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Abstract

This thesis addresses the issue of encoding and decoding still and time-varying stereoscopic imagery.

A review of current encoding techniques is undertaken, with special emphasis on algorithms having

SNR and spatial scalability. A stereo image pair consists of two views of the same scene. Due to the

redundant nature of both views, prediction-based techniques produce superior results when compared

with independent encoding of both images. Some of the most widely used embedded still-image coding

techniques rely on discrete wavelet transform (DWT)-based analysis. However, these schemes cannot

be adapted in a straightforward manner to encode stereoscopic still-image pairs.

In this thesis, a novel DWT-based embedded stereoscopic still-image codec structure is proposed.

This scheme preserves the progressive transmission capability of still-image coding algorithms, while

suitably adapting to the nuances and special characteristics of stereoscopic imagery. A comparative

study of variable-block and fixed-block disparity estimation is also undertaken. Partition artifacts result

due to imperfect disparity compensation. Drawbacks in existing compensation techniques are discussed

and a novel loop-filtering scheme is proposed. This is used to smooth disparity-compensated images

before generating and subsequently encoding residual images. As seen from this thesis, this scheme

improves on the performance of current techniques. In addition, the dyadic sampling structure of a 2-D

DWT is exploited to obtain discrete levels of spatial-scalability and forms part of an embedded scheme

for transmission of stereoscopic still-images at different spatial resolutions.

The proposed algorithm is suitably modified to encode time-varying stereoscopic imagery. Draw-

backs of current moving-picture hierarchies are analyzed and a novel hierarchy is proposed that insures

that a user has the flexibility to view a sequence either in monoscopic (default) or stereoscopic modes.

Independent objective results, explaining SNR and spatial scalability features, are presented when en-

coding a few pictures of a stereoscopic moving image sequence. In addition, informal subjective results

are presented when viewing encoded versions a time-varying sequence.
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Chapter 1

Problem Definition and Thesis
Scope

1.1 Background information

T
HE advent of high definition television (HDTV) systems has revolutionized the

way in which we view visual information. It is envisaged that some future tele-

vision systems will be able to display stereoscopic imagery. This is different from mono-

scopic imagery as it has two views of visual information. This mimics the binocular

nature of the human visual system (HVS). It is also envisaged that future telemedicine

applications (e.g., remote surgeries) will require transmission of stereoscopic images. Due

to the binocular composition of stereoscopic imagery, depth from the scene being imaged

can be perceived by the HVS.

The advent of high speed networks and high density digital versatile discs (DVD)

have greatly affected the means by which stereoscopic imagery can be transmitted or

stored. As gargantuan amounts of data are involved, compressing them would indeed

improve the performance of such networks or storage devices. Recently there has been

tremendous growth of HDTV systems and Internet based broadcasting (otherwise known

as webcasting). Transmission and delivery of stereoscopic moving-image content to con-

sumers having these systems, in addition to traditional standard definition television

(SDTV) systems is a challenging problem. This leads to the concept of scalable trans-
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mission.

This can be defined as a simultaneous transmission of the same visual information

to consumers having such varying display devices as Internet, SDTV or HDTV systems.

In literature this method of media content delivery is sometimes referred to as a quality

of service (QoS) framework. A current framework used for simultaneous transmission of

monoscopic moving-image sequences can be seen from Fig. 1.1(a). As observed from this
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Fig. 1.1: QoS frameworks for transmission of monoscopic video content in (a) indepen-
dent and (b) embedded simulcast modes. K1, K2 and K3 represent bit-rates.

figure, three versions of the same data, at different spatial resolutions, are independently

generated and transmitted. This is commonly referred to as an independent simulcast
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(i.e., simultaneous-telecast) QoS-framework. This is not an optimal framework for data

transmission. Separate data streams must be generated for each level of service leading

to a highly redundant operation. Content meant for Internet and SDTV systems are

downsampled versions of HDTV system content. Hence, transmission of such redundant

visual content can place enormous constraints on available bandwidth.

An alternative framework for simultaneous transmission of monoscopic data is shown

in Fig. 1.1(b). This is referred to as an embedded simulcast QoS-framework in this thesis.

Unlike the independent simulcast framework, a base layer of information is generated.

This layer, though specifically intended for webcasting, can be used in SDTV and HDTV

displays as well. A set of refinement layers are also generated. Hence, a SDTV display

would have a base layer along with the addition of a single refinement layer. On the other

hand, a HDTV display would have the base layer with both refinement layers added to

it.

These frameworks can be extended to encode stereoscopic imagery as well (Fig. 1.2).

Specifics of these frameworks are discussed in later chapters of this thesis. It is also

shown that an embedded QoS framework is more suitable for transmission of stereo-

scopic imagery than its independent counterpart (both in terms of rate-distortion (R-D)

and perceptual quality).

The overall performance of a stereoscopic moving-image transmission system depends

individually on the performance of the image acquisition system, encoder, multiplexer,

transmission channel, de-multiplexer, and display system. This thesis addresses the

problem of design specifications for encoding and decoding stereoscopic moving-image

content. It is assumed that stereoscopic images, such as these used in the thesis, have

been acquired from “reasonably good” imaging systems. Furthermore, it is also assumed

that these images can be viewed on “visually pleasing” display systems. Design of a

multiplexer/de-multiplexer system is (generally) a hardware related problem and hence
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not discussed in this thesis. An error-free transmission channel is assumed when evalu-

ating the performance of the decoder.

Given this background information, the specific problem addressed in this thesis is

described in the following section.

1.2 Summary of proposed research work

This section is organized into two parts. The first part highlights salient features and sec-

tions of the proposed algorithm. The second part provides a justification for performing

the research work described in this thesis.

1.2.1 Problem definition

As mentioned in the previous section, the scope of this thesis is limited to the design of an

efficient coding system for stereoscopic imagery. Initially, a novel stereoscopic still-image

codec is presented. Underlying principles from this codec are subsequently applied in

designing a codec for encoding stereoscopic moving-images.

From a compression and coding point of view, various features sought in designing

this codec are outlined as follows:

• Embedded coding : A bit-stream is said to be embedded if subsets from it contain

complete to near-complete information about an image. This is a highly desired

feature in image coding as it enables users to specify any arbitrary bit-rate during

decoding. Higher bit-rates imply adding a series of “refinement” layers to an orig-

inal “base-layer” of information. This feature marks out the current JPEG2000

image coding standard [1] over conventional standards.

• Spatial-scalability : A bit-stream is said to be spatially scalable if it contains the

same visual information at different spatial resolutions. As seen from Fig.1.2(b)

(and discussed in the later chapter) an embedded framework is a qualitatively
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and quantitatively superior technique for obtaining spatial-scalability. A dyadic

subsampling structure is generally used to reduce computational complexities of

full-search (FS) motion- or disparity-estimation techniques [2]. In the proposed

algorithm, the subsampling structure of a discrete wavelet transform (DWT) is

exploited to obtain finite levels of spatial-scalability.

• SNR-scalability : As previously defined, subsets of an embedded bit-stream contains

nearly all relevant information about an image. Assuming that the spatial resolu-

tion is kept constant, these subsets, when decoded and viewed at the given spatial

resolution, will have a particular SNR. In order to improve this SNR, additional bits

need to be decoded. This decoded information can be added to previously decoded

information, making the bit-stream SNR-scalable. Evidently, this is a desirable

feature in any embedded stereoscopic image codec. Wavelet-based transforms have

inherent capabilities of embedded image coding with high levels of SNR-scalability

(i.e., progressive coding). Hence this feature is also present in the proposed algo-

rithm.

• Asymmetrical coding : From psycho-visual experiments, it has been deduced [3] that

both views of a stereoscopic image pair need not be displayed at full perceptual

quality. This led to the concept of asymmetrical coding wherein one image view is

displayed at a higher SNR than the other view. Within certain limits, when viewing

both images in a stereoscopic mode, the overall quality is entirely dependent on

the quality of the image having a higher SNR. This is a useful feature from a

compression point of view. As a result, this concept is incorporated in the design

of this codec.

• Miscellaneous features: Current standards of moving-image encoding facilitate object-

scalability. This involves selectively decoding various regions of an image at dif-
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ferent time instants and at varying perceptual qualities. In order to achieve this,

the proposed codec incorporates a feature for limited object-scalability. This is

(generally) a first stage when implementing similar techniques discussed in liter-

ature [4]. Finally, a feature in any moving-image encoding technique is a desire

to achieve temporal-scalability. This involves viewing an image sequence at a low

frame-rate and progressively improving the quality by increasing this rate. This is

not discussed during the course of this thesis. However, as shown in Chapter 4, this

feature can be implicitly derived when implementing the proposed codec structure.

Having underlined various features in the proposed codec, reasons and justification are

presented as to the need for undertaking this research project.

1.2.2 Justifying the proposed research work

Various algorithms have been proposed for encoding stereoscopic still- and moving-

images. It is well established that independent coding of both image views is not an

optimal solution. On the other hand, algorithms that exploit inter-view redundancies

between both images have been shown to produce better results. Previous work, [5], [6],

[7], [8], relied on DCT-based coding techniques. However it has been shown, [9], [10],

that wavelet based encoding techniques provide superior results than their DCT-based

counterparts.

Use of wavelet-based techniques in stereoscopic still- and moving-images have been

reported in literature. These algorithms have varying degrees of success. However they

leave scope for further improvement. Notable amongst these are work by Bolugouris and

Strintzis [11] and Frajka and Zeger [12]. The codec proposed in this thesis relies on work

discussed in these papers. However both these algorithms have some drawbacks. The

codec structure, presented in [11] relies on an embedded zerotree wavelet (EZW) coding

technique. This has been superseded by other algorithms, [10], [13]. The algorithm in
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[12] utilizes a multigrid embedding (MGE) of wavelet coefficients in encoding. Results

have been presented that prove the superiority of this algorithm when compared with

the one presented in [11].

The proposed research work attempts at a hybrid solution. In [11], a closed-loop

formulation has been proposed for optimal stereoscopic still-image encoding. Use of a

MGE algorithm in [12] stems from previously published results [14]. Further improve-

ments can be made in this algorithm. EZW [9] and SPIHT [10] rely on identification

of zerotrees in subbands. In [15] this is termed inter-scale correlation. The MGE al-

gorithm abandons this correlation in favor of intra-scale correlation amongst subbands.

During this research, it was conjectured that an algorithm utilizing both inter- and

intra-scale correlation amongst subbands would provide superior results. Hence a novel

stereoscopic coding technique is presented that utilizes an adaptively scanned wavelet-

difference-reduction (ASWDR) technique [16].

As mentioned previously, object-scalability is a desired feature in current moving-

image encoding techniques. The algorithms described in previous paragraphs of this

sub-section do not have such features. Preliminary work in this context have been re-

ported by Shukla and Radha [17]. The algorithm proposed in this thesis uses a variable

block-based disparity-estimation scheme, similar to the one proposed in [17]. Such a

scheme forms a first-stage, when implementing other sophisticated techniques used for

object-scalability [4]. Partition-artifacts are a problem with any disparity related coding

scheme. In algorithms cited in previous paragraphs, these are referred to as blocking

artifacts, as fixed block-based disparity-compensation is used in all of them. Optimal so-

lutions have been reported in literature that overcome such artifacts. Notable amongst

them would be an overlapped block disparity compensation (OBDC) scheme, proposed

by Woo and Ortega [18].

Unfortunately this scheme cannot be extended to the algorithm proposed in this the-
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sis. Instead, loop-filtering constitutes a viable alternative. At the time of writing this

document, no specific references have been found that addressed this issue in conjunc-

tion with variable block-based compensation techniques. As an original contribution,

a novel scheme is presented that alleviates the problem of arbitrarily shaped partitions

in disparity-compensation. An edge preserving noise reduction (EPNR) filter, originally

proposed to clean images corrupted with Gaussian noise [19], is adapted as a loop filter.

Hence the proposed algorithm combines a closed-loop formulation, ASWDR embedded

encoding scheme and an EPNR loop-filter to effectively encode stereoscopic still-images.

Results shown in Chapter 3 indicate the superiority of this algorithm when compared

with similar methods indicated in [12] and [17].

In literature, very few references have been found that address the problem of wavelet-

based stereoscopic moving-image coding. The closest work that has been identified is by

Chang and Wu [20]. This is an improvement over current industry standards for stereo-

scopic moving-image coding [21]. High levels of SNR-scalability cannot be obtained from

the latter, while the former technique does not provide scope for embedded moving-image

coding. In addition, both these formulations have no scope for object-scalability. This

stems from the picture hierarchy used in encoding such moving-images. As an original

contribution, a novel picture hierarchy is proposed. This is combined with the algorithm

used in encoding stereoscopic still-images. This involves motion-estimation between suc-

cessive pictures of both streams. Due to similarities in motion- and disparity-estimation1

the algorithm can be seamlessly used to encode moving-images as well. This formula-

tion ensures high levels of drift-free SNR-scalability during encoding and decoding such

moving-images.

As mentioned in the previous sub-section, spatial-scalability is a desired feature in

the proposed codec. During the literature survey, no references have been found that

1Explained in Chapter 2
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provide scope for spatial-scalability in conjunction with encoding stereoscopic imagery.

In this thesis, a dyadic subsampling structure of a discrete wavelet transform (DWT)

is exploited to obtained finite-levels of spatial scalability. This is different from related

work presented for monoscopic moving-image encoding [22]. In this, images need to be

explicitly downsampled before encoding them at different spatial resolutions. However in

the algorithm described in this thesis, the downsampling operation is intrinsic in nature.

A detailed discussion is presented in later chapters.

Finally, for the sake of completeness, preliminary subjective results have been pre-

sented when encoding stereoscopic still- and moving-images in an asymmetrical (or

mixed-SNR-resolution) framework. Psycho-visual experiments conducted by Tam et al.

[23] have revealed that visual fatigue may arise in the HVS when continuously view-

ing asymmetrically coded stereoscopic image data. As such the authors in this work

proposed a novel temporal interleaving of such asymmetrically data. As a result, they

conjectured that visual fatigue can be reduced. In a coding framework this is tantamount

to degrading the quality of images from one stream with respect to the other.

To achieve this goal, the authors have proposed a Gaussian blurring of one image

stream. This blurred image stream is subsequently encoded using a state-of-the-art

monoscopic moving-image coding technique. The other image stream is also indepen-

dently coded, but at a higher bit-rate than the Gaussian blurred image stream. However,

as previously described, independent coding of stereoscopic images is not an optimal so-

lution [3]. Furthermore, disparity-estimation between two images at varying perceptual

qualities may lead to biased results. This can affect overall coding performances. Hence,

this scheme cannot be incorporated in the algorithm presented in this thesis.

However, removal of visual fatigue is still a desirable feature. To achieve this, a novel

solution is proposed. This involves temporal-interleaving of stereoscopic moving-images

at arbitrary time instances. This is different from the scheme presented in [23], where
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such an interleaving is implemented at scene-cuts only. Degradation in image quality

is achieved exclusively by using the progressive encoding and decoding feature of an

ASWDR algorithm. Unlike [23], a priori blurring of images is not implemented. Lim-

ited subjective results indicate that the HVS is not able to readily differentiate between

regular and the proposed temporal-interleaving of asymmetrically coded stereoscopic

moving-image data.

Having defined the problem, the concluding section of this chapter describes the gen-

eral organization of this thesis.

1.3 Thesis organization

As indicated in Sec. 1.2.1, various features have been included in designing the algorithm

proposed in this thesis. A structure for coding and decoding stereoscopic still-images is

presented. This structure is then incorporated in a new structure used for encoding

time-varying stereoscopic imagery. To facilitate a better understanding of concepts, each

chapter is preceded by an abstract highlighting its contents. A detailed literature review,

pertinent to aspects covered in a chapter is then presented. The chapter then concludes

by providing a detailed discussion on relevant concepts.

Thus, the remaining chapters in this thesis are organized as follows:

• Chapter 2 : In this chapter, the reader is introduced to some concepts on stereo-

scopic imaging. A brief discussion of wavelets is also provided. The concept of

lifting in wavelet analysis is also discussed. Appendix A completes this discussion.

Next, a summary of relevant motion- and disparity-estimation techniques is pro-

vided. The drawbacks of current disparity- and motion-compensation techniques is

also presented, followed by a discussion on hierarchical-search strategies in motion-

and disparity-estimation. Similarities and subtle differences in estimating motion-

and disparity-vectors using this algorithm are presented.
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• Chapter 3 : This chapter begins with a discussion on the concepts of progressive

image coding. Next, a brief review of current state-of-the-art embedded coding

techniques is presented. Limitations of such schemes, in the context of stereoscopic

imaging is discussed and how an ASWDR algorithm can overcome such limitations.

This is followed by a review of an ASWDR algorithm. For the sake of completeness,

some comparative results are provided in Appendix B.

• Chapter 4 : A survey of current stereoscopic still-image encoders is presented.

This is followed by a discussion on optimal conditions for stereoscopic still-image

encoding. This chapter is concluded by a discussion on two current algorithms

[11, 12] used in stereoscopic still-image coding. Useful features and drawbacks (in

the context of this research work) of both algorithms are presented.

• Chapter 5 : This chapter introduces the reader to current motion and disparity

compensation techniques. Limitations of these techniques are presented, followed

by a discussion on a novel EPNR filtering scheme. Justification is also provided

in using this as a loop-filter to smooth disparity- and motion-compensated im-

ages. This is followed by a discussion on the proposed algorithm, when encoding

stereoscopic still-image pairs. Comparative objective results between algorithms

presented in [12], [17] and the proposed algorithm are provided. In addition, lim-

ited subjective results are also presented when encoding stereoscopic color-images.

A conclusion and scope for further research work rounds up this chapter.

• Chapter 6 : This chapter presents a discussion on various picture hierarchies

employed, when encoding monoscopic and stereoscopic moving-image sequences. A

survey of existing stereoscopic moving-image encoding systems (using these picture

hierarchies) is presented. This is followed by a discussion on perceived limitations of

these systems. As previously indicated in this chapter, no suitable references have
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been found that addressed the problem of spatial-scalability in conjunction with

stereoscopic moving-image coding. Hence an algorithm [22], that addresses the

problem of spatial-scalability in the context of monoscopic moving-image encoding

is discussed briefly.

• Chapter 7 : Drawbacks of picture hierarchies, introduced in Chapter 6, are pre-

sented here. To alleviate these limitations, a novel picture hierarchy is proposed.

It is shown that this picture hierarchy can faithfully be used to obtain high-levels

of SNR-scalability when viewing a moving-image sequence, either in monoscopic or

stereoscopic modes.

Objective results are presented when encoding various pictures of a test stereoscopic

moving-image sequence. In addition, a limited subjective discussion is presented

that compares the performance of encoded versions of this sequence, with and with-

out temporal interleaving. This sequence2 does not have any scene cuts and, hence,

is a key factor in differentiating the proposed algorithm when compared with the

scheme presented in [23].

• Chapter 8 : This chapter summarizes the salient features of the proposed algo-

rithm when encoding stereoscopic still and moving-images. In doing so, it highlights

various contributions made during the course of this research work. Finally, a dis-

cussion is provided that highlights future research topics that have emerged during

the course of this research work.

2Please refer to the enclosed CD-ROM.
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Chapter 2

Preliminaries on Stereoscopic
Imaging and Wavelets

Overview

A discussion is presented on some aspects of stereoscopic imaging techniques. Concepts of disparity and

motion in stereoscopic sequences are presented. This is followed by a discussion on relevant concepts of

wavelets and lifting-based implementations of a DWT. A justification and discussion is also provided on

the efficacy of hierarchical-search strategies for disparity- or motion-vector estimation.

2.1 Concepts of stereoscopic imaging

V
ISUAL information, as perceived by the HVS, is basically three-dimensional in

nature. Traditional monoscopic imaging systems offer extensive detail about

real world scenes. However they are unable to provide a viewer with the sense of “depth”

in perceiving a scene. This is possible with binocular imaging and hence led to the

development of stereoscopic imaging systems. In such systems, visual information about

a scene is recorded by two different cameras (Fig. 2.1) as opposed to a single camera.

This is analogous to a binocular HVS. In general both image views contain nearly the

same visual content. However, there are some areas in one view that are absent from

the other; these are generally referred to as occluded regions. To better appreciate the

flow of discussion, the following paragraphs describe notations used in conjunction with
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Fig. 2.1: Schematic of a Binocular Stereoscopic Imaging System. Proper optical ar-
rangements are incorporated so as to prevent inversion of images. Both cam-
era’s are assumed to be stationary.
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stereoscopic imaging in this thesis.

From Fig. 2.1, consider point P in a 3-D space. Let this point be projected into a 2-D

continuous space, and be indicated as C. Due to resolution-dependent imaging systems,

this 2-D image must be sampled at discrete points. In addition, systems imaging these

discrete points should have capabilities to acquire three separate channels of information.

This corresponds to tri-stimulus color values of a HVS and are usually acquired and

displayed in the RGB domain. Let this sampled color-image be represented as

I = {IR, IG, IB}

where IR, IG, and IB are 2-D discrete matrices. Due to the redundant nature of in-

formation contained in the individual matrices, it is convenient to transform them into

a luminance/chrominance space. This is is known as the YCbCr domain. At a par-

ticular discrete point [x, y] in the color image, YCbCr values can be obtained from the

corresponding RGB values as per the transformation shown below1:



IY

ICb

ICr


 =




0.299 0.587 0.114
−0.169 −0.331 0.5

0.5 −0.419 −0.081







IR

IG

IB


 (2.1)

Here IR, IG, and IB represent intensity values of matrices IR, IG, and IB at co-ordinates

[x, y]. Generally, these values lie between [0,1]. Let the transformed matrices be repre-

sented as IY , ICb, and ICb. The discussion provided in this thesis generally corresponds

to the luminance component IY of an image. Unless otherwise indicated, the symbol I

generally refers to IY .

Let Ir represent an intensity-only, right-view image and let Il represent such an

intensity-only image obtained from the left camera. Let the point P be imaged by

both these cameras. Intensity values from both images are indicated as Ir(x1, y1) and

Il(x2, y2), where [x1, y1] and [x2, y2] indicate spatial co-ordinates of the projected point in

both cameras. In an ideal scenario, both intensity values should be equal. However, this

1Assuming that RGB values are gamma-corrected
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may not be exactly true due to illumination conditions and problems associated with

optical or electronic components in the camera. Hence Ir(x1, y1) ≈ Il(x2, y2).

Assume that the right image-view Ir constitutes a reference view while the left-view

Il constitutes a target view. If approximate equality between intensity values is satisfied,

then the relative difference in spatial co-ordinates indicates the disparity of the point P

in the target-view with respect to the reference-view. Hence

SDV (x2, y2) = [x1 − x2, y1 − y2] (2.2)

Thus, every spatial co-ordinate x in the target image will have a disparity vector SDV (x)

associated with its corresponding location in the reference image, while satisfying the ap-

proximate equality condition. This can be mathematically represented as

Il(x) ≈ Ir(x + SDV (x))

This discussion is valid if P is stationary. Assume that this point now experiences

a displacement over time. An additional time variable t must be introduced in the

aforementioned expression. Thus, at time instant t,

Il(x, t) ≈ Ir(x + SDV (x, t), t)

where SDV (x, t) represents the disparity-vector field between the reference and target

images at time instant t.

Let P (t1) represent the position of the point at time instant t1. Assume that at

time instant t2 the point has been displaced and is indicated as P (t2). As seen from the

figure, this point is captured by both cameras and the image of this point has moved to co-

ordinates [x3, y3] and [x4, y4] in the right- and left-views, respectively. If the approximate

equality in intensity is extended then

Ir(x1, y1, t1) ≈ Ir(x3, y3, t2)

Il(x2, y2, t1) ≈ Il(x4, y4, t2)
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where an additional index of ti reflects the displacement experienced by the point. This

apparent displacement in two consecutive images indicates the motion experienced by

the point. Two such motion-vectors, corresponding to both views, can be identified as:

MV (x3, y3) = [x3 − x1, y3 − y1]

MV (x4, y4) = [x4 − x2, y4 − y2] (2.3)

As with a disparity-vector field, there exists two such motion-vector fields for both images

at time instant t2, with respect to t1. The approximate equality condition can be similarly

expressed as

Ik(x, t2) ≈ Ik(x + MV (x, t2), t1)

where Ik(.) indicates either a right or left image stream. The motion vector field at time

instant tj is given by MV (x, tj).

