. Since one of the goals of the improved edge detection

was to increase sensitivity, it is obvious that the edge detector will be strongly affected

by noise. Although the sensitivity to noise can be a significant drawback for certain

applications, this decision was made in order to ensure that the utmost care would be

taken when finding edges in an image. Effects of weak noise on the edge detection can

result in shifted edges, where as strong noise will create false edges in the estimated HR

edge map. Note that the following images were magnified without any prior de-noising.
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Fig. 5.1 LR Camera Man Fig. 5.2 25× Bicubic Camera Man

The first LR test image is shown in Figure 5.1. This image was selected due to the

variety of edge thicknesses present. Narrow edges are difficult to magnify without intro-

ducing blocking, where as thick edges can also be a challenge to ringing. Figure 5.2 is the

bicubic interpolation.
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Fig. 5.3 25× Edge-Directed Camera
Man

Fig. 5.4 25× Improved Edge-Directed
Camera Man

Figures 5.3 and 5.4 show the results obtained from the original and improved edge-

directed algorithms, respectively. Observe how the improved algorithm is able to eliminate

the jagged, saw-tooth artifacts along the handlebar of the camera. This clearly shows how

the new edge detection strategy is capable of properly estimating the orientation of edges

using the local trends around an edge. Also, note how edges in Figure 5.4 appear sharper

and more crisp. This results from the new edge model. By allowing the slope at zero-

crossings to be large, edges sharpened.

Unfortunately, the use of straight line segments in estimating edges has a drawback.

In particular, observe the shadow under the eye in Figure 5.4. The increased sensitivity

of the improved edge-detection is able to find those edges. However, the straight line

segments fitted between zero-crossings are unable to bend in order to form a smoother

edge, resulting in the sharp point that can be observed in the shadow. Also, the large value

chosen for the maximum slope will enforce the sharpness of the corner. These artifacts

can be softened by selecting a smaller value for the maximum slope. However, doing so
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will also introduce blurring at edges.

Fig. 5.5 25× Statistical Camera Man Fig. 5.6 25× Improved Statistical Cam-
era Man

Figures 5.5 and 5.6 show the results obtained from the original and improved statistical

algorithms, respectively. Observe how blurring is significantly reduced in Figure 5.6. This

can be seen particularly in the face, where variations in the skin appear less fogged. Also,

ringing at edges is not present in the improved algorithm. This is due to the fact that

edges are no longer crossed when performing the smoothing.

Unfortunately, the sharpness of the image also results in certain artifacts. Observe the

straightness of the tip of the nose in Figure 5.6. This is caused by the choice of λ2 and

the limitations of the directions used by the four cliques. Since λ2 = 0, no smoothing will

be allowed across edges. Also, since the cliques are only defined along fixed directions,

they can not adapt to any other orientations. This means that only the vertical clique

(clique 2 of Figure 4.1) will be used, resulting in the observed straight segment along the

tip of the nose. Similarly, the bridge of the nose will only be smoothed by the diagonal

clique (clique 3 in Figure 4.1). These artifacts can be smoothed by selecting λ2 > 0, which
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will allow smoothing across discontinuities. Proper selection of λ2 will allow for controlled

smoothing.

Comparing Figure 5.4 and 5.6 to the bicubic interpolation of Figure 5.2, they both

show improvements in sharpness, reduction of blurring and blocking artifacts. Also, com-

paring Figures 5.4 and 5.6 to each other, it can be seen that the improved statistical

algorithm is better able to smooth the effect of the straight line segments used to join

zero-crossings when estimating the edges. This is due to the fact that the improved edge-

directed algorithm does not perform smoothing. Instead, it is only able to interpolate

along edges.

Fig. 5.7 LR Barb’s Knee Fig. 5.8 25× Bicubic Barb’s Knee

The second LR test image is shown in Figure 5.7. This image was chosen due to it’s

high frequency content, represented by the closely spaced line patterns. This image is

particularly difficult to interpolate without introducing jagged edges. Figure 5.8 is the

bicubic interpolation.
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Fig. 5.9 25× Edge-Directed Barb’s
Knee

Fig. 5.10 25× Improved Edge-Directed
Barb’s Knee

Figures 5.9 and 5.10 show the results obtained from the original and improved edge-

directed algorithms, respectively. Observe how the improved algorithm produces signifi-

cantly cleaner edges. This image also serves to highlight the new edge detector’s failure

to detect weaker edges in the presence of stronger ones. This is seen in the streaks that

spread between the darker lines.



5 Algorithm Comparison 68

Fig. 5.11 25× Statistical Barb’s Knee Fig. 5.12 25× Improved Statistical
Barb’s Knee

Figures 5.11 and 5.12 show the results obtained from the original and improved statis-

tical algorithms, respectively. Observe once again how blurring is significantly reduced in

Figure 5.6. Clearly, the contrast at edges is much greater.

Once again, the limited directionality of the four cliques in the improved statistical

algorithm can be seen to overly straighten edges that should perhaps be a little more

gradual. This can be seen near the top of the knee in Figure 5.12.

Comparing Figure 5.10 and 5.12 to the bicubic interpolation of Figure 5.8, they both

show improvements. However, the improved statistical algorithm is clearly superior in it’s

ability to eliminate blocking and enhance edges. Despite this, the choice of parameters has

allowed the improved edge-directed algorithm to give smoother edges than the improved

statistical algorithm for this particular image. Although Figure 5.10 does have some

blurring, the smoother edges near the top of the knee appear less artificial. This effect

can be softened in Figure 5.12 by choosing λ2 > 0.
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Fig. 5.13 LR Aluminum Fig. 5.14 25× Bicubic Aluminum

The third LR test image is shown in Figure 5.13. This image was chosen due to it’s

wide and relatively constant regions. When edges are too close, the contrast at an edge is

lost in the other details in the surrounding area. Using an image whose edges are widely

separated by regions of constant intensity will help to demonstrate the contrast enhancing

abilities of a particular magnification algorithm. Figure 5.14 is the bicubic interpolation.
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Fig. 5.15 25× Edge-Directed Alu-
minum

Fig. 5.16 25× Improved Edge-Directed
Aluminum

Figures 5.15 and 5.16 show the results obtained from the original and improved edge-

directed algorithms, respectively. Observe how the improved algorithm is able to enhance

the contrast at edges. Once again, edges have fewer jagged artifacts. Also, note how

Figure 5.16 has patches that appear blurred along, but not on, edges. This is due to the

improved edge detector’s failure at detecting weaker edges that are close to stronger ones.
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Fig. 5.17 25× Statistical Aluminum Fig. 5.18 25× Improved Statistical
Aluminum

Figures 5.17 and 5.18 show the results obtained from the original and improved sta-

tistical algorithms, respectively. Observe the improved algorithm’s significant contrast

enhancement. Edges are very sharp and clearly delimit the boundaries of the constant

regions. Also, due to the nature of this image, the effect of the limited clique directions is

not apparent as it was for previous images.

Comparing Figure 5.16 and 5.18 to the bicubic interpolation of Figure 5.14, they both

show improvements at the edges with respect to edge sharpness and enhanced contrast.

However, the improved statistical algorithm in Figure 5.18 shows better quality than the

improved edge-directed in Figure 5.16 by having smoothed-out the blurred patches along

edges. This is due to the fact that the improved statistical algorithm is more forgiving of

the edge detector’s failure to find weaker edges that are close to stronger ones. Instead

of improperly interpolating the missed edges, they are smoothed along the edge, which

reduces the patches introduced by the improved edge-directed algorithm.
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Fig. 5.19 LR Tripod Bar Fig. 5.20 25× Bicubic Tripod Bar

The final LR test image is shown in Figure 5.19. This image was chosen due to

it’s awkwardly oriented edges. The term awkward refers to the difficulty with which

magnification algorithms have in dealing with oriented edges. Too often it’s the case that

an algorithm performs well for edges oriented at certain angles, but fails completely for

others. The problem is that although an algorithm may perform well at a particular angle,

it can fail if the angle is slightly changed. This image is potent due to the relatively close

orientation of the three tripod bars. It allows testing an algorithm at 90◦, 45◦ and a

midpoint angle near 60◦. Figure 5.20 is the bicubic interpolation.
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Fig. 5.21 25× Edge-Directed Tripod
Bar

Fig. 5.22 25× Improved Edge-Directed
Tripod Bar

Figures 5.21 and 5.22 show the results obtained from the original and improved edge-

directed algorithms, respectively. Observe the significant improvement of the narrow-edged

bar. In this case, the new edge detection strategy is able to completely eliminate the jagged

edges. However, along the more sharply angled, solid black pole, the edges appear to be

smeared outwards. The smearing is a result of applying bilinear interpolation to LR unit

cells that should have been classified as edges. This failure stems from the previously

mentioned deficiencies in the new edge detector.
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Fig. 5.23 25× Statistical Tripod Bar Fig. 5.24 25× Improved Statistical Tri-
pod Bar

Figures 5.23 and 5.24 show the results obtained from the original and improved statis-

tical algorithms, respectively. Observe the improved algorithm’s lack of ringing along all

edges in the image. Also, due to the directional smoothing, the edges appear straighter

and clearly separated from the background.

