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Abstract

This thesis addresses the key issues of image dataset compression, especially the

cubic-panorama image dataset compression, used in image-based virtual environment

navigation to develop effective and efficient compression techniques and schemes. To my

knowledge, this is the first work to be published to investigate and design compression

schemes for cubic-panorama image datasets.

A spatially consistent representation of cubic-panorama image datasets is proposed.

With this spatially consistent representation, unrestricted search for displacement vec-

tors as well as matching reference blocks is extended beyond side image boundaries in

all directions. A block padding algorithm for constructing reference blocks is presented

for displacement estimation and compensation. Optimized matching reference blocks

are obtained to reduce the prediction errors and improve the compression efficiency.

Superior coding performance is achieved with the spatially consistent representation

compared with the generic planar representation of cubic-panorama image datasets.

For cubic-panorama image dataset compression, a scalable lifted wavelet-based cod-

ing scheme with displacement compensation is developed. This scheme is based on

the framework of lifted wavelet transforms with cross-image displacement-compensated

enhancement combined with embedded entropy coding. The wavelet transforms ef-

ficiently generate hierarchically structured decomposition coefficients and provide the

potential of spatially scalable coding required by image dataset compression. The lifting

operations put wavelet analysis and synthesis into fast memory-saving in-place compu-

tations. The displacement compensation significantly improves the wavelet transform
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coding efficiency across basis images.

A new embedded entropy coding approach named independent block with layered

data partition (IBLDP) is proposed. It combines embedded independent coefficient

block coding with layered bitplane data partitioning. To provide the required spatial

resolution scalability and spatial random access, no inter-subband and inter-block de-

pendencies are exploited. Each subband is encoded independent of other subbands.

With the compact layered bitplane data representation and the simplified coding struc-

ture, IBLDP features reduced computational and implemental complexity and hence is

more suitable for the efficient and interactive image rendering application.

For cubic-panorama image dataset compression, a specific random access mechanism

is designed. A new hierarchical data structure is proposed to accommodate the random

access mechanism. The corresponding bit-stream syntax is formed to support this

new data structure. Multi-level index tables are embedded in the bit-stream to easily

facilitate the spatial image random access. A proper compromise between the coding

efficiency and the random access flexibility is reached.

A novel global displacement estimation and compensation approach with scaled

block-depth estimation is developed. Based on a six-parameter perspective projection

model, a displacement-compensated image prediction algorithm is presented, taking

into consideration all kinds of camera motions. A unique block-based scaled depth

estimation technique is proposed for image prediction. The displacement-compensated

predicting images are generated by using the global model parameters combined with

the estimated scaled block-depth map. More accurate predicting images with less-data

presentations are obtained compared with the traditional BMA. The proposed approach

is more efficient when applied for cubic-panorama image dataset compression.

Experimental results of the proposed techniques and schemes applied to encoding the

testing cubic-panorama image datasets are demonstrated. Superior coding performance

are achieved over that of the corresponding comparable techniques and schemes applied

for cubic-panorama image dataset compression.
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Chapter 1

Introduction

Navigation in image-based virtual environments is desirable in many applications,

such as virtual museums, immersive learning, virtual sightseeing, telepresence, com-

puter games, e-business, real-estate sales, etc. [7, 10, 31, 52, 88]. Compression of the

image datasets used as input for image-based virtual environment navigation systems

is indispensable for reducing the huge database sizes and making the applications fea-

sible in practical use. As a specific instance of image datasets used for image-based

virtual environment navigation, cubic-panorama image datasets with their unique fea-

tures are becoming more popular and expected to be more widely utilized [7, 21, 90].

Compression of cubic-panorama image datasets confronts some substantial challenges

in order to adapt the coding schemes to the features of the image datasets, satisfy the

requirements of navigation systems and efficiently represent the image datasets in the

compressed streaming output. This thesis addresses and resolves some of the challenges

for the purposes of efficiently compressing image datasets, especially the cubic-panorama

image datasets and meeting well the specific requirements of the applications.

In this introductory chapter, first the necessity for conducting research on compres-

sion of image datasets as well as the specific cubic-panorama image dataset instance

used for image-based virtual environment navigation is clarified in Section 1.1. Then,
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an overview of the research work covered in this thesis is given in Section 1.2. After

that, the organization of this thesis is outlined at the end of this introductory chapter

in Section 1.3.

1.1 Motivation

An image-based virtual environment navigation system can provide users with real-

istic and immersive exploration experiences of real-world environments by taking image

datasets as the primitive inputs. As a discrete image representation of a real-world

environment, an image dataset consists of a collection of basis images in a particular

image format (Fig. 1.1). Each basis image in the image dataset is associated with a

distinctive viewpoint at a physical location on the designed trajectories. Therefore, an

image dataset also refers to a number of image samples generated at a sequence of view-

points in the represented environment. By making use of image-based rendering (IBR)

techniques, novel-view images can be synthesized and new image sequences can be ren-

 

 

Real-World Environment  

Trajectory  

Image Dataset  

Viewpoint  

Fig. 1.1 An image dataset consisting of a collection of basis images in a
particular image format as a discrete image representation of a real-world
environment.
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dered according to users’ instructions. Remote users are able to interactively extract

and observe the rendered image sequences. A resultant image sequence imitates a video

sequence as would be captured by a virtual camera. This virtual camera moves with

the desired orientations along the navigation trajectories controlled by users according

to their exploration intents. Thus, users are able to navigate in the image-based replica

of a real-world environment.

In the process of navigating in an image-based virtual environment, photo-realistic

novel views are synthesized based on the image datasets representing the environments.

One of the most important form of image dataset is the cubic-panorama image dataset.

A cubic panorama (Fig. 1.2) consists of six planar perspective side images stitched

together to provide viewers with a 360o horizontal view and with the capability to look

up to the ceiling and down to the floor. Cubic panoramas can be easily generated and

manipulated. Novel-view images can be synthesized conveniently from the basis images

in cubic-panorama datasets. The best general-purpose representation of environment

mapping is the projection onto a cube [25]. Cubic-panorama image datasets are more

suitable for being used as the image database in some applications, like navigation

in image-based virtual environments. As a unique format of panoramic images and a

promising form of image dataset used for image-based virtual environment navigation,

 
 

Z

X

Y 

Fig. 1.2 A cubic panorama in a cubic-panorama image dataset.
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cubic-panorama image datasets are becoming more popular and are expected to be

more widely applied [7, 21].

Image datasets constitute the fundamental databases for image-based virtual envi-

ronment navigation. In order to completely cover the represented environment, basis

images in image datasets are usually densely distributed in space and a larger number

of basis images are included in image datasets. They involve a huge amount of data.

For example, the Lumigraph [24] and light field [53] experimental image dataset “Fruit”

consisting of a two-dimensional image array with 32 x 32 basis images of resolution 256

x 256 has a size of 192 MB, and the cubic-panorama [25] experimental image dataset

“Lab” consisting of a one-dimensional image array with 112 basis images of resolution

6 x 512 x 512 has a size of 504 MB. In practical applications, a much larger number of

higher resolution images are desirable in order to represent large environments, enable

large available navigation spaces and synthesize high-quality novel images. This results

in even larger sizes of image datasets. Large image datasets occupy huge amounts of

storage space on storage media and require high transmission bandwidths over networks.

Compression of the image datasets is crucial to reducing the required storage space and

transmission bandwidth and putting image-based virtual environment navigation into

practical use.

Intensive research on compressing images and video sequences has been conducted

for many years. Many image and video compression techniques have been proposed

and are available for different applications. Some of the state-of-the-art compression

techniques have been recommended in a variety of international image and video coding

standards, ranging from ISO/IEC JPEG [33] and JPEG2000 [34] for still image coding,

ISO/IEC MPEG-1 [35], MPEG-2 [36] and MPEG-4 [37] as well as ITU-T H.261 [39]

and H.263 [40] for video coding up to the recent H.264 (also named MPEG-4 AVC) [41]

jointly developed by ITU-T and ISO/IEC for advanced video coding. However, as these

image and video compression techniques are designed for compressing generic images

and video sequences, they are sub-optimal if directly applied for compressing the image
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datasets used for image-based virtual environment navigation.

Image dataset compression is significantly different from the generic image and video

sequence compression. Making the compression techniques adaped to the specific fea-

tures of the image datasets is very important to achieve high-performance image dataset

compression, and meeting the special requirements for image-based virtual environment

navigation is the key to the design of image dataset compression schemes. Compression

techniques and schemes specially designed for compressing image datasets need to be

developed.

1.2 Thesis Work Outline

This thesis addresses the challenging problems of image dataset compression, es-

pecially the cubic-panorama image dataset compression, used for image-based virtual

environment navigation. Although not all aspects of cubic-panorama image dataset

compression could be dealt with due to the limits of time and space, this thesis investi-

gates a number of the very key issues. It is, to the author’s knowledge, the first publicly

available work on cubic-panorama image dataset compression. Several contributions to

the research on cubic-panorama image dataset compression are made in this thesis.

Image dataset compression is a new research area. Many issues remain to be in-

vestigated in various aspects of image dataset compression. In this thesis, based on an

intensive study of the problems of image dataset compression and an extensive relevant

literature review, the common characteristics of image datasets used for image-based

virtual environment navigation are systematically summarized, and the requirements,

the key issues and the strategies of image dataset compression are generalized. Also, a

comprehensive review and comparison of existing solution methods are presented. All

these provide a valuable reference to the research on image dataset compression.

Adapting coding schemes to the special features of image datasets is very impor-
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tant in the design of a scheme for efficient image dataset compression. Taking the

cubic-panorama image dataset as a concrete form of image dataset used in image-based

virtual environment navigation, a spatially consistent representation of cubic-panorama

image datasets is proposed by making use of the features of this specific form of image

dataset. With this spatially consistent representation, unrestricted search for displace-

ment vectors and matching reference blocks as well can be performed. A block padding

algorithm for constructing reference blocks is presented for displacement estimation

and compensation. Optimized matching reference blocks are obtained to reduce the

prediction errors and improve the compression efficiency. With the proposed spatially

consistent representation, superior coding performance is achieved over that with the

generic planar representation of cubic-panorama image datasets.

Providing spatially scalable coding is extremely desirable for image dataset com-

pression in order to synthesize the frequently required zooming views with steady image

quality. Based on this fundamental requirement, a scalable lifted wavelet-based coding

scheme with displacement compensation is specially developed for cubic-panorama im-

age dataset compression. This scheme is based on the framework of lifted wavelet trans-

forms with cross-image displacement compensation combined with embedded entropy

coding. The wavelet transforms provide the potential of required spatially scalable

coding. The lifting operations put wavelet analysis and synthesis into fast memory-

saving in-place computations. The displacement compensation significantly improves

the wavelet transform coding efficiency across basis images. A new embedded entropy

coding approach is proposed. It combines embedded independent coefficient block cod-

ing with layered bitplane data partitioning. This new entropy coding approach features

reduced computational and implementation complexity and hence is more suitable for

the efficient and interactive image rendering application.

With regard to the unique requirements of random access and selective decoding

for image dataset compression, a specific rectangular sub-region access mechanism is

designed for cubic-panorama image dataset compression. A new hierarchical data struc-
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ture is proposed to accommodate this mechanism. The corresponding bit-stream syntax

is formed to support this new data structure. Multi-level index tables are embedded

in the bit-stream to easily facilitate the required random access. A suitable tradeoff

among coding efficiency, spatial resolution scalability and random access flexibility is

reached.