Eq. 2.2 defines disparity between two views at the same time instant. This is termed

as a standard disparity-vector (SDV ) in this thesis. In addition, a vector is defined

identifying the relative displacement of P between images at different views and at dif-

ferent time instants. This is termed as a displaced disparity-vector (DDV ). If Ir(x, t1) is

assumed to be the reference then, from the principle of approximate equality of intensities

Il(x, t2) ≈ Ir(x + DDV (x, t2), t1)

where DDV (x, t) indicates the displaced disparity-vector field for the target image at

t2 with respect to the reference image at t1. For the point P shown in the figure

DDV (x4, y4, t2) = [x4 − x1, y4 − y1]

Usefulness of these vectors in stereoscopic moving-image compression will be established

in a future chapter.

As previously mentioned, real world imaging systems have discrete spatial-sampling



2.2 Wavelets and multiresolution analysis 19

structures. In this thesis, non-interlaced (sometimes called progressive2) imaging systems

having rectangular sampling structures are considered. However, some commercial imag-

ing systems have non-rectangular sampling structures that give rise to interlaced images

which introduce interlacing artifacts [2]. Current video systems rely on interlaced trans-

mission, due to the widespread use of interlaced display systems. It is expected that in

future, progressive display systems will predominate over their interlaced counterparts.

This forms the justification of using progressive images in discussing the performance of

the proposed algorithm in this thesis research.

2.2 Wavelets and multiresolution analysis

Most state-of-the-art image compression algorithms use some form of transform-based

analysis. A widely used standard, designed in the 1990’s, is the Joint Photographic

Experts Group (JPEG) compression algorithm. This is based on the discrete cosine

transform (DCT) [24]. This algorithm yields reasonably good results for moderate com-

pression ratios. However at higher compression ratios, the underlying block structure

used in the DCT begins to manifest itself in the compressed image. These distortions

are referred to in literature as blocking artifacts, and the HVS is extremely perceptive to

them.

In the late 1990’s, work was undertaken on a new compression standard that utilized

the discrete wavelet transform (DWT) as an analysis tool. Wavelet methods involve

overlapping transforms with a set of variable-length basis functions. Due to the over-

lapped nature of wavelet transforms, perceptually discomforting blocking artifacts are

completely eliminated. In addition, the multiresolution character of such transforms

leads to superior energy compaction and visually pleasing compressed images. These

factors were responsible for incorporating the DWT as a transform tool in the new

2Not to be confused with the term progressive coding used in Chapter 3.
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JPEG-2000 image coding standard [1]. Design specifications for wavelets are beyond

the scope of this thesis. The concerned reader is directed to books by Daubechies [25],

Mallat [26] and Chui [27] for a rigorous mathematical description of wavelets.

As stated previously, wavelets help in transformation of signals at multiple scales.

Let cm represent a one-dimensional discrete signal at scale-m. It can be transformed

into its detail dm−1 and approximate cm−1 signals as

cm−1[n] =
1√
2

2n+K1−1∑

k=2n

cm[k] h̃[k − 2n],

dm−1[n] =
1√
2

2n+K2−1∑

k=2n

cm[k] g̃[k − 2n]. (2.4)

where h̃ and g̃ represent K1- and K2-coefficient filters (sometimes loosely referred to as

wavelet-filters). Eq. 2.4 is otherwise referred to as multiresolution analysis equations.

Evidently, it is necessary to recover cm from its detail and approximate components.

This involves a combination of signals at coarse resolutions, sometimes referred to as

multiresolution synthesis. This is obtained as

cm[n] =
1√
2

bn
2
c∑

k=d
(n−K2+1)

2
e

cm−1[k] h[n− 2k] +
1√
2

bn
2
c∑

k=d
(n−K1+1)

2
e

dm−1[k] g[n− 2k] (2.5)

It can be observed that filter lengths have been reversed when implementing a multires-

olution synthesis. This is explained shortly. Fig. 2.2 depicts a multiresolution analysis

and synthesis operation. There are several methods for designing these wavelet filters,

ĉm

2

2

2

2

cm−1

dm−1

cm

eG(z)

eH(z)
P

H(z)

G(z)

Fig. 2.2: 2-channel filter-bank.
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e.g., those based on spectral factorization [28, 29], lattice structure [30], time-domain

optimization [31] and quadratic-constrained least-squares [32]. Filters shown in Fig. 2.2

are perfect-reconstruction (PR) filters if they satisfy the following properties [26]:

H̃(z)H(z)− H̃(−z)H(−z) = 2z−(2L+1)

G̃(z) = H(−z)

G(z) = −H̃(−z) (2.6)

The filters used in these equations are related to each other as:

g[k] = (−1)k−1h̃[k]

h[k] = (−1)k−1g̃[k] (2.7)

In the literature, this criterion leads to the design of biorthogonal filters. This explains

the difference in lengths when implementing an analysis or synthesis operation. A special

scenario occurs when

g̃[k] = (−1)k h̃[2K + 1− k], k = 1, 2, . . . , 2K. (2.8)

Filters satisfying this criterion are termed orthogonal filters. If this is true, all four filters

can be computed from a single mother wavelet. Orthogonal filters would thus form a

natural candidate in wavelet-based image compression. These filters should also be short

in length, so as to speed up computation. Linear-phase properties are preserved when

these filters are cascaded together (e.g., in a pyramidal decomposition). Aside from the

Haar wavelet filter [26], non-trivial symmetric filters with real coefficients, satisfying Eqs.

2.7 and 2.8, do not exist. Symmetric filters are an asset in image compression as they

maintain the correct spatial and time positions of coefficients [16].

As a result, biorthogonal filters are invariably used in state-of-the-art still- and

moving-image coding algorithms. The most popular amongst these is the “CDF-9/7”
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filter [25, p 279]. This is a symmetric filter having 9 and 7 filter taps in h̃[n] and g̃[n].

This is also a part of the JPEG2000 image coding standard [1]. Consequently, most

results presented in this thesis use a “CDF-9/7” filter. However, additional filters have

been proposed that result in improved compression performance in a R-D context. In

this thesis two such filters are used. These are the “Odegard-9/7” and “Cooklet-17/11”

filters. Analysis-stage coefficients of these three filters can be found in Tables A.1, A.3

and A.5, listed in Appendix A.

The classic algorithm by Mallat [33] extended the 1-D DWT analysis scheme for

transforming images. This involves an iterative and separate transformation of rows and

columns of an image. This is shown in Fig. 2.3. Initially the 2-D discrete signal, cm,

is transformed. This involves separately applying Eq. 2.4 on each row. The next stage

involves applying the same set of equations on the columns generated from the first

pass. The resulting coefficients are arranged in a “Mallat-order”. These operations are

continued until the iteration levels have been exhausted. Fig. 2.4 depicts a three-scale

wavelet decomposition using Mallat’s algorithm. In the literature, the subband having

coefficients c0i is generally referred to as a LL-subband; d1i as a HL-subband; d2i as a

LH -subband and d3i as a HH -subband. As rule-of-thumb, it is assumed that the top-left

corner of an image is the reference point. This co-ordinate system is also followed when

dealing with wavelet-transformed images (as seen from Fig. 2.4). Throughout this thesis,

it is assumed that image dimensions are dyadic in nature. This limits the actual number

of scales of decomposition. Non-separable versions of this algorithm have been proposed

[34]. As two-dimensional convolution is involved, these transforms do not find much use

in practical applications.

Mathematically speaking, the transform previously discussed is implemented on data

sets of infinite length. However in real-world applications, implementing this algorithm

on finite datasets introduces edge artifacts. Symmetric extension is commonly used
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Fig. 2.3: 1-level, 2-D separable, forward and inverse wavelet transform using Mallat’s
algorithm. cm is a 2-D discrete signal.
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Fig. 2.4: 3-scale wavelet decomposition of a 2-D image (having dyadic dimensions),
using Mallat’s algorithm. Image dimensions are (M, N).

[35, 36, 37, 38] to minimize this problem in reconstructed images. As reported in [39],

using symmetric extension introduces artificial discontinuities at edges. This tends to in-

troduce edge artifacts in image subbands. As part of this thesis research, an extrapolated

DWT was proposed [40]. In this a one-dimensional Burg extrapolation was implemented

on the rows and columns, prior to a wavelet analysis or synthesis. This was an im-

provement on the polynomial-extrapolation technique presented in [39]. However, it is

computationally more intensive than a symmetric extension technique.

A new approach to the DWT was proposed by Sweldens [41] to further simplify the

transformation process. This approach is known as Lifting. It attempts to predict the

approximate data from its detail counterpart and updates it in the first step. Subse-

quently the detail data is predicted from its approximate counterpart in the next step.

A diagram for this implementation can be seen in Fig. 2.5. The non-unique nature of

polynomial division, associated with the lifting step generation, can lead to many dif-
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ĉm

z−1

1/K

(b) Synthesis stage

Fig. 2.5: Lifting-based implementation of a 1-scale DWT, previously shown in Fig. 2.2

ferent implementations of the wavelet transform [42]. When compared with a standard

implementation, there is a significant reduction in computational complexity when im-

plementing a lifting-based DWT [42].

Let P̃ (z) represent polyphase components of the analysis filters[41]

P̃ (z) =

[
H̃e(z) H̃o(z)

G̃e(z) G̃o(z)

]
(2.9)

Then, the lifting steps shown in Fig. 2.5(a) are related to P̃ (z) by

P̃ (z) =

{
n∏

i=1

[
1 si(z)
0 1

] [
1 0

ti(z) 1

]} [
K 0
0 1/K

]
(2.10)

In a similar manner, lifting steps from the synthesis stage can be represented as

P (z) =

[
1/K 0

0 K

]{
n∏

i=1

[
1 −ti(z)
0 1

] [
1 0

−si(z) 1

]}
(2.11)

A similar strategy can be employed in performing a 2-D separable transform. Due to

these advantages, a lifting-based strategy is employed when implementing a DWT in
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this thesis. For the sake of completeness, lifting-steps associated with the filters listed in

Tables A.1-A.5, can be found in Appendix A.

2.3 Summary of disparity- and motion-estimation algorithms

2.3.1 Justification for disparity and motion estimation in stereoscopic

moving-image coding

As mentioned in a previous section, stereoscopic image pairs acquired from two different

cameras have nearly the same visual content. In any given view, there is also a strong cor-

relation amongst images acquired at different time instants. Removal of such inter-view

(former) and intra-view (latter) redundancies are an essential part of any state-of-the-art

moving-image encoding standard.

A straightforward solution would be to independently encode all images acquired

from a camera. However this has been shown to be inefficient when encoding mono-

scopic moving-images [2]. This led to the formulation of current industry standard

moving-image encoding techniques. Such standards fall under the scope of H.264 and

Moving Picture Experts Group-4 (MPEG-4) specifications. More information about cur-

rent MPEG-4 standards can be found in [43, 44].

The standards specify that various contiguous images can be efficiently encoded by

applying prediction-based techniques. For example, in Fig. 2.1 it is observed that P is

present in both pictures (as projections) of the right image-view. Rather than encoding

both images separately, MPEG standards specify estimating disparity- and motion-vector

fields. These vector fields are used to generate disparity or motion compensated images.

Residual images, generated by subtracting these compensated images from their origi-

nals, are instead encoded. The following sub-section summarizes relevant motion and

disparity estimation techniques.
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2.3.2 Summary of relevant algorithms for disparity- and motion-estimation

In an ideal scenario, it would be pertinent to estimate motion- or disparity-vectors for all

possible pixel locations. However, this is a computationally expensive operation. Var-

ious solutions have been proposed to overcome this drawback. Due to the nature3 of

disparity- and motion-vectors in motion- or disparity-vector estimation, a generic review

of some algorithms is presented.

A comprehensive review of motion-estimation algorithms, in the context of video

coding, can be found in the paper by Stiller and Konrad [45]. When encoding video

data, motion information constitutes overhead. Hence the goal of any motion-estimation

algorithm is minimization of some objective criterion. Furthermore, as a sub-optimal so-

lution, region-based estimation techniques [4] have been proposed to overcome the com-

putational complexity of estimation over all pixel locations. This presupposes the fact

that all pixels in the region being estimated have a constant motion- or disparity-vector.

When performing region-based estimation, it should be remembered that information

about a region must be made available at the decoder. Hence in addition to motion- or

disparity-vector information, information about regions used in estimating these vectors

should be transmitted. This tends to further increase the overhead information.

Region-based techniques can generally be classified into two distinct categories: block-

based and arbitrary-shape-based estimation techniques. In the former, the image to be

estimated is predicted from non-overlapping rectangular blocks from the reference image.

If these blocks are of equal size and partition the image, then it is referred to as fixed-

block-based estimation. On the other hand, if these blocks assume a finite number of

rectangular shapes (e.g., 2×2 - 32×32) it falls under the category of variable-block-based

estimation. A quadtree-partitioning is effected on the reference image in order to obtain

these variable-shaped blocks. Generally, this is often used as a first stage when devel-

3Subtle differences between them are explained in a later part of this chapter.
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oping other arbitrary-shaped (otherwise referred to as object-based) estimation schemes

[4].

Due its relative simplicity, and ease of encoding, fixed block-based estimation algo-

rithms are used in commercial video encoders [2] as well as disparity-estimation schemes

[18, 11, 12]. Object-scalability is a desired feature of the new MPEG-4 video coding

standard [43, 44]. In such scenarios, fixed block-based estimation would be deemed un-

suitable when compared with their variable-block-based counterparts. It has also been

reported that variable-block-based techniques outperform their fixed-block-based coun-

terparts in a R-D sense.

Compared with their fixed-block-based counterparts, variable-block-based estimation

schemes preferentially segment images. In other words, a few large blocks may be suf-

ficient to represent large non-textured areas. On the other hand, smaller sized blocks

would be utilized to represent textured regions. This results in an uneven distribution

of bits when encoding disparity- or motion-vectors. Compared to this, both textured

and non-textured regions are predicted from blocks of similar sizes in fixed-block-based

estimation. Consequently, this uneven block-size distribution guarantees generation of

“better” compensated images. This in turn insures residual images with sufficiently less

energy content. The reader is directed to [46] and [17] for numerical results, justifying

this fact.

To better explain block-matching and related notations, the reader’s attention is di-

rected towards Fig. 2.6. Let Bi represent a block from the target image. Assume that a

best-matched block is found from the reference image. Let the displacement (motion or

disparity) vector of Bi, with respect to this best-matched block, be indicated as vi. On

application of an approximate equality of intensity between both blocks

Il(x) ≈ Ir(x + vi), x ∈ Bi, i = 1, 2, . . . , Nb
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Fig. 2.6: Block disparity- or motion-vector estimation

where

Bi = {x|x within the ith block boundary}

and Nb is the number of blocks possible from the target image. In other words, the

intensity of a block (positioned at x) in the target-image is approximately equal to

the intensity of a corresponding block from the reference image, but displaced by a

vector v. Due to this approximate equality, additional residual information needs to be

transmitted. To achieve this, a displaced frame difference (DFD) is generated as

d(x, vi) = Il(x)− Ir(x + vi) (2.12)

where vi is the actual displacement vector4. An objective function, sum-of-absolute-

difference (SAD), is defined as

SAD(i, vi) =
∑

x∈Bi

|d(x, vi)| (2.13)

4The subscript t, omitted in these expressions, is implicitly assumed.
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An estimate v̂i can be obtained by minimizing this objective function as

v̂i = arg min
|vx|≤R1,|vy|≤R1

SAD(i, vi) (2.14)

Here (vx, vy) are the horizontal and vertical components of the displacement vector v,

while (R1, R2) indicate the limits of the search area. Having estimated displacement

vectors for all blocks in the target image, the DFD is encoded using an embedded image

coding scheme.

Estimating these displacement-vectors involves positioning the reference image block

at each pixel location in a region, and comparing it with the block under consideration

from the target image. This exhaustive search strategy is referred to as a full-search

(FS). This provides an optimal solution when estimating v. However this benefit is out-

weighed by its computationally prohibitive costs in real-time applications. As a result,

many sub-optimal strategies have been proposed to replace this. Some of these include

a 2D-logarithmic search (2DLS) [47], three-step search (3SS) [48], four-step search (4SS)

and a fast full-search [49] algorithm. A hierarchical-search strategy is an efficient solu-

tion that optimizes computational speed with respect to coding efficiency. This uses a

combination of fewer search locations in addition to fewer pixels in determining v. This

technique has been successfully ported for real-time stereoscopic moving-image coding

[50]. The following section presents a discussion of this technique, in conjunction with

the previously described wavelet transforms.

2.4 Hierarchical-search strategy

Hierarchical estimation involves a two-step process. Initially, both reference and target

images are repeatedly downsampled by a factor of two in each dimension [51, 2]. Next, a

coarse disparity- or motion-estimate is made at a coarse scale using a FS strategy. Vectors

obtained from this stage are scaled by a factor of two and refined in successive scales. A

limited number of picture co-ordinates need to be scanned during this refinement process.
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As seen from Fig. 2.3, the intrinsic downsampling structure of a 2D-separable DWT

can be employed in hierarchical-search framework. An inverse wavelet transform using

Mallat’s 2-D separable transform is performed on locally quantized5 reference and target

images. As seen from Fig. 2.7, this estimation is performed on the all low-pass subband

(LL). Assume that a displacement-vector (disparity or motion) v̂
k
i is obtained at a coarse

scale k, subject to the criterion presented in Eq. 2.13. This vector, at the next fine-scale

k − 1, is estimated as

v̂
k−1
i = 2 v̂

k
i︸︷︷︸

Coarse Estimate

+ ∆̂k−1
i︸ ︷︷ ︸

Refinement

(2.15)

This is tantamount to first positioning the reference block at spatial co-ordinates indi-

cated by 2v̂k
i . A FS is implemented on a reduced area. This generally is ±1 and ±2

pixels6 in either dimension when estimating motion- and disparity-vectors, respectively.

It would suffice to transmit ∆̂
k−1

i in order to decode v̂
k−1
i , provided v̂

k
i is known. This

process is continued until all remaining scales have been exhausted. This search strategy

is indicated as RS in Fig. 2.7. The concerned reader is directed to [2, p 128-134] to

better appreciate the computational savings obtained, when using this search strategy.

Thus the output of a hierarchical-search strategy consists of vectors from a coarse-scale

and refinement-vectors, with reduced magnitude, for all successive scales.

By reducing the spatial-resolution of images, motion or disparity between images are

reduced by a factor of 2m. Previously discussed algorithms (e.g., 2DLS, 3SS, etc.) have

a high probability of getting trapped in local minima during disparity- or motion-vector

estimation. Low-pass filtering used in generating a wavelet pyramid significantly reduces

this probability [2].

A major drawback of hierarchical search strategies lies in its ability to reduce the dis-

parity or motion between contiguous pictures. As the number of levels of decomposition

5Explained in a later chapter
6Empirical values
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Fig. 2.7: Hierarchical disparity-vector estimation, in a DWT framework. ↑2 indicates a
dyadic upsampling performed in a 2-D separable DWT. Disparity-estimation
is performed between the all low-pass subband at each scale. Disparity-vectors
from coarse-scales are scaled by a factor of two, when moving to a finer scale.
A similar strategy can be used when estimating motion-vectors.
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increases, more features are removed from the image. This removes any semblance of dis-

parity or motion between these pictures. In this thesis, disparity- or motion-estimation

is limited to three scales. Fig. 2.7 indicates a 3-scale hierarchical variable-block-based

disparity estimation. Another major drawback is its inherent inability to track regions

containing small objects.

To conclude this chapter, subtle differences between disparity- and motion-vector

estimation is discussed. Disparity between images is primarily dependent on camera-

geometry. Due to this fact, further simplification can be made when estimating dispari-

ties. From Fig. 2.6 the vertical co-ordinates, R2, can be limited to at most a few pixels

(e.g., ±2) when performing a FS estimation at a coarse scale. This, eventually reduces

the computational complexity of the proposed algorithm.

The following chapter presents a review of pertinent still-image, wavelet-based, coding

algorithms with special emphasis on an ASWDR algorithm.
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Chapter 3

Adaptively-Scanned
Wavelet-Difference-Reduction
Algorithm

Overview

This chapter introduces the concept of progressive image coding and decoding. A review of zerotree

and non-zerotree based algorithms is also presented. Limitations of such algorithms, in the context of

stereoscopic image coding are presented. This leads to the justification in using an adaptively-scanned

wavelet-difference-reduction (ASWDR) algorithm in encoding stereoscopic imagery. This chapter is

concluded by a detailed discussion of steps involved in implementing an ASWDR algorithm. Results

from Appendix B complement this discussion.

3.1 Progressive coding of still images

P
SYCHO-VISUAL experiments have revealed that the HVS is less sensitive to per-

turbations in high-frequency components of an image than in the low-frequency

components. In a compression strategy this implies that high-frequency components in

an image can be more coarsely represented than their lower-frequency counterparts. This

reasoning applies to gray-scale image coding. Redundancies due to color are discussed

in a later chapter.

Mean-squared error (MSE) is a widely used objective metric to test the performance
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of any image coding scheme. The efficiency of any coding algorithm can be gauged by

its ability to reduce the MSE between the original and reconstructed image for a given

bit-rate. Let the original intensity image be represented as I and let the reconstructed

image be represented as Î. Thus MSE is defined as

MSE =
1

MN

∑

xi,yi

(
I(xi, yi)− Î(xi, yi)

)2

Here (M, N) represent the dimensions of the image being encoded.

Generally, MSE is expressed in a different form. This is known as peak signal-to-noise

(PSNR) ratio and defined as

PSNR = 10 log10

( k2

MSE

)

k =
{

1, I ∈ [0,1]
255, I ∈ [0,255]

Progressive image coding may be defined as a sequential transmission of wavelet-transformed

coefficients, wherein coefficients with higher magnitudes1 are reconstructed prior to lower-

magnitude components. Consider Fig. 3.1. This depicts a section of a histogram of

wavelet-transformed coefficients. It should be indicated that positions of these coeffi-

cients cannot be deduced from this histogram. Coefficients with higher magnitudes are

significantly less frequent than those with lower magnitudes. Consider two representa-

tive threshold values T1 and T2 with T1 > T2. Progressive image coding implies that all

coefficients with magnitude greater than T1 are encoded prior to coefficients whose mag-

nitude is greater than T2 but less than or equal to T1. The energy-compaction properties

of wavelet transforms [26] insures that (nearly) all regions of an image can be efficiently

reconstructed with a limited set of coefficients.

As indicated in the previous paragraph, positions of these wavelet coefficients cannot

be inferred from Fig. 3.1. Benefits of wavelet-based transforms in image coding becomes

evident if positions of these “significant coefficients” can be encoded efficiently. This

1From any subband
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Fig. 3.1: Progressive image coding of wavelet-transformed coefficients. The x-axis indi-
cates magnitudes of coefficients. |T1| > |T2|. The y-axis indicates the number
of coefficients satisfying a “greater than threshold” criterion.

forms the basis of any modern embedded image coding algorithm. A trivial solution

would be to independently encode each subband. However more sophisticated encoding

schemes have since been proposed. As the reference view in a stereo-image pair is en-

coded using a state-of-the-art coding algorithm, the following section summarizes some

widely used coding algorithms. In addition, a discussion is provided that highlights one

such algorithm used in this thesis.

3.2 Summary of wavelet-based image coding schemes

In his classic paper [9], Shapiro identified a parent-child dependency among wavelet

coefficients. For example, in a 3-scale wavelet-transformed image (Fig. 2.4), a parent



3.2 Summary of wavelet-based image coding schemes 37

Fig. 3.2: Parent-child or inter-scale relationship between wavelet coefficients at different
subbands. Coefficients have been scaled for display purpose.

coefficient in d22 induces four child coefficients in d12. Each child coefficient further

induce four additional child coefficients in d02. This parent-child relationship exists at

all subbands except for the all low-pass subband c02. This is visually depicted in Fig.

3.2. Shapiro conjectured that in such pyramidal image representations, if a coefficient

at a given scale (e.g., d12 ) is deemed insignificant with respect to a certain threshold

value, then descendants of this coefficient (i.e., 4 children, 16 grandchildren etc.) lying

in finer scales and at same spatial orientations would most likely be insignificant.

Shapiro termed this as a decaying spectrum hypothesis. Consequently, he coined the

term zerotree in order to identify such coefficients and its descendents. The ease with

which zerotrees can be identified determines the overall performance of an embedded

image coding algorithm. As a result, positions of these descendants need not be encoded.