Unfortunately, the lack of smoothing across edges (λ2 = 0) can be seen to introduce

incorrect reflections on the vertical support pole of the tripod, located on the left side

of the image. Also, note how the grass in the background appears artificial. This image

demonstrates the trade off that must be made between forcing sharp edges and allowing

for smoothness. The background can be made smoother by increasing λ2. This will reduce

the effect of the edges detected in the background. However, foreground edges will also

be smoothed.

Comparing Figure 5.22 and 5.24 to the bicubic interpolation of Figure 5.20, they both

show improvements in dealing with various edge orientations. This is seen in the reduced

amount of jagged edges. The improved statistical algorithm in Figure 5.24 has sharper
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edges and greater contrast than the improved edge-directed algorithm in Figure 5.22.

Unfortunately, it suffers from an artificial look to the background. The background of

the improved edge-directed algorithm is more consistent with what one would expect it

to look like.

From the above test images, it is clear that the proposed improvements made to the

edge-directed and statistical algorithms boast an overall better image quality compared

to the original algorithms.
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Chapter 6

Conclusions

6.1 Summary

This thesis provided a comparison of two adaptive image magnification algorithms selected

from the literature. Each algorithm was then improved based on experimental observations

from their implementations.

The first selected algorithm, [16], was improved by increasing the accuracy of the edge

detection stage. This was accomplished by selecting a more sensitive second-order operator

for detecting edges and by introducing a topological estimation technique for determining

the path that an edge takes through an LR unit cell. Also, the edge-directed rendering

stage was simplified by combining the approaches of [16] and its predecessor, [19]. The

new rendering stage applies bilinear interpolation to groups of HR samples within an LR

unit cell. The groups are determined by the separations created by the edges passing

through the cell. Also, edges are now modelled by a slope-controllable polynomial, giving

an additional parameter to control the interpolation.

Results show that the improvements boast an increase in edge sharpness in the inter-

polated image when compared to [16] and bicubic interpolation. Unfortunately, known

limitations of the edge detection stage introduce artifacts when weaker edges are in prox-

imity to stronger ones.
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The second selected algorithm, [29], was improved by reducing the amount of smooth-

ing performed across discontinuities. This was accomplished by introducing a set of

weights, one for each of the four cliques. The weights are derived from the estimated

HR edge map such that each sample in the HR estimate permits or blocks a particular

clique based on whether or not that clique crosses a discontinuity. Also, two regulariza-

tion parameters, now applied to the smoothing term, are used to control the optimization,

adding further control over the smoothness of the final estimate.

Results show that the improvements greatly reduce the smoothing in regions containing

discontinuities when compared to [29] and bicubic interpolation. Unfortunately, the use

of a binary edge map is too rigid to allow smoothing along edges of arbitrary orientation.

This is known to cause more smoothing across, and not enough smoothing along, edges

whose orientations do not align with the four cliques.

6.2 Thesis Contributions

This thesis has made the following original contributions:

1. A comprehensive survey of the current literature on the topic of adaptive image

magnification was performed. From this survey, two promising algorithms were

selected.

2. These two algorithms were fully implemented to be as close as possible to the al-

gorithms described in the literature. The algorithms were implemented using the

Matlab scripting language.

3. The performance of each algorithm was analyzed by determining the effects of vary-

ing the tuning parameters. A summary of the effects was presented.

Following the implementation and analysis, improvements were made to each algorithm.

4. For the edge-directed algorithm, a new edge detection method was developed which

achieves the greater sensitivity and accuracy needed for edge-directed interpolation.
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Also, a new rendering method was proposed with the goal of simplifying the approach

used by the authors of the original algorithm.

5. For the statistical algorithm, a new weighting scheme was introduced to eliminate

blurring across edges. The weights are determined from an estimation of the binary

edge map of the HR image. Each clique is weighted individually based on proximity

to an edge.

6. Following an analysis of the effects of varying the tuning parameters of the im-

proved algorithms, a comparison of the two original and two improved algorithms

was performed. The comparison used parameters that were deemed optimal for

each respective algorithm. The optimality of the parameters was determined using

a subjective visual criterion.

7. All four algorithms, the two originals and their improved versions, were combined

into a single environment with a graphical user interface. This interface provides a

visual means of entering each algorithm’s required parameters, selecting the image

to be magnified and specifying the output file in which to save the HR estimate.

In addition, the interface provides options for displaying algorithm specific details,

such as convergence of the objective function at each iteration, estimated HR binary

edge maps, as well as the HR estimate itself. This interface was also implemented

in Matlab.

6.3 Further Work

Further work on the edge-directed algorithm would involve finding a means of eliminating

the artifacts by improving the accuracy of the edge detection. Essentially, every LR unit

cell should be interpolated as if it contained an edge, except the case in which all four LR

samples have the same values. This way, weak edges that are near stronger ones will be

properly interpolated.
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Further work on the statistical algorithm would involve the exploration of alternative

approaches for the determination of the clique weights. Instead of deriving the weights

from a binary edge map, it may be possible to block or permit smoothing based on a

measure of the direction of the gradient at each sample in the LR image. Since the

four cliques cover a limited and fixed range of orientations, this approach would allow

for smoothing along discontinuities of arbitrary orientation by combining pairs of the

fixed cliques. The basic idea is that by properly weighting pairs of cliques with fixed

orientations, a new clique is formed whose orientation is derived from the base pair. The

concept is similar to how a single vector can be composed by a combination of arbitrarily

oriented base vectors. Although the base cliques do not change, the actual cliques used

for estimating an HR image are created specifically for that image from the features of

the LR image. It is believed that this approach would help to straighten lines and reduce

blurring across edges whose orientations are not supported by the four cliques. Another

advantage of this approach lies in the reduction of the tuning parameters. Determining the

weights directly from the LR image eliminates the need for finding an algorithm’s tuning

parameters. This would help increase robustness and simplify usage of an algorithm.

An attempt was made at determining the clique weights by estimating the angle of

the gradient at each LR sample. The approach separated the 360◦ cartesian plane into

slices of 45◦ increments (due to the directions of the four cliques). Since the angle of the

gradient is perpendicular to an edge, the new clique should be oriented perpendicularly

to the gradient. The base cliques used to form the new clique are chosen such that the

angle of the new clique falls within the 45◦ slice formed by the base pair. The weights are

the constant coefficients needed to form a unit vector in the direction of the new clique

from the unit vectors in the direction of the two base cliques. For any particular edge,

only the base cliques have non-zero weights. Once all the weights for the LR samples

are known, the weights of the HR samples are found by spreading the weights of each

respective clique. For the purposes of conducting initial trials, the weights were spread

using a simple zero-order hold filter. This ensures that there will be no overlap between
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weights within a particular clique. Although results were promising, the HR estimates

suffered from blocking caused by the simplistic method used to spread the weights onto

the HR grid. Unfortunately, a more accurate technique was not found.

Another possible improvement of interest lies in the use of different sensor models.

In [34], a technique for estimating the sensor model from the LR image is proposed.

Preliminary tests found that this approach improved the contrast and reduced ringing in

regions containing discontinuities. Applications of the sensor model to blurred images may

allow for integrating a measure of restoration into the interpolation algorithm.

Changes in the sensor model also highlight the need for different initial conditions.

With a better initial condition, blocking artifacts may be removed more completely and

more rapidly.
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Appendix A

Detailed Description of the

Edge-Directed Algorithm

This appendix provides a detailed description of the theory and implementation of the

edge-directed magnification algorithm of [16].