Making full use of the features of image datasets is a principle strategy of designing

efficient coding schemes for image dataset compression. As a specific feature of image

datasets, the dominant image displacement across basis images demonstrates a certain

regular pattern for each form of image dataset determined by the motion of the cam-

era or cameras producing the image dataset. A novel global displacement estimation

and compensation approach is developed based on the dominant image displacement

feature of cubic-panorama image datasets. A displacement-compensated image pre-

diction algorithm is presented, taking into consideration all kinds of camera motions.

A unique block-based scaled depth estimation technique is proposed for image predic-

tion. Displacement-compensated predicting images are generated by using the global

model parameters combined with the estimated scaled block-depth map. More accurate

predicting images with more compact representations are obtained compared with the

traditional block matching algorithms (BMA). This proposed approach is more efficient

when applied for cubic-panorama image dataset compression.

Experimental results of the proposed techniques and schemes applied to encoding

the testing cubic-panorama image datasets are demonstrated. Superior coding perfor-

mances are achieved over those of the corresponding comparable techniques and schemes

applied for cubic-panorama image dataset compression.

1.3 Organization of the Thesis

This thesis is organized as follows. After this introductory chapter, Chapter 2 pro-

vides the key background information on image dataset compression used for image-
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based virtual environment navigation. An introduction to an image-based virtual envi-

ronment navigation system is made along with brief descriptions of the main components

in the system, including the image dataset compression component. Also, image-based

rendering techniques, which build the basis of image-based virtual environment navi-

gation and are closely related to the design of image dataset compression schemes, are

surveyed in this background information chapter.

Chapter 3 covers the generic issues of image dataset compression for image-based

virtual environment navigation. It starts out with a problem description section, sum-

marizes the characteristics of image dataset compression, and presents a comprehensive

review of developed solution methods for compressing image datasets. Lastly, compar-

isons of different image dataset compression schemes are made, and some conclusions

are drawn in a summary section.

In Chapter 4, cubic-panorama image dataset compression with a spatially consistent

representation is discussed. After an introduction to the cubic-panorama image dataset

with its superior features over other forms of image datasets, the process of generating

cubic-panorama image datasets is presented. A spatially consistent representation for

cubic-panorama image datasets is proposed, and a reference block padding algorithm

is presented and applied to unrestricted displacement estimation and compensation.

Two baseline compression schemes adapted to coding cubic-panorama image datasets

with the spatially consistent representation are introduced and experimental results

are provided. This chapter ends with a summary of the discussion on cubic-panorama

image dataset compression.

The development of a scalable lifted wavelet-based coding scheme with displacement

compensation for cubic-panorama image dataset compression is covered in Chapter 5.

Following a problem description of scalable coding and wavelet-based compression tech-

niques, all the main aspects of the developed compression scheme are discussed in detail,

including discrete wavelet transforms with lifting schemes, displacement-compensated
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cross-image filtering, wavelet decomposition coefficient quantization and context-based

arithmetic entropy coding. Also, spatial subregion random access and selective decod-

ing for cubic-panorama image dataset compression are investigated and the structure of

the scalable lifted wavelet-based scheme with displacement compensation is presented.

In addition, experimental results of this developed compression scheme applied to cod-

ing testing cubic-panorama image datasets are demonstrated, and the development of

this specially designed compression scheme is summarized at the end of this chapter.

Chapter 6 covers global displacement estimation and compensation used for cubic-

panorama image dataset compression. It starts out with a section of introduction to

global displacement estimation and displacement-compensated image prediction, fol-

lowed by a review of the relevant research developments. After a discussion about

global displacement analysis, a displacement-compensated image prediction algorithm

with block-based scaled depth estimation is presented. The features of global displace-

ments in cubic-panorama image datasets are investigated, and a block-based hybrid

coding scheme with global displacement estimation and compensation is presented. The

experimental results of the presented coding scheme are demonstrated. This chapter

concludes with a summary section.

Finally, the contributions made in this thesis work are summarized and the future

research work on compressing image datasets used for image-based virtual environment

navigation is anticipated in Chapter 7.
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Chapter 2

Navigation in Image-Based Virtual

Environments

Preceding the discussions on image dataset compression, some necessary background

knowledge is introduced in this chapter. The first part of this chapter presents the

image-based virtual environment navigation system, out of which this thesis topic arises.

In the second part of this chapter, image-based rendering techniques, which build the

basis of image-based virtual environment navigation systems and are so closely related

to the design of image dataset compression schemes, are reviewed with the emphasis

on the image-based rendering techniques without geometric data, such as the cubic-

panorama rendering technique.

2.1 Image-Based Virtual Environment Navigation System

Image-based virtual environment navigation allows users to walk (or generally move)

through the virtual representations of real-world environments, provides them with ap-

propriate spatial parallax, lighting and illumination changes in the virtual environments,

and gives them realistic, immersive and interactive exploration experiences by making
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use of synthesized photo-realistic images. A practical system of image-based virtual

environment navigation has been developed in the context of Navire (Virtual Naviga-

tion in Image-Based Representations of Real-World Environments) [62], which was an

NSERC research project carried out in VIVA Lab at the University of Ottawa. With the

objective of achieving effective and natural virtual navigation in image-based represen-

tations of real-world environments, the Navire project’s goal was to address and solve

the technical challenges in developing a practical system making use of image datasets

mostly composed of cubic-panorama basis images. This research project covered all

aspects of the image-based virtual environment navigation system. This thesis reflects

the work done for solving the challenging problem of compressing the cubic-panorama

image datasets in cooperation with VIVA Lab colleagues working in other aspects in

the context of the Navire project [7, 21, 30, 47, 80, 104]. In this section, an image-based

virtual environment navigation system involving image dataset compression as one of

its fundamental components is presented first, followed by brief descriptions of the

main components contained in the system. This section serves to provide background

knowledge for image dataset compression and illustrate the connections between image

dataset compression and other components of the system.

2.1.1 System Overview

An image-based virtual environment navigation system mainly consists of raw image

acquisition, image sequence preprocessing, basis image analysis, image dataset compres-

sion, image sequence rendering, image sequence transmission and virtual environment

navigation. A block diagram depicting the structure of an image-based virtual envi-

ronment navigation system is shown in Fig. 2.1. Some practical image-based virtual

environment navigation systems providing different exploration capabilities have been

developed [7, 10, 88, 100].

An image-based virtual environment navigation system starts work with the raw
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Fig. 2.1 Block diagram of an image-based virtual environment navigation
system with its main components including image dataset compression.

image acquisition. This component captures the discrete representation of the sampled

real-world environment and obtains an image sequence consisting of a collection of raw

images. Following the raw image acquisition, the image preprocessing is performed

with required preliminary operations like image signal correction, noise filtering, im-

age format conversion and image reorganization. Then, the resulting basis images are

analyzed for necessary camera calibration, image registration, image correspondence,

depth information extraction and so on to obtain some auxiliary information that will

assist the following processes.

The image dataset compression component puts the basis images and the auxiliary

information into an efficient bit-stream representation to optimize the storage space

allocation. Taking the compressed image bit-stream as primitive input, the image

sequence rendering component synthesizes novel-view images and generates rendered

image sequences according to users’ instructions. The image sequence transmission

component performs combined source and channel coding to efficiently encode the ren-

dered image sequences, multiplex them with supplementary multimedia contents, adapt

the multiplexed payloads to the features of the communication channels and deliver the

resultant bit-streams via networks. Then, remote users are able to interactively extract

and observe the synthesized image sequences that imitate video sequences captured by a
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virtual camera as it moves with the desired orientations along the navigation trajectories

controlled by users according to their exploration intents.

2.1.2 Raw Image Acquisition

The raw image acquisition process generates the source input for the image-based

virtual environment navigation system. With a camera imaging system, it captures

the image representation for the environment of interest at physical locations in the

real world. The procedure of image acquisition is designed and controlled to get an

efficient and complete image representation for the real-world environment. The camera

orientations and the camera motion trajectories for capturing the raw images are well

planned to completely cover the environment of interest. On one hand, over-sampling

the environment increases the burden of image acquisition and results in unnecessary

image overlapping [9], making the size of the raw image sequence extremely large. On

the other hand, under-sampling the environment creates the aliasing problem, causing

serious image distortion. Spectral analysis [101] and plenoptic sampling theories [8, 54]

provide the required guideline to avoid over-sampling and under-sampling in the raw

image acquisition process.

An imaging system is usually built with one single camera [74], multiple cameras [7]

or even a camera array combined with a data recording device for storing the captured

raw images, a portable computer for controlling the image acquisition process and an

on-board power source for providing steady power supply. In some cases, supplementary

information, such as the scene depth distribution, camera poses and geo-reference data,

is also required to be obtained together with raw images to reduce the image sampling

density, support model building, improve the image compression performance or assist

image rendering. In this scenario, some apparatus like a global positioning system

(GPS) for capturing geo-reference data [7] or a laser rangefinder for obtaining scene

depth information [94] are incorporated in the imaging system.



2 Navigation in Image-Based Virtual Environments 14

2.1.3 Image Sequence Preprocessing

Following the raw image acquisition, image sequence preprocessing performs neces-

sary operations on raw images for image signal correction, noise filtering, image format

conversion, image reorganization, etc. [5]. Image preprocessing is required in the system

to prepare images for the following image processing processes.

Basic image preprocessing includes gamma correction, white balance and noise filter-

ing. Gamma correction is performed with regard to the optoelectronic transfer charac-

teristics of sensors. The power law relationship can be applied for this gamma correction

purpose. White objects should generate equal values of R, G and B components. To

correct the differences of R, G, and B values of a white object resulting from different

illumination types and color temperatures, a white balance approach is applied by, for

example, keeping the green pixel value G unchanged and multiplying the red and blue

pixel values R and B by their respective gains. In addition, noise filtering for bad pixel

replacement and noise reduction could also be applied upon request.

Image format conversion changes the format of raw image signals to the standard

input image format required by image dataset compression. At this stage, basis images

of the image dataset in the desired format are derived from raw images by a transfor-

mation, image projection or image mapping operation. Generally, the directly-output

images from sensors are Bayer color images with only one color component at each

sample position. In this scenario, the pixel values of the other two color components at

each sample position are interpolated to obtain the full RGB image format. In some

cases, a reorganization of images is required for easing image analysis, image dataset

compression or image-based rendering. For example, rearranging a set of plane images

into a collection of manifold mosaic images [55], putting groups of captured images into

a group of panoramic images [74], and aligning or re-binning multi-perspective panora-

mas to obtain a set of new multi-perspective panoramas with increased inter image

redundancy [55, 96] can be performed in the image preprocessing process.
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2.1.4 Basis Image Analysis

Image analysis is applied to basis images of the image dataset for image correspon-

dence, camera calibration, image registration, depth-information extraction and so on

[89] to obtain some auxiliary data or side information in assistance to the following im-

age dataset compression, image sequence rendering and virtual environment navigation.

Image correspondence across two or more images with different viewpoints plays

an important role in the image analysis process. Most practical image correspondence

techniques belong to either region-based solutions or feature-based solutions. Region-

based solutions can be applied to all image samples and directly generate a dense

disparity map. However, they tend to break down where there is lack of texture or

depth discontinuity occurs. Feature-based solutions provide more precise and reliable

matching, but establish the correspondence only between sparse sets of image features

and increase the computational cost due to the extra computations for feature definition

and detection. Hybrid image correspondence techniques combining region-based and

feature-based techniques can also be applied for image analysis.

Some auxiliary information can be obtained through image analysis. The scene

depth distribution can be derived from the disparity map resulting from image corre-

spondence [30]. With camera calibration, the intrinsic and extrinsic camera parameters,

such as the focal length, camera distortion parameters, effective pixel sizes on the image

plane, camera positions and orientations, can be estimated based on image information

and projective geometry. Some geo-reference information can be obtained either in the

image acquisition process or alternatively by image registration.