This crucial fact, in identifying locations of zerotrees, led to the development of Shapiro’s

classic Embedded Zerotree Wavelet (EZW) coding algorithm [9].
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A simplified representation of zerotrees in an embedded bit-stream was made possible

by the pioneering work of Said and Pearlman [10] referred to as Set Partitioning in

Hierarchical Trees (SPIHT). This is very similar to Shapiro’s original work. However

a new feature, called state-transitions, was incorporated when classifying zerotrees in

subbands [16, Sec. 6.3.3]. This results in a bit-stream containing three symbols in

the dominant pass (+, - and St) where St indicates a state-transition. This significantly

improves the coding performance, when compared with Shapiro’s EZW technique having

4 symbols in the dominant pass (+, -, I, ZT ). Here I refers to an isolated significant

coefficient, while ZT indicates a zerotree root. The concerned reader is directed to [16]

for an explanation of the aforementioned terms as well as a comparative study of both

these algorithms.

As seen from Fig. 3.2, zerotree-based algorithms rely on inter-scale correlation among

wavelet-transformed coefficients. This assumption stems from the decaying-spectrum

hypothesis. In reality this is partially true. As noted by Shapiro [9, Pg. 3451]

“. . . Experiments run on about 30 images of all different types, show that

the correlation coefficient between the square of a child and the square of its

parent tends to be between 0.2 and 0.6 with . . .”

This indicates that inter-scale correlation amongst coefficients need not be an optimal cri-

terion for encoding images. An alternate criterion, in which bit-plane correlation rather

than inter-scale correlation is used to encode coefficients. This involves significance de-

termination with respect to coefficients in all subbands at a given scale. Hence, this

criterion is termed as intra-scale correlation and illustrated in Fig. 3.3.

This was identified by Lan and Tewfik [15]. The algorithm proposed by these authors

was termed Multigrid Embedding (MGE) of wavelets. In this, positions of coefficients

at a given level are encoded by quadtree-partitioning. A similar scheme, based on en-

coding positions of significant coefficients via quadtrees, was independently proposed by
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Fig. 3.3: Intra-scale relationship between wavelet coefficients in any given subband. Co-
efficients have been scaled for display purpose. The direction of arrows indicate
that all coefficients at a particular scale are examined before a coefficient can
be deemed significant.

Munteanu et al. [52]. It has been reported that an MGE algorithm is useful in encoding

natural images [15] and disparity compensated residual images [12] (without entropy

coding) when compared with traditional SPIHT algorithms. This fact forms the basis

for the discussion presented in the next section.

3.3 Justification of using an adaptively-scanned
wavelet-difference-reduction algorithm

Independent of the authors in [15] and [52], a technique that utilizes intra-scale cor-

relation in encoding images was proposed by Tian and Wells [53]. This was termed

a wavelet-difference-reduction (WDR) algorithm. Unlike the MGE algorithm, this tech-

nique does not rely on quadtrees to locate the positions of significant coefficients, making

it a computationally simpler process. Instead, the coefficients are accumulated in a pre-
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determined scan order. Positions of significant coefficients in the scan order are encoded

using a binary-difference-reduction technique, explained later in this chapter. As with

MGE, WDR also has been shown to provide improved perceptual and quantitative re-

sults when encoding images with high-frequency content [53] (without entropy coding)

when compared with SPIHT.

From Figs. 3.2 and 3.3 it is observed that the aforementioned techniques sacrifice

either intra- or inter-scale correlation when encoding coefficients. Non-exploitation of

intra-scale correlation affects the performance of SPIHT when encoding images with

high frequency content. Similarly, non-exploitation of inter-scale correlation amongst

subbands affects the performance of both MGE and WDR when encoding natural im-

ages.

To alleviate this problem, Walker and Nguyen proposed an improved version of the

WDR algorithm [16]. This is referred to as an adaptively-scanned wavelet-difference-

reduction (ASWDR) algorithm. Initially, coefficients are scanned in a pre-determined

order. Significant coefficients are identified in a manner similar to that of a WDR algo-

rithm. These significant coefficients are then used to adjust the positions of remaining

insignificant coefficients. Insignificant child coefficients induced from significant parent

coefficients are scanned prior to other coefficients at a particular scale. This new ar-

rangement of coefficients is used to modify positions of coefficients at finer scales. This

can be observed from Fig. 3.4. Details of this algorithm is presented in the following

section.

3.4 Steps implemented in an ASWDR algorithm

To better understand the discussion, some notations are first presented.

• ICS is a 1-D vector, containing all coefficients from the transformed image and

scanned in a certain order,
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Fig. 3.4: Methodology used in an ASWDR algorithm. Significance of coefficients is de-
termined via intra-scale correlation. Inter-scale correlation is used to “bring
forward” descendants of previously identified significant coefficients. This re-
duces overall bits required to encode positions of significant coefficients.

• SCS is a 1-D vector, containing coefficients that have been deemed significant

during dominant passes,

• TPS is a temporary 1-D vector, containing scan-updated coefficients,

• w indicates a wavelet-transformed coefficient, and

• γ is the wavelet coefficient, from the transformed image, with the largest magnitude.

The ASWDR encoding algorithm for a grey-scale image can be explained in a 7-step

procedure. To better understand these steps, Shapiro’s example of an 8×8 matrix,

consisting of wavelet transformed coefficients [9, Fig.8], shown in Fig. 3.5, is considered.

The steps are as follows:
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Fig. 3.5: Shapiro’s 8×8 image having three levels of wavelet transform

(a) Global (b) Individual subbands

Fig. 3.6: Scan order employed in accumulating coefficients.

• Step 1: A 2-D separable lifting wavelet transform (Fig. 2.3), using Mallat’s al-

gorithm [33] and lifting procedures outlined by Daubechies and Sweldens [54] is

performed on the image.

• Step 2: The wavelet coefficients are globally scanned as per the order shown in

Fig. 3.6(a). The coefficients in individual subbands are scanned in a:

– JPEG-style zigzag order [24] in the all low pass (LL) subband,

– Column-wise order in HL subbands,
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– Row-wise order in LH subbands, and

– JPEG-style zigzag order in HH subbands.

This is shown in Fig.3.6(b). These coefficients, having been scanned in the afore-

mentioned order, are placed in the ICS list. Additionally, an empty SCS list is

also initialized. For this example,

ICS = [63,−34,−31,−23,

49, 14,−13, 10, 15, 14,−7,−9, 3,−14,−12, 8,

7, 3, 5, 4,−2,−7, 4, 13,−12, 6, 3, 3, 2, 9,−1, 7,

−5, 9,−1, 47, 2,−3, 0, 3, 2,−3,−6,−4, 6, 5, 11, 5,

4, 3, 6,−2,−2, 3, 0, 6, 0, 2, 4, 3, 3,−4, 6, 4]

• Step 3: γ is calculated as

γ = arg max
i∈[1,MN ]

|ICS[i]| (3.1)

where MN is the length of ICS. (M, N) are the dimensions of the image. An

initial threshold

T = 2b log2 γ c (3.2)

is chosen. Finally, a counter j = 0 is initialized. In this example

γ = ICS[1] = 63

and

T = 32

• Step 4: A dominant scan is performed on ICS. This involves scanning all coef-

ficients in an ascending index (ICS[1], ICS[2], . . . , ICS[MN ]) order. During this

process if the magnitude of a coefficient ICS[k], at position k, is greater than T it
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is removed from ICS. It is modified and placed in the SCS list, at position l +1.

Here l is the current length of the SCS list. In other words

SCS[l + 1] =

{
|ICS[k]− T |, |ICS[k]| > T
no change, |ICS[k]| ≤ T

The original position of this significant coefficient, k, is encoded along with the sign

of the coefficient. This is achieved by a binary reduction process. This involves

a two stage process. In the first stage a binary representation of the (unsigned)

integer is obtained with a minimum number of bits. For example

5 = 101

24 = 11000

If observed, the most significant bit (MSB) of these binary representations is always

equal to one. This can be omitted and instead, the sign of the coefficient can be

used as a separator between two successive position values. During decoding, the

MSB removed during the encoding process can be appended back in the binary

representation. This correctly identifies the position of the coefficient in the list.

In addition, the sign of the coefficient can also be decoded from this reduced binary

representation. It has been shown [55], that a binary-reduced value is the shortest

length by which a signed integer can be represented.

Positions of all coefficients, after this currently identified significant coefficient is

decremented by one as

ICS[k + n]← ICS[k + n + 1], n = 1, 2, . . . , last index position of the list

and shrinks the list. In other words, the position index of the next significant

coefficient is calculated relative to the position of the just extracted significant

coefficient. The steps involved in extracting significant coefficients, in the first
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dominant pass, for the given example are as follows:

pos. = +1, sig.coeff. = 63

ICS = [−34,−31,−23, 49, . . . , 7, 3, . . . ,−5, 9, . . . , 47, 2, . . . , 4, 3, . . . , 6, 4]

SCS = [31]

pos. = −1, sig.coeff. = 31

ICS = [−31,−23, 49, . . . , 7, 3, . . . ,−5, 9, . . . , 47, 2, . . . , 4, 3, . . . , 6, 4]

SCS = [31, 2]

pos. = +3, sig.coeff. = 49

ICS = [−31,−23, 14, . . . , 7, 3, . . . ,−5, 9, . . . , 47, 2, . . . , 4, 3, . . . , 6, 4]

SCS = [31, 2, 17]

pos. = +31, sig.coeff. = 47

ICS = [−31,−23, 14, . . . , 7, 3, . . . ,−5, 9, . . . , 2,−3, . . . , 4, 3, . . . , 6, 4]

SCS = [31, 2, 17, 15]

The relative nature of index positions can be guaged by observing the original

ICS list. For example, 47 has an absolute index position of 5 while the actual

value encoded is +3 (where the + indicates the sign of the coefficient). Hence, at

the end of the first dominant scan, the following position indices, [+1, -1, +3, +31],

are output. A reduced binary representation of these signed integers would be as

follows:

+ − 1 + 1111+

An end-of-scan (EOS) indicator is also needed to enable the decoder to differen-

tiate between two successive dominant or refinement scans. This is achieved by

outputting a binary-reduced value

C = MN − Csec + 1
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followed by a + symbol, at the end of a dominant scan. This value is chosen,

as it is guaranteed to be out-of-range when compared with the maximum index

position in the modified list. Here MN is the length of the original ICS list,

prior to encoding. Csec indicates the length of the SCS list at the end of the

current dominant scan. At the end of the first dominant scan, four coefficients are

deemed significant. The maximum index position of the modified ICS list is 60.

Thus, C = 61 making it just out-of-range with respect to 60. Hence, the complete

bit-stream at the end of the first dominant scan would be as follows:

bit− stream = + − 1 + 1111 + 11101+

• Step 5 : This is a refinement scan and is implemented only if j > 0. This is similar

to the refinement scans implemented in current embedded image coding algorithms

like EZW, SPIHT, MGE, etc.

All elements of SCS obtained from previous dominant scans, except for the one

just concluded, are examined. For a particular coefficient SCS[l] a refinement bit

R is generated, subject to the following conditions:

R =

{
1, SCS[l] > T
0, SCS[l] ≤ T

Consequently the values of these coefficients are also modified as:

SCS[l]←
{

SCS[l]− T, R = 1
unchanged, R = 0

In this example, the first refinement scan occurs after the second dominant scan,

where T = 16. Hence, the bit-stream and the modified SCS list would be as

follows:

bit− stream = 1010

SCS = [15, 2, 2, 15]
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• Step 6: Here, the scan-order of coefficients remaining in ICS is modified. As

seen from Step 4, the minimum number of bits required for a binary representation

of an integer increases with increasing magnitude. In this step, descendants and

siblings of coefficients previously deemed significant are “brought forward”. This

is tantamount to reducing magnitudes of position indices of coefficients that may

be deemed significant in future dominant scans. Justification for using these steps

can be found in [16, 56].

Initially, the remaining insignificant coefficients from the all low-pass subband are

scanned and placed in TPS. The following steps are implemented to update the

scan order:

– Significant parents at scale k, generated from previous scans, are noted. Here,

significance is derived with respect to the current threshold value. The first

part of the scan, at the next fine scale k − 1, contains the insignificant values

lying amongst the children induced by these parents. The remaining insignif-

icant values (parents) at level k are then scanned and joined to TPS.

– The second part of the scan order at scale k− 1 consists of insignificant child

values, having at least one significant sibling.

– The third part of the scan order at scale k − 1 consists of insignificant child

values, having no significant sibling.

In order to reflect the hierarchical importance of coefficients at this bit-plane, three

different chains are created. At the completion of the current scale (bit-plane), these

chains are sequentially joined to the TPS. Subsequently, this modified ordering is

used to update the scan order of coefficients in the next fine scale. This process is

repeated until all levels have been exhausted. ICS is subsequently replaced with

TPS.
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• Step 7: The counter j is incremented by 1, while the present threshold T is scaled

by a factor of 1
2
. Subsequently Steps 4-6 are repeated until a specified bit-budget

is exhausted.

There are 3 possible symbols that are output during the course of the aforementioned

steps:

• Dominant Scan : 0, 1, and ‘S’. Here 0, 1 are used to represent values from the

binary-reduced sequence. ‘S’ indicates the occurrence of a separator between two

consecutive positions. The sign of the coefficient is determined by the bit following

‘S’. A positive value is inferred if this bit is 0 while a 1 indicates the occurrence of

a negative number. This extra bit is omitted when outputting the binary reduced

values for an EOS.

• Refinement Scan : 0, 1. These are the only two possible values that emanate during

this scan.

These symbols are losslessly encoded using a context-based arithmetic coder (CAC)

[57]. Similar to other state-of-the-art algorithms (e.g., SPIHT, EZW, WDR, etc.) the

encoded bit-stream is preceded by a header information. This generally consists of the

image dimensions and initial threshold T .

During decoding, the steps described above are recapitulated and a quantized output

is produced. An inverse wavelet transform is performed on these quantized values to

obtain a final decompressed image.

3.5 An example

To conclude this chapter, a complete (unencoded) bit-stream2 is provided, when encoding

Shapiro’s image in Fig. 3.5. The main objective of this example is to show the “bring-

forward” effect in an ASWDR algorithm when compared with a WDR counterpart. For

2It should be emphasized that position indices are eventually represented as binary-reduced values.
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additional results and qualitative discussion between ASWDR, SPIHT and JPEG2000,

the concerned reader is directed to Appendix B.

Closely observing both tables, it can be noticed that “position indices” of significant

coefficients are represented as smaller numbers in Table 3.2 when compared with Table

3.1. As an example consider the last value at the end of each dominant scan. In most

instances, this value is less in Table 3.2 than in Table 3.1. This indicates that using

a scan-update procedure (Step 6 of Sec. 3.4) insures that, in general, more number of

coefficients are encoded. This fact may not be easily perceived from this trivial example.

In order to explain this the reader is directed to results presented in Appendix B.
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Table 3.1: Output data stream for the matrix shown in Fig. 3.5 using a WDR encoding
process. The column on the left indicates the current pass (Di = dominant
pass, Si = refinement pass). The column on the right indicates the threshold
for the current pass. Boldfaced numbers indicates an occurrence of EOS .

D1 1+1-3+31+61+ 32.0
D2 1-1+59+ 16.0
S1 1010 16.0
D3 1+1-1+1+1+2-2-1-9+1-5+4+12+ 46+ 8.0
S2 100100 8.0
D4 1-2+1+2+3-2+5+1-8+2+1+1+3+5+7+ 31+ 4.0
S3 1001011001100010000 4.0
D5 1+1+1+2+1+1+5-2+2-1-1+1+3+4+1+1+1-1+ 13+ 2.0
S4 1001010001000000001011000100000000 2.0
D6 1-1+3+2+1-1-3+ 6+ 1.0
S5 0000001010100000000010001001100111001100000010010001 1.0
D7 1-1- 4+ 0.5
S6 10110110111000101110111011011111111111110100111111010111001 0.5

Table 3.2: Output data stream for the matrix shown in Fig. 3.5 using an ASWDR
encoding process. The column on the left indicates the current pass (Di =
dominant pass, Si = refinement pass). The column on the right indicates the
threshold for the current pass. Boldfaced numbers indicates an occurrence
of EOS .

D1 1+1-3+31+61+ 32.0
D2 1-1+59+ 16.0
S1 1010 16.0
D3 1+1-1+1+1+2-2-1-5+11+1-5+9+ 46+ 8.0
S2 100100 8.0
D4 1-2+1+3+3-4+2+1-8+3+6+2+1+3+4+ 31+ 4.0
S3 1001011001100010000 4.0
D5 1+1+1+1+2+1+4+3-1-2-1+2+4+1+1-1+1+1+ 13+ 2.0
S4 1001010001000000001011000100000000 2.0
D6 1-1+4+1+1-2-2+ 6+ 1.0
S5 0000001010100000000010001000111011001100000000100110 1.0
D7 1-2- 4+ 0.5
S6 10110110111000110110111011011111111111111000111101110111001 0.5
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Chapter 4

Stereoscopic Still-Image Coding - A
summary

Overview

A review of current trends in stereoscopic still-image coding is presented. This is followed by a mathe-

matical derivation of optimal solutions when encoding such imagery. The concept of asymmetrical coding

of stereoscopic imagery is also discussed. Two specific algorithms [11, 12], pertinent in the proposed

research work, are also discussed here. Limitations of these algorithms are presented. This provides a

justification in designing the algorithm proposed in this thesis.

4.1 Introduction

I
MAGES in a stereoscopic pair essentially depict the same scene, but imaged from

two slightly different points of view (e.g., Fig. 2.1). Hence, independent storage or

transmission of these images is an extremely redundant operation [3]. Instead, methods

that exploit the disparity between them have been shown to produce better results in a

rate-distortion (R-D) framework. The concepts of disparity and disparity-vector estima-

tion in stereoscopic imagery were previously discussed in Chapter 2.

From an encoding point of view it has been shown [3] that, when viewed in a stereo-

scopic mode, both images need not be displayed at full perceptual quality. This fact is

validated from extensive subjective results presented in [3, 58, 59]. This also led to the
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development of asymmetrical coding in stereoscopic imagery, a fact discussed later on in

this chapter.

In [60] a simple wavelet-transform-based method was presented for encoding stereo-

scopic still-images, without disparity-estimation. This system uses Lloyd-Max quantizers

while exploiting properties of the HVS. Lack of disparity-estimation makes it an inefficient

system. In addition, Lloyd-Max quantizers have been reported to provide sub-optimal

results when encoding wavelet coefficients [61].

Superiority of disparity compensated coding techniques have been previously demon-

strated. In [5, 6, 7], DCT-based methods have been proposed. Due to inherent drawbacks

of DCT-based systems, as discussed in Chapter 2, DWT-based methods were devel-

oped. In [8] a sophisticated wavelet-based coding scheme has been proposed. This uses

disparity-compensation in a wavelet domain and subspace projection techniques for en-

coding wavelet coefficients. This method is computationally expensive as different basis

functions need to be constructed for representing each block of wavelet coefficients. It

addition, this technique does not support progressive transmission of wavelet coefficients.

To overcome these drawbacks, Boulgouris and Strintzis [11] proposed a novel solu-

tion. This scheme guarantees high levels of SNR-scalability, subject to some conditions.

In addition, a very simple disparity-estimation is performed making it computationally

efficient. Fixed-block-based disparity-estimation techniques were used by the authors

of that paper. A similar concept has been proposed in [17], but variable-block-based

disparity-estimation is used. The authors of [17] have shown the superiority of using

such a technique when compared with fixed-block-based counterparts.

Frajka and Zeger [12] proposed an alternative theory with respect to encoding stereo-

scopic imagery. They argued that global encoding of residual images may not produce

superior results in a R-D framework. Their hypothesis was based on work, previously

reported by Moellenhoff and Maier [14], that identified the distinctive nature of disparity



4.2 Solutions for disparity estimation and compensation 53

compensated residual images. The results, reported by the authors [12], were obtained

using a conditional coder (CONCOD) [3]. This has been shown to be slightly inferior

when compared with a closed-loop structure [11]. Details of this technique are also

discussed in this chapter.

4.2 Solutions for disparity estimation and compensation

To better understand the algorithms discussed in this chapter, as well as the algorithm

proposed in this thesis, some background information must be discussed. These pertain

to disparity estimation and disparity compensation.

4.2.1 Disparity estimation

In the state-of-the-art of the algorithms [12, 11] discussed in this chapter, disparity

estimation is performed between two images having full perceptual quality and at full

spatial resolution. In Chapter 2 the efficacy of using a multiresolution-based hierarchical

disparity estimation has been shown. The following paragraphs argue against the use of

full-perceptual-quality images in disparity estimation.

Figs. 4.1(a) and 4.1(b) illustrate typical disparity estimation that can be performed

between images, having full perceptual quality (i.e., highest SNR-resolution). These are

discussed shortly. These are useful if only stereoscopic still-image coding is desired. If

on the other hand the proposed encoding structure is extended to stereoscopic moving-

image coding, some problems may arise. As explained in Chapter 6, certain images from

the reference stream will not be available at full perceptual quality. This implies that

disparity estimation should not be performed at full perceptual resolution.

Assume that both images at full perceptual quality are represented at 8.0 bits-per-

pixel (bpp). This can be restated as disparity estimation being performed when images

are represented at the same bit-rate. If this criterion is used, the problem described in
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the previous paragraph can be overcome by using locally decoded versions of both images
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(a) Open-loop (CONCOD) disparity encoder structure
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Fig. 4.1: Two distinct stereoscopic still-image coding hierarchies

for disparity estimation. While this scheme may introduce some additional quantization

noise during decoding, it also insures that unbiased disparity estimation is performed

between both images.
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Fig. 4.2: Residual error quantization

4.2.2 Disparity compensation

In order to explain the process of efficient disparity compensation, consider Fig. 4.2 ([62,

p 204, Fig. 7.1]). Xn indicates the signal to be quantized while Ūn represents a signal

that is subtracted from Xn. The unquantized error signal en is represented as

en = Xn − Ūn,

A quantized version of this signal, ên is obtained by passing it through a quantizer Q as

ên = Q(en),

Let Ûn represent a signal that is added to ên in order to obtain a quantized version of

Xn as

X̂n = ên + Ûn,

The distortion E incurred as a result of this quantization process is expressed as

E = E[(Xn − X̂n)2]

= E[((en + Ūn)− (ên + Ûn))2]

= E[((en − ên) + (Ūn − Ûn))2]

= E[(en − ên)2] + E[(Ūn − Ûn)2] + 2E[(en − ên)(Ūn − Ûn)] (4.1)

The dashed-box term in Eq. 4.1 can be assumed to be negligible as it represents the

expected value of the product of two uncorrelated random variables. As a consequence,
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the distortion E in Eq. 4.1 can be approximated as

E ≈ E[(en − ên)2] + E[(Ūn − Ûn)2] (4.2)

The distortion is minimized if Ūn equals Ûn when generating X̂n.

In the context of disparity compensation, this implies that distortion in a recon-

structed target image is minimized if the reference image, used in disparity compensation

at the encoder, is the same as the reference image used in disparity compensation at the

decoder. This concept is further explained when describing the algorithms proposed in

[11, 12].

4.3 Summary of algorithms

A widely used structure for encoding stereoscopic still-images is shown in Fig. 4.1(a).

In the literature this is sometimes referred to as a conditional coder (CONCOD) [3].

Disparity estimation is performed between images having full perceptual quality. These

disparity vectors are used by the reference image to generate a disparity compensated

image. A residual image is generated by subtracting a generated disparity compensated

image from the target image at full perceptual quality. Both reference and residual images

are encoded using any state-of-the-art embedded image coding algorithm. It is observed

that the dashed-box term in Eq. 4.2 can never be minimized from this structure.

It is also observed from Fig. 4.1(a), that a residual image is generated from a full

perceptual quality target image. During decoding, a full perceptual quality reference

image is not available. As a result, the disparity compensated image obtained during

decoding is not the same as that generated during encoding. When information from

the residual bit-stream is added to this mismatched disparity compensated image, the

reconstructed target image is said to suffer from drift.

In order to overcome this problem, Boulgouris and Strintzis proposed a closed-loop

disparity codec (CLDC) structure to encode these image pairs [11]. A block diagram of
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this structure can be found in Fig. 4.1(b). The additional feature in this structure is a

local decoding of the reference image. A disparity compensated image is generated using

this locally decoded reference image. As such this image is also available when decoding

bits from the reference image. Thus, the expression in the dashed-box of Eq. 4.2 is min-

imized as Ūn = Ûn, which in this case would be the same disparity compensated images.