A.1 Theory

A.1.1 Edge Detection Filter

The edge detection filter is derived from sampling the continuous-space filter shown in

Figure A.1. The sampling is performed on the square grid overlayed onto the continuous

filter. The filter has three distinct regions: i) a center region, VC , of radius r, ii) a

surround region, VS, contained between the radius r and R, and iii) a zero region, VZ ,

which includes everything beyond the radius R. The amplitude of the continuous filter

in each of the regions is VC = AS, VS = −AC and VZ = 0, where AC = πr2 and

AS = πR2−AC = π(R2−r2) are the areas of the center and surround regions, respectively.

The coefficients of the discrete filter that are located on the boundary between two regions

of the continuous filter are computed by averaging the values of both regions weighted by
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Fig. A.1 Edge Detection Filter

0 L 2LL/2 3L/2 5L/2

x

y

-L-2L -L/2-3L/2-5L/2

0

L

2L

L/2

3L/2

-L

-2L

-L/2

-3L/2

-5L/2

5L/2

r

R

the portion of the samples area that is contained in each region.

VR1PR1 + VR2PR2

L2
=

VR1PR1 + VR2(1− PR1)

L2
,

where VR1 and VR2 are the values of two regions of the continuous filter, and PR1 is the

portion of a samples area that is contained in region R1.

From the circular symmetry of the filter, there are only six independent coefficients.

The discrete filter can therefore be constructed by

he[x, y] =




h5 h4 h2 h4 h5

h4 h3 h1 h3 h4

h2 h1 h0 h1 h2

h4 h3 h1 h3 h4

h5 h4 h2 h4 h5



.

Of the six coefficients, there are five that are contained in two regions. This results in

five distinct area portions that must be computed, as shown in Figure A.2. These area
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Fig. A.2 Area Portions of the Independent Filter Coefficients
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where R1 is the radius of the first region.

Table A.1 lists the relevant parameters for each of the area portions in Figure A.2. Note

that the area portions are independent of the sample dimension L due to the normalization.

Table A.1 Area Portions

x0 y0 y1 R1 PR1

Area 1 L/2 -L/2 L/2 3L/2 0.9717

Area 2 L/2 L/2
√
2L 3L/2 0.5454

Area 3 3L/2 -L/2 L/2 5L/2 0.9832
Area 4 3L/2 L/2 3L/2 5L/2 0.7693
Area 5 3L/2 3L/2 2L 5L/2 0.1369

From the area portions in Table A.1, the independent coefficients are,

h0 = 12.5664, h1 = 12.0115, h2 = −6.9501, h3 = 3.6404, h4 = −5.4380, h5 = −0.9674.
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A.1.2 Zero-Crossing Estimation

Fig. A.3 Determination of Zero-Crossings

zero-crossing
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Filtered LR Image

LR samples

xexLR0

xLR1
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The line joining the two adjacent LR samples in Figure A.3 is given by

f(x) =

(
fLR1 − fLR0

xLR1 − xLR0

)
(x− xLR0) + fLR0.

The zero-crossing, xe, is found by computing the root of the line.

f(xe) = 0(
fLR1−fLR0

xLR1−xLR0

)
(xe − xLR0) + fLR0 = 0

⇒ xe = −
(
xLR1−xLR0

fLR1−fLR0

)
fLR0 + xLR0

For convenience, it can be assumed that xLR0 = 0 and xLR1 = 1. This convention reduces

the above to

xe = −
(

1

fLR1 − fLR0

)
fLR0.

If the zero-crossing is on a diagonal, this convention still holds by noting that xLR1 =
√
2.

When projecting the diagonal zero-crossing onto the horizontal and vertical axes to obtain
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its (x, y) coordinates,

x = xe cos(45
◦),

y = xe sin(45
◦),

where cos(45◦) = sin(45◦) = 1√
2
. Therefore, the

√
2 factor is cancelled and the (x, y)

coordinates are computed directly instead of passing through the intermediate step.

Fig. A.4 Conventions for Zero-Crossing Computation
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Attention must be taken with regards to the convention used for the direction of the

axes. Figure A.4 depicts the convention used for computing zero-crossings on the two

diagonals. The (x, y) coordinates of the zero-crossings are indicated with respect to the

origin used in computing them. Note that this choice of convention requires that the

coordinate ye2 on the second diagonal be reversed in order to convert it to follow the

convention of the global y axis.

A.1.3 Pre-processing

The pre-processing searches for samples from the filtered LR image that have different

signs from their eight-nearest neighbors. If such a sample is found, it is replaced by the
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mean of its eight neighbors. If the mean is zero, then the median is used.

A.1.4 Rendering

Rendering is performed based on the type of edge passing through an LR unit cell. For

LR unit cells without edges, bilinear interpolation is applied by using,

HR[x, y] =

(
1− x

Mx

)(
1− y

My

)
c1

+

(
1− x

Mx

)(
y

My

)
c2

+
( x

Mx

)(
y

My

)
c3

+
( x

Mx

)(
1− y

My

)
c4,

where Mx and My are the horizontal and vertical magnification factors, and the ci are the

corner samples of the LR unit cell taken in the anti-clockwise direction, starting from the

top-left corner (as shown in Figure A.6).

For LR unit cells with edges, the rendering is edge-directed. The rendering is further

separated by the number of zero-crossings on the borders of each LR unit cell. To begin,

the case of two zero-crossings will be treated. Four zero-crossings is simply an extension

of the method for two. No other number of zero-crossings is possible.

The first step is in specifying the polynomial curve used to model the edges. Figure

A.5 shows the relevant parameters used for fitting a curve to an edge. The edge curve

is defined as a piece-wise continuous polynomial composed of two segments. The two

segments are given by

f1(t) = ∆1[D̂1t+ (1− D̂1)t
n] + LR0, t = x−xLR0

xe−xLR0
for x ∈ [xLR0, xe],

f2(s) = ∆2[D̂2s+ (1− D̂2)s
n] + LR1, s = x−xLR1

xe−xLR1
for x ∈ [xe, xLR1],



A Detailed Description of the Edge-Directed Algorithm 87

Fig. A.5 Edge Curve Parameters
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with

D1 = LR0 − LR−1,

D2 = LR1 − LR2,

∆E = LR1 − LR0,

k =
xe − xLR0

xLR1 − xe
,

n = �1 + (xLR1 − xLR0 − 1) tanh(α∆E)�,
∆2 =

(n− 1)(D1 + kD2)

(1 + k)n
− ∆E

1 + k
,

∆1 = ∆2 +∆E,

D̂1 =
D1

∆1

,

D̂2 =
D2

∆2

.

The edge curve is used directly to interpolate the HR samples along cell borders and/or

diagonals with edges. Borders that do not have edges are interpolated linearly.

For HR samples contained within the LR unit cell, the scheme shown in Figure A.6 is

used. This figure shows a cell of a top-left corner edge type. The edge along the diagonal

is fitted with the curve, and the border without an edge is fitted with a straight line. The
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Fig. A.6 HR Sample Interpolation
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HR sample at coordinates (xp, yp) is interpolated linearly along a line parallel to the edge

and passing through the sample. The end-points of the line are obtained by evaluating

the fitted curve and line at the intersections with the two boundaries. The interpolation

of the HR sample is therefore,

HR[xp, yp] =
fi1 − fi0√

(xi1 − xi0)2 + (yi1 − yi0)2

√
(xp − xi0)2 + (yp − yi0)2 + fi0,

where fi0 and fi1 are the values at the intersecting end-points (xi0, yi0) and (xi1, yi1),

respectively.

It can be observed that the interpolation scheme for the example in Figure A.6 can be

generalized for all edge types with two zero-crossings on the borders of the LR unit cell.

The primary difference between the edge types with two zero-crossings is in the location

of the LR corner sample that is separated by the edge. Figure A.7 shows the six edge

types with two zero-crossings on the border. The global coordinate system is indicated by

the x and y axes, whereas the coordinate system relative to the edge separated LR corner
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Fig. A.7 Edge-Directed Rendering Parameters for Two Zero-Crossings
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sample is indicated by the x’ and y’ axes. The coordinates of the four LR corner samples

are given with respect to x’ and y’. The origin, (x0, y0), is always assigned to the edge-

separated LR corner sample. For each figure, the boundaries of the LR unit cell are given

by the vectors Bi, whose directions are indicated by the arrows. The estimated edges

are also assigned vectors Ei and directions. The circled numbers indicate the different

interpolation regions within the cell. Note that the boundaries of the cell are also regions.

For simplicity, they were not labelled in the figure, however they will be treated in the

following. For the two last edge types in the figure, the diagonal boundary is meaningless.

In order to generalize the interpolation, the vector used on the diagonal boundary, B5, is

set equal to the boundary vector B2 on the border of the cell.