2.1.5 Image Dataset Compression

In the image dataset compression process, a specially designed coding scheme is

utilized to compress the image dataset into an efficient bit-stream representation and

accommodate it to the allocated storage space. Some specific requirements for com-
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pressing image datasets need to be satisfied in the design of the compression scheme. A

mechanism enabling proper random access and selective decoding should be provided

in the scheme for image dataset compression. Low-complexity compression schemes or

asymmetric compression schemes with low decoding complexity are needed for fast im-

age extraction and decoding. Besides the requirement for compression efficiency, high

quality of coded basis images is necessary because the basis images will be used as

input for synthesizing novel-view images. Scalable coding is another desirable feature

for image dataset compression. In particular, spatial-resolution scalability is needed for

synthesizing uniform-quality zooming views.

Some compression techniques can be utilized for compressing image datasets. Vector

quantization (VQ) techniques [53, 86] are capable to provide the required random access

and selective decoding due to their asymmetric structure and constant-length index-

table coding features. Modified standardized coding techniques [42, 75] can be applied

to make use of the state-of-the-art standard coding approaches while adapting them to

the features of image dataset compression. Also, wavelet-based compression techniques

[23, 55] can be used to take advantage of the high-performance scalable coding provided

by discrete wavelet transforms. Moreover, advanced video coding techniques [41, 93]

and lifted motion-compensated wavelet transform techniques [22, 64] are potentially

applicable with further research to be conducted.

2.1.6 Image Sequence Rendering

Image sequence rendering synthesizes novel-view images by taking primitive inputs

from compressed image datasets and generates rendered image sequences based on

IBR techniques. IBR uses basis images of image datasets by means of re-sampling,

mosaicking, segmentation, or more generally mapping, re-projection, interpolation, or

more specifically warping, morphing, transformation and so on to generate rendered

image sequences with virtual viewpoints [79, 80, 104].
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Some IBR techniques need some environmental geometric data to synthesize novel-

view images. Different amounts of geometric data are required for different image

rendering techniques. The geometric data could be utilized in an implicit or explicit

way, and either accurate or approximate geometric data can be required depending

upon the IBR technique in use. There is a tendency to apply IBR without using

geometric data to avoid the difficulties and troubles with geometric data acquisition

and processing. In such cases, more basis images with greater cross-image coherence

are needed in the image dataset to avoid aliasing.

IBR follows users’ instructions to produce the rendered image sequences. It is re-

quired that IBR provides users with rendered images at a certain quality level, generates

smooth view transitions and synthesizes novel views at virtual viewpoints in the autho-

rized walk-through regions for virtual environment navigation. Practical IBR techniques

are developed by restraining the viewing space in order to simplify the image dataset

representation [2]. Promising IBR techniques need to be developed to reduce the alias-

ing and artifacts in the rendered image sequences and fully satisfy the requirements for

providing effective and natural navigation experiences.

2.1.7 Image Sequence Transmission

In the image sequence transmission process, combined source and channel coding is

performed to efficiently compress the rendered image sequences, multiplex them with

augmented multimedia contents, adapt the multiplexed source codes to the communi-

cation channels and deliver the output bit-streams via networks to remote users.

Standard video coding schemes can well satisfy the requirements for compressing

the rendered image sequences. ITU-T Rec. H.263 [40], ISO/IEC MPEG [36, 37] and

H.264/AVC [41] are available video coding standards for this purpose. These standards

are capable of providing high-performance video coding with different compression ef-

ficiency. Motion-compensated prediction is a key technique used in video coding stan-
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dards to achieve high coding performance. In the rendered image sequences, the image

motion is determined by the motion of the virtual camera in the case of static environ-

ment representations. This image motion reveals some special features related to the

pan, tilt and zoom motions of the virtual camera. These motion features can be utilized

to facilitate efficient and fast image motion estimation and compensation and effectively

improve the compression efficiency. Adopting a standard video coding scheme can also

benefit from the compatibility the standard provides with other third-party developed

software or hardware.

A transmission bit-stream is produced to adapt to the features of the communica-

tion channels. The streaming outputs of rendered image sequences, the accompanying

auxiliary information and the augmented multimedia contents are combined in the

transmission multiplexer. Packet techniques are utilized to map the multiplexed source

data to the transmission layer. Error resilience and robustness tools, e.g., resynchro-

nization, data partitioning and header extension codes, can be applied for error-prone

communications like streaming over Internet and wireless mobile communications. A

transmission buffer is designed to regulate the output bit-stream rate to fit the band-

width limitation of the communication channels.

2.1.8 Virtual Environment Navigation

Navigating in the virtual environments, users are able to interactively extract and

observe the synthesized image sequences that imitate video sequences captured by a

virtual camera as it moves with the desired orientations along the navigation trajectories

controlled by users according to their exploration intents. Users are allowed to freely

wander in the virtual replica of the real-world environment by choosing their own paths

and focusing on the views they are interested in.

Navigation in image-based virtual environments is provided to users by the system

through user-friendly interfaces. Users indicate their exploration intents by using, e.g.,
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a mouse, a joystick or a keyboard. Their instructions are sent back to the remote

central computer, and the image rendering component synthesizes image sequences

according to these instructions. After that, the synthesized streaming image sequences

are transmitted to users, decoded and displayed at the user end. Users are aware of

their locations and poses in the virtual environments with the assistance of the position

and orientation instruction maps, and then give instructions about where they would

like to move next to explore the virtual environments. This interactive working mode

is maintained in the whole process of virtual environment navigation. A screen shot of

the Navire viewer [6] with the orientation-location instruction map used in a developed

image-based virtual environment navigation system is shown in Fig. 2.2.

Fig. 2.2 A screen shot of the Navire viewer: (left) a user’s view of the
virtual environment and (right) the associated orientation-location map.

Besides the necessary position and orientation instruction maps, some other infor-

mative auxiliary multimedia contents can be added to augment scene understanding.

Moreover, synthesized stereoscopic image pairs could be provided and displayed to en-

rich the visual information. All these measures are helpful to enhancing the realistic

and immersive exploration experiences in the virtual environments.
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2.2 Image-Based Rendering Techniques

As a primary component in the image-based virtual environment navigation system,

image sequence rendering based on IBR is very closely related to image dataset compres-

sion, because not only does IBR generate synthesized images relying on the compressed

image datasets, but also the design of image dataset compression schemes needs to meet

the requirements of IBR. Moreover, the decoder of image datasets is located within the

image sequence rendering component instead of the image dataset compression com-

ponent. Therefore, this section is devoted to a review of IBR techniques: IBR and its

mathematical representation are introduced; the relationships between IBR and image

dataset compression are clarified; the classification for IBR techniques is presented,

followed by brief descriptions of IBR techniques with and without geometric data.

2.2.1 Image-Based Rendering

IBR has significant advantages over the conventional geometry-based image ren-

dering, which had dominated in image rendering for many years. Conventional image

rendering relies on geometric model building to synthesize novel views. Building the

models to represent the environments is a complicated and computationally-expensive

process based on the geometric information of the environments. Depending on the

complexity of the environments, the model building process could involve the construc-

tion of as many as millions of geometric models. In order to increase the sense of reality,

some other features, such as the photometric properties of lighting and shading, of the

environments should be incorporated during the model building process. This makes

the geometry-based image rendering more complicated and expensive. Synthesizing

a novel view from numerous geometric models is so time-consuming that a tradeoff

has to be made to balance the rendered image quality and the rendering speed. It

is difficult to achieve photo-realistic quality of rendered images even with the state-
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of-the-art geometry-based image rendering techniques. In contrast, IBR directly takes

image inputs from the image datasets to synthesize novel views. Instead of complicated

model-based representations of the environments, IBR just relies on the basis images

in the image datasets to synthesize high quality, photo-realistic novel images. The ren-

dering speed of IBR is high and independent of the complexity of the environments.

IBR proposes an effective way to represent the real-word environments and provides a

promising approach to generate photo-realistic novel-view images.

Mathematically, IBR techniques can be investigated by making use of the plenoptic

function [2] representing the intensity distribution of light rays in a three dimensional

space. In its most general form, the plenoptic function is a seven-dimensional function

which can be expressed as

LP = fP (Px, Py, Pz, θ, φ, λ, t) (2.1)

representing the light ray intensity LP of any wavelength λ, at any position (Px, Py, Pz),

towards any direction (θ, φ) and at any time t in a three-dimensional environment space

(Fig. 2.3). An IBR technique can be considered as a method for determining the values

of the plenoptic function corresponding to required orientations and viewpoints.
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Fig. 2.3 Generalized seven-dimensional plenoptic function representation
of light ray distribution in a three-dimensional space.
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2.2.2 IBR and Image Dataset Compression

Image dataset compression and image sequence rendering based on IBR are closely

related to each other. The interaction between these two components in an image-based

virtual environment navigation system is illustrated in Fig. 2.4. The streaming output

of compressed basis images from image dataset compression provides the primitive

input for IBR to synthesize image sequences; the scheme of image dataset compression

is designed to satisfy the requirements of IBR; and the compressed image dataset is

decoded at the front end of the IBR process.
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Fig. 2.4 Interaction between image dataset compression and image se-
quence rendering based on IBR in an image-based virtual environment
navigation system.

Generally, an IBR technique is developed with respect to a special basic format of

image dataset. Other formats of image datasets are useable with the IBR technique only

if they are convertible to this basic image format. For image-based virtual environment

navigation, an IBR technique with its associated basic image dataset format is chosen

to be applied based on whether it can facilitate the navigation in the authorized virtual

environment regions with the desired degrees-of-freedom of navigation. Also, the image

acquisition process is performed for sampling the environment to obtain image datasets
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conforming to this basic format.

IBR synthesizes novel-view images by taking basis images as the primitive input

directly from the compressed streaming image dataset. Different formats of image

datasets lead to different compression scheme designs, as image dataset compression

needs to adapt to the format of image datasets to achieve the target coding performance.

Therefore, an IBR technique is associated with a basic image dataset format, which is

closely related to the specially designed image dataset compression scheme. That is

why there always is a discussion on the special issue of image dataset compression

accompanying a newly developed IBR technique.

Image dataset compression needs to meet the requirements of IBR in order to ob-

tain the desired system performance. IBR requires efficient access to the compressed

streaming image datasets and fast decoding. The complexity of the compression scheme

depends on how IBR requirements are satisfied. This is crucial especially in interactive

applications like image-based virtual environment navigation. How the compression

scheme is designed to efficiently encode the image dataset and accommodate a high

system performance depends, to a great extent, on the IBR requirements. From this

point of view, a specially designed image dataset compression scheme corresponds to a

specific IBR technique.

2.2.3 Classification of IBR Techniques

IBR techniques can be grouped into different categories to facilitate convenient de-

scriptions and discussions. Different strategies can be applied for classifying IBR tech-

niques. Primarily according to the nature of the scheme for pixel indexing or transfer,

Kang [46] classifies IBR techniques into four categories: non-physically based image

mapping, mosaicking, interpolation from dense samples and geometrically-valid pixel

re-projection. Based on how much geometric information is involved for image ren-

dering, Shum et al. [76] put IBR techniques into three categories. They are IBR with
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implicit geometry, IBR with explicit geometry and IBR without geometry. Zhang and

Chen [102] categorize IBR techniques into IBR restraining the viewing space and IBR

introducing source description, according to the ways the plenoptic function represen-

tations for IBR are simplified from the original 7D format representation. Although

different classifications for IBR techniques are available, sometimes it is still found dif-

ficult to make a clear decision on whether to put an IBR technique into one category

or another. There exist some IBR techniques that do not belong to a single category

but fall somewhere between two categories.