This makes a CLDC a better structure for encoding stereoscopic still-images. It should

be emphasized here that problems due to drift can arise in this structure. This occurs

if disparity-compensation is performed with a decoded reference image at a bit-rate less

than that version used to generate a compensated image. Hence, this structure is limited

by its a priori dependence on bit-rates of reference image-views.

The authors in [11] proposed an EZW codec for encoding residual as well as reference

images. As previously mentioned, fixed-block-based disparity estimation is performed

between the images. In addition, they also proposed a novel yet ad-hoc approach to

obtain asymmetrical coding. This involves a biased scaling of reference image wavelet

coefficients when comparison with those from the residual image. This insures that dur-

ing decoding, perceptual quality of reference images improves more rapidly than target

images.

Frajka and Zeger [12] proposed an alternate approach to efficiently encode these

disparity compensated residual images. As an example consider Fig. 4.3(a). Two repre-

sentative regions have been indicated. Occluded regions consists of areas present in one

image view and absent in another. It is evident that occluded regions have very simi-

lar characteristics to that of natural images. However. non-occluded regions consist of

near zero-intensity coefficients. The authors in [12] conjectured that embedded coding of

residual images does not guarantee high levels of SNR-scalability in stereo-image coding.

They propose that occluded and non-occluded regions in an residual image warrant
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(a) Raw image (b) Residual image

Fig. 4.3: Raw and residual versions of an extracted portion from the “basketball” target
(left) image. Images have been scaled for display purposes.

separate analysis. Such a scheme is termed mixed-transform analysis. Results presented

by the authors in [12] have been obtained using an overlapped-block disparity compen-

sation (OBDC) technique [18]. As reported in [12, Sec. 3.3], residual blocks that contain

significant high-frequency information (i.e., non-occluded blocks) are transformed using

a DCT. On the other hand, occluded blocks are transformed using a three-scale Haar

wavelet decomposition.

The authors in [12] based their algorithm on results previously published by Moel-

lenhoff and Maier [14]. These results indicate that pixels in residual images are less

correlated than those in natural images. Frajka and Zeger extended this observation

by analyzing local correlation of pixels (restricted to 1-pixel) across block-boundaries in

these residual images. They observed that this local-correlation drops significantly at

block boundaries. Hence this provides a justification of using different transform-based

analysis on separate blocks of residual images.
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Furthermore, they proposed using an MGE algorithm [15] to encode these residual im-

ages. As discussed in Chapter 3, this algorithm relies on intra-level correlation amongst

subbands in generating embedded bit-streams. Such a scheme produces perceptually

better results when the image being encoded consists of large areas of high-frequency

content. To classify occluded blocks the authors proposed evaluating the energy (i.e.,

estimation-error) of all blocks in the residual image. Any block having an energy above

a certain threshold is classified as an occluded block.

Unlike [11], no ad-hoc scaling is implemented on reference and target images. Notwith-

standing this, the authors have been able to obtain superior results, in a R-D framework,

when compared with the results presented in [11] [12, see Fig. 8]. It should be empha-

sized that the authors do not use any computationally intensive scheme for disparity

estimation. As previously indicated, they use a sub-optimal CONCOD structure, shown

in Fig. 4.1(a), to obtain their results It can only be concluded that use of an MGE

algorithm (that exploits intra-scale correlation amongst wavelet coefficients) justifies the

improved results of Frajka and Zeger.

4.4 Asymmetrical Coding

To conclude this chapter, the reader is introduced to the concept of asymmetrical coding

of stereoscopic imagery. In his paper, Perkins argued [3] that in a stereoscopic viewing

mode, the HVS is relatively insensitive to perturbations in one image (i.e., target-view)

when viewed simultaneously with a higher perceptual quality reference image. From a

R-D point of view, this involves encoding the reference-view at a higher bit-rate than the

target-view.

Consider Fig. 4.4. In this, a Gaussian-blur has been applied on the target-view prior

to encoding while the reference-view is maintained at full perceptual quality. This cod-

ing formulation of stereoscopic imagery has been presented in [23]. As high-frequency
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(a) A priori Gaussian-blurred target image (b) Reference image at full perceptual quality

Fig. 4.4: An example of Gaussian-blurred target image, with a higher perceptual quality
reference image.

information is removed from the target image, it can be more efficiently encoded at low

bit-rates. This insures an asymmetrical coding framework whereby, the reference-view

can be encoded at a higher bit-rate than the target view. Fig. 4.5 depicts some repre-

sentative examples of anaglyphs of these images. The left (target) image in all cases is

blurred with a 5×5, zero-mean, Gaussian filter.

This framework is however unsuitable for the algorithm proposed in this thesis. From

a qualitative point of view, disparity-estimation between two image views at different per-

ceptual qualities may lead to biased estimation results. This was explained previously in

Sec. 4.2.1. For example in Fig. 4.4 the railings near the steps in the target-view cannot

be distinguished. Hence correct disparity-estimation cannot be made when comparing

with its corresponding view from the reference image, where the railings and steps are

clearly distinguishable.

As indicated in the previous section, Boulgouris and Strintzis proposed an ad-hoc

scaling of residual wavelet coefficients prior to encoding them. No mathematical justi-

fication is provided for selecting these scaling values [11, Table 1]. In addition, these
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(a) Original target image

(b) Anaglyph with full-resolution reference image

Fig. 4.5: Raw target (left view) image and an anaglyph with a full-resolution reference
image from the “outdoors” stereo-image pair (dimensions = 640×480).
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(c) Blurred target image; r = 1.5

(d) Left-image blurred; r = 1.5

Fig. 4.5: Medium level of blur applied on the target image, and a corresponding
anaglyph with a full-resolution reference image. Target (left) image has been

blurred using a 2-D Gaussian filter G(x, y) = 1
2πr2 e−

x2+y2

2r2 .
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(e) Blurred target image; r = 5.0

(f) Anaglyph with full resolution reference image

Fig. 4.5: High level of blur applied on the target image, and a corresponding anaglyph
with a full-resolution reference image. Target (left) image has been blurred

using a 2-D Gaussian filter G(x, y) = 1
2πr2 e−

x2+y2

2r2 .
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values are scale-dependent. Hence, this technique is also avoided in the design of the

proposed algorithm. Frajka and Zeger have reported results in an asymmetrical cod-

ing framework that relies entirely on bits reconstructed from the target image stream,

without any ad-hoc scaling. Consequently, this approach is adapted in this thesis.
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Chapter 5

Proposed Wavelet-Based Scalable
Stereoscopic Still-Image Codec

Overview

In this chapter a novel stereoscopic still-image codec structure is presented. Differences of this structure,

when compared to those presented in Chapter 4, are also highlighted. This is followed by a discussion

of a novel loop-filtering scheme, using an edge-preserving noise-reduction (EPNR) filter. It is shown

that partition-artifacts are suppressed to a large extent in the generated residual images. This in turn

improves PSNR values of reconstructed target images. Comparative results indicate that the proposed

algorithm outperforms Frajka and Zeger’s [12] and Shukla and Radha’s [17] algorithms by at least 0.3-

1.2 dB. Finally, a method is presented to obtain discrete levels of spatial-scalability with the proposed

algorithm.

5.1 Proposed codec

B
ASED on observations made in Chapters 2-4, a novel stereoscopic still-image

codec is described below. This is organized into two parts. The first part deals

with means to achieve SNR-scalability from the codec. The second part outlines a method

to obtain discrete levels of spatial scalability.
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Fig. 5.1: Block diagram of proposed codec, with SNR-scalability, at a specified spatial-
resolution.
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5.1.1 SNR-scalability

A block diagram of the new structure used for compression with SNR-scalability can be

seen in Fig. 5.1. It is assumed that images will be reconstructed and displayed at full

spatial-resolution (i.e., scale-0). It is also assumed at this point that gray-scale images

are being processed. The steps implemented in this structure are outlined as follows:

• Step 1: Both the reference and the target images are decomposed using an N -

level, lifting-based, 2-D separable wavelet transform. This is indicated as DWTN

in the block diagram.

• Step 2: In Chapter 4 it was argued that disparity-estimation should be performed

between images having similar features. In [11, 12], raw images are used for

disparity-estimation. In other words, images represented at 8.0 bpp1 are used

for disparity-estimation. Here, it is proposed that these images be encoded at a

high bit-rate using the remaining steps of an ASWDR encoding scheme, as previ-

ously discussed in Chapter 3. In the proposed codec, this is represented as E(K1)

(K1 < 8.0). The value K1 within the parentheses indicates the bit-rate used in rep-

resenting both images. Bits generated from the reference image are transferred to

the overall bit-stream. However, no such operation is performed with bits generated

from the target image.

• Step 3: Bits generated from both images are locally decoded in this step. This is

obtained by using the inverse ASWDR steps D (described in Chapter 3). It should

be emphasized that this decoding is performed at the same bit-rate K1. (i.e., the

entire bit-stream is decoded)

• Step 4: An inverse wavelet transform (DWT−1
N−2) is performed on these locally

quantized coefficients such that images are reconstructed until a scale N − 2 is

1Assuming raw gray-scale images are represented at 8.0 bpp
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reached. As an example, the reader is referred to Fig. 2.7.

• Step 5: A hierarchical-block-based disparity estimation is performed in this step.

Details of this algorithm can be found in Chapter 2. If a variable-block-based

disparity estimation2 is used, then the following steps are also implemented:

– A quadtree partition is implemented on the all low-pass subband of the target

image, at scale-2. Details of this partitioning scheme are outlined later in this

chapter.

– The quadtree-map generated from this partitioning scheme is encoded, using a

binary-reduction technique previously described in Chapter 3. Bits generated

from this process are transferred to the main output data-stream.

No such quadtree-map encoding is necessary if fixed-block-based disparity estima-

tion is used.

• Step 6: Disparity-vectors at scale-0 are encoded using a binary-reduction tech-

nique, followed by a context-based arithmetic coding scheme. Bits generated in

this process are transferred to the main output data-stream.

• Step 7: A disparity compensated image is generated from the locally decoded ref-

erence image and disparity vectors at scale-0. An edge-preserving noise reduction

(EPNR) filter is applied on this compensated image in order to reduce perceptu-

ally visible partition artifacts. Justification and details of this filter are described

shortly.

• Step 8: A disparity compensated residual image is generated by subtracting this

filtered compensated image from the locally decoded target image. This residual

image is first transformed using an N-level DWT and subsequently encoded at a

2This is not explicitly shown in Fig. 5.1.
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bit-rate of K2 using the remaining steps of an ASWDR algorithm (indicated as

E(K2) in Fig. 5.1(a)). Bits generated in this process are transferred to the main

output data-stream.

Thus, a final data-stream would consist of bits from the reference image, quadtree-map

(if variable-block-based disparity estimation is performed), disparity vectors at scale-0

and residual image.

As images are displayed at full spatial-resolution, the decoding process is quite straight-

forward. As shown in Fig. 5.1(b), bits from the reference image are decoded. Disparity

compensation is performed using a reference image decoded at a bit-rate of K1. Reasons

for this have been explained in Chapter 4. Loop-filtering (with the same set of parameters

used during encoding) is performed here as well. This is used to smooth the generated

disparity compensated image. After this step, bits from the residual image are decoded

at any arbitrary bit-rate R1. This is obtained by inverting the ASWDR steps, indicated

as D(R1). An N -scale inverse DWT is performed and the generated residual image is

added to the loop-filtered disparity compensated image in order to obtain a decoded

target image.

As seen from Fig. 5.1(a), the progressive decoding of bits from the residual image de-

termines the SNR-scalability obtained from the proposed codec. SNR-scalability can also

be obtained by progressively decoding bits from the reference image stream. However

this is limited by the fact that a bit-rate of K1 bpp must be satisfied prior to generating

any bits from the residual stream. As previously mentioned K1 is a “high” bit-rate.

Hence differences in decoded reference images are visually imperceptible when compared

with their raw versions. Thus, any additional bits added to this bit-stream would be

redundant in nature. Thus, SNR-scalability obtained while decoding a stereo-image pair

is limited to bits from the residual image stream only.



5.1 Proposed codec 70

5.1.2 Spatial-scalability

A hierarchical disparity estimation scheme is generally employed to reduce the complexity

of a full search (FS) scheme. This was the justification provided in Sec. 2.4. However,

an unexpected benefit can be derived by using such an estimation. Fig. 5.1(a) depicts

the generation and subsequent encoding of a disparity compensated residual image at

scale-0. Such an encoding can also be performed at scales 2 and 1.

Assume that a residual image is generated, from the all low-pass subband only, at

scale-2. Assume that this is encoded and subsequently decoded at a bit-rate of K22. This

locally decoded residual image can be used for encoding the residual image at scale-1.

This would entail the following steps:

• Step 1: Generate a residual image at scale-1.

• Step 2: Perform a single stage DWT on the residual image obtained from Step 1.

• Step 3: Subtract the residual image, obtained at scale-2, from the all low-pass

subband of the wavelet transformed image in Step 2. This is visually depicted in

the dotted box of Fig. 5.2(b).

• Step 4: Encode (and locally decode) this reduced energy, transformed residual

image at a bit-rate of K21.

The above steps can be repeated for all succeeding levels. The nature of a DWT fa-

cilitates discrete levels of spatial-scalability on the reference image. Due to problems

associated with drift, this operation cannot be implemented in a straightforward manner

on the target image. The steps outlined above alleviate this problem. These steps are

highlighted in Fig. 5.2(a).

As a result, the embedded nature of this algorithm also becomes evident. Bits allo-

cated for scale-2 target images must be decoded prior to those bits earmarked for scale-1
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images and so on. During decoding, scale-2 target images are also available at scales 1

and 0. As this involves upsampling scale-2 images, SNR values of these target images

would be considerably less than images at scale-2. This explains the subtle difference

between SNR- and spatial-resolution in embedded image coding. A drawback of this

system is that it is restricted to a dyadic framework only.
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Fig. 5.2: Global structure for spatial scalability
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Fig. 5.2: contd. The dotted box depicts the procedure in which energy of a residual im-
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Adjacent Blocks

Block being estimated

Fig. 5.3: Overlapped-block disparity compensation (OBDC). All blocks must have same
dimensions. Different regions of the block (enclosed within the dashed line)
are estimated from different neighbours.

5.2 Justification for a new loop-filtering scheme

A widely used motion-compensation technique is overlapped block motion compensation

(OBMC) proposed by Auyeung et al., [63]. This was extended to disparity-compensation

by Woo and Ortega [18] and referred to as overlapped block disparity compensation

(OBDC). Consider Fig. 5.3. Assume that a block B1, having dimensions 8 × 8, is

being estimated. Thus, from an OBDC scheme, pixels of B1 are estimated as [2, p 248]:

B̂1(x, y) =
H1(x, y) q(x, y) + H2(x, y) r(x, y) + H3(x, y) s(x, y) + 4

8
(5.1)

where H1, H2 and H3 are scaling matrices having dimensions equal to that of the block

being compensated. q(.), r(.) and s(.) are pixels from the reference picture obtained from

three motion vectors. These are the motion vectors of the current block and two of its

four neighboring blocks. This can be seen from Fig. 5.3. As observed, this scheme is

only valid if fixed-block-based disparity estimation is performed between images.

In the proposed algorithm, arbitrarily-shaped region-based disparity-estimation will

be performed. A few representative examples of such estimation schemes can be seen in
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Fig. 5.4. Consequently, Eq. 5.1 cannot be used as surrounding blocks are not guaranteed

B3B1

B2

(a) Variable-block

R2

R1

R5

R4

R3

(b) Arbitrarily-shaped

Fig. 5.4: Examples of region-based disparity-compensation

to be of similar dimensions (Fig. 5.4(a)) or they may be arbitrarily-shaped regions (Fig.

5.4(b)). ODBC is used to visually suppress “partition artifacts”. Blocking artifacts are

a special case in which the partitions are blocks of fixed size.

Such partition artifacts occur in disparity-compensation schemes shown in Fig. 5.4

as well. In the proposed algorithm of this thesis, a variable-block-based disparity com-

pensation scheme (Fig. 5.4(a)) is used. The generic term, partition artifacts, is used

throughout the following discussion. This is meant to differentiate with blocking arti-

facts, a term widely referred to in the literature in conjunction with fixed-block-based

disparity- (or motion-) compensation.

In order to remove partition-artifacts from non fixed-block-based disparity compensa-

tion schemes, loop-filtering is used. This involves smoothing the disparity- (or motion-)

compensated image prior to generating a residual image. Loop-filtering forms the basis

of various video coding standards such as MPEG-1, etc. [2]. In [64] a sophisticated

loop-filter has been reported. Unfortunately, this is adapted for fixed-block-based com-

pensation schemes. Additionally, these filters are dependent on the block size and have

been described for DCT-based coding. During the literature survey, no suitable refer-

ences have been found addressing the problem of loop-filtering in DWT-images.

It is envisaged that any loop-filtering scheme designed for a specific compensation
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scheme (e.g., variable-block-based) should be compatible with other schemes as well. In

other words, this implies that any loop-filtering scheme should be region-independent. In

addition, any loop-filtering scheme should suppress partition-artifacts while preserving

as much as possible, useful features from compensated images. In this regard, moving-

average (MA) and median-filters [65, p. 191] can form possible candidates.

However, neither of these filters should be used in conjunction with partition-artifact

suppression. MA filters introduce blurring in the image by degrading relevant edge in-

formation. On the other hand median-filtering is effective only when the noise in images

consists of strong spike-like components. This forces points with distinct intensities to

be more like their neighbors. A useful feature of median-filtering is that natural edges

in images are well preserved.

5.3 Edge-preserving noise-reduction filter

In order to reduce partition-artifacts from disparity compensated images, a filtering

scheme that incorporates selective blurring of regions, coupled with natural edge-preservation

and unconstrained by region size dependency needs to be developed. This was achieved

by adapting an edge-preserving noise-reduction (EPNR) filter, proposed by Kröener and

Ramponi [19]. This filter was proposed to clean images, corrupted with Gaussian noise.

Here, it is assumed that pixel intensities lie between [0, 1].

Let f and g represent 2-D input and output signals, respectively. This filter is

essentially a cubic-polynomial operator whereby g[n1, n2], the filtered output pixel, is

expressed as

g[n1, n2] = α f [n1, n2] +
1

6
(1− α) β (5.2)

where

α =
1

2

(
(f [n1 − 1, n2]− f [n1 + 1, n2])

2 + (f [n1, n2 − 1]− f [n1, n2 + 1])2
)

λ + (1− λ)

β = f [n1, n2 − 1] + f [n1 − 1, n2] + f [n1, n2 + 1] + f [n1 + 1, n2] + 2 f [n1, n2] (5.3)
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This filtering operation is a simplified version of the original scheme proposed by Ramponi

in [66]. The selective smoothing property of this filter is made possible due to the boxed

term in Eq. 5.3. As indicated in [66], a sum of squared difference of sample values at the

extremes of the filter mask is evaluated. A sufficiently large value for this term implies

that the mask is positioned at a partition-artifacts boundary, making the frequency

response of the filter operator less selective (i.e., more blurring at boundaries).

Here λ represents the “smoothing parameter”. This is used to control the amount of

blurring in the disparity compensated images. Based on extensive experimental results,

λ is set equal to 1.35. This is a representative value. A range of [0.8,1.35] is sufficient

for most images analyzed during the course of this thesis.

Partition-artifacts in disparity compensated images are low-contrast high frequency

regions. Smoothing these regions would imply “spreading” the energy contained in them

and distributing it in surrounding regions. As noted by the authors in [19], the above

filter acts as a simple linear filter when the surrounding regions do not contain any low-

contrast regions. If however, such a low-contrast region is encountered in the image, a

difference in the gray-scale values between the outer and inner edges of the filter-mask is

created. Hence, from Eq. 5.2, α→ 1. This results in the filtered value being equal to the

central value f [n1, n2]. Thus, applying this filter on disparity compensated images results

in suppression of visible partition-artifacts. Additionally, some useful low-contrast high-

frequency content is also removed. This has a beneficial effect when the corresponding

residual image is encoded.

This filter can be applied iteratively on an image. With each successive iteration

partition-artifacts are gradually suppressed. This can be correlated with reasons provided

in the previous paragraph. This implies that a reasonable number of iterations would

suffice in smoothing disparity compensated images. In this thesis, two filter iterations

are used for smoothing disparity compensated images. It should be emphasized that this
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is an experimentally determined value.

Results shown in [14] indicate that residual images contain large areas of zero-intensity

values, smaller areas of vertical edge information and some occluded regions. Due to this

uneven distribution of regions, Frajka and Zeger [12] conjectured that the popular “CDF-

9/7” wavelet filter set would be unsuitable for transforming this image. The use of an

EPNR filter in this algorithm alters the distribution of the aforementioned regions in

the residual image. There are significantly larger areas of smooth edge information while

partition-artifacts are suppressed to a very large extent. As indicated in Chapter 3, the

ASWDR algorithm can reconstruct such edge information more effectively than currently

used embedded image coding algorithms.

5.4 Variable-block-based partitioning schemes

Justification for using a variable-block-based disparity estimation scheme has been pro-

vided in Chapter 2. In addition, the previous section describes a novel loop-filter that

can be used to suppress partition-artifacts arising in variable-block-based estimation

schemes. This section describes some commonly used quadtree-partitioning schemes to

obtain blocks of variable sizes. A few representative examples of quadtree-partitioning

schemes can be seen from Fig. 5.5.

5.4.1 Rate-distortion constrained quadtree-partitioning schemes

In [46], the authors presented a multiresolution variable-block-based coding scheme. In

it, the mean absolute difference (MAD) of a disparity compensated block with respect

to the original target image block was calculated. From Eq. 2.13, MAD for the ith block

is defined as

MAD(i, vi) =
1

BxBy

SAD(i, vi) (5.4)
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Quadtree-partitioned blocks

(a) Split quadtree partitioning

Blocks remaining after merge operation

(b) Split and merge quadtree partitioning

Fig. 5.5: Representative examples of quadtree-partitioning schemes

where (Bx, By) are the dimensions of the block being estimated. Hence, the authors in

[46] specified that if

MAD(i, vi) > Mt

then the block can be further subdivided. Here Mt is an ad-hoc threshold value. The

subdivision of blocks stops if this criterion is not met or the minimum possible block

size has been reached. The basic theory of this partitioning scheme lies in representing

a block with four disparity vectors in place of a single vector, increasing the bit-rate

incurred in representing these vectors. This scheme is primarily undertaken so as to

minimize the energy of residual images.

The authors in [67, 68] and [17] address this problem in a R-D framework by solving

a Lagrangian cost function. More specifically, this can be written as

Li(λ
∗) = Dres

i + Riλ
∗ (5.5)

where λ∗ is a Lagrange parameter, Dres
i the coding distortion of the residual block (shown

previously in Eq. 2.12) being considered and Ri is the bits expended in encoding the
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block co-ordinates. The authors in [17] observed that:

• the pruning structure used in [67, 68] does not account for neighboring blocks

having similar Lagrangian cost functions, and

• overall coding performance can be improved if these blocks, having similar La-

grangian cost functions, are combined.

The pruning criterion, used in the algorithms mentioned above, was originally proposed

by Ramchandran and Vetterli [69]. An example of both partitioning schemes can be

found in Fig. 5.5. These schemes, however, have some limitations and are discussed as

follows.

In [17, Sec. 2] the authors observed that the total distortion of all split and merged

blocks, D∗(λ∗), corresponds to the minimum distortion possible, for the given rate

R∗(λ∗) =
∑

i

Ri

However, distortions caused by partition-artifacts are not taken into account by this

scheme. As discussed in earlier chapters, a relatively higher bit-rate is needed to encode

residual images with partition-artifacts . It has also been shown, earlier in this chapter,

that an EPNR filter is used to smooth out partition-artifacts arising due to imperfect

disparity compensation. Hence, the above stated criterion for R-D optimization cannot

be used in conjunction with the proposed algorithm. To further emphasize this fact,

it is shown in the next section that fixed-block-based estimation can outperform this

variable-block-based scheme (in a R-D framework) subject to certain conditions.