Fig. A.8 Detecting the Different Interpolation Regions Within an LR Unit
Cell

y'

x'

(x0,y0)

L

(x1,y1)

L = 0

L > 0L < 0

The four regions within an LR unit cell can be determined by applying thresholds to

the linear equations for each of the vectors in Figure A.7. The idea is illustrated in Figure

A.8, where three thresholds are applied to the line equation of the vector L. The x’ and

y’ axes used in Figure A.8 shows that the same principle applies regardless of the relative

origin used by the coordinate system.

The line equation of a vector L defined by the end-points (x0, y0) and (x1, y1), such
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that L is oriented from (x0, y0) to (x1, y1), is

L(x, y) = a(x− x0) + b(y − y0).

For this line,

a(x1 − x0) + b(y1 − y0) = 0

a

b
= − y1 − y0

x1 − x0

.

Choosing a = y1−y0 and b = x0−x1 results in, L(x, y) = (y1−y0)(x−x0)+(x0−x1)(y−y0).

Figure A.8 shows the three regions obtained by applying the thresholds L = 0, L < 0

and L > 0. A region in Figure A.7 can be determined by combinations of the relevant

thresholds applied to the line equation of each vector that bounds the region. Table A.2

shows the equations for determining the regions. The thresholds are applied to all HR

samples within, and on the boundaries of, an LR unit cell. The operator ’·’ denotes logical
AND. Note that regions 5 through 9 are actually boundaries of the cell.

Table A.2 Region Detection Equations For Two Zero-Crossings

Region Equation Bounding Lines

Region 1 (E1 ≤ 0) · (B1 > 0) · (B4 < 0) · (B5 > 0) B4 and B5

Region 2 (E2 ≤ 0) · (B1 > 0) · (B5 < 0) B1 and B5

Region 3 (E2 > 0) · (B1 > 0) · (B2 > 0) · (B5 < 0) (B1 and B5) or (B2 and B5)
Region 4 (E1 > 0) · (B4 < 0) · (B3 < 0) · (B5 > 0) (B4 and B5) or (B3 and B5)
Region 5 (Line B1) (B1 = 0) · (B2 > 0) B1

Region 6 (Line B2) (B2 = 0) · (B3 < 0) B2

Region 7 (Line B3) (B3 = 0) · (B4 < 0) B3

Region 8 (Line B4) (B4 = 0) · (B1 > 0) B4

Region 9 (Line B5) (B5 = 0) · (B2 > 0) · (B4 < 0) B5

Once the region of a particular HR sample is known, it can be interpolated according

to its bounding lines. The bounding lines for each region are given Table A.2. Knowledge
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of the bounding lines allows for the determination of the intersecting end-points of the

line parallel to the edge in that region. The intersections (xi0, yi0) and (xi1, yi1), shown in

Figure A.6, are found by

L1 :

L2 :


 a1 b1

a2 b2





 xi

yi


 −


 a1x01 + b1y01

a2x02 + b2y02


 =


 0

0




⇒

 xi

yi


 =


 a1 b1

a2 b2




−1 
 a1x01 + b1y01

a2x02 + b2y02


 .

where L1 is a bounding line and L2 is the line parallel to the edge.

For regions 3 and 4, there are two mutually exclusive sets of bounding lines. In both

cases, the intersections with the first set are computed. If either the x or y coordinate

of one of the intersecting end-points is outside of the LR unit cell (i.e outside the range

[xLR0, xLR1] and [yLR0, yLR1]), then that intersection must be re-computed using the second

set of bounding lines.

Fig. A.9 Edge-Directed Rendering Parameters for Four Zero-Crossings

x

y
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B4
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(xe4,ye4)
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B7
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E3

E4

5

67
8

Figure A.9 shows the interpolation regions in the case of zero-crossings on all four

borders of an LR unit cell. Determination of the different regions is given by Table
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Table A.3 Region Detection Equations For Four Zero-Crossings

Region Equation Bounding Lines

Region 1 (E2 ≥ 0) · (B1 > 0) · (B5 < 0) B1 and B5

Region 2 (E2 < 0) · (B1 > 0) · (B6 ≥ 0) B1 and B6

Region 3 (E3 ≥ 0) · (B2 > 0) · (B6 < 0) B2 and B6

Region 4 (E3 < 0) · (B2 > 0) · (B7 ≥ 0) B2 and B7

Region 5 (E4 ≥ 0) · (B3 < 0) · (B7 < 0) B3 and B7

Region 6 (E4 < 0) · (B3 < 0) · (B8 ≥ 0) B3 and B8

Region 7 (E1 ≥ 0) · (B4 < 0) · (B8 < 0) B4 and B8

Region 8 (E1 < 0) · (B4 < 0) · (B5 ≥ 0) B4 and B5

Region 9 (Line B1) (B1 = 0) · (B2 > 0) B1

Region 10 (Line B1) (B2 = 0) · (B3 < 0) B2

Region 11 (Line B1) (B3 = 0) · (B4 < 0) B3

Region 12 (Line B1) (B4 = 0) · (B1 > 0) B4

A.3. Note that each region only has a single set of bounding lines. This implies that

the intersections are always contained within the LR unit cell. Interpolation within each

region is the same as in the case of two zero-crossings on the borders.

A.1.5 Correction

The correction stage successively approximates the HR estimate by means of a feedback

loop. The loop applies a correction to the LR image input to the edge-directed interpo-

lation stage such that a decimated version of the HR estimate at the current iteration is

forced to match the original LR image. The feedback loop is characterized by

HR
(it)
0 [x, y] = h0[x, y] ∗HR(it)[x, y],

↓ HR
(it)
0 [x, y] = HR

(it)
0 [xMx, yMy], x = 0, 1, ..XLR − 1, y = 0, 1, ..YLR − 1,

LR(it+1)[x, y] = LR(it)[x, y]− α
(
↓ HR

(it)
0 [x, y]− LR[x, y]

)
,

where h0 is the moving average filter with My rows and Mx columns, and α is the loop

gain. The initial condition LR(0)[x, y] is simply the original input image LR[x, y].
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A.2 Implementation

The edge-directed algorithm can be implemented by the following steps:

1. Filter the LR image with the edge detection filter,

LRe[x, y] = he[x, y] ∗ LR[x, y].

2. Apply the pre-processing strategy to LRe[x, y].

3. Compute the zero-crossings in the horizontal and vertical directions between all pairs

of samples of different sign in LRe[x, y].

4. Classify each LR unit cell according to the number of zero-crossings on the four

borders of the cell (using the edge types of Figure 3.5 from Section 3.1) of Chapter 3.

If a cell is classified as a corner edge, compute the zero-crossing along the appropriate

diagonal.

5. Determine the dimensions of the HR estimate using

XHR = (Mx − 1)(XLR − 1) +XLR,

YHR = (My − 1)(YLR − 1) + YLR,

where Mx and My are the horizontal and vertical magnification factors, and XLR

and YLR are the horizontal and vertical dimensions of the LR image.

6. For each iteration it of the algorithm:

(a) Apply edge-directed rendering to each LR unit cell containing an edge. If a cell

has no edges, apply bilinear interpolation.

(b) Apply the correction to the LR input.
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Appendix B

Detailed Description of the Improved

Edge-Directed Algorithm

This appendix provides a detailed description of the theory and implementation of the

improved edge-directed magnification algorithm proposed in Section 3.2 of Chapter 3.

B.1 Theory

B.1.1 Edge Detection Filter

The edge detection filter is derived from sampling the circularly symmetric, continuous-

space Laplacian-of-Gaussian filter. The discrete coefficients are computed as in [36] using,

hg[x, y] = exp

(
−x2 + y2

2σ2

)
,

he[x, y] =
x2 + y2 − 2σ2

2πσ6
∑

n

∑
m hg[m,n]

hg[x, y].
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Fig. B.1 New Edge Curve Parameters

a0

b0

xe
x0 x1

slope = s(  )

h

x

B.1.2 Rendering

The new edge model described in Section 3.2.2, is specified by

p(x) =


 p1(x)

p2(x)
=




am

(
x−x0

xe−x0

)m

+ a0, x0 ≤ x ≤ xe

bn

(
x1−x
x1−xe

)n

+ b0, xe ≤ x ≤ x1

.