In this thesis, a simplified classification of IBR techniques is made from the image

dataset compression point of view. According to whether or not the environment ge-

ometric data is used in the process of synthesizing novel-view images, IBR techniques

are divided into two categories: IBR without geometric data and IBR with geometric

data. The former synthesizes novel-view images just relying on basis images in image

datasets. The latter, on the other hand, synthesizes novel-view images with the help of

certain geometric data besides taking basis images as its primitive inputs. For image

dataset compression, extra coding techniques are needed to compress the associated

geometric data in the case of IBR with geometric data.

2.2.4 IBR with Geometric Data

Some IBR techniques are developed with the requirement for using environmental ge-

ometric data to assist image rendering. Either accurate or approximate geometric data

could be requested, and the geometric data could be utilized in an implicit way or an

explicit way, depending on the particular IBR technique in use. Some IBR techniques

synthesize novel views with the assistance of disparity maps obtained from image match-

ing or image correspondence. This is considered as rendering with implicit geometric

data because of the relation between the disparity map and the depth distribution of

the environment. Some representative IBR techniques that are classified as IBR with
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geometric data are Lumigraph [24], view morphing [71], layered depth images (LDI )

[72], surface light field [94], image-based visual hulls [60], etc.

In the image dataset compression process, additional considerations need to be given

to properly compress the geometric data coming with basis images. It can be coded

separately by some other compression methods such as sequential data compression

[105], or it can be integrated into the image dataset bit-stream for efficiently compressing

the geometric data to achieve satisfied overall compression performance.

2.2.5 IBR without Geometric Data

Obtaining environmental geometric data during the image acquisition process makes

the data acquisition system and procedure more complicated and expensive. Although

some developed techniques are available to get the geometric data directly from image

datasets instead of obtaining it in the image acquisition process, it is difficult to get

all required geometric data with desired accuracy even with the state-of-the-art image

analysis techniques. In order to avoid the difficulties and troubles with geometric data

acquisition and processing, there is a tendency to make more use of IBR without ge-

ometric data in place of IBR with geometric data at the cost of more intensive image

acquisition. Under this circumstance, more basis images with greater cross-image co-

herence are obtained in the image datasets to avoid aliasing. Some representative IBR

techniques that are classified as IBR without geometric data are listed in Table 2.1.

A panorama can be regarded as an orientation-independent map of the environment

represented by a simplified 2D plenoptic function. It corresponds to a projection of

the environment onto a geometrical omni-directional surface. Depending on the shape

of the surfaces, panoramas are divided into three different main categories of formats

(Fig. 2.5). They are cylindrical panoramas [10], spherical panoramas [82] and cubic

panoramas [25]. By using a panoramic image, the reconstruction of a new image viewed

at the fixed center point in a desired direction refers to a process of image warping or
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IBR Dim.a Observe Space Rendering Method Ref.b

Panoramas 2D fixed point image warping and re-
projection

[10]
[25]
[82]

Concentric
mosaics

3D circular area interpolation of image
slits based on basis image
columns

[74]

Light field
rendering

4D rectangular area re-sampling and assem-
bling the basis images

[53]

Plenoptic
stitching

4D unobstructed
area

stitching image columns
derived from recoded
omni-directional images

[3]

aDimensionality
bReference

Table 2.1 Representative IBR techniques without geometric data

re-projection. With a single panoramic image, the viewing space is limited to one

fixed point that is the geometrical center of the panorama. The viewing direction can

be changed with a pan or tilt motion at this fixed viewpoint, and zooming-in and

zooming-out can be facilitated by making use of the panoramic image. If the viewing

space needs to be enlarged, a collection of panoramas along pre-designed trajectories

can be generated through the use of special omni-directional cameras or constructed

from a captured regular-format image collection. In this case, users are able to switch

between the panorama sample nodes for navigating in an extended space [10].

In this thesis, besides the discussions on the generic issues of image dataset com-

pression, cubic-panorama image datasets are chosen as a concrete form of image dataset

for the purposes of intensive investigation, implementation and experiments of image

dataset compression schemes due to the unique advantages of cubic panoramas over
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Fig. 2.5 Three main categories of panoramas: (a) the cylindrical
panorama, (b) the spherical panorama and (c) the cubic panorama.

other environmental mapping methods [25].
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Chapter 3

Image Dataset Compression for
Image-Based Virtual Environment
Navigation

Compression of image datasets used for image-based virtual environment navigation

is indispensable to reduce the required storage space and adapt to the limited trans-

mission bandwidth. It constitutes a fundamental component in an image-based virtual

environment navigation system. This chapter focuses on the discussions about image

dataset compression for image-based virtual environment navigation.

First, the problem of compressing image datasets used for image-based virtual en-

vironment navigation is presented in Section 3.1. In Section 3.2, the characteristics of

image dataset compression are investigated, including the features of the image datasets,

the requirements for image dataset compression, the key issues in compressing image

datasets and the strategies for the design of image dataset compression schemes. In

Section 3.3, research progresses made so far in the image and video coding research

community in developing various coding techniques and schemes for compressing image

datasets are summarized in a comprehensive literature review. Different categories of

current solutions for image dataset compression are compared in Section 3.4. Finally,

the discussion on image dataset compression used for image-based virtual environment

navigation is summarized in Section 3.5.
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3.1 Problem Description

Previously in Section 2.2.1, a plenoptic function LP was introduced to represent

the intensity distribution of light rays in a real-world environment. In order to obtain

the image dataset input for image-based virtual environment navigation, the camera

imaging system HCam samples this light ray intensity signal LP on the real-world en-

vironment domain D̄E , on which LP is defined as shown in Fig. 2.3, and maps the

sampled signal into a sequence of raw images IR, l (l∈{1, 2, ..., L}, L∈Z) on a defined

raw image domain D̄R. Thus, we have

HCam : LP 7−→ IR, l, ∀ l∈{1, 2, ..., L}. (3.1)

Let IB, k (k∈{1, 2, ..., K}, K∈Z) represent a basis image in a specific image format

on a well-defined basis image domain D̄B, which could be, for example, a cubic surface

as shown in Fig. 1.2. Following the raw image acquisition, the preprocessing component

HPre of the navigation system derives the basis images from the captured raw images

by, for example, an image projection, image mapping or image transformation operation

HPre : IR, l, 7−→ IB, k, ∀ l∈{1, 2, ..., L}, ∀ k∈{1, 2, ..., K}. (3.2)

Thus, an image dataset is obtained as a collection of a set of K basis images

S̃I =
{(

IB, 1(x̄), IB, 2(x̄), ..., IB, K(x̄)
)∣

∣

x̄∈D̄B, K∈Z

}

. (3.3)

The image dataset S̃I used for image-based virtual environment navigation typi-

cally consists of densely generated basis images IB, k(x̄) and involves a large amount

of data. It occupies huge storage space if directly kept in storage media and requires

high transmission bandwidths if directly sent through communication networks. Usu-

ally high-resolution basis images corresponding to a dense D̄B are needed for novel-view
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image rendering. S̃I for large environment representations with large authorized navi-

gation spaces is needed in more and more applications. This requires a large number K

of IB, k(x̄) (∀ k∈{1, 2, ..., K}). Also, there is a tendency of developing IBR techniques

for using more basis images in place of geometric information to take full advantages

of image-based novel-view rendering over model-based image rendering and avoid the

troubles with geometry data acquisition and processing. All these result in even larger

sizes of S̃I with larger number K of IB, k(x̄) (∀k∈{1, 2, ..., K}) defined on a denser D̄B.

This poses a critical problem for storage and transmission. Therefore, compression of

the image datasets is crucial to fit them to the storage allocation, adapt them to the

bandwidth limitation and make image-based virtual environment navigation practical.

A lot of intensive research work on image and video sequence compression has been

conducted for many years. Various compression techniques and schemes are well de-

veloped and widely applied. Some of the state-of-the-art techniques and schemes have

found their way to a variety of international image and video sequence coding stan-

dards, ranging from ISO/IEC JPEG [33] and JPEG2000 [34] for still image coding,

ITU-T H.261 [39] and H.263 [40] as well as ISO/IEC MPEG-1 [35], MPEG-2 [36] and

MPEG-4 [37] for video sequence coding to the recent H.264 (also named MPEG-4

AVC) [41] jointly developed by ITU-T and ISO/IEC for advanced video coding. How-

ever, these compression techniques and schemes are designed for generic image and

video sequence compression, and are sub-optimal if directly applied for compressing the

image datasets used for image-based virtual environment navigation. Compression of

the image datasets is significantly different from the conventional problem of generic

image and video sequence compression. Making the compression schemes adaptive to

the specific features of the image datasets is very important to obtain the desired coding

performance. Meeting the special requirements for compressing the image datasets is

the key to achieving expected interactive exploration experiences in image-based vir-

tual environment navigation. Compression techniques and schemes specially designed

for compressing image datasets need to be developed.
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3.2 Characteristics of Image Dataset Compression

In this section, the features of the image datasets used for image-based virtual

environment navigation are described especially from the viewpoint of image dataset

compression. The requirements for compressing image datasets are discussed with the

emphasis on providing fast interactive image sequence rendering. Also, the challenges

confronted in compressing image datasets to achieve the desired compression perfor-

mance are presented, and the principal strategies of designing the coding schemes for

effective and efficient image dataset compression are investigated.

3.2.1 Features of Image Datasets

Generally, image datasets used for image-base virtual environment navigation can

mathematically be represented by samples of simplified plenoptic functions. Image

dataset compression techniques can be developed by studying the mathematical repre-

sentations of these plenoptic functions. Besides, the dominant cross-image displacement

in basis images demonstrates a certain regular pattern for each type of image dataset.

This cross-image displacement feature, depending on the motion pattern of the cam-

era or cameras capturing the raw image sequences, could be utilized to improve the

compression performance. Moreover, the statistical features of image datasets can be

estimated and employed for compression purposes. Some coding parameters can be

chosen adaptively for image datasets according to their unique statistical features.

Typically, an image dataset consists of numerous high-resolution basis images. There

are tremendous local and cross-image redundancies among these basis images. High

compression ratios could potentially be achieved in compressing image datasets. In

addition, some types of image datasets are accompanied by certain kinds of side infor-

mation, which can be applied for efficiently exploiting coherency in the image datasets.

Some detailed discussions about the features of image datasets used for image-based

virtual environment navigation are given in this section.
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(1) Image datasets can be represented mathematically by samples of simpli-

fied plenoptic functions.

In its most general form, the seven-dimensional plenoptic function LP in (2.1)

represents the intensity distribution of light rays in a three dimensional environment

space. This corresponds to a complicated high-dimensional multi-variable data struc-

ture, which makes image dataset compression more difficult to deal with. In order

to simplify the expression of LP , the wavelength variable λ can be removed from the

plenoptic function by assuming that each wavelength component or a combination of

light rays at a certain number of wavelengths (e.g. a color component) is separately

investigated

LP → LP6 = fP6(Px, Py, Pz, θ, φ, t). (3.4)

Moreover, the time variable t can be removed from the expression in the case of static

environments under discussion. As a result, only five independent variables remain in

the plenoptic function expression

LP → LP5 = fP5(Px, Py, Pz, θ, φ). (3.5)

The dimensionality Ld of the plenoptic function LP can be further reduced by constrain-

ing the viewing space to certain bounded areas just as in the previously mentioned IBR

techniques in Table 2.1. Under these circumstances, the basis image IB, k(x̄) in S̃I can

be regarded as observed discrete samples of the simplified LP . The IBR process becomes

a procedure of determining the values of the simplified LP associated with the required

viewpoints, based on the image samples IB, k(x̄) (∀ k∈{1, 2, ..., K}). Some compression

techniques for S̃I can be investigated by studying the simplified representations of LP .