Current MPEG-4 standards provide for object (or content)-scalability in encoded

and decoded moving-image sequences. A quadtree-partitioned image is unsuitable, on

its own, to provide good object-scalability. This is because the resulting boundaries are

jerky and do not align well with object discontinuities [4]. However, a quadtree-partition
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can provide a coarse approximation of an object. Additional partitioning can be applied

on the remaining blocks in order to obtain a close approximation for the object. One

such scheme is wireframe-partitioning [4]. Object segmentation is beyond the scope of

this thesis. The concerned reader is directed to an excellent review paper by Strintzis

and Malassiotis [4] for more details on object segmentation, in the context of stereoscopic

image coding.

Due to limitations associated with current R-D constrained quadtree-partitioning

scheme, a more general scheme is explored. It should be emphasized here that the

quadtree-partitioning scheme implemented in this research work:

• is entirely dependent on image content,

• does not rely on R-D constraints associated with current partitioning schemes. In

other words, there may exist fixed-block-based solutions that may provide similar

R-D performance, and

• is performed, while acknowledging the fact that more efficient partitioning schemes

can be implemented.

5.4.2 Image content based quadtree-partitioning

A split-only quadtree-partitioning scheme, based entirely on image content, can be im-

plemented using the technique suggested by Vaisey and Gersho [70]. In this, the variance

of pixels is used to classify a block either as homogeneous, textured, or edge-related. In

order to simplify this process, the following discussion pertains in classifying a block as

homogeneous or non-homogeneous. Let σ2
b be the variance of pixels of the block under

consideration. Vaisey and Gersho state that a block is homogeneous if

σ2
b < Vt
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Fig. 5.6: Quadtree-partitioning of Y-component of a textured image, with quadtree-
map generated at scale-0 (i.e., at original spatial resolution). Vt = 30. Block
dimensions range from 8×8 - 32×32. Image dimensions are 1024×1024.

where Vt is an empirically determined threshold value. In the context of quadtree-

partitioning, if a block is deemed homogeneous then further partitioning in the block is

stopped. By restricting classification to only homogeneous blocks, there is a chance that

image regions having sufficiently high texture are partitioned. This may be useful if

such regions occur at object boundaries. However, additional partitioning may not be

required if surrounding regions of a block are also textured. As an example, consider

Fig. 5.6.

Higher levels of partitioning are required in identifying the boundary of the medallion.
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Fig. 5.7: Image from Fig. 5.6, partitioned using a quadtree-map generated at scale-2
(e.g., as in Fig. 2.7) with a threshold Vt = 120. Block dimensions range from
8×8 - 32×32. Image dimensions are 1024×1024.

However, fine partitioning is not required when identifying regions on the medallion.

One way to avoid this redundant partitioning is to classify textured blocks, as per the

algorithm shown in [70]. A simplification to this process can be achieved by exploiting

the hierarchical nature of a 2-D separable DWT. On observing Fig. 2.7, it can be

inferred that the all low-pass image at scale-2 contains significantly less detail than its

scale-0 counterpart. An assumption is made whereby the variance threshold at scale-2

is increased by a factor of 4, when compared with its scale-0 counterpart. In Fig. 5.6,

Vt = 30. Hence, Vt = 120 when partitioning the all low-pass subband at scale-2.
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The image is Fig. 5.6 was initially divided in “superblocks” having dimensions equal

to 32×32. Regular quadtree-partitioning was effected on these superblocks. In order

to achieve a similar size of blocks, the all low-pass subband at scale-0 is divided into

superblocks, having dimensions equal to 8×8. The quadtree map generated at this stage

is subsequently scaled by a factor of four when scale-0 is reached. This can be seen from

Fig. 5.7. It is observed that object boundaries (e.g., medallion and the background) are

clearly defined in both images. However, partitions in textured regions (e.g., features on

the medallion) are significantly reduced in Fig. 5.7 compared to Fig. 5.6.

As previously indicated, this quadtree partition is not optimal in a R-D sense. There

exist fixed-block-based counterparts that may produce similar or better performance as

this partitioning scheme. These are enumerated in the following section. Furthermore,

it is acknowledged that a merge operation of these partitioned blocks would lead to

improved performance of reconstructed images. This is beyond the scope of this thesis,

and is left as future research work.

5.5 Results and analysis

Qualitative and quantitative results when encoding gray-scale images, are presented in

this section. Subsequently, limited subjective results are presented when encoding stereo-

scopic color-images.

5.5.1 Performance evaluation when using a loop filter

Fig. 5.8 qualitatively explains the difference when an EPNR filter is used in the algo-

rithm. The picture represents a section of the “basketball” stereo-image pair. It can be

seen from Fig. 5.8(a) that partition-artifacts are clearly perceptible near the referee’s leg

and the university advertising board (indicated as A in the figure). Another region of

interest (indicated as B in the figure) would be the player’s right shoe and the advertising
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(a) Without loop-filtering (b) With loop-filtering, λ = 1.35

Fig. 5.8: Sections of disparity compensated residual images when encoding the “basket-
ball” stereo-image pair. The images have been scaled for display purposes. A
raw version of this image section can be seen from Fig. 4.3(a).

board in the background. It should also be noted that these artifacts are very perceptible

at transitions between occluded and non-occluded regions (e.g., region C).

On examining Fig. 5.8(b), it is observed that partition-artifacts in these regions and

others have been suppressed to a large extent. It can also be observed that transitions

between perfectly compensated and occluded areas have also been smoothed. Partition-

artifacts require a significant amount of bits when encoding such residual images. If

disparity compensated images are smoothed, such artifacts are suppressed. Hence co-

efficients from other regions of residual images can be encoded. This tends to increase

PSNR values of reconstructed target images. This is validated by observing the results

presented in the latter part of this section.
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5.5.2 Qualitative results when using fixed-block and variable-block disparity

estimation

Qualitative results are presented to complement the discussion about using variable-

block-based disparity estimation rather than a fixed-block-based scheme. The textured

stereoscopic image, shown in Fig. 5.7, is predicted by disparity estimation and com-

pensation. A 3-scale hierarchical search strategy, with fixed- and variable-block-based

disparity estimation is used. Compensated images are smoothed using an EPNR filter,

with λ = 1.35 and two filter iterations. Resulting residual images can be seen in Figs. 5.9

and 5.10. Two representative regions, A and B, are shown in both images. It is evident,

perceptually, that a variable-block-based disparity estimation scheme generates reduced

energy residual images. This factor helps in increasing PSNR values of reconstructed

target images, as shown in the next sub-section.

5.5.3 Experimental results with monochrome images

SNR-scalability

A quantitative evaluation of the proposed algorithm is undertaken in this section. It is

compared with Frajka and Zeger’s results on the “outdoors” (Figs. 5.11(a) and 5.11(b))

and “fruits” (Figs. 5.11(c) and 5.11(d)) stereo-image pairs [71]. These results have been

provided by Dr. Tamás Frajka. A summary of this algorithm can be found in Chapter

4, while extensive details can be found in [12]. Comparative results are also provided

with Shukla and Radha’s R-D constrained, variable-block-based algorithm on the “arch”

stereo-image pair (Figs. 5.11(e) and 5.11(f)) [72]. These results have been provided by

Rahul Shukla at the EPFL, Switzerland. It should be indicated that the results presented

here compare the performance of the proposed algorithm at the same bit-rates used in

[12, 17]. The following notations are used when explaining the results obtained:

• FZ indicates results obtained using Frajka and Zeger’s algorithm [12],
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Fig. 5.9: Residual image obtained when predicting image shown in Fig. 5.7. A 3-scale
hierarchical fixed-block-based disparity estimation scheme is used, with scale-0
block size of 16×16. Image has been scaled for display purposes.



5.5 Results and analysis 87

Fig. 5.10: Residual image obtained when predicting image shown in Fig. 5.7. A 3-scale
hierarchical variable-block-based disparity estimation scheme is used, with
a scale-0 block sizes ranging from 8×8 - 32×32. Image has been scaled for
display purposes.
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(a) Left-view (tar.), 640×480 (b) Right-view (ref.), 640×480

(c) Left-view (tar.), 512×512 (d) Right-view (ref.), 512×512

(e) Left-view (ref.), 512×512 (f) Right-view (tar.), 512×512

Fig. 5.11: “outdoors”, “fruits” and “arch” stereo-image pairs.
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• RS indicates results obtained using Shukla and Radha’s algorithm [17],

• NDnf indicates results when using the proposed algorithm in conjunction with

“CDF-9/7” filters. Loop-filtering is not used.

• ND1 indicates results when using the proposed algorithm in conjunction with

“CDF-9/7” filters. An EPNR filter is used, with λ = 1.35, and two filter iter-

ations,

• ND2 indicates results when using the proposed algorithm in conjunction with

“Odegard-9/7” filters. An EPNR filter is used, with λ = 1.35, and two filter

iterations,

• ND3 indicates results when using the proposed algorithm in conjunction with

“Cooklet-17/11” filters. An EPNR filter is used, with λ = 1.35, and two filter

iterations,

The “outdoors” stereo-image pair is decomposed using a 4-scale DWT, while a 5-scale

DWT is used in decomposing the “fruits” and “arch” stereo-image pairs, in order to

match results published in [12, 17]. The bit-rate for a target image represents a sum

total of bits required for decoding a (scale-2) quadtree-map, (scale-0) disparity-vectors

and (scale-0) residual image data. Results of encoding these stereo image pairs are

presented in Tables 5.1-5.13. For each test condition, the highest PSNR values is shown

in bold. Details of these tables are described as follows:

• Tables 5.1, 5.2, 5.6, 5.7 and 5.11 compare the performance of the proposed al-

gorithm with those presented in [12] and [17]. A variable-block-based disparity

estimation scheme is used, with quadtree maps generated at scale-2. “CDF-9/7”

wavelet filters are used in transforming images. Results are presented with and

without using an EPNR filter (λ = 1.35 and two filter iterations). The results
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(a) Fixed-block-based, 16×16 (b) Variable-block-based, 8×8 - 32×32, Vt at scale-2
= 120

(c) Fixed-block-based, 16×16 (d) Variable-block-based, 8×8 - 32×32, Vt at scale-2
= 48

Fig. 5.12: Block structure of “outdoors” and “fruits” target image-views, when using
fixed- and variable-block-based disparity estimation.
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from these tables clearly indicate that the proposed algorithm outperforms Frajka

and Zeger’s and Shukla and Radha’s algorithms by 0.3-1.5 dB., if loop filtering is

used. Even without loop-filtering, the proposed algorithm outperform’s Shukla and

Radha’s algorithm. However, it under-performs against Frajka and Zeger’s algo-

rithm as they used an overlapped-block disparity compensation (OBDC) technique

to smooth disparity compensated images.

• Tables 5.3, 5.4, 5.8, 5.9 and 5.12 present results when comparing the proposed

algorithm with the different wavelet filters used in this research work. Variable-

block-based disparity estimation is used in each instance. An EPNR filter, with

λ = 1.35 and two filter iterations, is used to smooth disparity compensated images

for each result. Comparable results are obtained when using longer and smooth

wavelet-filters. These results are superior to the Haar-DCT combination reported

in [12]. This is further discussed, shortly.

• Tables 5.5, 5.10 and 5.13 compare the efficacy of using variable-block or fixed-block

disparity-estimation schemes. A “CDF-9/7” wavelet filter is used to transform

images. An EPNR filter, with λ = 1.35 and two filter iterations, is used to smooth

disparity compensated images for each result. In most cases, a variable-block

disparity estimation scheme provides superior PSNR results when compared with

its fixed-block-based counterparts.

A detailed discussion is presented that expands on the summary presented above. In

order to begin this discussion a statement, with regards to the “CDF-9/7” wavelet filter,

from [12, p. 4] is quoted as follows:

“..It is preferred for its regularity and smoothing properties. With image

pixels less correlated in residual images shorter filters can better capture the

local changes..”
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Table 5.1: Ref. (right) view of “out-
doors” stereo-image pair
encoded at 2.00 bpp.

bpp (tar.) FZ NDnf ND1

(dB) (dB) (dB)

0.20 21.87 20.25 22.15

0.25 22.38 20.73 22.69

0.30 22.78 21.14 23.14

0.35 23.18 21.64 23.52

0.40 23.57 22.04 23.90

0.45 23.95 22.31 24.21

0.50 24.34 22.59 24.62

0.60 25.09 23.17 25.45

0.75 26.18 24.08 26.60

Table 5.2: Ref. (right) view of “out-
doors” stereo-image pair
encoded at 5.33 bpp.

bpp (tar.) FZ NDnf ND1

(dB) (dB) (dB)

0.20 21.82 20.28 22.21

0.25 22.32 20.76 22.80

0.30 22.72 21.18 23.20

0.35 23.12 21.69 23.59

0.40 23.49 22.08 23.97

0.45 23.89 22.37 24.30

0.50 24.27 22.65 24.76

0.60 25.02 23.24 25.62

0.75 26.14 24.23 26.78

Table 5.3: Encoding “outdoors”
stereo-image pair with
different wavelet filters.
Ref. image at 2.00 bpp.

bpp (tar.) ND1 ND2 ND3

(dB) (dB) (dB)

0.20 22.15 22.26 22.10
0.25 22.69 22.78 22.68
0.30 23.14 23.19 23.15
0.35 23.52 23.61 23.49
0.40 23.90 23.97 23.88
0.45 24.21 24.33 24.20
0.50 24.62 24.77 24.55
0.60 25.45 25.46 25.42
0.75 26.60 26.58 26.63

Table 5.4: Encoding “outdoors” stereo-
image pair with different
wavelet filters. Ref. image at
5.33 bpp.

bpp (tar.) ND1 ND2 ND3

(dB) (dB) (dB)

0.20 22.21 22.28 22.13
0.25 22.80 22.81 22.72
0.30 23.20 23.24 23.18
0.35 23.59 23.67 23.54
0.40 23.97 24.05 23.92
0.45 24.30 24.43 24.26
0.50 24.76 24.88 24.65
0.60 25.62 25.60 25.54
0.75 26.78 26.77 26.79

Table 5.5: Encoding “outdoors” stereo-image pair with fixed-block (F.B) and variable-
block-based (V.B) disparity estimation using “CDF-9/7” filters. Ref. image
at 2.00 bpp.

bpp (tar.) ND1(V.B) ND1(F.B - 16×16) ND1(F.B - 8×8)
(dB) (dB) (dB)

0.20 22.15 22.05 20.22
0.25 22.69 22.59 21.11
0.30 23.14 23.08 21.75
0.35 23.52 23.44 22.31
0.40 23.90 23.82 22.86
0.45 24.21 24.15 23.23
0.50 24.62 24.54 23.62
0.60 25.45 25.38 24.27
0.75 26.60 26.55 25.54
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Table 5.6: Ref. (right) view of “fruits”
stereo-image pair encoded
at 2.00 bpp.

bpp (tar.) FZ NDnf ND1

(dB) (dB) (dB)

0.20 34.61 33.78 35.52

0.25 35.58 34.56 36.46

0.30 36.33 35.28 37.11

0.35 36.88 35.84 37.71

0.40 37.39 36.22 38.22

0.45 37.84 36.63 38.74

0.50 38.25 37.02 39.01

0.60 38.87 37.62 39.86

0.75 39.74 38.72 40.67

Table 5.7: Ref. (right) view of “fruits”
stereo-image pair encoded
at 5.33 bpp.

bpp (tar.) FZ NDnf ND1

(dB) (dB) (dB)

0.20 34.55 33.75 35.53

0.25 35.53 34.52 36.50

0.30 36.26 35.25 37.17

0.35 36.80 35.82 37.79

0.40 37.30 36.21 38.32

0.45 37.74 36.64 38.86

0.50 38.15 37.04 39.22

0.60 38.74 37.71 40.01

0.75 39.60 38.81 40.90

Table 5.8: Encoding “fruits” stereo-
image pair with different
wavelet filters. Ref. image
at 2.00 bpp.

bpp (tar.) ND1 ND2 ND3

(dB) (dB) (dB)

0.20 35.52 35.67 35.18
0.25 36.46 36.59 36.09
0.30 37.11 37.24 37.00
0.35 37.71 37.80 37.55
0.40 38.22 38.32 38.08
0.45 38.74 38.71 38.56
0.50 39.07 39.20 39.10
0.60 39.86 39.90 39.87
0.75 40.67 40.73 40.70

Table 5.9: Encoding “fruits” stereo-
image pair with different
wavelet filters. Ref. image
at 5.33 bpp.

bpp (tar.) ND1 ND2 ND3

(dB) (dB) (dB)

0.20 35.53 35.71 35.18
0.25 36.50 36.63 36.10
0.30 37.17 37.31 37.00
0.35 37.79 37.89 37.59
0.40 38.32 38.45 38.14
0.45 38.86 38.83 38.63
0.50 39.22 39.33 39.21
0.60 40.01 40.07 39.98
0.75 40.90 40.99 40.89

Table 5.10: Encoding “fruits” stereo-image pair with fixed-block (F.B) and variable-
block-based (V.B) disparity estimation using “CDF-9/7” filters. Ref. im-
age at 2.00 bpp.

bpp (tar.) ND1(V.B) ND1(F.B - 16×16) ND1(F.B - 8×8)
(dB) (dB) (dB)

0.20 35.52 35.78 29.06
0.25 36.46 36.75 34.20
0.30 37.11 37.38 35.41
0.35 37.71 37.95 36.34
0.40 38.22 38.43 37.08
0.45 38.74 38.91 37.66
0.50 39.07 39.32 38.17
0.60 39.86 39.99 39.07
0.75 40.67 40.79 40.11
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Table 5.11: Ref. (left) view of “arch stereo-image pair encoded at 0.25 bpp.

bpp (tar.) RS NDnf ND1

(dB) (dB) (dB)

0.0885 40.28 40.95 41.61

0.1132 41.32 41.60 42.32

0.1379 41.99 42.04 42.89

0.1626 42.38 42.43 43.30

0.1873 42.80 42.81 43.52

0.2120 43.08 43.01 43.78

Table 5.12: Encoding “arch” stereo-image pair with different wavelet filters. Ref. image
at 0.25 bpp.

bpp (tar.) ND1 ND2 ND3

(dB) (dB) (dB)

0.0885 41.61 41.57 41.07
0.1132 42.32 42.34 42.08
0.1379 42.89 42.79 42.68
0.1626 43.30 43.20 43.19
0.1873 43.52 43.44 43.45
0.2120 43.78 43.65 43.66

Table 5.13: Encoding “arch” stereo-image pair with fixed-block (F.B) and variable-
block-based (V.B) disparity estimation using “CDF-9/7” filters. Ref. image at 0.25
bpp.

bpp (tar.) ND1(V.B) ND1(F.B - 16×16) ND1(F.B - 8×8)
(dB) (dB) (dB)

0.0885 41.61 40.29 37.66∗

0.1132 42.32 41.94 37.66∗

0.1379 42.89 42.65 37.66∗

0.1626 43.30 43.11 37.66∗

0.1873 43.52 43.45 37.66∗

0.2120 43.78 43.66 39.63
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Results in the tables shown previously clearly contradict this statement. “CDF-9/7”

filters clearly outperform a Haar-DCT combination reported in [12]. In addition to this,

“Odegard-9/7” and “Cooklet-17/11” filters also show results that are comparable to

those obtained when using a “CDF-9/7” filter. This improvement in PSNR values can

be attributed to the following reasons:

• Variable-block-based disparity estimation, performed at multiple scales, greatly

reduces bits required for encoding disparity-vectors. In contrast, Frajka and Zeger

have reported using fixed-block-based disparity estimation with dimensions equal to

16×16. The proposed algorithm outperforms Frajka and Zeger’s algorithm, when

used with 16×16 fixed-block and variable-block-based (8×8 - 32×32) disparity

estimation.

• Using an EPNR filter reduces partition-artifacts. This in-turn improves the corre-

lation amongst pixels at partition (block) boundaries. In other words, transitions

between partitions become smooth. As a result, smooth bi-orthogonal filters like

“CDF-9/7”, “Odegard-9/7” and “Cooklet-17/11” can be used to transform such

images.

• As discussed in Chapter 3, and experimentally proved in Appendix B, an ASWDR

algorithm is able to encode more high-frequency wavelet coefficients than a non-

adaptive WDR algorithm. An MGE algorithm (used by the authors in [12]) exploits

only intra-correlation amongst coefficients for encoding wavelet coefficients. This

is similar to a WDR algorithm.

It is also observed that higher bit-rates for reference images do not guarantee higher

PSNR values for reconstructed target images, when using the FZ algorithm. This reflects

the inherent problem of drift associated with an open-loop structure (Fig. 4.1(a)). These

results support mathematical proof provided in Chapter 4 that explains the sub-optimal
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nature of this codec. On the other hand, the proposed algorithm uses a closed loop

structure. This, coupled with an ASWDR algorithm guarantees that more high-frequency

components are reconstructed and hence explains improved PSNR values in all instances.

As indicated from Tables 5.11 - 5.13, the proposed algorithm outperforms the state-

of-the-art variable-block-based algorithm, proposed by Shukla and Radha [17]. Reasons

for this are highlighted as follows:

• In [17], blocks generated from a quadtree-partitioning scheme are independently

encoded using a disparity-compensated JPEG2000 algorithm. An overall distortion

metric for the complete image is obtained by summing these individual distortions.

This is a formulation that has been previously reported in [67, 68] and [69]. A

major disadvantage of using this formulation is that correlation amongst nearest

neighbor blocks is not exploited. This affects the encoding process. In addition,

this formulation does not take into account partition (blocking) artifacts occuring

due to imperfect disparity compensation. From Table 5.11 it can be observed that

the performance of the algorithm in [17] is nearly comparable to the proposed

algorithm, when loop-filtering is not used. From the same table it can be observed

that exploiting regional correlation amongst blocks i.e., encoding the image globally

and not block-wise, greatly improves PSNR values.

• In [73], qualitative and quantitative results are provided explaining the superior per-

formance of an ASWDR algorithm in comparison with JPEG2000, when encoding

natural images. Results shown in Table 5.11 validate these findings when encoding

disparity compensated residual images. As discussed in Appendix B, JPEG2000

uses an EBCOT image coding algorithm that relies exclusively on intra-scale cor-

relation when encoding wavelet coefficients. Furthermore, the blocky nature of

EBCOT introduces “tiling-artifacts” in reconstructed images. These have similar

characteristics to partition-artifacts .
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• The algorithm in [17] relies on scale-0 quadtree partitioning. In the proposed

algorithm, a scale-2 partitioning is effected. Qualitative results, shown previously,

clearly demonstrate that a reduced number of blocks are required when using a

hierarchical approach for quadtree-map generation. This in turn improves PSNR

values.

In spite of these advantages, the proposed technique has an inherent drawback. An a

priori knowledge of the threshold variance, Vt, is necessary in order to perform adequate

levels of quadtree partitioning. In simulations described previously the following variance

values have been used when partitioning the all low-pass subband at scale-2:

• Vt = 120, when encoding the “outdoors” stereo image pair and

• Vt = 48, when encoding the “fruits” and “arch” stereo image pairs.

These are empirical values and have been found suitable for images considered in these

simulations. For example, if Vt is assigned a small value then the all low-pass subband

may be over-partitioned leading to an increase in bits required to transmit disparity vec-

tors. On the other hand, if Vt is assigned a large value then the all low-pass subband

may be under-partitioned. This may degrade the quality of residual images affecting the

number of bits required to encode them.

From Table 5.10 it can be seen that the variable-block scheme is outperformed by an

equivalent 16×16 fixed block-based scheme for the “fruits” stereo-image pair. On the

flip side, Table 5.13 reveals that using an 8×8 fixed-block-based estimation scheme does

not produce any change in PSNR values! This is due to the fact that bits earmarked

for residual image encoding are wasted in encoding disparity vectors only. As previously

stated, further research work is needed to ascertain variance threshold values for a large

class of stereoscopic image data (textured, smooth and combination of both features).

Results cited by Vaisey and Gersho [70] can be used as an initial reference point.
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Notwithstanding this limitation, the proposed image content-based partitioning scheme

is useful in a R-D sense. In addition, suitable choice of variance values can efficiently

segment objects in a region (e.g., the drainage pipe, outline of the tree in Fig. 5.12(d)).

This is not possible with a fixed-block-based disparity estimation scheme. As previously

indicated, improvements in this encoding scheme can be obtained by merging blocks of

an area having similar texture. This is left as a topic for future research.

Spatial-scalability

In order to explain the performance of the proposed algorithm in a spatially-scalable

framework, the following example is considered.