Figure B.1 illustrates the variable slope edge model. The free parameters are

p1(x0) = a0

p1(xe) = am + a0 = h ⇒ am + a0 = a0+b0
2

p′1(xe) = s(∆) ⇒ mam
1

xe−x0
= s(∆)

⇒ am = b0−a0

2

⇒ m = (xe−x0)s(∆)
am

p2(x1) = b0

p2(xe) = bn + b0 = h ⇒ bn + b0 = a0+b0
2

p′2(xe) = s(∆) ⇒ −nbn
1

x1−xe
= s(∆)

⇒ bn = a0−b0
2

⇒ n = − (x1−xe)s(∆)
bn
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The slope control function s(∆) is specified as

s(∆) = A∆3 +B∆2 + C∆+D,

s′(∆) = 3A∆2 + 2B∆+ C,

for 0 ≤ ∆ ≤ 1, and −s(−∆) for −1 ≤ ∆ ≤ 0. The free parameters are

s(0) = 0 ⇒ D = 0

s(1) = S ⇒ A+B + C +D = S ⇒ A+B = S

s′(0) = 0 ⇒ C = 0

s′(1) = 0 ⇒ 3A+ 2B + C = 0 ⇒ 3A+ 2B = 0

⇒ A = −2S

⇒ B = 3S

which results in

s(∆) = −2S∆3 + 3S∆2,

= S∆2(3− 2∆),

where the parameter S is a free parameter of the magnification algorithm.

B.2 Implementation

The improved edge-directed algorithm can be implemented by the following steps:

1. Filter the LR image with the edge detection filter,

LRe[x, y] = he[x, y] ∗ LR[x, y].
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2. Compute the zero-crossings in the horizontal and vertical directions between all pairs

of samples of different sign in LRe[x, y].

3. Classify each LR unit cell as described in Section 3.2.1 of Chapter 3.

4. Determine the dimensions of the HR estimate using

XHR = (Mx − 1)(XLR − 1) +XLR,

YHR = (My − 1)(YLR − 1) + YLR,

where Mx and My are the horizontal and vertical magnification factors, and XLR

and YLR are the horizontal and vertical dimensions of the LR image.

5. For each iteration it of the algorithm:

(a) Apply the edge-directed rendering scheme described in Section 3.2.2 of Chapter

3.

(b) Apply the correction to the LR input,

HR0[x, y] = h0[x, y] ∗HR[x, y],

↓ HR0[x, y] = HR0[xMx, yMy], x = 0, 1, ..XLR − 1, y = 0, 1, ..YLR − 1,

LR(it+1)[x, y] = LR(it)[x, y] + α (↓ HR0[x, y]− LR[x, y]) ,

where h0 is the moving average filter with My rows and Mx columns, and α is

the loop gain.
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Appendix C

Detailed Description of the

Statistical Algorithm

This appendix provides a detailed description of the theory and implementation of the

statistical magnification algorithm of [29].

C.1 Theory

C.1.1 Minimization Problem

The Bayesian estimation problem reduces to the following minimization,

HRmin = argmin
HR

{M [HR, T, λ]}.
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The objective function is,

M [HR, T, λ] = Ω[HR, T ] + λ‖LR − D(HR)‖2

=

XHR−1∑
x=0

YHR−1∑
y=0

3∑
c=0

ρT (d
t
x,y,cHR)

+λ

XLR−1∑
x=0

YLR−1∑
y=0


y[x, y]− 1

MxMy

(x+1)Mx−1∑
m=xMx

(y+1)My−1∑
n=yMy

HR[m,n]




2

where LR is a lexicographically ordered XLRYLR × 1 vector of samples from the original

low-resolution image, HR is the XHRYHR × 1 vector of samples from the high-resolution

estimate, D is a XLRYLR ×XHRYHR constant block-diagonal decimation matrix and

ρT (x) =


 x2, |x| ≤ T

T 2 + 2T (|x| − T ), |x| > T
.

Note that the dimensions of the HR estimate are such that XHR = (Mx − 1)(XLR −
1) +XLR and YHR = (My − 1)(YLR − 1) + YLR, where Mx and My are the magnification

factors in the horizontal and vertical directions, and XLR and YLR are the horizontal and

vertical dimensions of the LR image.

The cliques are defined on second order neighborhoods with the following potentials:

1) dt
x,y,0HR = HR[x− 1, y]− 2HR[x, y] +HR[x+ 1, y],

2) dt
x,y,1HR =

1

2
HR[x− 1, y + 1]−HR[x, y] +

1

2
HR[x+ 1, y − 1],

3) dt
x,y,2HR = HR[x, y − 1]− 2HR[x, y] +HR[x, y + 1],

4) dt
x,y,3HR =

1

2
HR[x− 1, y − 1]−HR[x, y] +

1

2
HR[x+ 1, y + 1],

where HR[x, y] is the value of the sample at coordinates (x, y). Note that the evaluation

of the clique smoothness measures are equivalent to preforming 2D filtering operations.
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The convolution kernel for each clique is therefore,

d0 =




0 0 0

1 −2 1

0 0 0


 , d1 =




0 0 1/2

0 −1 0

1/2 0 0


 , d2 =




0 1 0

0 −2 0

0 1 0


 , d3 =




1/2 0 0

0 −1 0

0 0 1/2


 .

C.1.2 Gradient of the Objective Function

The first step in the optimization procedure is to compute the gradient of the objective

function M [HR, T, λ] with respect to every sample in the high-resolution estimate. Let

this gradient be defined as,

g = ∇M [HR, T, λ]

= ∇Ω[HR, T ] + λ∇‖LR − D(HR)‖2

= g1 + g2

where,

∇ =

XHR−1∑
x=0

YHR−1∑
y=0

ĤRx,y
∂

∂HRx,y

,

ĤRx,y is the unit vector which is one at sample HR[x, y] and zero everywhere else, ∂
∂HRx,y

is the partial derivative taken with respect to sample HR[x, y], g1 is the gradient of the

smoothing term and g2 is the gradient of the data fidelity term.

C.1.3 Gradient of the Smoothing Term

The gradient of the smoothing term is given by

g1 = ∇Ω[HR, T ]

=

XHR−1∑
x=0

YHR−1∑
y=0

ĤRx,y
∂

∂HRx,y

Ω[HR, T ].
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After expanding the summations in Ω[HR, T ], the terms containing HR[x, y] are:

1) dt
x,y,0HR = HR[x− 1, y]− 2HR[x, y] +HR[x+ 1, y],

2) dt
x,y,1HR = 1

2
HR[x− 1, y + 1]−HR[x, y] + 1

2
HR[x+ 1, y − 1],

3) dt
x,y,2HR = HR[x, y − 1]− 2HR[x, y] +HR[x, y + 1],

4) dt
x,y,3HR = 1

2
HR[x− 1, y − 1]−HR[x, y] + 1

2
HR[x+ 1, y + 1],

5) dt
x−1,y−1,3HR = 1

2
HR[x− 2, y − 2]−HR[x− 1, y − 1] + 1

2
HR[x, y],

6) dt
x,y−1,2HR = HR[x, y − 2]− 2HR[x, y − 1] +HR[x, y],

7) dt
x+1,y−1,1HR = 1

2
HR[x, y]−HR[x+ 1, y − 1] + 1

2
HR[x+ 2, y − 2],

8) dt
x−1,y,0HR = HR[x− 2, y]− 2HR[x− 1, y] +HR[x, y],

9) dt
x+1,y,0HR = HR[x, y]− 2HR[x+ 1, y] +HR[x+ 2, y],

10) dt
x−1,y+1,1HR = 1

2
HR[x− 2, y + 2]−HR[x− 1, y + 1] + 1

2
HR[x, y],

11) dt
x,y+1,2HR = HR[x, y]− 2HR[x, y + 1] +HR[x, y + 2],

12) dt
x+1,y+1,3HR = 1

2
HR[x, y]−HR[x+ 1, y + 1] + 1

2
HR[x+ 2, y + 2].

Therefore, the first-order partial derivative of Ω[HR, T ] with respect to each high-

resolution sample is,

∂
∂HRx,y

Ω[HR, T ] = ∂
∂HRx,y

1∑
m=−1

[
ρT (d

t
(x+m),y,0HR)

+ρT (d
t
(x−m),(y+m),1HR)

+ρT (d
t
x,(y+m),2HR)

+ρT (d
t
(x+m),(y+m),3HR)

]

=
1∑

m=−1

[
d0[x+m, y]ρ′T (d

t
(x+m),y,0HR)

+d1[x−m, y +m]ρ′T (d
t
(x−m),(y+m),1HR)

+d2[x, y +m]ρ′T (d
t
x,(y+m),2HR)

+d3[x+m, y +m]ρ′T (d
t
(x+m),(y+m),3HR)

]
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where,

ρ′T (x) =




−2T , x < −T

2x, |x| ≤ T

2T , x > T

.