The data amount of the image datasets can be significantly reduced by lowering the

dimensionality Ld of the plenoptic function representations. Generally, this is the first

consideration taken as an effort to reduce the image dataset sizes. However, the autho-

rized viewing space will accordingly be limited. Therefore, it is required to simplify the
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plenoptic function while keeping the desired viewing space.

(2) Image datasets typically consist of a large number of high-resolution

basis images.

By sampling the environments to obtain the image datasets, certain high sampling

rates are required to avoid aliasing. A large number K of IB, k(x̄) (∀ k ∈{1, 2, ..., K})
are obtained in the image datasets to completely cover the represented environments

and to be able to synthesize any novel views at arbitrary viewpoints in the authorized

navigation spaces. The image dataset size is further increased in the case of representing

a large environment with a large navigation space and enabling good-quality zoom-

in image rendering based on high-resolution basis images. Representations of large

environments result in large number K and high-resolution basis images correspond to

dense D̄B. The increased data amount of image datasets can be regarded as the expense

incurred to avoid the troubles of model building and provide photo-realistic rendering.

To some extent, the number K of IB, k(x̄) (∀ k∈{1, 2, ..., K}) in an image dataset S̃I can

be controlled by properly applying the plenoptic sampling theory [8, 54] and spectral

analysis [101], but even with the minimum number of basis images based on sampling

theories, the typical image datasets are still large in number K of the basis images and

involve a huge amount of data. Compression of the image datasets is unavoidable to

reduce the image dataset size and make image-based virtual environment navigation

available in practical applications.

(3) Image datasets involve high local and cross-image redundancies.

Taking basis images IB, k(x̄) (∀ k ∈{1, 2, ..., K}) of S̃I as the samples of simplified

plenoptic functions, there exist enormous redundancies in all Ld dimensions of the

plenoptic functions. For example, the image datasets of plenoptic stitching [3] and

light field rendering [53] exhibit redundancies in four dimensions; the image datasets

of concentric mosaics [74] exhibit redundancies in three dimensions; and the image

datasets of cylindrical, spherical and cubic panoramas [10, 25, 82] in two dimensions.
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From another point of view, all the basis images IB, k(x̄) (∀ k ∈ {1, 2, ..., K}) in an

image dataset S̃I for image-based virtual environment navigation are image samples of

the same environment obtained from different perspectives, and a large number of raw

images IR, l (∀ l ∈{1, 2, ..., L}) are taken to avoid aliasing. This leads to tremendous

cross-image redundancy existing in the image datasets. Due to these features, high

compression ratios can be expected in compressing the image datasets. The higher the

dimensionality Ld of the plenoptic function representation LP is, the more redundancy

exists in the corresponding image dataset S̃I and the higher compression efficiency the

compression schemes can potentially achieve.

(4) The dominant cross-image displacement of the image datasets demon-

strate a certain regular pattern for each type of image dataset.

The image motion in a generic video sequence can be caused by the movements

of the objects captured in the images, by moving the camera for capturing the video

sequence and even by the background motion, leading to a complicated motion vector

distribution in the motion fields. Suppose that static environments are under discussion.

Then, in the image dataset S̃I used for image-based virtual environment navigation,

the cross-image displacement is caused only by the motion of the camera producing

the basis images IB, k(x̄) (∀ k ∈{1, 2, ..., K}). Although there are some factors, such

as the depth distribution Dk(x̄) (∀ k ∈ {1, 2, ..., K}) of the environment, generating

some local differences in the displacement vector distribution map, the dominant cross-

image displacement of an image dataset S̃I typically follows a certain pattern for the

given IBR technique, corresponding to the motion pattern of the camera producing

IB, k(x̄) (∀ k∈{1, 2, ..., K}). In order to cover the whole environment, the trajectory of

the camera movement is well planned based on the associated plenoptic sampling theory

for producing the image dataset. The orientation of the camera and the trajectory of the

camera movement together decide the camera motion pattern and in turn determine the

cross-image displacement pattern. This cross-image displacement feature of the image

dataset S̃I could be utilized to significantly improve the compression performance.
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(5) The statistical features of image datasets can be obtained and employed

for compression purpose.

For generic video sequence coding, the content of the next image to be encoded

cannot be precisely predicted. In other words, the exact image contents are randomly

generated, and generally, their statistical features are not available before encoding the

video sequence. In contrast, for the image dataset S̃I used for image-based virtual envi-

ronment navigation, the image contents of the basis images IB, k(x̄) (∀ k∈{1, 2, ..., K})
are known and unchanged once they are produced. One part or even all of an image

dataset S̃I can be taken as a training image set. The histogram and other statistical

information of the image dataset can be obtained. These statistical features of the

image dataset could be employed to enhance the compression efficiency. Some coding

parameters can be chosen adaptively for each image dataset S̃I or even each basis im-

age IB, k(x̄) (k ∈{1, 2, ..., K}) according to its unique statistical features. The image

dataset S̃I can even be repeatedly encoded or a recursive encoding process can be taken

to finally obtain an optimized bit-stream output of the encoded image dataset.

(6) Some image datasets are accompanied by certain kinds of side informa-

tion.

Some image datasets are accompanied by certain kinds of side information, such

as the environmental depth distributions Dk(x̄), camera poses (θk, φk) and camera lo-

cations (Px, k, Py, k, Pz, k) with ∀ k∈ {1, 2, ..., K}. IBR techniques with geometric data

are associated with image datasets with side information. Such side information is ob-

tained in the image acquisition process or results from the image analysis process, and

is useful for simplifying the image acquisition and the image-based representation of the

environment, or in assistance of environmental model building, novel-view image ren-

dering or image dataset compression. The sampling density in capturing the raw image

sequences can be reduced due to the use of such side information. For the purpose of

image dataset compression, side information can be applied for exploiting image co-
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herency and efficiently compressing the image datasets. However, extra considerations

and coding techniques are needed for compressing the side information.

3.2.2 Requirements for Image Dataset Compression

Compression of image datasets used for image-based virtual environment navigation

needs to meet the requirements of the navigation system. Most of these requirements

come from the IBR-based image sequence rendering component, which constitutes a pri-

mary part of the system. Based on the decoded basis images IB, k(x̄) (∀ k∈{1, 2, ..., K})
in an image dataset S̃I , IBR synthesizes, at the desired viewpoints, a sequence of novel-

view images IS, m(x̂), ∀m∈{1, 2, ...,M}, M ∈ Z. Here IS, m(x̂) denotes a synthesized

planar image with a generic perspective view defined on a two-dimensional image do-

main D̄S and x̂ is a vector in D̄S : x̂ ∈ D̄S . Some special requirements for compressing

image datasets need to be satisfied for efficient interactive image rendering.

Random access and selective decoding are unique requirements for image dataset

compression. A mechanism enabling flexible random access to, and selective decoding

of, small relevant parts necessary to reconstruct the required image segments in the

coded image dataset should be provided in the design of the image dataset compres-

sion scheme. Low-complexity compression schemes with low computational expenses

or asymmetric compression schemes with relatively high encoding complexity but low

decoding complexity are needed for fast image decoding. Besides the requirement for

compression efficiency, the quality of coded basis images needs to be guaranteed as the

basis images will be used as input to synthesize novel-view images at the required qual-

ity level. In certain cases, even near lossless coding could be used to keep the coded

basis images in high quality. Scalable coding is another extremely desirable feature for

image dataset compression. In particular, spatial-resolution scalability is required for

uniform high-quality zooming. Even the design of a baseline image dataset compression

system should incorporate spatially-scalable coding.
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(A) Random access to the coded image datasets:

A basis image IB, k(x̄) (k ∈ {1, 2, ..., K}) defined on the domain D̄B can be di-

vided into image segments IB, k(x̄) = {IB, k, j(x̄)| ∀j ∈{1,2,...,J}, J∈Z}. Each image segment

IB, k, j(x̄) is defined on a sub-domain D̄B, j with D̄B, j ⊂ D̄B and D̄B = ∪∀ j ∈{1,2,...,J}D̄B, j.

IBR synthesizes a novel-view image at a desired viewpoint by taking image segments

IB, k, j(x̄) from a set of basis images in S̃I . The choice of the viewpoints and thus the

corresponding synthesized images are interactively controlled by the users of an image-

based virtual environment navigation system. This requires a mechanism enabled in

the design of the image dataset compression scheme to provide efficient random access

to the required image segments IB, k, j(x̄), x̄ ∈ D̄B, j in the coded image dataset S̃I . This

random access mechanism is very important in facilitating an efficient image rendering

process. The conventional still image coding method limits the random access to the

beginning of a whole coded image, and the conventional video sequence coding limits it

to intra-coded frames or the beginning of a group of images at the image frame level. In

compressing the image datasets used for image-based virtual environment navigation,

a much more flexible random access mechanism is required to save memory and speed

up the image decoding and rendering processes. The random access to the coded im-

age datasets could be required at image column (D̄B, j occupies a strip region in D̄B),

image pixel (D̄B, j dwindles to a point)or other image segment levels, depending on the

requirement of the IBR that follows the image dataset compression.

(B) Selective decoding of the coded image datasets:

For conventional video sequence decoding, if an image encoded as a predicted im-

age needs to be reconstructed, an intra reference image preceding the predicted image

should be decoded first before the predicted image becomes decodable. Therefore, at

least two images have to be decoded although only one predicted image is required to be

reconstructed. If the reconstructed image is encoded as a bi-directionally predicted im-

age, altogether at least three images (one preceding and one following reference images
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and the bidirectional predicted image itself) have to be decoded. This slows down the

decoding process and makes it much less efficient. Following the same coding strategy,

even greater numbers of basis images IB, k(x̄) (k∈{1, 2, ..., K}) in the image dataset S̃I

need to be decoded for rendering one synthesized image IS, m(x̂) (m∈{1, 2, ...,M}), as

usually much more than a couple of IB, k(x̄) are used to synthesize a novel-view image

IS, m(x̂) for most IBR techniques. For this reason, it is required for the image dataset

compression that only the relevant image part on a domain D̄′
B, j (D̄B, j ⊂ D̄′

B, j) as

small as possible needs to be selectively decoded in order to reconstruct a required

image segment IB, k, j (x̄), x̄ ∈ D̄B, j of a coded basis image IB, k (x̄), x̄ ∈ D̄B in the

image dataset S̃I without having to decode other parts of S̃I . The ideal case is to make

D̄′
B, j = D̄B, j . Selective decoding is necessary for efficient and fast image decoding and

image rendering.

(C) Low complexity with low computational expense:

The image dataset compression scheme prescribes the structure of the image dataset

codec. The structural complexity of the codec determines the computational expense,

the encoding and decoding speeds and the system delay. Fast basis image retrieval and

interactive novel-view image rendering need to benefit from low structural complexity of

the codec. Low-complexity with low computation expense is required for the design of

the image dataset compression schemes for image-based virtual environment navigation,

especially for some applications targeting real-time IBR without hardware assistance.

Compressing an image dataset S̃I characterized by a plenoptic function represen-

tation LP of high dimensionality Ld usually corresponds to a high-complexity codec

structure. In this case, it is difficult to design a symmetric compression scheme with

low complexity on both the encoding and decoding sides. However, compressing image

datasets can be performed offline in advance. Therefore, an asymmetric compression

scheme with relatively high encoding complexity but low decoding complexity can be

employed for the purpose of fast image decoding and interactive image rendering.
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(D) Fast decoding for fast image sequence rendering:

The interactive mode of image-based virtual environment navigation requires fast

novel-view image synthesis, enabled through fast basis image decoding accommodated

by the image dataset compression scheme. The decoding speed is affected by the

random-access mechanism, the selective-decoding ability as well as the decoding com-

plexity. For conventional video sequence compression, the decoding speed of a system is

measured by the number of images the system decodes within a unit time (a second) or

the average time the system spends to decode one image, and fast decoding requires that

the average decoding time should not exceed a prescribed value, e.g., 0.03 or 0.04 second

for real-time video sequence display. In comparison, if real-time image sequence display

is required for the synthesized image sequences IS, m(x̂), (∀m∈{1, 2, ...,M}, M∈Z),

it means that the basis image decoding time and the interactive image sequence ren-

dering time put together should not exceed the prescribed time limit. Thus, less time

is left for the decoding process itself compared with conventional video decoding. So,

fast decoding becomes a more challenging requirement in the design of image dataset

compression schemes.