Example : From Fig. 5.1(a), let K22, K21 and K20 be overall bit-rates allocated for

target images from the“outdoors” stereo-image pair, obtained from scale-2, -1 and -0,

respectively. Consequently, results from Table 5.1 may be interpreted as PSNR values

of reconstructed target images at scale-0, in presence of images from scale-2 and scale-1.

The algorithm listed in Sec. 5.1.2 presents an alternative approach, whereby three lay-

ers of images are transmitted simultaneously in an embedded framework. PSNR values

of reconstructed target images at scale-0, obtained in both embedded and independent

simulcast modes, can be seen from Fig. 5.13(a).

A quality constraint is imposed on images obtained at scales 2 and 1. This is to

provide an unbiased distribution of bits, when transmitting images at different spatial

resolutions. Thus, images at scales 2 and 1 should be encoded at “sufficiently high

bit-rates”. This being a subjective criterion, no numerical values are presented here.

However, for experimental purposes K2 and K1 are assumed to be equal to 2.0 bpp.

Other parameters used in obtaining results shown in Table 5.1 are kept constant. Quali-

tatively speaking, the improved performance of an embedded mode when compared with

an independent simulcast mode can be attributed to the type of disparity compensated

residual image being encoded. It can clearly be seen that Fig. 5.13(c) contains signifi-
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(a) PSNR values of reconstructed target images from the “outdoors”
stereo-image pair, in independent (simulcast) (2) and embedded
(◦) modes. “CDF-9/7” filters are used for transforming images.

(b) Residual Image - Independent Mode, λ =
1.35

(c) Residual Image - Embedded Mode, λ = 1.35

Fig. 5.13: PSNR plots and residual images at scale-0 when encoding the “outdoors”
stereo-image pair. Variable-block-based disparity estimation, 4-scale DWT
and EPNR filter (with λ = 1.35 and two filter iterations) have been used.
Images have been scaled for display purposes.
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Fig. 5.14: 4:4:4 RGB to 4:2:0 YCbCr conversion. Cbs and Crs represent downsampled
versions of Cb- and Cr-components.

cantly less information than Fig. 5.13(b). This in turn explains the PSNR values shown

in Fig. 5.13(a).

5.5.4 Results for encoding stereoscopic color images

The results discussed in previous sub-sections correspond to stereoscopic gray-scale im-

ages. To conclude this section, preliminary subjective results are presented when encod-

ing stereoscopic color images. As indicated in Chapter 2, stereoscopic color images are

acquired in an RGB space. This is transformed into a YCbCr space, as per Eq. 2.1 [2].

The HVS is more sensitive to perturbations in the Y component than in the Cb and Cr

components. From a compression point of view, this implies that Y components must be

represented at significantly higher bit-rates when compared with Cb and Cr components.

This fact is exploited when encoding monoscopic images.

YCbCr images acquired at a sampling ratio of 4:4:4, can be transformed, and down-

sampled as per a 4:2:0 ratio and shown in Fig. 5.14. These ratios (i.e., 4:4:4 and 4:2:0)

are used in video-coding [2] and indicate whether sub-sampling has been performed on
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different components of an image. Thus a ratio 4:4:4 indicate that no sub-sampling has

been performed, while a ratio 4:2:0 indicate that Cb and Cr components are sub-sampled

by a factor of two in both horizontal and vertical dimensions.

This involves performing a 1-scale 2-D separable DWT on the Cb and Cr components.

The all low-pass subband of these components are retained while the high-frequency sub-

bands are discarded (Fig. 5.14). This in fact reduces actual number of coefficients from

Cb and Cr components that need to be encoded. Hence if a bit-rate k bpp is allocated

for encoding these downsampled image components, it actually implies that a bit-rate of

k/4 bpp is used to represent it at full spatial resolution.

Distortions perceived in color stereo-image pairs can be partially classified as:

• Coding artifacts introduced by the successive-approximation scheme of an ASWDR

algorithm,

• Blurring artifacts introduced by an EPNR filter,

• Color bleeding due to coarse quantization of chrominance components, and

• Visual fatigue due to improper depth perception.

When presented with a stereo-image pair, the HVS tries to fuse objects from both views.

As a result, distortions from the target image are “masked” out by the HVS when this

image is viewed simultaneously (in context) with a higher quality reference image. How-

ever this is true only up to a certain threshold [23]. In these experiments, an attempt is

made to subjectively determine this threshold value. This is based entirely on bit-rates

needed to encode each component of an image. The scenarios of perceptual ringing ar-

tifacts, blurring, and color bleeding in the decoded stereo image pair are considered as

parameters in this subjective evaluation. Results from two representative stereo-image

pairs have been presented. The “medallion” image pair contains large textured areas,
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Fig. 5.15: File structure of an encoded color stereo-image pair (independent simulcast
mode).

while the “bull” image pair generally has large smooth regions. Due to space and display

constraints actual images cannot be shown here. Instead, the reader is directed to the

enclosed CD ROM for individual images as well as anaglyphs obtained by fusing both

image views.

Due to varying sensitivities of the HVS to individual components, the bit-rate ratio

KY :KCb:KCr is varied from 32:1:1 (for highly textured images) to 80:1:1 (for non-textured

images). Disparity estimation and compensation is performed on the Y component as

per the algorithm shown in Fig. 5.1(a). As a hierarchical variable-block based disparity

estimation (HBDE) scheme is employed, disparity vectors obtained at scale-1 are used

to compensate both the chrominance components. A single file stream is generated for

storing all resulting bits. Fig. 5.15 visually depicts various components in an embedded

bit-stream when encoding a color stereo-image pair. DV indicates the disparity vectors

from scale-1 and scale-0. QTMap indicates bits required for encoding the quadtree map.

It should also be emphasized that these images are encoded in an independent simulcast

mode. “CDF-9/7” wavelet filters have been used in transforming images.

Other conditions used in encoding monochrome stereo-image pairs (e.g., filter smooth-

ing parameter λ, etc.) are repeated here. The decoded images were informally analyzed

by several test subjects experienced in viewing stereoscopic images. Tables 5.14 and 5.15

indicate results from the “medallion” and “bull” stereo-image pairs. To limit the scope

of this experiment, the subjects were only asked if coding artifacts (CA) or color-bleeding
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Table 5.14: Subjective results when viewing decoded images from the “medallion”
stereo-image pair in a stereoscopic mode.

KY ratio KY ratio
C.A C.B

(Ref.) (Ref.) (Tar.) (Tar.)

2.0 32:1:1
0.5

32:1:1
N N

0.25 N N
0.20 Y N

1.6 32:1:1
0.5

32:1:1 N N
128:1:1 N N
256:1:1 N N
512:1:1 N N

0.4 512:1:1 N N
0.25 32:1:1 Y N

1.0 32:1:1
0.5

32:1:1
N N

0.4 Y N

Table 5.15: Subjective results when viewing decoded images from the “bull” stereo-
image pair in a stereoscopic mode.

KY ratio KY ratio
C.A C.B

(Ref.) (Ref.) (Tar.) (Tar.)

2.0
80:1:1

0.5

512:1:1

N N
0.25 N N
0.20 N N
0.125 N N
0.1 Y N

1.0
0.25 N N
0.125 Y N

(CB) was perceptible in the decoded pairs when compared with their uncompressed

versions. Images were displayed on a CRT computer screen. These were viewed with

both red-blue (anaglyph) and time-sequential (stereoscopic) glasses. User responses are

indicated as Y/N (yes/no). The following notations have been used in these tables:

• KY in bits-per-pixel (bpp),

• ratio indicates KY :KCb:KCr at full spatial resolution.
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Thus, a ‘Y’ indicates that subjects were able to detect blurring and/or other coding ar-

tifacts in reconstructed images, when compared with their corresponding uncompressed

versions. An important point was ascertained from these limited results. Subjects were

not able to detect color-bleeding when viewing both images simultaneously, at extremely

small bit-rates. However, they were clearly able to identify perceptible bleeding when

individually viewing reconstructed target images (e.g., the reconstructed target image

in Table 5.15 when KY (Ref.) = 0.8 bpp.). This fact can form the basis for effective

compression of stereoscopic moving color-image sequences. However, no specific details

can be inferred with regards to optimum bit-rates for encoding reference images. A fu-

ture research work, involving a larger number of images and observers, is envisaged to

determine this fact.

All images referred to in Tables 5.14 and 5.15 can be viewed on the accompanying

CD ROM to verify the observations made in the tables. Results for another stereo image

pair (“burial-ground”) are also presented in the CD ROM. A pair of anaglyph glasses,

adapted to the anaglyph images, is also provided with this thesis. Anaglyphs shown in

these tables have been created using the algorithm presented in [74].

To better appreciate these results, a few representative examples of individual and

fused anaglyph images of the “bull” stereo-image pair are presented. A bit-rate of 8.0 bpp

is assumed for each component of raw-versions of these images. Anaglyphs of these stereo

pairs consists of encoded reference and (disparity-compensated) target image views, hav-

ing the following bit-rates:

• “Bull”

– Reference image : KY = 1.0 bpp, KY : KCb : KCr = 80 : 1 : 1,

– Target image : KY = 0.125 bpp, KY : KCb : KCr = 512 : 1 : 1,
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(a) Raw target image from the “bull” stereo-image pair. Image has been scaled for display purposes

Fig. 5.16: Representative examples of individual target images (raw and encoded) and
anglyphs (raw and encoded) from the “bull” stereo-image pair.
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(b) Encoded target image. Image has been scaled for display purposes

Fig. 5.16: contd.
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(c) Anaglyph - raw. Image dimensions are 1260×1024. An offset-correction of 20 pixels has been effected
on the images for comfortable viewing.

Fig. 5.16: contd.
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(d) Anaglyph - encoded. Image dimensions are 1260×1024. An offset-correction of 20 pixels has been
effected on the images for comfortable viewing.

Fig. 5.16: contd.
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On comparing Fig. 5.16(b) with Fig. 5.16(a) it can be observed that significant details in

the former image have been blurred out (e.g., the body of the bull, background foliage,

etc.). Color bleeding is also observed in the image (e.g., purple patches predominate

the body of the bull in Fig. 5.16(b) when compared with uniform brown color in Fig.

5.16(a)). These artifacts occur entirely due to embedded coding of images and differs

from previously discussed a priori Gaussian blurring effected on target images (Chapter

4).

Figs. 5.16(d) and 5.16(c) indicate encoded and raw versions of anaglyphs. It can

be observed that distortions perceived in the encoded target image (Fig. 5.16(b)), in a

monoscopic mode, are absent when viewing the same image in a stereoscopic mode (Fig.

5.16(d)). This justifies the efficacy of asymmetrical coding of stereoscopic image pairs.
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Chapter 6

Summary of Stereoscopic
Moving-Image Encoding and
Decoding Algorithms

Overview

In this chapter a review of relevant stereoscopic moving-image coding algorithms is undertaken. Some

aspects of MPEG picture hierarchies are also presented. This is followed by a discussion on the relative

disadvantages of such hierarchies. SNR- and spatial-scalability are desired features in a stereoscopic

moving-image coding scheme. Limited references of these features are present in literature, with respect

to stereoscopic moving-image coding. As a consequence, monoscopic moving-image coding schemes are

considered to discuss these features. This chapter is concluded by a discussion on temporal-interleaving,

when encoding stereoscopic moving-image sequences.

6.1 Introduction

R
EMOVAL of temporal redundancies is a critical component in any moving-image

coding algorithm. As discussed in Chapter 2, disparity- and motion-vector es-

timation techniques are very similar to each other. In stereoscopic moving-image se-

quences, both components need to be estimated. However, disparity estimation can be

avoided if encoding both streams independently.

Highlights of various motion estimation techniques can be found in [45]. As indicated
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in Chapter 2, a hierarchical-search strategy is employed in estimating motion-vectors.

An early implementation of a joint disparity-/motion-vector estimation can be found in

[51]. In addition, a hardware implementation of real-time stereoscopic moving image

encoder (DISTIMA project [50]) has justified the use this search strategy.

An early implementation of a stereoscopic moving-image encoder can be found in

[75]. Refinements to this technique have been proposed by Chang and Wu [20] and

Thanapirom et al. [76]. All these algorithms are wavelet-based. In contrast, Puri et

al. [77] reviews some aspects of DCT-based stereoscopic moving-image encoding. As

mentioned previously, DCT-based techniques have been replaced by their DWT-based

counterparts when encoding still-images. Moving-image encoding involves transmission

of intra-pictures and residual images. Current MPEG-4 standards envisage using DWT-

based coding for intra-pictures. Hence, unless otherwise mentioned, this chapter focuses

on DWT-based moving-image coding systems. Other terminologies (e.g., intra-pictures,

etc.) are discussed shortly. In addition, drawbacks of these wavelet-based systems are

also discussed later in this chapter.

SNR- and spatial-scalability are desired features when encoding moving-images. How-

ever, no suitable references have been found addressing these issues, in the context of

stereoscopic moving-image coding. However, such features have been addressed in the

context of monoscopic moving-image coding. In Arnold et al. [78], a DCT-system is pre-

sented that achieves drift-free SNR-scalability. A corresponding structure can be found

in Domanski et al. [22], addressing the problem of spatial-scalability. The scope of this

chapter is limited to stereoscopic moving-image encoding. Hence these techniques are

not discussed in detail. The concerned reader is directed to the references presented

above for further details.

In [3] it has been stated that, when viewing a stereo-image pair, both images need

not be displayed at full perceptual quality (i.e., full SNR-resolution). Psycho-visual
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experiments [79], [59], [23] have validated this fact. It was conjectured in [23] that pro-

longed exposure to these asymmetrically coded stereo-image pairs might lead to visual

fatigue. As a result, temporal interleaving was proposed. This involves interchanging

the perceptual qualities of both views, preferentially at the occurrence of scene-cuts in

a moving-image sequence. Drawbacks of this technique are discussed in a later part of

this chapter.

6.2 Current picture hierarchies and their drawbacks

A summary of notations involved in monoscopic moving-image encoding is provided

below. These notations are appropriately extended to the context of stereoscopic moving-

image encoding. MPEG coding standards provide a classification of contiguous pictures

in a monoscopic moving-image stream. These are highlighted as follows [2]:

• I-Picture : These are encoded using intra-picture coding techniques (e.g., any state-

of-the-art embedded image coding scheme). They provide for fast random access

but offer only moderate compression rates. Due to their being reference points

for future pictures (both in the reference and target streams), they have to be

encoded at “sufficiently high” bit-rates. This limits the SNR-scalability that can

be obtained for such pictures. In the proposed algorithm, the perceptually efficient

ASWDR algorithm is used for encoding such I-pictures.

• P-Picture : These are estimated from previously encoded I-pictures using motion-

compensated prediction (in the reference stream). Additionally, these P-pictures

from the reference stream are used to predict current and future pictures from the

target stream. Such predicted frames are also classified as P-pictures. As a rela-

tively large number of pictures are predicted from P-pictures when compared with

I-pictures, limited SNR scalability can be obtained when encoding such pictures.
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• B-Picture : These are estimated from:

– I- and P-pictures using motion-compensated (in the reference stream) or

disparity-compensated (in the target stream) prediction and

– Two P-pictures using motion-compensated (in the reference stream) or disparity-

compensated (in the target stream) prediction

Generally, these pictures are not used to predict any other pictures. Hence, SNR-

scalability for any prediction-based compressed moving-image stream, is deter-

mined by the coding performance of B-pictures.

An MPEG-2 compliant, contiguous group of pictures (GOP) can be seen in Fig. 6.1.

Such a GOP is sometimes referred to as closed GOP [2, p 193]. In [77] a set of picture

PI B B B BPBBP

Fig. 6.1: Encoding and display hierarchy of contiguous pictures in a, MPEG-2 compli-
ant, monoscopic moving-image sequence (GOP = 10).

hierarchies for encoding stereoscopic moving-pictures have been presented. Fig. 6.2

depicts one such structure. This has been incorporated in the MPEG-2 multiview profile

(MVP) [21, 2] standards. A modified version of this hierarchy forms the framework for

encoding stereoscopic moving-image pairs in [76, Fig. 2]. This scheme of contiguous

pictures suffers from a major drawback. All pictures are used for predicting current,

past or future pictures. In order to prevent artifacts due to drift, SNR-scalability has

to be sacrificed completely. Hence this framework is not used in the current proposed
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Ref.
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PPPPP P

Fig. 6.2: MPEG-2 complaint multiview picture hierarchy for encoding stereoscopic im-
agery.

algorithm. The authors in [77] term the above structure as a disparity- and motion-

compensated framework. On the other hand the authors in [75] and [20] use a simplified

version of Fig. 6.2. This is referred to as a disparity-compensated structure and shown in

Fig. 6.3. Evidently, SNR-scalability can be obtained when decoding target pictures only,

Ref.
B B B P

Tar.
PPPPP P P P P P

PBBPI B

Fig. 6.3: Disparity-compensated multiview picture hierarchy for encoding stereoscopic
imagery.

when using this framework. This is due to the fact that pictures from the target stream

are not used for prediction. However, this structure also suffers from a subtle drawback.

In an asymmetrical coding framework the HVS can comfortably perceive depth while

masking out artifacts from the target picture stream. This presupposes the fact that the

reference picture stream has been encoded at a higher perceptual quality than the target



6.3 Selected stereoscopic moving-image encoding algorithms 115

motion vectors

Stream

Right

Stream

Decoded Left

Stream

frames up to Level-3

Decompose all

frames up to Level-3

Decompose all

Decoded Right

Stream

Entropy Coding

Upsample by 2,

to reconstruct
full-size frames

use synthesis filters

frames to get level-1

Decompose the left

low-pass subimages

low-pass right images

Reconstruct the level-1

using disparity vectors.

Hierarchical motion

frames up to level-1

Hierarchical disparity

estimation of all right

Wavelet coded I-frame,

Motion vectors + intra-coded blocks

Transmit

Receive

Decoding

estimation

of P- and B-frames

Reconstruct intra-frames. Other left

image frames are estimated using the

Left
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stream. It has also been stated that while encoding a monoscopic picture sequence,

SNR-scalability is obtained from B-pictures. Evidently, it is not possible to obtain both

these features when using the structure shown in Fig. 6.3. B-pictures from the reference

stream are used for predicting pictures from the target stream. Hence they must be

encoded at a fixed SNR-resolution in order to prevent drift in decoded target pictures.

6.3 Selected stereoscopic moving-image encoding algorithms

As indicated at the beginning of this chapter, no references have been found that address

issues of spatial-, SNR-, content- and temporal-scalability in a united manner, when en-

coding stereoscopic moving-images.

Fig. 6.4 illustrates a generic framework used by Sethuraman et.al [75] and Chang and

Wu [20]. Unfortunately, a non progressive coding structure is used in encoding both dis-
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parity and motion compensated pictures/frames [20, Fig. 12 & 14]. In addition, OLDC

structures have been used in encoding disparity-compensated residual images. As proved

in Chapter 4, this is a sub-optimal framework when encoding such residual images.

Recently, a zerotree-based stereoscopic moving-image coding structure has been pro-

posed by Thanapirom et al. [76]. As the name indicates, a zerotree-based structure is

Fixed

∑

Huffman

Coding

∑

C
o
d
in

g

A
ri
th

m
e
ti
c

C
o
n
tr

o
l

R
a
teQ−1

Intra

Inter

I-Frame

P-Frame

Main-stream video

+

-

+

+

sequences
Zerotree

OBMC

DWT−1

QDWT

Buffer

Frame

Motion-vectors

BME

Coding

(a) Reference-stream encoding

Coding

and

Disp. Compensation

C
o
n
tr

o
l

R
a
te

Mot. Estimation

and

Mot. Compensation

DWT
Arithmetic

Coding

Huffman

Coding

Main stream

Aux. Stream

DFD

D.V

DFD

M.V

Choose the

best estimation

Q
Zerotree

Disp. Estimation

(b) Target-stream encoding

Fig. 6.5: Stereoscopic moving-image encoding structure proposed by Thanapirom, Fer-
nando and Edirisinghe



6.3 Selected stereoscopic moving-image encoding algorithms 117

used to encode disparity compensated residual images. Fixed-block-based disparity and

motion estimation is performed between corresponding and successive pictures of both

streams. An OBMC technique is used for compensation, followed by Shapiro’s EZW

algorithm for encoding generated residual images. The picture hierarchy shown in Fig.

6.2 is used in this structure. As indicated in [76, Fig. 3], both disparity and motion

estimation is performed on target stream pictures. Residual images in both instances

are generated, with the residual image having a lower-energy content eventually encode.

This makes it a redundant operation. As with previously discussed algorithms, this

technique also relies on a sub-optimal OLDC structure for generating and subsequently

encoding disparity compensated residual images. A schematic of this algorithm can be

seen in Fig. 6.5.

Limited SNR- and spatial-scalability can be obtained from the above algorithms. The

non-progressive nature of Chang and Wu’s algorithm [20] and problems due to drift, aris-

ing from all algorithms in [75, 77, 20, 76], justifies the development of new stereoscopic

moving-image coding algorithms. In [78] a scheme is presented that achieves two levels of

SNR-scalability when encoding monoscopic moving-image sequences. In this, input im-

ages are quantized at two separate SNR-resolutions, DCT-transformed and subsequently

encoded. Due to the progressive nature of any wavelet-based scheme, this operation of

separate quantization of images becomes redundant. For the sake of completeness, Fig.

6.6 depicts this encoding scheme. This can also be found in [78, Fig. 13].

As previously indicated, no suitable references have been found that deals with the

issue of spatial-scalability in the context of stereoscopic moving-image coding. Some

references have been found in the context of monoscopic moving-image encoding. One

such work has been reported by Domanski et al. [22]. Images are downsampled us-

ing 2-tap linear-phase filters. The all low-pass subbands, generated from this process,

are DCT-transformed and subsequently encoded using motion-compensation techniques.
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As shown in the next chapter, this becomes a redundant operation, if a dyadic spatial

framework is required. Hence, the methodology reported in this paper is not used in this

thesis.

The discussion presented in the previous paragraphs pertains to prediction-based

moving-image encoding. Due to the separable nature of wavelet-transforms, alterna-

tive techniques have been proposed. These fall under the category of 3-dimensional

moving-image coding techniques. Drift is a serious problem when encoding monoscopic
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moving-images. 3-D structures eliminate the need for prediction-based encoding as the

temporal domain is considered as a third dimension, in addition to the horizontal and

vertical dimensions of images. A 3-D separable wavelet-transform is implemented on a

GOP, followed by embedded image encoding techniques in three dimensions. This can

achieve high levels of SNR-scalability, similar to what can be achieved when encoding a

simple 2-D image. A major advantage of this technique is the absence of artifacts due

to drift during decoding. However, these techniques have some inherent drawbacks.

Compared with their prediction-based counterparts, 3-D techniques require large

buffers to process incoming pictures. Current pictures have to be stored in a buffer

while encoding them using 3-D embedded coding techniques. This would typically be

the size of the GOP being considered. In addition, future pictures have to be stored in

buffers while encoding of current pictures takes place. This problem is accentuated when

stereoscopic moving-images are considered. A trivial solution would be separately encode

both streams using these 3-D coding techniques. As explained in previous chapters, this

process does not account for inter-view redundancies in both image streams. For more

information on this evolving framework of moving-image coding, the concerned reader is

directed to [80, 81, 82].

6.4 Temporal interleaving in stereoscopic moving-image

encoding

To conclude this chapter, the concept and justification of temporal interleaving in stereo-

scopic moving-image encoding is introduced.

In previous chapters, it was identified that when viewing stereoscopic moving-image

pairs, both views need not be displayed at full SNR-resolution (assuming that spatial-

resolution of both views is kept constant). This forms the premise for any state-of-the-art

stereoscopic moving-image encoding structure [76, 20, 75]. This implies that pictures
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from the reference view should be encoded and displayed at higher SNR-resolution than

pictures from the target view. In [23], Stelmach and Tam hypothesized that prolonged

exposure to such asymmetrically coded stereoscopic moving-image data may lead to vi-

sual fatigue in the HVS. To alleviate this problem, the authors proposed a cross-switch

of these asymmetrically coded images at some time intervals. From experimental results,

they concluded that this cross-switching was not perceptible by the HVS if implemented

at scene cuts. This intermittent cross-switching of asymmetrically coded stereo image-

pairs is referred to as temporal-interleaving. However, this technique has some inherent

drawbacks and these are highlighted in the following paragraph.