From the above, the contribution of each clique to the gradient is simply the HR

estimate filtered by each of the clique smoothness measures, followed by the application of

the first-order derivative of the Huber function, followed by another filtering by the clique

smoothness measures.

C.1.4 Gradient of the Data Fidelity Term

The gradient of the data fidelity term is given by

g2 = λ∇‖LR − D(HR)‖2

= λ

XHR−1∑
x=0

YHR−1∑
y=0

ĤRx,y
∂

∂HRx,y

‖LR − D(HR)‖2.

After expanding ‖LR−D(HR)‖2, there is only one term containing HR[x, y]. Therefore,

the first-order partial derivative of ‖LR− D(HR)‖2 with respect to each high-resolution

sample is,

∂

∂HRx,y

‖LR−D(HR)‖2 = 2


LR[i, j]− 1

MxMy

(i+1)Mx−1∑
m=iMx

(j+1)My−1∑
n=jMy

HR[m,n]


 (

− 1

MxMy

)
,

where i =
⌊

x
Mx

⌋
and j =

⌊
y
My

⌋
.

C.1.5 Optimal Step Size

The optimal step size is determined by the following minimization,

αmin = argmin
α

{M [HR + αg, T, λ]} .
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Expanding M [HR + αg, T, λ] as a Taylor series around α = 0 results in,

M [HR + αg, T, λ] =

XHR−1∑
x=0

YHR−1∑
y=0

3∑
c=0

ρT (d
t
x,y,c(HR + αg))

+λ

XLR−1∑
x=0

YLR−1∑
y=0

(
y[x, y]

− 1

MxMy

(x+1)Mx−1∑
m=xMx

(y+1)My−1∑
n=yMy

(HR[m,n] + αg[m,n])

)2

= M [HR, T, λ] +
∂

∂α
M [HR + αg, T, λ]

∣∣∣∣
α=0

α

+
1

2

∂2

∂α2
M [HR + αg, T, λ]

∣∣∣∣
α=0

α2 + · · ·

Taking the derivative of the Taylor series with respect to α and setting it equal to zero

results in,

αmin = −
∂
∂α

M [HR + αg, T, λ]
∂2

∂α2M [HR + αg, T, λ]

∣∣∣∣∣
α=0

.

The numerator of the above is given by,

∂

∂α
M [HR + αg, T, λ] =

XHR−1∑
x=0

YHR−1∑
y=0

3∑
c=0

ρ′T (d
t
x,y,c(HR + αg))(dt

x,y,cg)

+2λ

XLR−1∑
x=0

YLR−1∑
y=0

[(
y[x, y]

− 1

MxMy

(x+1)Mx−1∑
m=xMx

(y+1)My−1∑
n=yMy

(HR[m,n] + αg[m,n])

)

·
(

− 1

MxMy

(x+1)Mx−1∑
m=x

(y+1)My−1∑
n=yMy

g[m,n]

)]
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and the denominator is,

∂2

∂α2
M [HR + αg, T, λ] =

XHR−1∑
x=0

YHR−1∑
y=0

3∑
c=0

ρ′′T (d
t
x,y,c(HR + αg))(dt

x,y,cg)
2

+2λ

XLR−1∑
x=0

YLR−1∑
y=0


 1

MxMy

(x+1)Mx−1∑
m=xMx

(y+1)My−1∑
n=yMy

g[m,n]




2

,

where

ρ′′T (x) =


 2, |x| ≤ T

0, |x| > T
.

C.1.6 Correction

The HR estimate at the next iteration is given by,

HR(it+1) = HR(it) + αg,

provided that α2‖g‖2 > e, where e is some specified error threshold, it is the current

iteration and it+ 1 is the next iteration.

C.2 Implementation

The Bayesian algorithm can be implemented by the following steps:

1. Determine the dimensions of the HR estimate using

XHR = (Mx − 1)(XLR − 1) +XLR,

YHR = (My − 1)(YLR − 1) + YLR.

2. If an initial condition for the HR estimate has not been specified, perform zero order

hold interpolation on the LR image. This is accomplished by up-sampling the LR

image by Mx in the horizontal direction and My in the vertical direction, creating
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an image with YHR rows and XHR columns of all zeros except at the locations of

the original LR samples. The up-sampled image is then filtered with a convolution

kernel of all ones, h0, with My rows and Mx columns.

↑ LR[x, y] =


 LR[ x

Mx
, y
My

], x = 0,Mx, ..XHR − 1, y = 0,My, ..YHR − 1

0, otherwise
,

HR[x, y] = h0[x, y]∗ ↑ LR[x, y].

3. For each iteration, it, of the algorithm:

(a) Filter the current HR estimate with each of the four clique smoothness mea-

sures.

d0HR[x, y] = d0[x, y] ∗HR[x, y],

d1HR[x, y] = d1[x, y] ∗HR[x, y],

d2HR[x, y] = d2[x, y] ∗HR[x, y],

d3HR[x, y] = d3[x, y] ∗HR[x, y].

(b) Filter the current HR estimate with a moving average filter, h1, of My rows and

Mx columns to simulate the sensor model. Down-sample the filtered image by

Mx in the horizontal direction and My in the vertical direction. Take the point-

wise substraction of the LR image by the decimated HR estimate (performed

on the LR grid).

DHR[x, y] = h1[x, y] ∗HR[x, y],

↓ DHR[x, y] = DHR[xMx, yMy], x = 0, 1, ..XLR − 1, y = 0, 1, ..YLR − 1,

LR DHR[x, y] = LR[x, y]− ↓ DHR[x, y].

(c) The value of the objective function can be computed by applying the Huber
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function to each four clique smoothness measures, summing across all terms,

and then adding to that the sum of squares of the difference of the LR image

and the decimated HR estimate, scaled by the regularization parameter λ.

M (it)[HR, T, λ] =

XHR−1∑
x=0

YHR−1∑
y=0

3∑
c=0

ρT (dcHR[x, y])

+λ

XLR−1∑
x=0

YLR−1∑
y=0

LR DHR[x, y]2

(d) Compute the smoothing term’s contribution to the gradient by applying the

first-order derivative of the Huber function to each of the four clique smoothness

measures separately, then filtering each one by their respective clique smooth-

ness measures.

g0[x, y] = d0[x, y] ∗ ρT ′(d0HR[x, y]),

g1[x, y] = d1[x, y] ∗ ρT ′(d1HR[x, y]),

g2[x, y] = d2[x, y] ∗ ρT ′(d2HR[x, y]),

g3[x, y] = d3[x, y] ∗ ρT ′(d3HR[x, y]).

(e) Compute the data fidelity term’s contribution to the gradient by applying the

sensor model filter to interpolate the difference of the LR image and the deci-

mated HR estimate.

↑ LR DHR[x, y] =


 LR DHR[ x

Mx
, y
My

], x = 0,Mx, ..XHR − 1, y = 0,My, ..YHR − 1

0, otherwise

LR DHR1[x, y] = h1[x, y]∗ ↑ LR DHR[x, y].

(f) Compute the gradient by performing a point-wise sum of the contributions

made by the smoothing term and the data fidelity term (performed on the HR
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grid).

g[x, y] =
3∑

c=0

gc[x, y]− 2λLR DHR1[x, y].

(g) Compute the smoothing term’s contribution to the numerator and denominator

of the optimal step size.

d0g[x, y] = d0[x, y] ∗ g[x, y],

d1g[x, y] = d1[x, y] ∗ g[x, y],

d2g[x, y] = d2[x, y] ∗ g[x, y],

d3g[x, y] = d3[x, y] ∗ g[x, y],

αns =

XHR−1∑
x=0

YHR−1∑
y=0

3∑
c=0

ρT ′(dcHR[x, y])dcg[x, y],

αds =

XHR−1∑
x=0

YHR−1∑
y=0

3∑
c=0

ρT ′′(dcHR[x, y])dcg[x, y]
2.

(h) Compute the data fidelity term’s contribution to the optimal step size.

Dg[x, y] = h1[x, y] ∗ g[x, y],

↓ Dg[x, y] = Dg[xMx, yMy], x = 0, 1, .., XLR − 1, y = 0, 1, .., YLR − 1,

αnd =

XLR−1∑
x=0

YLR−1∑
y=0

LR DHR[x, y] ↓ Dg[x, y],

αdd =

XLR−1∑
x=0

YLR−1∑
y=0

↓ Dg[x, y]2.