(E) High image quality for interactive virtual environment navigation:

The coded basis images IB, k(x̄) (k ∈ {1, 2, ..., K}) in the image dataset S̃I should

be kept in uniform and high image quality as these images not only will be used as

input images to synthesize novel-view images IS, m(x̂) (m ∈ {1, 2, ...,M}) but also

may be displayed as still images for interactive virtual environment navigation. In

conventional video sequence coding, bitrate control techniques are applied to adjust the

coding parameters, generating coded images with different image qualities related to

the image display order, and optimal video sequence display can be obtained despite the

image quality differences in the video sequences. In image-based virtual environment

navigation, the access to basis images IB, k(x̄) (k∈{1, 2, ..., K}) and the generation of

synthesized images IS, m(x̂) (m∈{1, 2, ...,M}) are randomly controlled by users. There
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is no fixed order for displaying them. Also, both the basis images and the synthesized

images can be required to display as still images at the navigation stage. As the human

vision system (HVS) generally has a smaller distortion tolerance to still images than

time-variant image sequences, basis images and synthesized images should be of high

quality. Because the synthesized images are rendered from the basis images, the quality

of the coded basis images IB, k(x̄) (k∈{1, 2, ..., K}) should be high enough to generate

good-quality synthesized images. Sometimes, even near lossless coding is applied to

keep the coded basis images in high image quality.

(F) Spatially scalable coding for zooming image rendering:

Spatially scalable coding is especially desirable for compressing image datasets used

for image-based virtual environment navigation. Scalable coding with spatial, tempo-

ral and quality scalabilities is an effective solution to adapting the image and video

sequence to different storage capacity, to distributing them via networks with different

bandwidths and replaying them on different display devices. Thus, it is recommended in

a variety of international image and video coding standards. However, scalable coding is

not involved in commonly applied profiles of international coding standards, especially

not in the baseline coding schemes, as currently the majority of the applications have

no need to implement scalable coding. In contrast, when exploring an image-based

virtual environment, the commonest user behavior next to panning and tilting with

the virtual camera is to take a close shot or a long shot while keeping shot direction

unchanged. In these cases, basis images IB, k(x̄) (k∈{1, 2, ..., K}) defined on basis im-

age sub-domains with different densities corresponding to different resolutions of basis

images in the image dataset S̃I are required for obtaining rendered zooming images in

uniform good quality, and spatially scalable coding is needed to satisfy this require-

ment in the compression scheme design. Spatially scalable coding is more important for

compressing image datasets used in image-based virtual environment navigation than

in other applications. Even the design of a baseline image dataset compression system

should incorporate spatially scalable coding.
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(G) High efficiency of image dataset compression:

This is the essential objective and fundamental requirement for compressing image

dataset S̃I to make image-based virtual environment navigation available in practical

applications. High-resolution basis images IB, k(x̄) with dense D̄B and high-dimensional

plenoptic function representation LP with large number Ld of the image dataset S̃I have

the potential for achieving high compression efficiencies. The challenge is to obtain

high compression efficiency and at the same time to satisfy other requirements for

compressing image datasets.

3.2.3 Key Issues in Compressing Image Datasets

For image dataset compression used in image-based virtual environment navigation,

we need to efficiently represent the basis images IB, k(x̄) (∀ k ∈ {1, 2, ..., K}) in the

streaming output by making use of the features of the image datasets, support random

access to and selective decoding of the coded image segments IB, k, j (x̄) (x̄ ∈ D̄B, j, j∈
{1, 2, ..., J}) and satisfy other requirements for interactive image sequence rendering. In

order to fulfill these needs, we confront a number of issues in developing image dataset

compression techniques and schemes. Some of these issues pose considerable challenges

to the work on an efficient scheme for compressing the image datasets.

Accommodating random access and selective decoding in an efficient coding scheme

is a key and unique issue in compressing image datasets. Block-based hybrid coding of

spatial transforms combined with cross-image prediction is widely applied in conven-

tional video sequence compression schemes. However, with the spatial block transform,

the whole block has to be decoded even though only one pixel in the block is needed

for image rendering, and the cross-image prediction limits the flexibility of selective

decoding to the beginning of an intra-coded reference image. Moreover, variable-length

entropy coding and some other techniques, such as multiple-reference prediction and

predicted images as reference images, prove to be effective to improve the coding ef-
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ficiency, but they complicate the procedure for locating the required image segments

in the bit-streams. The alternative wavelet-based coding expands the operation of re-

moving spatial redundancy over the full frame, but makes random access and selective

decoding more difficult. On the other hand, the compression techniques able to sup-

port random access and selective decoding usually provide only limited compression

efficiency or add large overhead and thus sacrifice the compression performance. It is a

challenge to achieve high compression efficiency while meeting the random access and

selective decoding requirements.

Supporting spatial-resolution scalable coding is another key issue in compressing

image datasets. It is extremely desirable for image dataset compression used for image-

based virtual environment navigation, but not practical to be implemented in conven-

tional block-based hybrid coding schemes due to the high cost of coding efficiency reduc-

tion. It is more practical to incorporate scalable coding into image dataset compression

schemes by making use of discrete wavelet transforms based on the developments in

the research on lifted discrete wavelet transforms with motion-compensated temporal

filtering for video sequence compression. However, it still presents some difficulties to

adapt this approach from generic video sequence coding to image dataset compression

because a more complicated tradeoff among the spatial-resolution scalability, the coding

efficiency and the random access and selective decoding flexibility needs to be made. In

addition, high-dimension image dataset compression is more difficult to deal with than

the conventional three-dimensional video sequence compression as the coherence in the

extra dimensions needs to be exploited by proper techniques.

The interactive working mode of image-based virtual environment navigation re-

quires fast image synthesis enabled through fast basis image decoding. This applies a

more rigorous decoding speed constraint on the scheme design for image dataset com-

pression compared to the conventional video sequence compression. The decoding speed

of image datasets is related to the compression efficiency, the random-access flexibility,

the spatial-resolution scalability and the decoding structure complexity as well. All
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these factors must be managed to facilitate just-in-time image decoding and rendering.

These issues present some critical problems in compressing the image datasets. Spe-

cially designed compression schemes should be developed to overcome these problems

and achieve the coding objectives.

3.2.4 Strategies for Compressing Image Datasets

Generally, the first consideration for reducing the size of the image dataset S̃I is to

lower the dimensionality Ld of the plenoptic function LP . It was taken in almost all

the image dataset compression schemes accompanying the existing practical IBR tech-

niques, such as light field rendering [53] and concentric mosaics rendering [74]. Lowering

the dimensionality Ld not only largely reduces the data amount of the image dataset

S̃I , but also makes the raw image sequence acquisition, image dataset compression and

image sequence rendering more manageable. However, the authorized viewing space

SV will accordingly be reduced together with lowering Ld. Therefore, simplification

of the plenoptic function LP should be done while maintaining the desired viewing

space. For this reason, we can divide the whole viewing space into several smaller sub-

spaces SV = ∪∀n∈{1,2,...,N} SV, n, N ∈Z. Then, the plenoptic function can be simplified

separately for each smaller viewing sub-space SV, n.

Compression schemes for coding image datasets can be developed by making use of

some existing efficient image and video sequence coding schemes. However, as the com-

pression techniques in these coding schemes were originally designed for compressing

generic images and video sequences, some modifications are necessary to adapt them

to the special characteristics of the image datasets and obtain the required coding per-

formance. Adapting compression techniques to the data structure of the image dataset

results in more efficient exploitation of the coherent redundancy in the image dataset

[75, 99]. In conventional image and video sequence coding schemes, block-based tech-

niques such as DCT have simple implementation structures and are utilized to exploit
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redundancy among adjacent image samples; Motion-compensated frame prediction is

effective to exploit the cross-image redundancy and results in higher compression effi-

ciency. These techniques are applicable to image dataset compression while adapting

them to the features of image datasets. In addition, some adjustments can be made in

the data structures of the image datasets to improve the coding performance of image

dataset compression [55, 96]. This could be done by, for example, explicitly rearranging

basis images in the image dataset S̃I to get a new image sequence with similar im-

age contents to increase the cross-image correlation. Then, the following compression

techniques can efficiently exploit the redundancy across images.

Random access to coded image datasets at a certain image segment level and se-

lective decoding of small relevant parts of the bit-streams to obtain the required image

segments IB, k, j (x̄) (x̄∈D̄B, j , k∈{1, 2, ..., K}, j∈{1, 2, ..., J}) are unique and substan-

tial requirements for image dataset compression. An image dataset compression scheme

combines a well-designed random access and selective decoding mechanism with some

efficient image sequence coding techniques. A specific random access and selective de-

coding approach is derived by investigating the reverse procedure of the adopted encod-

ing operations. Alternatively, random access and selective decoding can be facilitated

by, for example, creating some index tables or sets of pointers accompanying the coded

image dataset. Increasing the flexibility of random access to coded image datasets adds

a bigger overhead to the compressed bit-stream and thus sacrifices more compression

efficiency. A tradeoff needs to be reached to balance the compression efficiency and

random access flexibility.

3.3 Solution Methods of Image Dataset Compression

Image dataset compression used for image-based virtual environment navigation has

drawn a lot of research interest in the image and video processing research community

in recent years. Some progress in compressing image datasets has been reported in
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a variety of publications. Different kinds of compression techniques and schemes are

developed for coding image datasets. Most of the initial work on image dataset com-

pression employed VQ-based schemes for the benefit of the convenient implementation

of random access to the bit-stream and fast decoding provided by VQ. Quite a few

of compression schemes are designed by modifying existing image and video sequence

coding techniques, many of which can be found in a variety of international image and

video coding standards, by taking advantage of high coding performance of these state-

of-the-art techniques and adapting them to the features of image dataset compression.

Some other schemes are based on wavelet transform coding to take advantage of the

high coding efficiency and the attractive spatial, temporal and quality scalabilities pro-

vided by discrete wavelet transforms. Besides all these schemes, there are still some

other schemes specially designed to efficiently compress some particular forms of image

datasets and meet their specific requirements.

3.3.1 Vector Quantization Compression Schemes

VQ needs a training image set for constructing the codebook. This results in a

complicated VQ encoding structure. However, the VQ decoding process is fast, referring

to a simple index look-up procedure, and the index table can be encoded with fixed-

size codewords for quick flexible random access to the compressed basis images. The

training image set required by VQ can be easily generated from the image datasets.

The asymmetric structure and constant-length index table coding features make VQ

a natural choice for coding image datasets. Most of the original work on compressing

image datasets used VQ-based compression schemes [53, 74] to reduce the data size and

provide the required random access and selective decoding.

Levoy and Hanrahan [53] utilized a VQ-based compression scheme when they first

proposed the popularly applied light field rendering (LFR). They partition the LFR

image dataset into 2D or 4D tiles of 12D or 48D vectors. A subset of the LFR image
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dataset is chosen as a training set to construct a codebook best approximating the

sample vectors. The compression ratio for 48D VQ to exploit coherence in all four

dimensions is 24:1. Also, they implemented Lempel-Ziv entropy coding, which is less

complex but less efficient than Huffman coding, to compress the codebook and the index

array for further increasing the coding efficiency. A total compression ratio of 120:1 was

reported after the two-stage pipeline operation.