The authors in [23] have not reported the use of disparity-compensation in encoding

both views of the stereo-image sequence. Instead, they apply an a priori Gaussian blur

on the target image stream (e.g., Fig. 4.4). They justify this by stating that this blurred

image stream can be independently encoded at sufficiently low bit-rates (e.g., MPEG-2

coding techniques). In doing so, the authors fail to exploit inter-view redundancies be-

tween both image streams. It has been indicated in Chapter 4, that disparity estimation

between images at different SNR-resolutions may lead to biased results qualitatively as

well as quantitatively.

In addition, this technique assumes that a moving-image sequence is guaranteed to

have scene-cuts. However, there are instances like remote robotic applications, tele-

medicine, etc., that do not have scene-cuts. This necessitates the formulation of alternate

strategies to achieve temporal-interleaving in stereoscopic moving-image encoding. This

is discussed in the next chapter.
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Chapter 7

Proposed Wavelet-Based Scalable
Stereoscopic Moving-Image Codec

Overview

In this chapter the algorithm proposed in Chapter 5 is extended to encode stereoscopic moving images.

The first part of this chapter consists of a detailed description of the proposed codec structure. Next, a

comparative study is made of its relative advantages compared with present techniques, as discussed in

Chapter 6. This chapter is concluded with simulation results obtained by implementing the proposed

algorithm on the “redcar” stereoscopic moving-image sequence.

7.1 New picture hierarchy

I
N this section, a new picture hierarchy is proposed. This overcomes drawbacks

of current picture hierarchies that were discussed in Chapter 6. Current MPEG-2

MVP coding standards use the hierarchy shown in Fig. 6.2. As discussed previously,

Thanapirom et al., [76] use this picture hierarchy to encode a contiguous set of stereo-

scopic pictures. This involves individually estimating motion- and disparity-compensated

residual images. The residual image with minimum energy is encoded (Fig. 6.5). This

determines whether disparity- or motion-vectors are encoded.

In Chapter 2, the concept of displaced-disparity-vector (DDV) was introduced. The

proposed picture hierarchy utilizes only SDV’s and DDV’s when estimating pictures from
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Fig. 7.1: Proposed contiguous picture hierarchy, used in stereoscopic moving-image en-
coding (GOP = 10)

the target stream and MV’s in estimating pictures from the reference stream. Justifica-

tion for this is provided shortly. The proposed picture-hierarchy can be seen in Fig. 7.1.

As previously mentioned, in an asymmetrical coding framework the HVS can com-

fortably perceive depth while masking out some artifacts from the target picture stream.

This presupposes that the reference picture stream has been encoded at a higher per-

ceptual quality than the target stream. It has also been stated that while encoding a

monoscopic picture sequence, SNR-scalability is obtained from B-pictures. Evidently it

is not possible to obtain both these features when using the structure shown in Fig. 6.3.

B-pictures from the reference stream are used for predicting pictures from the target

stream. Hence, they must be encoded at a fixed SNR-resolution in order to prevent drift

during decoding.

In addition, an implicit benefit can be derived from this hierarchy. In [2, p 214],

the authors have used the terms base-layer and enhancement-layer in conjunction with

stereoscopic moving-image coding. This suggests that a user should have the flexibility

of viewing a moving-image sequence, either in monoscopic or stereoscopic modes. The

contiguous picture hierarchy shown in Fig. 7.1 satisfies this criterion. Unlike previously

shown hierarchies (Figs. 6.2 and 6.3), Fig. 7.1 can have both SNR- and spatial-scalability
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Target1 B PP B B

Ref.
PI B B PI B B PI B B

PP B B PP B B PP B B

Target2

PP B B PP B

Fig. 7.2: Proposed contiguous picture hierarchy, when used in multi-view (i.e., more
than 2 views) moving-image encoding (GOP = 10)

when viewed in monoscopic or stereoscopic modes.

From Fig. 2.1 and Fig. 2.6 it can be seen that DDV-estimation requires the largest

search area. The complexity encountered at this stage (i.e., scale-2) is however offset

by the hierarchical nature of estimation at scale-1 and scale-0. These vectors may not

lead to optimal residual images. However, this small limitation is overshadowed by the

various advantages accrued by using this picture hierarchy. Consider Fig. 16 in [77]

showing a multi-view imaging system. The proposed picture hierarchy can be similarly

extended to encode pictures from other target streams in a manner shown in Fig. 7.2.

Hence, in summary it can be stated that using the above picture hierarchy:

• Asymmetrical coding of stereoscopic or multi-view imagery is possible,

• SNR-scalability can be obtained from both reference and target picture streams,

and
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• Problems due to drift, associated with other similar picture hierarchies, are avoided

during decoding.

7.2 Design characteristics of the proposed codec

Having established a contiguous picture hierarchy, the following discussion explains de-

sign characteristics of the proposed codec structure. The reader is also directed to Chap-

ter 5 for terms, notations and encoding parameters described in this section.

7.2.1 SNR-scalability

From Fig. 7.1, it can be observed that locally quantized I- and P-pictures from the

reference stream, are used for predicting future, past or current pictures from both ref-

erence and target streams. Hence these I- and P-pictures need to be stored in buffers. A

P-picture from the reference stream is used for predicting (at least) ten pictures while a

corresponding I-picture is needed to predict six pictures. At least one buffer is required

for each level of spatial scalability. In the proposed algorithm, as three levels of spatial

scalability are computed, a minimum of three buffers are required for proper synchro-

nization of pictures during encoding as well as decoding.

A generalized structure for encoding different pictures of a stereoscopic moving-image

sequence, subject to the hierarchy of Fig. 7.1, can be seen in Fig. 7.3(a). The following

paragraphs explain the performance of this structure when encoding moving-image se-

quences in monoscopic as well as stereoscopic modes. It should be emphasized that the

images are encoded at the highest spatial resolution (i.e., absence of spatial-scalability).

Monoscopic mode

As per the picture hierarchy shown in Fig. 7.1, an I-picture is encoded using an adaptively

scanned wavelet difference reduction (ASWDR) technique. This is indicated as E(Ki)

in Fig. 7.3(b), where Ki indicates the bit-rate expended in generating the bit-stream.
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Next, a locally decoded version of this image at the same bit-rate Ki is generated and

stored in the buffer. This is indicated as D(Ki) in Fig. 7.3(b).

The process described above is repeated when encoding the P-picture. However, bits

generated by intra-coding of this image are not transmitted to the bit-stream. Instead,

a 3-scale hierarchical variable-block based motion estimation is performed between this

image and previously decoded I- or P-pictures. Scale-0 motion vectors (indicated as 1 in

block labeled as C2) are transmitted to the output bit-stream. In addition, bits generated

from encoding a motion-compensated residual image are also transmitted. An ASWDR

algorithm is used for this purpose. This is indicated as E(Kj) where Kj indicate the

bit-rate expended in generating these bits.

Next, bits allocated for motion-compensated residual images are reconstructed at

the same bit-rate Kj (indicated as D(Kj)) and added to the motion-compensated image

(indicated as 2 in Fig. 7.3(a)). An N -level DWT is performed on this image and

transferred to the buffer. It should also be pointed out that an N -level DWT is performed

on the I-picture (shown in Fig. 7.3(b)) and stored in the buffer so that it can be used

for predicting future pictures.

The process used for predicting P-pictures is repeated for B-pictures as well. As

shown in Fig. 7.1, these pictures can be estimated from previously encoded I-pictures

or P-pictures or from both. At this point, it is duly acknowledged that using both I- or

P-pictures can produced improved motion compensated B-pictures [2]. SNR-scalability

of the moving-image sequence in a monoscopic mode is thus determined by the coding

performance of these B-pictures. As no pictures are estimated from these pictures, a

bit-rate Km can be chosen to encode them. Typically, this rate is much lower than either

Ki or Kj.
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Stereoscopic mode

In proposing the novel picture hierarchy in Fig. 7.1, it was stated that a user should have

a capability to view a moving image sequence either monoscopically or stereoscopically.

This statement implies that stereoscopic mode of viewing is always preceded by its mono-

scopic counterpart. Eventually, this boils down to designing an efficient multiplexing and

de-multiplexing system (as indicated in Chapter 1).

The process used in estimating reference stream P-pictures is repeated. This is ob-

served from Fig. 7.3(a) and is very similar to the structure used in encoding stereoscopic

still-images (described in Chapter 5). The only constraint imposed in the proposed codec

structure is that Kn should be approximately equal to the overall bit-rate of a correspond-

ing picture from the reference stream (e.g., when an I-picture is used for prediction Kn

= Ki). As these estimated target stream pictures are not used for predicting future

pictures, any suitable bit-rate Kl can be chosen for encoding generated disparity com-

pensated residual images.

Hence, the final bit-stream consists of data alternating between pictures from both

streams. This is explained in the next part of this sub-section.

7.2.2 Encoding color stereoscopic moving-images

When processing color images, disparity- or motion-vectors generated for the Y-component

can be used to estimate Cb- and Cr-components as well. This has been explained in

Chapter 5 wherein, disparity (or motion) vectors at scale-1 should be available to the

decoder. This is required as the Y-, Cb-, and Cr-components follow the 4:2:0 sampling

structure (explained in Chapter 5). A single file stream is generated for all components.

This is shown in Fig. 7.4. As shown in the file stream, information from reference stream

pictures are followed by residual bit-streams from target pictures. This enables the user

to seamlessly alternate between monoscopic and stereoscopic modes during decoding. As
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Fig. 7.4: Bit-streams of various components when encoding a stereoscopic moving-
image sequence at a specific spatial resolution. e.g., YIPTar

indicates the
Y-component of the disparity compensated residual image between a refer-
ence I-picture and a target P-picture. QT Map(.) indicates the quadtree map
for the picture that is being estimated. DVX , MVX indicates disparity- and
motion-vectors as per notations previously introduced in Chapter 2.

per previously indicated constraints (Chapter 5), all bits allocated for reference stream

P-pictures must be decoded, before any further bits are decoded. This insures removal

of artifacts arising due to drift during decoding.

The file stream shown in Fig. 7.4 represents decoded pictures at a single spatial-

resolution (in this case at the highest spatial resolution). Using a similar strategy to

that discussed in Chapter 5, discrete levels of spatial-scalability can be obtained when

encoding these pictures. This is discussed in the following sub-section.



7.2 Design characteristics of the proposed codec 130

7.2.3 Spatial-scalability

From [2, Table 6.8, p 211], a description of various profiles employed in scalable MPEG-2

video coding can be found. Assume high and low spatial resolutions of 1440 × 1152 and

352 × 288, with an intermediate resolution of 704 × 576. In a modern perspective these

can correspond to spatial resolutions of video content distributed over the internet (low),

SDTV (intermediate) and HDTV systems (high), respectively. As indicated in Chapter

6, previous techniques (e.g., [22]) have relied on explicit downsampling or quantization

of pictures before generating separate bit-streams for each resolution. This becomes re-

dundant if these spatial resolutions have a dyadic relationship between them.

In Chapter 5, a method has been proposed to exploit the dyadic subsampling struc-

ture of a 2-D separable DWT, in order to obtain discrete levels of spatial-scalability when

encoding stereoscopic still-images. A hierarchical search strategy is employed to reduce

the computational complexity of a FS estimation algorithm. It can be seen from Fig.

7.3(b) that disparity- or motion-compensation is performed at the highest spatial resolu-

tion (i.e., scale-0) before a residual image is generated and subsequently encoded. Such

an embedded encoding can be performed at scale-2 and scale-1 as well. This is similar

to the concept shown in Fig. 5.2(b). The only additional feature would be generation of

reference-stream P-pictures at every scale.

Assume that a residual image has been generated at scale-2, encoded and subse-

quently decoded at a bit-rate of R1. This locally decoded residual image can be used for

encoding a residual image at scale-1. This would entail the following steps:

• Step 1: Generating a residual image at scale-1.

• Step 2: Performing a 1-level DWT on the residual image obtained from Step 1.

• Step 3: Subtracting the residual image, obtained at scale-2, from the all low-pass

subband of the wavelet transformed image from Step-2.
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• Step 4: Further transforming this reduced energy all low-pass subband.

• Step 4: Encoding (and locally decoding) this, reduced energy, residual image from

scale-1 at a bit-rate of R2.

The above steps can be repeated when encoding residual images at scale-0. The implicit

sub-sampling nature of a DWT facilitates obtaining discrete levels of spatial-scalability

on the reference image. Due to problems associated with drift, this operation cannot

be implemented in a straightforward manner on target images (which in this case might

be P- or B-pictures from reference or target streams). The steps outlined above allevi-

ate this problem. The file stream shown in Fig. 7.4 can be appropriately modified to

incorporate additional information from various scales. Bits earmarked for scale-2 and

scale-1 images must be decoded before any bits allocated for scale-0 images are decoded.

In addition, residual image bit-streams follow any disparity or motion vectors generated

at a particular scale.

7.3 Results and analysis

A quadtree partition, discussed previously in Chapter 5, is effected on the all low-pass

subband of target images at scale-2. The following results illustrate performance of the

proposed algorithm, when encoding monochromatic as well as color images. Lack of

suitable reference algorithms makes it impossible to provide any comparative results.

However, wherever applicable, qualitative discussion is provided that justifies the supe-

riority of the proposed algorithm when compared with existing counterparts.

7.3.1 Experimental results with monochrome images

Experimental results presented in Sec. 5.5.3 justify the superior performance of the

proposed algorithm when encoding I- and target stream P-pictures. PSNR results are

presented when encoding
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• Reference stream P-pictures from I-pictures and

• Target stream B-pictures from I-pictures. In this instance only forward prediction

is considered.

Four consecutive pictures from the “redcar” stereoscopic moving-image sequence are

considered. Image dimensions are 704 × 576. Other factors used in this simulation

are similar to that used in encoding stereoscopic still-images. The reader is directed to

Chapter 5 for exhaustive details. A summary of various parameters are presented as

follows:

• “CDF-9/7” wavelet-filters are used for transforming pictures,

• 5-levels of wavelet decomposition,

• Smoothing parameter λ = 1.35, with two filter iterations,

• Quadtree-partitioning at scale-2, with threshold Vt = 120, followed a 3-scale hier-

archical variable-block-based disparity and motion estimation,

• I-pictures encoded (and locally decoded) at a “high” bit-rate of 2.5 bpp.

Fig. 7.5(a) indicates PSNR values when encoding reference image P-pictures, predicted

from I-pictures only. Fig. 7.5(b) depicts values when encoding target stream B-pictures,

predicted only from I-pictures. These results pertain to Y-components of images. Ev-

idently, the proposed algorithm when used with a loop-filter outperforms independent

coding of residual images. However at high bit-rates, independent coding1 of these resid-

ual images is advantageous. It should be stressed that these PSNR values are completely

dependent on image content.

PSNR values when encoding Y-components of these pictures in an embedded mode

1Otherwise known as intra-picture (analogous to intra-frame coding in MPEG-2) coding
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(a) Reference stream P-picture predicted from an I-picture
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(b) Target stream B-picture predicted from an I-picture

Fig. 7.5: PSNR plots when encoding motion- and disparity compensated residual im-
ages with loop-filtering (2), independent ASWDR coding (◦) and without
loop-filtering (�) in an independent simulcast mode. Image dimensions are
704×576.
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(b) Target stream B-picture predicted from an I-picture

Fig. 7.6: Comparative PSNR plots when encoding motion- and disparity compensated
residual images in independent (2) and embedded simulcast modes (◦). Image
dimensions are 704×576.
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are shown in Fig. 7.6. In order to achieve this, residual images at scale-2 and scale-

1 are encoded (and locally decoded) at high bit-rates. This is to provide an unbiased

framework for distribution of bits, and is exactly similar to the strategy proposed in

Sec. 5.5.3. An empirical value of 2.0 bpp has been chosen for these simulations. This is

purely speculative and depends entirely on the content of pictures being analyzed. The

superiority of an embedded when compared with an independent simulcast mode can be

appreciated by observing Figs. 7.7 and 7.8.

Evidently, Figs. 7.7(b) and 7.8(b) contain less energy content than their independent

simulcast counterparts Figs. 7.7(a) and 7.8(a). This also justifies the PSNR values shown

in Fig. 7.6. Similar to their disparity compensated counterparts, motion-compensated

residual images contain partition-artifacts. In an embedded coding framework, these

regions require a large number bits to be encoded. As such this degrades the quality

of image reconstruction and is indicated by the results shown in Fig. 7.5. The EPNR

filter proposed in Sec. 5.2, effectively reduces these artifacts thus improving the quality

of decompressed images. It should be emphasized that these images have been scaled for

display purposes whereby modified pixel values lie between [0,1].

7.3.2 Informal results when encoding color stereoscopic moving-image

sequence

Contiguous stereo image pairs from the “redcar” sequence, having dimensions 704 ×

576, are used in this experiment. To simplify the encoding process, forward-prediction

is only used as per the structures shown in Fig. 7.9. Psycho-visual analysis has revealed

that the HVS is very sensitive to changes in the Y-component of an image [65]. It is

less sensitive to large perturbations in the Cb- and Cr-components. Hence in encoding

color images, a ratio between various components of an image need to be specified. This

is very similar to the formulation for stereoscopic still-images, previously explained in
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(a) I- and P- pictures, Independent Simulcast Mode

(b) I- and P- pictures, Embedded Mode

Fig. 7.7: Residual images when encoding P-pictures from I-pictures. Image dimensions
are 704×576. Images have been scaled for display purposes.



7.3 Results and analysis 137

(a) I- and B- pictures, Embedded Simulcast Mode

(b) I- and B- pictures, Embedded Mode

Fig. 7.8: Residual images when encoding B-pictures from I-Pictures. Image dimensions
equals 704×576. Images have been scaled for display purposes.
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Fig. 7.9: Modified asymmetrical coding frameworks for stereoscopic moving-images.
“H” and “L” indicates overall high and low bit-rates when encoding reference
and target pictures.

Chapter 5. As defined in that chapter, let KY indicate the (overall) bit-rate allocated

for a Y component of an image. Other parameters are defined as follows:

• A 4:2:0 sampling structure for the Y, Cb and Cr components,

• KY :KCb:KCr = 80:1:1, with KY = 2.0 bpp when encoding I-pictures,

• KY :KCb:KCr = 128:1:1, with KY = 0.8 bpp when encoding pictures marked as “L”,

• KY :KCb:KCr = 128:1:1, with KY = 1.6 bpp when encoding pictures marked as “H”,

except for I-pictures,

• 5- and 4-levels of wavelet decomposition for luminance and chrominance compo-

nents, respectively,

• λ = 0.85, with two filter iterations,

• Quadtree-partitioning threshold, Vt = 120 at scale-2 and

• Independent simulcast mode picture coding.
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Three sequences (having 28 contiguous stereo image pairs) and encoded at 25 fps were

generated in this simulation. Specifications for these are as follows:

• “Sequence-A” : This was generated as per an interleaved asymmetrical coding ,

shown in Fig. 7.9(b),

• “Sequence-B” : This was generated as per regular asymmetrical coding, shown in

Fig. 7.9(a) and

• “Sequence-Raw”: This was a raw image sequence consisting of uncompressed pic-

tures

These sequences were then viewed, informally, by four test subjects experienced in view-

ing stereoscopic images. These sequences were viewed on a CRT display. A general

consensus amongst these viewers was that they were not able to differentiate between se-

quences “Sequence-A” and “Sequence-B”. However with respect to “Sequence-raw” they

were, generally, able to identify slight changes in color (primarily on the chassis of the

car). This is expected as bit-rates for chrominance components in these sequences are

very small. Notwithstanding this, the subjects were not able to determine perceptible

color-bleeding in either sequence. It should be worth mentioning that the question of

visual comfort was not posed during this subjective testing. In order to analyze these

results, two separate discussions are necessary.

7.3.3 Sequences when viewed in monoscopic mode

In Chap. 5, it was stated that the HVS is more sensitive to perturbations in low-

frequencies of an image than in higher frequencies. However, this reasoning cannot be

applied in isolation to color-images. From psycho-visual experiments it has been proved

that the HVS is more sensitive to changes in the Y-component of an image [65] when

compared with Cb- or Cr-components. As such, PSNR cannot be used as an objective
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function to evaluate performance of color-images [83].

At very low bit-rates for chrominance components, experienced viewers were not able

to detect any significant changes in encoded images. Recent research has emphasized

the design of perceptual metrics in context of moving-image coding (e.g., JNDmetrixr

by Sarnoff corporation [84] and standards evolved by the video quality experts group

(VQEG) [85]). Due to the limited scope of this topic in the context of the overall research

work of this thesis, extensive subjective results are not presented with respect to color

moving-image encoding. The values used in the above simulation are purely speculative

in nature. With a high bit-rate allocated for the Y-component it can (generally) be

inferred that chrominance components eventually determine the compression ratio of

any encoding technique.

7.3.4 Sequences when viewed in a stereoscopic mode

Preliminary results with respect to encoding color stereoscopic still-images have been

presented in Sec. 5.5.4. From these, it can be inferred that target images can be com-

pressed at lower perceptual qualities (i.e., lower SNR-resolution) than reference images.

A straightforward extension to this technique can be applied to moving-image coding.

The reference stream must be encoded at a “high” bit-rate with respect to the target

stream.

In [23] it was argued that when exposed to asymmetrically coded stereo image pairs

(e.g., Fig. 7.9(a)) the HVS may experience visual fatigue. In order to rectify this prob-

lem, the authors proposed a temporal interleaving process. It involved switching the

reference and target image views at scene cuts. In other words, at a particular scene

cut, the relative perceptual qualities of both streams were interchanged. The authors in

[23] imposed some constraints in applying such a technique. Independent coding of both

streams was proposed with an a priori Gaussian blurring of the target image stream.
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They justified this by arguing that such low-pass filtered images can be encoded at “high”

compression ratios.

The limitations of this framework were presented in Chapter 4. It was stated that

such a framework may lead to biased results when estimating disparity between the ref-

erence and target streams. Secondly, there are occurrences of stereo-image sequences

without any scene cuts. Notable examples would be robot vision in surveillance and

mining, medical images in remote surgery applications and some forms of teleconferenc-

ing. If the hypothesis of visual fatigue is applied then the principle of scene-cuts, applied

by the authors in [23], to interchange the relative qualities of both streams cannot be

sustained in these examples.

On the other hand, the proposed temporal interleaving scheme is not limited by these

constraints. “Sequence-A” was found to be indistinguishable from “Sequence-B”. The

authors in [23] have stated that when viewing stereo image sequences having a tempo-

ral interleaving structure shown in Fig. 7.9(b), observers were able to perceive “jerky”

motion between images. “Jerky” motion in this context may be defined as the ability of

the HVS to perceive distortions in contiguous pictures of a stereoscopic moving-image

sequence. Limited results, derived from this informal testing, do not support this obser-

vation. The HVS, in effect, tries to mask out imperfections from both image streams. If

the time instants between successive pictures in a sequence is large then it is possible for

the HVS to perceive “jerky” motion. No inference about threshold limits, however, can

be derived from these simulations. Extensive subjective testing is necessary from a large

subject pool, involving a variety of stereoscopic image sequences.

However, the observation by the authors in [23] that temporal interleaving at points

other than scene-cuts would result in “jerky” motion have been challenged by results

obtained from this informal subjective testing. Pictures from the target stream have not

been uniformly blurred. Instead, coding artifacts and low-pass filtering effects of the pro-
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posed loop-filter forms a major part in target image quality degradation. In other words,

local rather than global degradation is achieved. Due to the nature of the ASWDR en-

coding process, this degradation is predominant in high-frequency regions of an image

rather than low-frequency regions. As previously mentioned, the HVS is less sensitive to

perturbations in high-frequency regions. Hence, distortions in these regions are masked

out by the HVS when viewed simultaneously with perceptually higher-quality regions

from the reference view. Another advantage of arbitrary temporal interleaving2 process

is that both streams can be independently viewed in a monoscopic mode, with high levels

of SNR scalability. This has been explained in an earlier part of this chapter.

2Fig. 7.9(b) is a representative example of such temporal interleaving
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Chapter 8

Conclusion and Future Work

8.1 Summary of proposed algorithm

I
N this thesis, a novel algorithm has been proposed for encoding stereoscopic still-

images. With suitable modifications, this algorithm has been extended to encode

stereoscopic moving-images as well. The following sub-sections summarizes the algo-

rithm, when encoding both stereoscopic still and moving images.