(i) Compute the optimal step size.

α = −αns− 2λαnd

αds+ 2λαdd
.
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(j) Test the termination condition ‖αg‖2. If the condition is less than the spec-

ified error threshold, then terminate the iterations. Otherwise, move the HR

estimate closer to the optimal solution.

HR(it+1) = HR(it) + αg.
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Appendix D

Detailed Description of the Improved

Statistical Algorithm

This appendix provides a detailed description of the theory and implementation of the

improved statistical magnification algorithm proposed in Section 4.2.

D.1 Theory

D.1.1 Minimization Problem

The improved Bayesian estimation problem reduces to the following minimization,

HRmin = argmin
HR

{M [HR, λ1, λ2]}.
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The objective function is,

M [HR, λ1, λ2] = Ω[HR, λ1, λ2] + |LR − D(HR)‖2

=

XHR−1∑
x=0

YHR−1∑
y=0

3∑
c=0

wc[x, y, λ1, λ2](d
t
x,y,cHR)2

+

XLR−1∑
x=0

YLR−1∑
y=0


y[x, y]− 1

MxMy

(x+1)Mx−1∑
m=xMx

(y+1)My−1∑
n=yMy

HR[m,n]




2

where LR is a lexicographically ordered XLRYLR × 1 vector of samples from the original

low-resolution image, HR is the XHRYHR × 1 vector of samples from the high-resolution

estimate, D is a XLRYLR × XHRYHR constant block-diagonal decimation matrix and

wc[x, y, λ1, λ2] are the weights applied to each directional smoothing component.

Note that the dimensions of the HR estimate are such that XHR = (Mx − 1)(XLR −
1) +XLR and YHR = (My − 1)(YLR − 1) + YLR, where Mx and My are the magnification

factors in the horizontal and vertical directions, and XLR and YLR are the horizontal and

vertical dimensions of the LR image.

The cliques are defined on second order neighborhoods with the following potentials:

1) dt
x,y,0HR = HR[x− 1, y]− 2HR[x, y] +HR[x+ 1, y],

2) dt
x,y,1HR = HR[x− 1, y + 1]− 2HR[x, y] +HR[x+ 1, y − 1],

3) dt
x,y,2HR = HR[x, y − 1]− 2HR[x, y] +HR[x, y + 1],

4) dt
x,y,3HR = HR[x− 1, y − 1]− 2HR[x, y] +HR[x+ 1, y + 1],

where HR[x, y] is the value of the sample at coordinates (x, y). Note that the evaluation

of the clique smoothness measures are equivalent to preforming 2D filtering operations.
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The convolution kernel for each clique is therefore,

d0 =




0 0 0

1 −2 1

0 0 0


 , d1 =




0 0 1

0 −2 0

1 0 0


 , d2 =




0 1 0

0 −2 0

0 1 0


 , d3 =




1 0 0

0 −2 0

0 0 1


 .

D.1.2 Gradient of the Objective Function

The first step in the optimization procedure is to compute the gradient of the objective

function M [HR, λ1, λ2] with respect to every sample in the high-resolution estimate. Let

this gradient be defined as,

g = ∇M [HR, λ1, λ2]

= ∇Ω[HR, λ1, λ2] +∇‖LR − D(HR)‖2

= g1 + g2

where,

∇ =

XHR−1∑
x=0

YHR−1∑
y=0

ĤRx,y
∂

∂HRx,y

,

ĤRx,y is the unit vector which is one at sample HR[x, y] and zero everywhere else, ∂
∂HRx,y

is the partial derivative taken with respect to sample HR[x, y], g1 is the gradient of the

smoothing term and g2 is the gradient of the data fidelity term.

D.1.3 Gradient of the Smoothing Term

The gradient of the smoothing term is given by

g1 = ∇Ω[HR, λ1, λ2]

=

XHR−1∑
x=0

YHR−1∑
y=0

ĤRx,y
∂

∂HRx,y

Ω[HR, λ1, λ2].
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After expanding the summations in Ω[HR, λ1, λ2], the terms containing HR[x, y] are:

1) dt
x,y,0HR = HR[x− 1, y]− 2HR[x, y] +HR[x+ 1, y],

2) dt
x,y,1HR = HR[x− 1, y + 1]− 2HR[x, y] +HR[x+ 1, y − 1],

3) dt
x,y,2HR = HR[x, y − 1]− 2HR[x, y] +HR[x, y + 1],

4) dt
x,y,3HR = HR[x− 1, y − 1]− 2HR[x, y] +HR[x+ 1, y + 1],

5) dt
x−1,y−1,3HR = HR[x− 2, y − 2]− 2HR[x− 1, y − 1] +HR[x, y],

6) dt
x,y−1,2HR = HR[x, y − 2]− 2HR[x, y − 1] +HR[x, y],

7) dt
x+1,y−1,1HR = HR[x, y]− 2HR[x+ 1, y − 1] +HR[x+ 2, y − 2],

8) dt
x−1,y,0HR = HR[x− 2, y]− 2HR[x− 1, y] +HR[x, y],

9) dt
x+1,y,0HR = HR[x, y]− 2HR[x+ 1, y] +HR[x+ 2, y],

10) dt
x−1,y+1,1HR = HR[x− 2, y + 2]− 2HR[x− 1, y + 1] +HR[x, y],

11) dt
x,y+1,2HR = HR[x, y]− 2HR[x, y + 1] +HR[x, y + 2],

12) dt
x+1,y+1,3HR = HR[x, y]− 2HR[x+ 1, y + 1] +HR[x+ 2, y + 2].

Therefore, the first-order partial derivative of Ω[HR, λ1, λ2] with respect to each high-
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resolution sample is,

∂
∂HRx,y

Ω[HR, λ1, λ2] = ∂
∂HRx,y

1∑
m=−1

[
w0[x+m, y, λ1, λ2](d

t
(x+m),y,0HR)2

+w1[x−m, y +m,λ1, λ2](d
t
(x−m),(y+m),1HR)2

+w2[x, y +m,λ1, λ2](d
t
x,(y+m),2HR)2

+w3[x+m, y +m,λ1, λ2](d
t
(x+m),(y+m),3HR)2

]

= 2
1∑

m=−1

[
d0[x+m, y]w0[x+m, y, λ1, λ2](d

t
(x+m),y,0HR)

+d1[x−m, y +m]w1[x−m, y +m,λ1, λ2]

·(dt
(x−m),(y+m),1HR)

+d2[x, y +m]w2[x, y +m,λ1, λ2](d
t
x,(y+m),2HR)

+d3[x+m, y +m]w3[x+m, y +m,λ1, λ2]

·(dt
(x+m),(y+m),3HR)

]

From the above, the contribution of each clique to the gradient is simply the HR

estimate filtered by each of the clique smoothness measures, followed by the application of

the directional weights, followed by another filtering by the clique smoothness measures.

D.1.4 Gradient of the Data Fidelity Term

The gradient of the data fidelity term is given by

g2 = ∇‖LR − D(HR)‖2

=

XHR−1∑
x=0

YHR−1∑
y=0

ĤRx,y
∂

∂HRx,y

‖LR − D(HR)‖2.

After expanding ‖LR−D(HR)‖2, there is only one term containing HR[x, y]. Therefore,

the first-order partial derivative of ‖LR− D(HR)‖2 with respect to each high-resolution
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sample is,

∂

∂HRx,y

‖LR−D(HR)‖2 = 2


LR[i, j]− 1

MxMy

(i+1)Mx−1∑
m=iMx

(j+1)My−1∑
n=jMy

HR[m,n]


 (

− 1

MxMy

)
,

where i =
⌊

x
Mx

⌋
and j =

⌊
y
My

⌋
.

D.1.5 Optimal Step Size

The optimal step size is determined by the following minimization,

αmin = argmin
α

{M [HR + αg, λ1, λ2]} .