A VQ-based compression scheme was also applied when concentric mosaic render-

ing (CMR) was initially proposed [74]. A compression ratio of about 12:1 is obtained

for compressing CMR image datasets and 26:1 if VQ is followed by entropy coding for

additional compression. Entropy coding can further enhance the efficiency by repre-

senting the coded VQ indices with variable length codes according to their probability,

but the whole compressed image dataset should be loaded into memory and decoded

first before the coded image dataset is randomly accessible. This extra step slows the

decoding process. The compression efficiency of CMR is lower than that of LFR due to

the lower redundancy existing in the 3D CMR image dataset compared to the 4D LFR

image dataset.

In order to further exploit the cross-image redundancy and improve the coding

efficiency of VQ-based compression schemes, development work for image dataset com-

pression was undertaken in [86] and [85]. Based on disparity compensated prediction

(DCP), a hierarchical compression scheme for LFR was proposed by Tong and Gray

[85]. In the hierarchical DCP (HDCP) scheme, basis images are put into a certain

number of layers based on viewing resolution. The lowest layer itself corresponds to the

low resolution version of the image dataset. Each enhancement layer plus all its lower

layers constitutes a higher version of the image dataset. The lowest layer is compressed

by VQ with constant-length coded indices for fast random access. The enhancement

layers are coded by disparity compensated prediction with reference to the basis im-

ages in lower layers. The prediction residues are quantized by VQ. Also based on

DCP, a scheme named hierarchical disparity-compensated VQ (HDVQ) is presented in
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[86]. An optional single-frame prediction or multiple-frame prediction could be utilized

as a tradeoff among prediction quality, implementation complexity and access speed.

Multiple-prediction makes the prediction chain longer and thus increases the coding

efficiency but complicates the random access. HDVQ can increase the compression ef-

ficiency as much as ten times over that of generic tree-structured VQ at the cost of a

slower rendering speed by a factor smaller than 2.

VQ reduces the data sizes of image datasets while enabling random access and

selective decoding required by IBR. However, VQ is a pixel-based technique. It does

not fully exploit the high redundancy between basis images. Thus, its compression

efficiency is limited and can not meet the requirement of higher compression ratios in

many applications.

3.3.2 Modified Standardized Compression Schemes

Some compression schemes for coding image datasets have been designed as a

result of modifications to standardized video coding schemes recommended in a variety

of international video coding standards. Following the first VQ-based compression

scheme for compressing CMR image dataset together with the introduction of CMR,

Shum et al. [75] proposed an MPEG-like compression scheme developed by modifying a

standard MPEG scheme for CMR used in virtual reality. By taking each normal planar

image or panorama image as a video frame, independently coded intra I frames and

bi-directionally predicted B frames are employed. The B frames exploit the inter frame

redundancy and enhance the coding efficiency. Predictive P frames are not employed

as they increase the length of the dependency chain in the decoding process. All the

reference frames are loaded into the memory first for later use in the case of panorama

CMR image datasets. For planar CMR image datasets, only some of the reference

frames instead of all are loaded first due to the much large number of reference frames

than that of panorama CMR image datasets. Macroblocks (MB) in each frame are
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scanned and processed in a vertical order so that all the image pixels in an image column

are involved in a group of consecutive blocks. Global motion estimation is performed

for each whole block group. A set of pointers to groups of blocks is embedded in the

compressed bit-stream for supporting random access.

Zhang and Li [99] proposed a reference block codec (RBC) approach and further

improved the coding performance of the MPEG-like scheme for coding CMR image

datasets. It classifies input images into anchor A frames and predicted P frames. An-

chor A frames are almost the same as intra I frames in standard schemes and the

predicted P frames are coded with reference to anchor A frames by motion compensa-

tion. All the MBs at the same horizontal location are grouped as a basic access and

decoding unit called MB group (MBG). After a rate-distortion comparison by sepa-

rately taking each of the two neighbor anchor A frames as the reference frame, the

reference of each predicted MBG is limited to just one anchor A frame to control the

decoding delay. A two-level hierarchical index table is stored in the bit-stream for ran-

dom access decoding. The first level of index table stored in the bit-stream header

registers the length of each coded frame, and the second level of the index table stored

in frame headers registers the length of each coded MBG. Elaborately designed caches

are employed to avoid unnecessary repeat of decoding the same MBG and speed up

the image rendering. RBC provides high coding performance and enables just-in-time

image decoding and rendering.

The multiple reference frame (MRF) scheme in [98] applied the same strategy for

the compression of Lumigraph image datasets. MRF also divides the basis images into

anchor A frames and predicted P frames. But each predicted P frame has four reference

A frames instead of two due to the 2D structure of Lumigraph image datasets in place

of the 1D structure of CMR image datasets. For fast image decoding and rendering

purpose, only one of the four anchor A frames is chosen as the actual reference frame

after the rate-distortion comparison. Also, random access and selective decoding are

provided by a two-level hierarchical index table inserted in the bit-stream. However, the
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second level of the index table stored in the frame headers registers the length of each

coded MB instead of the MBG length. Decoder caches are implemented in assistance

to just-in-time decoding.

In order to provide high compression ratios, Magnor and Girod [59] proposed the

V-coder based on the conventional video sequence compression scheme modified for

coding the 4D LFR image datasets. It extends the video coding scheme to compressing

LFR image datasets by first converting the image format to YUV space and down-

sampling the chrominance components in both directions by a factor of two. Then, a

number of basis images evenly distributed in the image dataset are coded as I frames.

All other basis images are coded as predicted frames by taking reference to I frames.

Due to the 4D structure of the LFR image datasets, multiple reference images are

employed to improve the prediction accuracy. The overall performance relies on the

number of I frames in the whole image dataset. All the I frames are decoded and kept

in local memory before the rendering process starts. They provide a low resolution

image dataset. The V-coder features fast decoding of the image dataset and only has

modest memory requirement.

At the same period of time, a D-coder with a hierarchical compression scheme

for coding LFR image datasets by making use of DCP was suggested in [58]. First,

basis images on the four corners of the 2D image dataset are independently coded by

standard scheme using block-based DCT. Then, the center image in the image array is

encoded as predicted image with reference to four corner images by using its disparity

map. After that, the four middle images on each side of the 2D image dataset array are

encoded also as predicted images with reference to the center image and the two nearest

corner images. So far, the nine coded basis images divide the 2D array of LFR image

datasets into four quadrants and the four corner images in each quadrant have been

coded. So the above encoding procedure can be recursively applied to each quadrant

until all the basis images are encoded. The D-coder efficiently exploits the cross-image

coherence in the LFR image dataset by hierarchical multi-level predictive coding. It
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increases the rendered image quality by incrementally refining the image dataset with

more decoded intermediate basis images. The full LFR image dataset is obtained by

recursively reconstruct all the predicted basis images beginning from a small number of

intra coded basis images.

The V-coder and D-coder largely improve the compression efficiency. They can

provide compression ratio in the order of 102 to 103 at medium and high image quality.

But both encoders do not support the random access and selective decoding. A motion-

oriented coding scheme for compressing CMR image datasets is proposed in [42]. This

scheme, also based on the standardized video coding techniques, has a different coded

data structure and different bit-stream syntax adapted for the requirements of CMR.

The specific motion features of the camera in capturing the CMR image datasets are

utilized to enhance the coding efficiency and improve the decoding flexibility. Simple

one-level side information is embedded into the bit-stream to support the pixel-column

random access. While the compression efficiency is kept at a high level, only a small

portion of each reference frame needs to be accessed and decoded to get a target pixel

column for synthesizing a novel view. This speeds up the image data retrieval and

benefits the subsequent fast CMR process.

3.3.3 Wavelet-Transform-Based Compression Schemes

Wavelet transforms prove to be an effective and efficient technique for image and

video sequence compression. The potential ability to provide spatial, temporal and

image quality scalabilities makes wavelet transforms more attractive for some applica-

tions with scalable coding requirements. Some compression schemes for coding image

datasets are developed based on wavelet transforms.

Luo et al. [55] presented a wavelet-based compression scheme for coding CMR im-

age datasets. The CMR image dataset they used consists of a stack of mosaic basis

images along different radii. These basis images are first aligned by circularly shifting
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to maximize the similarity and increase the redundancy across all the basis images in

the CMR image dataset. Then, a 3D separable wavelet transform is applied to the

aligned basis images to exploit the redundancy within and across images. A lifting

scheme is employed in the decomposition and later in the reconstruction processes for

saving memory and speeding up the forward and inverse transforms. Although this

proposed scheme provides a compression performance comparable to that of MPEG-2,

the required random access and selective decoding are not supported. The whole CMR

image dataset need to be decoded before the rendering process begins. This results in

an initial delay and requires a large memory to hold the CMR image dataset.

To overcome the above-mentioned problem, Wu et al. [95] proposed the progres-

sive inverse wavelet synthesis (PIWS) scheme to support the random access to the

coded image dataset and minimize the relevant computational expense. This scheme

is designed based on the analysis of the inverse lifting operation for wavelet synthesis.

PIWS employ a mixed cache. Due to the in-place computation of the lifting scheme,

each memory unit in the mixed cache holds a recovered wavelet coefficient, an inter-

mediate lifting value or a reconstructed image pixel at different stages. A finite state

machine is established to indicate the type to data stored in each memory unit. The

mixed cache guarantees a low computation expense by properly keeping previous in-

termediate results. PIWS provides more efficient random access and decoding. It only

accesses and decodes partial image data necessary for synthesizing the required novel

view in just-in-time rendering. Another wavelet-based compression scheme providing

the required random access for image-based virtual environment navigation is proposed

in [43]. This compression scheme is based on the approach of a lifted wavelet transform

combined with embedded block entropy coding. It is adapted to compressing image

datasets and facilitates a column random access mechanism. Although some coding

efficiency is sacrificed because no inter-image redundancy is exploited with independent

intra-image coding, it reduces the decoding delay, simplifies the implementation of a

random access mechanism and easily facilitates real-time image decoding.
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As an effort to further exploit the cross-image redundancy and improve the coding

efficiency of the 3D wavelet-based compression technique, a smart rebinning scheme

is presented in [96] for coding CMR image datasets. This scheme aligns the basis

images along the horizontal direction according to the calculated displacements. Then,

it cuts the images into stripes and pastes these stripes into multi-perspective panoramas,

which are smoother and more natural looking. In this way, the cross-image correlation

is largely enhanced while the high correlation within the images is retained. After

the image rearrangement, some support regions of the multi-perspective panoramas are

not rectangular any more. Either a padding scheme is employed to make the support

regions rectangular for applying a rectangular 3D wavelet codec, or an arbitrary shape

3D wavelet codec is applied directly to the multi-perspective panoramas. If a padding

scheme is used, the 3D wavelet-based compression scheme in [55] or the scheme in [95] for

an efficient decoding can be applied. The image rebinning largely improves the efficiency

of cross-image filtering. The smart rebinning scheme improves the performance of a

direct 3D wavelet scheme by 4.3 dB and outperforms the MPEG-2 scheme by 3.7 dB

on the tested image datasets.