8.1.1 Stereoscopic still-image coding

In Chapter 4, two state-of-the-art algorithms are discussed. Boulgouris and Strintzis

[11] propose a closed-loop structure to encode disparity compensated residual images.

This has been shown to be better than its open-loop counterpart, as per the discussion

presented in their paper, as well as in Chapter 4. On the other hand, Frajka and Zeger

conjectured that mere generation of reduced energy, residual images does not necessarily

guarantee improved stereoscopic image coding results. Instead, they exploit the unique

nature of disparity compensated residual images, a fact previously presented by Mollen-

hoff and Maier [14]. Frajka and Zeger suggest using an algorithm that is able to encode

high-frequency and edge information prevalent in residual images. A multi-grid embed-

ding of wavelet coefficients (MGE), used by them [12] provided superior results when

compared with a zerotree algorithm, used by Boulgouris and Strinzis’s algorithm [11].
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As discussed in Chapter 3, the MGE algorithm relies entirely on intra-scale correla-

tion to encode images. An adaptively-scanned wavelet-difference-reduction (ASWDR)

algorithm is instead proposed to encode wavelet transform images. This exploits both

intra- as well as inter-scale correlation when encoding wavelet-transformed images. This

algorithm is used as an embedded image encoder, instead of the MGE algorithm pro-

posed by Frajka and Zeger. In addition, a closed loop structure for disparity compensated

residual image generation is used.

Shukla and Radha have shown [17] that variable-block-based disparity estimation

schemes outperform their fixed-block-based counterparts in a rate-distortion (R-D) frame-

work. This motivates the use of a variable-block-based disparity estimation scheme in

the proposed algorithm. This is in contrast to the fixed-block-based schemes reported

in [11] and [12]. As demonstrated in Chapter 5, partition-artifacts must be eliminated

in disparity compensated images, prior to generation of residual images. Due to uneven

block sizes, loop-filtering is used instead of the currently used overlapped-block disparity

compensation (OBDC) scheme [18].

Finally, the hierarchical search technique used in disparity-estimation facilitates spatial-

scalability when encoding such stereo image pairs. Advantages of embedded techniques,

when compared with their independent simulcast counterparts, are also shown in Chap-

ter 5. Hence the algorithm, proposed in Chapter 5, can be summarized as having the

following features:

• ASWDR algorithm to encode and decode reference and residual images,

• Variable-block-based disparity estimation,

• Hierarchical search strategy to estimate disparity vectors and provide scope for

spatial-scalability and
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• An edge-preserving noise-reduction (EPNR) filter to minimize partition artifacts

in disparity compensated images

8.1.2 Stereoscopic moving-image coding

The above algorithm has been extended to encode time-varying stereoscopic imagery.

Chapter 7 details this implementation. This is made possible by the novel picture hi-

erarchy shown in Fig. 7.1. This removes the inherent limitations of current picture

hierarchies that are discussed in Chapter 6. Use of a closed-loop structure insures drift-

free target picture reconstruction, during decoding. This is a departure from traditional

open-loop structures proposed in [76, 20] and [75]. In addition, the picture hierarchy

shown in Fig. 7.1 eliminates the redundant nature of the algorithm shown in Fig. 6.5.

Motion vector estimation is not performed for target pictures. Instead, these pictures are

obtained by displaced-disparity-vector (DDV) estimation. Principles of DDV estimation

have been discussed in Chapter 2.

As with its still-image counterpart, spatial-scalability can be obtained when encoding

stereoscopic moving-images. This is possible due to the hierarchical search strategy used

in disparity- and motion-estimation. In addition, the use of the novel loop-filter insures

that partition artifacts are minimized to a large extent, thus improving peak signal-to-

noise ratio (PSNR) values of reconstructed images. Finally, temporal interleaving at

arbitrary time-instants have been proposed when encoding stereoscopic moving-images

in an asymmetrical coding framework.

8.2 Summary of original contributions made in the thesis

The original contributions that have been made during the course of this thesis are

highlighted as follows:
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• In [12], a MGE algorithm was proposed to encode disparity compensated residual

images. In Chapter 3, the limitations of using this algorithm has been shown. A

perceptually superior ASWDR algorithm was instead proposed to encode, natural

as well as residual images. This algorithm is effective in exploiting intra- as well

as inter-scale correlation amongst wavelet coefficients. However, there exists room

for further improvement in this algorithm. This is discussed in the next section.

• An EPNR filter, originally used to clean images [19] corrupted with Gaussian noise,

has been adapted in this algorithm as a loop filter. The current standard in generat-

ing disparity- or motion-compensated images is an overlapped-block-compensated

technique [18, 63]. As shown in Chapter 5, this algorithm is restricted to fixed

block-based disparity- or motion-estimation techniques only. Due to its lack of

region-size dependency, an EPNR filter can be used to smooth compensated im-

ages obtained from arbitrary region-based estimation schemes. Hence, this can be

efficiently incorporated in current MPEG-4 coding standards where object scala-

bility is a desired feature.

• In [11, 12] and other literature surveyed in this thesis, it has been reported that

disparity estimation is performed between reference and target images at full per-

ceptual quality. This is generally true when encoding still-images. However, this

scenario is not valid in some instances; e.g., estimating a target P-picture from a

previously encoded reference P-picture. Hence it was proposed to locally quan-

tize reference and target images (Fig. 5.1) before estimating disparity or motion

vectors. Qualitatively speaking, this produces unbiased results during estimation.

• A scheme has also been presented to obtain discrete levels of spatial scalability.

This is possible by exploiting the inherent nature of hierarchical search strategies

in motion- and disparity-vector estimation. As discussed in Chapter 7, differ-
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ent spatial resolutions in MPEG-2 video coding profiles (generally) have a dyadic

relationship between them. Unlike current state-of-the-art schemes, no explicit

downsampling is necessary [22] to encode images at different spatial resolutions.

• Current standards for encoding stereoscopic moving-images [21] have scope for

limited SNR-scalability. As shown in Fig. 6.2, every picture in a sequence is used

for predicting current, future or past pictures. This limits SNR-scalability when

decoding such pictures. Consequently, a new picture hierarchy has been proposed

in this thesis. This can be seen from Fig. 7.1. Target pictures in this hierarchy are

predicted only from their reference view counterparts. When using this structure

for decoding users have the flexibility of viewing the sequence in both monoscopic

and stereoscopic modes, without sacrificing SNR-scalability. As shown in Fig.

7.2, this picture hierarchy can be extended to encode pictures from multi-view

(i.e., more than two views) imaging systems while preserving useful features of the

aforementioned algorithm.

• Modifications in existing temporal-interleaving schemes for viewing asymmetrically

coded stereoscopic moving-image data [23] have been proposed. The present scheme

is only valid for sequences having scene-cuts. In this algorithm, the limitation

of scene cuts has been removed. This insures that temporal-interleaving can be

achieved in sequences without scene-cuts (e.g., telemedicine applications).

• A limited discussion, based on informal subjective testing, has also been provided

for encoding color stereoscopic images (still and moving). This is possible by ex-

ploiting psychovisual characteristics of the HVS. Results from Tables 5.14 and

5.15 indicate that chrominance components of target images can be quantized very

coarsely. Notwithstanding this, test subjects with experience in viewing stereo-

scopic images were unable to perceive color-bleeding and coding-artifacts when
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viewing these images in a stereoscopic mode (along with perceptually higher qual-

ity reference images). The same subjects were also not able to detect “jerky” mo-

tion (i.e., change in perceptual quality) between successive images of a stereoscopic

moving-image sequence.

8.3 Scope for future research work

The research work presented in this thesis advances the concept of stereoscopic image

coding (still and time-varying). This has led to the identification of additional topics

that can form part of future research work. These are highlighted as follows:

• In Chapter 1, an ideal scenario of an error-free transmission channel is assumed. For

all practical purposes this cannot be assumed when transmitting data over noisy

channels (e.g., wireless networks). As a result, source codes generated from the

encoding process described in Chapters 5 and 7 must be “protected” adequately

before transmission can take place. In this regard, current work is focused on

protecting codes generated from zerotree-based techniques. More information of

these techniques can be found in an excellent review paper by Wang et. al. [86].

Being a relatively new technique, research work needs to be undertaken to generate

error-resilient codes when using an ASWDR algorithm. One approach would be

to output “markers” in both dominant and refinement scans. These can be output

when scanning between different subbands (e.g., after the last coefficient of c20

and the first coefficient of d21). The arithmetic coding framework, used in the

present scheme, can be improved to included localized context-based modeling of

coefficients. Details of some of these proposals can be found in [73]. It is hoped

that improved arithmetic coding coupled with error-resilient code generation will

make an ASWDR image coding scheme competitive with current techniques.
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• Quadtree-partitioning is not an efficient approach to segment textured and non-

textured regions of an image. There exists other partitioning techniques [87] that

can be effected on images that are more efficient. This is primarily an a-posteriori

approach in segmenting an image. The DWT is the preferred method of transform-

ing images. An a-priori approach to this method can be obtained from the work

by Cinkler and Mertins [88]. In this method, edge information is obtained from im-

ages before implementing a DWT. This information can be used to segment images

into “non-overlapping regions”. The authors in [88] have shown that this approach

leads to improved image reconstruction in a R-D framework. In the context of

stereoscopic still- or moving-image coding, these non-overlapping regions can be

used for disparity or motion estimation instead of rectangular blocks generated

from a quadtree-partitioning scheme. A recent algorithm utilizing this concept for

monoscopic moving-image coding can be found in [89].

• In this research work, preliminary results have been presented when encoding

stereoscopic color images (still and moving). In Chapter 5 it was observed that

chrominance components of a target image can be represented at an extremely low

bit-rate. It was also observed that the luminance component of reference images

should be generally represented at higher bit-rates. A similar finding has been

reported in Chapter 7, when encoding stereoscopic color moving-images. This can

form the basis of a subsequent research topic. Extensive subjective analysis is

needed in order to develop mathematical models, to ascertain threshold values of

bit-rates for each component of both reference and target images. This information

can also help in determining threshold values when implementing a temporal inter-

leaving process. This implies that users should just be unable to perceive distinct

changes in SNR-resolution of contiguous stereo-image pairs.
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Appendix A

“CDF-9/7”, “Odegard-9/7”,
“Cooklet-17/11” - Lifting Steps

Coefficients for “CDF-9/7” can be found from [25, p. 279] while those of “Odegard-9/7”

can be found from the “Wavelet Image Compression Construction Kit” [90]. Theoretical

work pertaining to the design of this filter can be found in [91]. Coefficients for “Cooklet-

17/11” can be found in [92].

Lifting steps of filters used in this thesis are outlined in the following tables. The

polynomial division algorithm, proposed by Daubechies and Sweldens [42] is used to

generate these steps. The following pages also outlines these lifting steps. The following

notations are used:

• cm[n] : 1-D input signal being analyzed,

• dm−1[n] : 1-D signal containing the detail coefficients and

• cm−1[n] : 1-D signal containing the approximate coefficients.
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Table A.1: “CDF-9/7” Analysis filter coefficients

n h̃n zn g̃n zn

0 0.60294901823636 0.55754352622850
±1 0.26686411844288 -0.29563588155712
±2 -0.07822326652899 -0.02877176311425
±3 -0.01686411844288 0.04563588155713
±4 0.02674875741081

Table A.2: Lifting coefficients - “CDF-9/7”

Si(z), Ti(z) = a1z
1 + a2 + a3z

−1

i
a1 a2 a3

S1(z) -1.586134342 -1.586134342 0

T1(z) 0 -0.05298011854 -0.05298011854

S2(z) 0.8829110762 0.8829110762 0

T2(z) 0 0.4435068522 0.4435068522

K 1.149604398

Lifting steps for this filter pair are as follows:

cm−1[n] ← cm[2n]

dm−1[n] ← cm[2n + 1]

dm−1[n] ← dm−1[n] + s1[1] (cm−1[n] + cm−1[n + 1])

cm−1[n] ← cm−1[n] + t1[1] (dm−1[n− 1] + dm−1[n])

dm−1[n] ← dm−1[n] + s2[1] (cm−1[n] + cm−1[n + 1])

cm−1[n] ← cm−1[n] + t2[1] (dm−1[n− 1] + dm−1[n])

cm−1[n] ← K cm−1[n]

dm−1[n] ← 1

K
dm−1[n] (A.1)
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Table A.3: “Odegard-9/7” Analysis filter coefficients

n h̃n zn g̃n zn

0 0.78751377152779 0.81678063499211
±1 0.38697186387262 -0.44030170672499
±2 -0.09306926370358 -0.05483692690278
±3 -0.03341847327935 0.08674831613171
±4 0.05286576853296

Table A.4: Lifting coefficients - “Odegard-9/7”

Si(z), Ti(z) = a1z
1 + a2 + a3z

−1

i
a1 a2 a3

s1(z) -1.581932486 -1.581932486 0

t1(z) 0 -0.071678341 -0.071678341

s2(z) 0.825773750 0.825773750 0

t2(z) 0 0.523072245 0.523072245

K 1.079383836

Lifting steps for this filter pair are as follows:

cm−1[n] ← cm[2n]

dm−1[n] ← cm[2n + 1]

dm−1[n] ← dm−1[n] + s1[1] (cm−1[n] + cm−1[n + 1])

cm−1[n] ← cm−1[n] + t1[1] (dm−1[n− 1] + dm−1[n])

dm−1[n] ← dm−1[n] + s2[1] (cm−1[n] + cm−1[n + 1])

cm−1[n] ← cm−1[n] + t2[1] (dm−1[n− 1] + dm−1[n])

cm−1[n] ← K cm−1[n]

dm−1[n] ← 1

K
dm−1[n] (A.2)



Table A.5: “Cooklet-17/11” Analysis filter coefficients

n h̃n zn g̃n zn

0 0.8402696692 0.7568252267
±1 0.4090630083 -0.4226067872
±2 -0.1073757602 -0.033145604
±3 0.0533641923 0.0814830079
±4 0.0073357876 0.0082864076
±5 -0.0135767155 -0.0124296114
±6 -0.0006712263
±7 0.0010068394

Table A.6: Lifting coefficients - “Cooklet-17/11”

Si(z), Ti(z) = a1z
1 + a2 + a3z

−1 + a4z
−2

i
a1 a2 a3 a4

S1(z) 0 -1.5 0 0

T1(z) 0.187500000 0.187500000 0 0

S2(z) 0 -0.266667113 -0.266667113 0

T2(z) -0.219726335 -0.219726335 0 0

S3(z) 0 0.898246006 0.898246006 0

T3(z) -0.057113653 0.395736546 0.395736546 -0.057113653

K 1.190916752

Lifting steps for this filter pair are as follows:

cm−1[n] ← cm[2n]

dm−1[n] ← cm[2n + 1]

dm−1[n] ← dm−1[n] + s1[1] (cm−1[n] + cm−1[n + 1])

cm−1[n] ← cm−1[n] + t1[1] (dm−1[n− 1] + dm−1[n])

dm−1[n] ← dm−1[n] + s2[1] (cm−1[n] + cm−1[n + 1])

cm−1[n] ← cm−1[n] + t2[1] (dm−1[n− 1] + dm−1[n])

dm−1[n] ← dm−1[n] + s3[1] (cm−1[n] + cm−1[n + 1])

cm−1[n] ← cm−1[n] + t3[1] dm−1[n + 1] + t3[2] dm−1[n] + t3[3] dm−1[n− 1] + t3[4] dm−1[n− 2]

cm−1[n] ← K cm−1[n]

dm−1[n] ← 1

K
dm−1[n] (A.3)
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Appendix B

ASWDR algorithm - Some Results

Overview

Numerical results are presented that explains the “brings-forward” principle of an ASWDR algorithm

when compared with a WDR counterpart. Some results are also presented that highlight the differences

between ASWDR encoded images with that of SPIHT and JPEG2000 algorithms. In all instances,

“CDF-9/7” wavelet filters have been used.

B.1 Comparison between WDR and ASWDR algorithms

Frajka and Zeger justified using an MGE embedded image encoder1 for their algorithm

[12]. As discussed in Chapter 3, WDR and MGE algorithms use similar principles, but

different methodologies in encoding positions of wavelet coefficients. To illustrate the

performance of WDR and ASWDR algorithms, the right-view image from a biomedical

stereo-image pair (“angioMR”) is considered.

These images contain large areas of high-frequency content interspersed with low-

frequency regions. For example, in Fig. B.1 features in the heart valve are clearly visible

along with veins and arteries that constitute low-contrast regions. Fig. B.2 represents a

disparity compensated residual image obtained from the algorithm described in Chapter

3. Heart-valve features are no longer conspicuous. Occluded regions consist of arteries

1Explained in Chapter 4
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and veins that are present in the left-view. As noted, these are low-contrast areas and

generally constitute high-frequency regions.

A four-scale wavelet analysis, using a “CDF-9/7” wavelet-filter pair, is performed

on both images. These transformed images are subsequently encoded (using WDR and

ASWDR) at a bit-rate of 1.0 bpp with context-based arithmetic coding. Tables B.1 and

B.2 indicate number of significant coefficients when implementing a WDR and ASWDR

decoding.

It is clearly evident that an ASWDR algorithm is able to decoded more significant

coefficients, than a WDR algorithm, for the same bit-rate. A similar inference can be

drawn when comparing the performance of an ASWDR algorithm with a MGE algorithm.

This in-turn explains results shown in Tables 5.1, 5.2, 5.6 and 5.7.

B.2 Comparison with JPEG2000 and SPIHT

To conclude this appendix, a qualitative discussion is presented by comparing the per-

formance of an ASWDR algorithm with SPIHT and JPEG2000. For an exhaustive

discussion on this topic, the concerned reader is directed to [73].

The use of an ASWDR algorithm is justified by its ability to effectively reconstruct

low-contrast high-frequency regions. To compare the performance of this algorithm two

popular images, “Barbara” and “mandrill”, are selected. Images have been compressed

with SPIHT2 and JPEG20003.

On observing Fig. B.3(b) it can be seen that stripes on the right leg of Barbara’s

pants are visually more perceptible than from Figs. B.4(a) and B.4(b). A similar infer-

ence can be drawn by observing her scarf. In fact in Fig. B.4(b), large regions of her

pant, scarf and left eye are blurred. This confirms results shown in Table 5.11 in which

disparity compensated residual images were encoded using JPEG2000 [17].

2http://www.cipr.rpi.edu/research/SPIHT/
3IrfanView with a JP2 plugin from http://www.luratech.com
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Fig. B.1: Right image-view from the “angioMR” stereo-image pair. Image dimensions
equals 384 × 352.

Table B.1: Significant coefficients obtained when decoding an encoded version of the
image shown in Fig. B.1

Bit-rate (bpp) Sig. coeff. (WDR) Sig. coeff. (ASWDR) % change w.r.t WDR
0.125 2682 2852 +6.33
0.20 4224 4734 +12.07
0.25 5476 5959 +8.82
0.30 6507 6750 +3.73
0.35 7202 8013 +11.26
0.40 8727 9819 +12.51
0.45 10175 11149 +9.57
0.50 11360 12618 +11.07
0.55 12541 13714 +9.35
0.60 13889 14251 +2.60
0.80 18334 20058 +9.40
1.00 24159 26078 +7.94
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Fig. B.2: Disparity-compensated residual image from the “angioMR” stereo-image pair.
Image dimensions equals 384 × 352. Image has been scaled for display pur-
poses.

Table B.2: Significant coefficients obtained when decoding an encoded version of the
image shown in Fig. B.2

Bit-rate (bpp) Sig. coeff. (WDR) Sig. coeff. (ASWDR) % change w.r.t WDR
0.125 2645 2714 +2.60
0.20 4622 4816 +4.19
0.25 5863 6034 +2.91
0.30 6946 7252 +4.40
0.35 7695 8038 +4.45
0.40 9270 9856 +6.32
0.45 10771 11379 +5.64
0.50 12023 12919 +7.45
0.55 13358 14326 +7.24
0.60 14728 15463 +4.99
0.80 19081 20297 +6.37
1.00 25038 26829 +7.15
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(a) Original image at 8.0 bpp

(b) ASWDR - encoded at 0.125 bpp

Fig. B.3: Original and ASWDR encoded “Barbara” image. Image dimensions are
512×512
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(a) SPIHT - encoded at 0.125 bpp

(b) JPEG2000 - encoded at 0.125 bpp

Fig. B.4: “Barbara” image encoded with SPIHT and JPEG2000. Image dimensions are
512×512
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(a) Original image at 8.0 bpp

(b) ASWDR - encoded at 0.125 bpp

Fig. B.5: Original and ASWDR encoded “mandrill” image. Image dimensions are
512×512
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(a) SPIHT - encoded at 0.125 bpp

(b) JPEG2000 - encoded at 0.125 bpp

Fig. B.6: “Mandrill” image encoded with SPIHT and JPEG2000. Image dimensions
are 512×512
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Similar conclusions can be inferred on comparing Fig. B.5(b) with Figs. B.6(a) and

B.6(b). For example, large regions of the mandrill’s mane have been blurred in Fig.

B.6(a). In addition, the region joining its nostrils are blurred in the same figure. How-

ever these regions are fairly easy to differentiate in Fig. B.5(b). Another example would

be features on its facial skin. These are perceptually more visible in Fig. B.5(b) than in

Fig. B.6(a). Once again, Fig. B.6(b) has large areas of the above regions blurred.

It should be mentioned that these images have been encoded with entropy coding.

It is well established [16], [73] and [15] that SPIHT outperforms all other algorithms

in a R-D framework primarily due to its arithmetic coding scheme. Notwithstanding

this, results from Figs. B.3(b) and B.5(b) indicate a perceptually superior performance

of an ASWDR algorithm. As mentioned in Sec. 3.3, SPIHT relies on zerotrees (i.e.,

inter-scale correlation) amongst wavelet coefficients for efficient encoding. On the other

hand, ASWDR relies on vision principles (i.e., intra- and inter-scale correlation) amongst

subbands to encode coefficients. From this it can be inferred that significant values at

edges at a particular scale imply significant values at a next higher resolution [73].

JPEG2000 relies on an embedded block coding with optimized truncation (EBCOT)

algorithm [1]. This is a block-based transform and produces “tiling-artifacts” in de-

compressed images. Post-processing smoothing algorithms are required to remove these

artifacts [1]. This affects overall image quality. In addition JPEG2000 has a feature-

rich bit-stream capability [13]. This requires storage of overhead information. Hence

less bits are allocated for actual image information. This also affects overall quality of

decompressed images.
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Appendix C

Software, Hardware and CD ROM
Details

T
HIS supplementary chapter presents details of software used in generating and

hardware used in viewing images and sequences, shown in Chapters 5 and 7. In

addition, details of contents in the enclosed CD ROM are also presented.

C.1 Software

The codec structure, reported in this thesis, has been developed using JAVAr. Anaglyph’s,

reported in Chapter 5, have been generated using an algorithm described in [74]. Oper-

ating system in all instances was Windows-2000r. In addition, these images were viewed

on applications designed with OpenGLr technology.

C.2 Hardware

. In case of moving-image sequences a frame-rate of 25 fps was used. Individual image-

pairs as well as complete image sequences have been displayed on hardware with the

following specifications:

• Display system: CRT screen with a screen resolution of 2560×1024 and a refresh

rate of 120 Hz,

• Video card : F 980 NVidia Quadro4 980XGlr,
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• Processor : Pentium-4r processor at 2.0 GHz,

• Memory: 1.0 Gigabyte DDR,

• Shuttered glasses: Crystal Eyesr from Stereographics Corp.1

C.3 CD ROM

The CD ROM enclosed with this thesis contains:

• Individual images as well as anaglyph’s, shown in Tables 5.14 and 5.15 in Chapter

5, and

• An additional table containing individual images and anaglyph’s from the “burial-

ground” stereo-image pair.

The concerned reader is requested to open the “index.html” file present in the CD-ROM

in order to obtain and view these images. Fused stereo-image sequences are not presented

due to software constraints. The display device for these image sequences is left to the

discretion of the reader.

The “medallion”, “bull” and “burial-ground” stereo-image pairs are copyright of Eric

Dubois at the University of Ottawa, Canada. Kodakr corporation2 are copyright holders

of the “basketball” stereo-image pair, used in Chapters 4 and 5. IMAXr corporation3

are exclusive copyright holders of the “redcar” stereo-image sequence used in Chapter 7.

1http://www.stereographics.com
2http://www.kodak.com
3http://www.imax.com
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