Expanding M [HR + αg, λ1, λ2] as a Taylor series around α = 0 results in,

M [HR + αg, λ1, λ2] =

XHR−1∑
x=0

YHR−1∑
y=0

3∑
c=0

wc[x, y, λ1, λ2](d
t
x,y,c(HR + αg))2

+

XLR−1∑
x=0

YLR−1∑
y=0

(
y[x, y]

− 1

MxMy

(x+1)Mx−1∑
m=xMx

(y+1)My−1∑
n=yMy

(HR[m,n] + αg[m,n])

)2

= M [HR, λ1, λ2] +
∂

∂α
M [HR + αg, λ1, λ2]

∣∣∣∣
α=0

α

+
1

2

∂2

∂α2
M [HR + αg, λ1, λ2]

∣∣∣∣
α=0

α2 + · · ·

Taking the derivative of the Taylor series with respect to α and setting it equal to zero

results in,

αmin = −
∂
∂α

M [HR + αg, λ1, λ2]
∂2

∂α2M [HR + αg, λ1, λ2]

∣∣∣∣∣
α=0

.
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The numerator of the above is given by,

∂

∂α
M [HR + αg, λ1, λ2] = 2

XHR−1∑
x=0

YHR−1∑
y=0

3∑
c=0

wc[x, y, λ1, λ2](d
t
x,y,c(HR + αg))(dt

x,y,cg)

+2

XLR−1∑
x=0

YLR−1∑
y=0

[(
y[x, y]

− 1

MxMy

(x+1)Mx−1∑
m=xMx

(y+1)My−1∑
n=yMy

(HR[m,n] + αg[m,n])

)

·
(

− 1

MxMy

(x+1)Mx−1∑
m=x

(y+1)My−1∑
n=yMy

g[m,n]

)]

and the denominator is,

∂2

∂α2
M [HR + αg, λ1, λ2] = 2

XHR−1∑
x=0

YHR−1∑
y=0

3∑
c=0

wc[x, y, λ1, λ2](d
t
x,y,cg)

2

+2

XLR−1∑
x=0

YLR−1∑
y=0


 1

MxMy

(x+1)Mx−1∑
m=xMx

(y+1)My−1∑
n=yMy

g[m,n]




2

.

D.1.6 Correction

The correction used by the improved algorithm is unchanged. Refer to Section C.1.6 of

Appendix C for further details.

D.2 Implementation

The improved Bayesian algorithm can be implemented by the following steps:

1. Determine the dimensions of the HR estimate using

XHR = (Mx − 1)(XLR − 1) +XLR,

YHR = (My − 1)(YLR − 1) + YLR.
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2. If an initial condition for the HR estimate has not been specified, perform zero order

hold interpolation on the LR image. This is accomplished by up-sampling the LR

image by Mx in the horizontal direction and My in the vertical direction, creating

an image with YHR rows and XHR columns of all zeros except at the locations of

the original LR samples. The up-sampled image is then filtered with a convolution

kernel of all ones, h0, with My rows and Mx columns.

↑ LR[x, y] =


 LR[ x

Mx
, y
My

], x = 0,Mx, ..XHR − 1, y = 0,My, ..YHR − 1

0, otherwise
,

HR[x, y] = h0[x, y]∗ ↑ LR[x, y].

3. If an initial condition for the estimated binary HR edge map, e[x, y], has not been

specified, perform the sub-pixel edge estimation process described in Section B.1.

From the binary edge map, determine the weights, wc[x, y, λ1, λ2], for each of the

four cliques by applying the following procedure:

e0[x, y] = |d0[x, y] ∗ e[x, y]| > 0,

e1[x, y] = |d1[x, y] ∗ s(e[x, y])| > 0,

e2[x, y] = |d2[x, y] ∗ e[x, y]| > 0,

e3[x, y] = |d3[x, y] ∗ s(e[x, y])| > 0,

wc[x, y, λ1, λ2] = (λ2 − λ1)ec[x, y] + λ1,

where s(·) is the morphological operator used for spreading edges. The morphological

operator is implemented by a simple binary pattern matching algorithm. The binary

edge map is searched for groups of four samples that occur in the following two

patterns:


 0 1

1 0


 and


 1 0

0 1


. Matches are then replaced by


 1 1

1 1


.
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4. For each iteration, it, of the algorithm:

(a) Filter the current HR estimate with each of the four clique smoothness mea-

sures.

d0HR[x, y] = d0[x, y] ∗HR[x, y],

d1HR[x, y] = d1[x, y] ∗HR[x, y],

d2HR[x, y] = d2[x, y] ∗HR[x, y],

d3HR[x, y] = d3[x, y] ∗HR[x, y].

(b) Filter the current HR estimate with a moving average filter, h1, of My rows and

Mx columns to simulate the sensor model. Down-sample the filtered image by

Mx in the horizontal direction and My in the vertical direction. Take the point-

wise substraction of the LR image by the decimated HR estimate (performed

on the LR grid).

DHR[x, y] = h1[x, y] ∗HR[x, y],

↓ DHR[x, y] = DHR[xMx, yMy], x = 0, 1, ..XLR − 1, y = 0, 1, ..YLR − 1,

LR DHR[x, y] = LR[x, y]− ↓ DHR[x, y].

(c) The value of the objective function can be computed by squaring each four

clique smoothness measures, summing across all terms, and then adding to

that the sum of squares of the difference of the LR image and the decimated

HR estimate, scaled by the regularization parameter λ.

M (it)[HR, λ1, λ2] =

XHR−1∑
x=0

YHR−1∑
y=0

3∑
c=0

wc[x, y, λ1, λ2]dcHR[x, y]2

+

XLR−1∑
x=0

YLR−1∑
y=0

LR DHR[x, y]2
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(d) Compute the smoothing term’s contribution to the gradient by applying the

first-order derivative of the Huber function to each of the four clique smoothness

measures separately, then filtering each one by their respective clique smooth-

ness measures.

g0[x, y, λ1, λ2] = d0[x, y] ∗ (w0[x, y, λ1, λ2]d0HR[x, y]),

g1[x, y, λ1, λ2] = d1[x, y] ∗ (w1[x, y, λ1, λ2]d1HR[x, y]),

g2[x, y, λ1, λ2] = d2[x, y] ∗ (w2[x, y, λ1, λ2]d2HR[x, y]),

g3[x, y, λ1, λ2] = d3[x, y] ∗ (w3[x, y, λ1, λ2]d3HR[x, y]).

(e) Compute the data fidelity term’s contribution to the gradient by applying the

sensor model filter to interpolate the difference of the LR image and the deci-

mated HR estimate.

↑ LR DHR[x, y] =


 LR DHR[ x

Mx
, y
My

], x = 0,Mx, ..XHR − 1, y = 0,My, ..YHR − 1

0, otherwise

LR DHR1[x, y] = h1[x, y]∗ ↑ LR DHR[x, y].

(f) Compute the gradient by performing a point-wise sum of the contributions

made by the smoothing term and the data fidelity term (performed on the HR

grid).

g[x, y, λ1, λ2] = 2

[
3∑

c=0

gc[x, y, λ1, λ2]− LR DHR1[x, y]

]
.

(g) Compute the smoothing term’s contribution to the numerator and denominator
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of the optimal step size.

d0g[x, y, λ1, λ2] = d0[x, y] ∗ g[x, y, λ1, λ2],

d1g[x, y, λ1, λ2] = d1[x, y] ∗ g[x, y, λ1, λ2],

d2g[x, y, λ1, λ2] = d2[x, y] ∗ g[x, y, λ1, λ2],

d3g[x, y, λ1, λ2] = d3[x, y] ∗ g[x, y, λ1, λ2],

αns[λ1, λ2] =

XHR−1∑
x=0

YHR−1∑
y=0

3∑
c=0

wc[x, y, λ1, λ2]dcHR[x, y]dcg[x, y, λ1, λ2],

αds[λ1, λ2] =

XHR−1∑
x=0

YHR−1∑
y=0

3∑
c=0

wc[x, y, λ1, λ2]dcg[x, y, λ1, λ2]
2.

(h) Compute the data fidelity term’s contribution to the optimal step size.

Dg[x, y] = h1[x, y] ∗ g[x, y],

↓ Dg[x, y] = Dg[xMx, yMy], x = 0, 1, .., XLR − 1, y = 0, 1, .., YLR − 1,

αnd =

XLR−1∑
x=0

YLR−1∑
y=0

LR DHR[x, y] ↓ Dg[x, y],

αdd =

XLR−1∑
x=0

YLR−1∑
y=0

↓ Dg[x, y]2.

(i) Compute the optimal step size.

α = −αns[λ1, λ2]− αnd

αds[λ1, λ2] + αdd
.

(j) Test the termination condition ‖αg‖2. If the condition is less than the spec-

ified error threshold, then terminate the iterations. Otherwise, move the HR



D Detailed Description of the Improved Statistical Algorithm 121

estimate closer to the optimal solution.

HR(it+1) = HR(it) + αg.
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