Girod et al. [23] applied wavelet transforms for coding LFR image datasets. They

developed a novel scheme based on 4D wavelet transforms with a disparity compensated

lifting scheme. In their wavelet-based scheme, a 2D inter-view wavelet transform and a

2D intra-view wavelet transform are performed on four dimensions of the 2D LFR image

array. The inter-view transform across the 2D image array is performed by disparity-

compensated lifting with the Haar or the bi-orthogonal Cohen-Daubechies-Feauveau 5/3

wavelet kernels. The intra-view transform is performed with the bi-orthogonal Cohen-

Daubechies-Feauveau 5/3 wavelet kernel. A modified block-wise set partitioning in

hierarchical trees (SPIHT) algorithm [69] is utilized to coding the transform coefficients

in each subband. The bit-streams in all blocks are truncated and assembled by the

rate-distortion optimization criteria. This 4D wavelet transform scheme outperforms

the previous wavelet-based compression schemes up to 6 dB in overall image quality.
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3.4 Comparison of Image Dataset Compression Schemes

VQ-based compression schemes are characterized by their asymmetric structures

with simple fast decoding and easy access to compressed basis images enabled by the

constant-length coded index tables. Because of this, they become a natural choice for

compressing image datasets. Compared to modified standardized compression schemes

and wavelet-based compression schemes, VQ-based coding schemes for image dataset

compression provide easy random access and selective decoding with less computational

expenses. However, the compression efficiency of VQ-based compression schemes is

lower than that of other compression schemes, as VQ is a pixel-based technique in

nature and can not fully exploit the heavy redundancy across basis images.

For some applications with the requirement for high compression efficiency, other

compression schemes than VQ-based compression schemes should be applied. Modified

standardized compression schemes take advantage of the well-developed standardized

image and video coding schemes which are modified to support random access and se-

lective decoding with high compression performance. Although they have more complex

implementation structure than VQ-based schemes and sacrifice some compression effi-

ciency for facilitating more flexible random access and selective decoding, they still can

provide quite high compression efficiency with moderate structure complexity. They

are popularly applied for compressing image datasets due to their overall-performance

advantage over other schemes.

Wavelet-based compression schemes are characterized by their high compression ef-

ficiency and the unique potential for facilitating scalable coding. Image dataset prepro-

cessing or displacement estimation and compensation are required to be incorporated

into wavelet-based compression schemes to improve compression efficiency. Wavelet-

based compression schemes with displacement-compensated wavelet transforms and

embedded progressive bit-plane coding have more complex implementation structures

than those of the other schemes. They usually replace other schemes in the case that
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scalable coding is required in the target applications. The comparison of the coding

schemes for image dataset compression is summarized in Table 3.1.

Compression
Scheme

Compression
Efficiency

Structure
Complexity

Scheme
Characteristics

References

VQ-based scheme Low Low Simple fast decod-
ing, easy random
access and selective
decoding

[53],[74],
[85],[86]

Modified standard-
ized scheme

High Moderate well-developed,
widely-applied
coding techniques

[42],[58],
[59],[75],
[98],[99]

Wavelet-transform-
based scheme

High High temporal,
spatial and quality
scalabilities

[23],[55],
[95],[96]

Table 3.1 Comparison of the coding schemes for image dataset compres-
sion used for image-based virtual environment navigation

3.5 Summary

Image dataset compression used for image-based virtual environment navigation is

indispensable to reduce the required storage space and adapt to the limited transmission

bandwidth. It is significantly different from the conventional image and video sequence

compression. Image datasets can mathematically be represented by samples of simpli-

fied plenoptic functions. They consist of numerous high-resolution basis images, and

tremendous local and cross-image redundancies exist among these basis images. The

dominant cross-image displacement in image datasets demonstrates a certain regular

pattern for each type of image dataset. In addition, the statistical features of the im-

age datasets can be estimated and employed for compression purpose. Some types of

image datasets are accompanied by certain kinds of side information. Adapting coding
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schemes to the special features of image datasets is very important in the scheme design

for effective and efficient image dataset compression.

Some specific requirements need to be satisfied for compressing image datasets.

Random access and selective decoding are unique requirements of image dataset com-

pression. Low-complexity compression schemes with low computational expenses or

asymmetric compression schemes with low decoding complexity are needed for efficient

interactive image rendering. The quality of coded basis images needs to be kept at

high levels. Spatial-resolution scalable coding is extremely desirable for image dataset

compression. A proper tradeoff among the coding efficiency, the spatial-resolution scal-

ability and the random access and selective decoding flexibility needs to be made.

Specifically designed compression schemes should be developed to adapt to the features

of image datasets and meet the specific requirements of image dataset compression used

for image-based virtual environment navigation.

Progress in image dataset compression has been reported in a variety of publications.

Different compression techniques and schemes are developed, ranging from VQ-based

schemes to modified standardized schemes and wavelet-based schemes. Although some

progress has been made for compressing image datasets, many problems still remain.

Currently, the overwhelming majority of the developed compression schemes are limited

to dealing with either the CMR image datasets [55, 42, 74, 75, 95, 99] or the LFR and

Lumigragh image datasets [23, 53, 59, 85, 98]. Until now, no publicly available work

on compressing cubic-panorama image datasets, which are becoming more popular and

expected to be more widely applied with their unique features, has been demonstrated.

This thesis work make an effort to fill in this blank in the research on image dataset

compression.

The key issues of cubic-panorama image dataset compression will be investigated in

the remainder of this thesis. Adapting coding schemes to the special features of image

datasets is very important in the design of a scheme for efficient image dataset com-
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pression. In Chapter 4, a spatially consistent representation of cubic-panorama image

datasets is proposed by taking advantage of this specific form of image dataset. Then,

the compression schemes are adapted to this spatially consistent representation of cubic-

panorama image datasets, resulting in superior compression performance. Moreover,

providing spatially scalable coding is extremely desirable for image dataset compression

in order to synthesize the frequently required zooming views with steady image quality.

In order to satisfy this fundamental requirement, a scalable lifted wavelet-based cod-

ing scheme with displacement compensation is specially developed for cubic-panorama

image dataset compression in Chapter 5. In addition, with regard to the unique require-

ment of random access and selective decoding for image dataset compression, a specific

rectangular sub-region access mechanism is designed for cubic-panorama image dataset

compression in the developed scalable lifted wavelet-based coding scheme. A suitable

tradeoff among coding efficiency, spatial resolution scalability and random access flexi-

bility is reached. Also, making full use of the features of image datasets is a principle

strategy of designing efficient coding schemes for image dataset compression. As a spe-

cific feature of cubic-panorama image datasets, the dominant image displacement across

basis images demonstrates a regular pattern determined by the motion of the cameras

producing cubic-panorama image datasets. A novel global displacement estimation and

compensation approach is developed based on the dominant image displacement feature

of cubic-panorama image datasets in Chapter 6.
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Chapter 4

Cubic-Panorama Image Dataset
Compression with the Spatially
Consistent Representation

The best general-purpose representation of environment mapping is the projection

onto a cube [25]. Providing omni-directional image information, cubic panoramas can

be easily generated and manipulated. Novel-view images can be synthesized conve-

niently from cubic-panorama image datasets. They are becoming more popular and are

expected to be more widely applied with their unique features in image-based virtual

environment navigation [7, 21, 90]. However, because of the huge sizes of the cubic-

panorama image datasets, an efficient coding scheme for compressing cubic-panorama

image datasets is crucial to make their applications practical.

Although some compression schemes can be utilized to encode cubic-panorama im-

age datasets, these schemes are designed for compressing planar images with a rectan-

gular support. It is inevitable to sacrifice some coding efficiency with the planar image

representation of cubic-panorama image datasets because of the inconsistency on the

boundaries of connected side images. In order to overcome this problem, a spatially

consistent representation for cubic-panorama image datasets is proposed and applied to

compressing cubic-panorama image datasets. A special block padding algorithm is de-

signed to construct the reference blocks for displacement estimation and compensation.
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Two different compression schemes are utilized and adapted to the spatially consis-

tent representation of cubic-panorama image datsets. Improved coding performance is

achieved with the spatially consistent representation of cubic-panorama image datasets

due to the consistent, unconstrained displacement estimation and compensation.

4.1 Introduction

Cubic panoramas can be easily generated and manipulated. Novel-view images

can be synthesized conveniently with the assistance of interpolated intermediate cubic

panoramas derived from the basis cubic panoramas or basis images in cubic-panorama

image datasets. Compared with the cylindrical and spherical formats of panoramic

images [10, 82], cubic panoramas are more suitable for being used as the image database

in some applications, like navigation in image-based virtual environments [25]. Cubic-

panorama image datasets are more widely applied and are becoming more popular

[7, 21]. However, originally generated cubic-panorama image datasets involve a large

amount of data. Without proper compression, they occupy huge amounts of space to

keep on storage media and require high bandwidths to transmit over networks. Efficient

compression of the cubic-panorama image datasets is crucial to reducing the required

storage space and transmission bandwidth and facilitating the applications of cubic-

panorama image datasets in image-based virtual environment navigation.

In conventional compression schemes, cubic-panorama image datasets are treated

as planar image sequences with a rectangular support. It is inevitable to sacrifice

some coding efficiency because of the inconsistency on the boundaries of connected side

images. In order to deal with this problem, a spatially consistent representation for

cubic-panorama image datasets is proposed based on the previous work in [44]. The

image boundary constraints on displacement vectors are eliminated. The search for

displacement vectors as well as matching blocks in the reference frames can be natu-

rally extended across side-image boundaries into neighbor side images in all directions.

A specific algorithm for constructing the reference blocks around the corners of the
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cube is designed for displacement estimation and compensation. Optimized matching

reference blocks can be obtained to further reduce the prediction errors and improve

the compression efficiency. Two compression schemes respectively based on the base-

line framework of block-based hybrid coding and displacement-compensated wavelet

transform coding are adopted, and adapted to the features of cubic-panorama image

datasets. The experimental results of applying the proposed compression schemes to

coding sample cubic-panorama image datasets are presented. It is shown that superior

coding performance is achieved with the spatially consistent representation compared

with the generic planar representation of cubic-panorama image datasets.

Following this section of introduction to cubic-panorama image dataset compression,

Section 2 presents the process of cubic-panorama image dataset generation. In Section

3, the spatially consistent representation for cubic-panorama image datasets is proposed

together with the investigation on reference block padding around the corners of the

cube and the discussions on unrestricted displacement estimation and compensation.

Section 4 describes the block-based hybrid compression scheme and the displacement-

compensated wavelet transform compression scheme adopted and adapted for coding

cubic-panorama image datasets with the spatially consistent representation. The exper-

imental results of applying the proposed compression schemes to coding sample cubic-

panorama image datasets with and without the spatially consistent representation are

presented and compared in Section 5. Finally the discussions on cubic-panorama image

dataset compression in this chapter are summarized in Section 6.

4.2 Cubic-Panorama Image Dataset Generation

In order to obtain the required cubic-panorama image dataset, we need to undergo

the raw image sequence acquisition process, construct cubic-panorama side images from

the captured raw images, and perform the necessary image format conversion.
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4.2.1 Raw Image Sequence Acquisition

The imaging system we used for acquiring raw image sequences is a multi-sensor

omni-directional camera system shown in Fig. 4.1(a). It consists of a camera head unit,

a storage unit and a portable host computer. The camera head unit is a Ladybug cam-

era (Fig. 4.1(b)) from Point Grey Research. It incorporates six ICX204AQ color CCD

image sensors and has six high quality micro lenses with the focal length of 2.5mm.

One lens pointing straight up is configured on the top of the camera head unit and five

lenses pointing horizontally are assembled in a horizontal circle. The camera head is

pre-calibrated by the manufacturer to enable high-quality image processing. The lens

settings, e.g. the iris and the focus, are fixed to keep the cameras calibrated during the

acquisition process. The CCD sensors and the lenses are packed tightly to minimize the

parallax effects. This camera head allows easy acquisition of panoramic images and has

been utilized in several applications [7, 31, 88]. The storage unit involves a number of

large-capacity hard drives to record the uncompressed raw image sequences with huge

sizes, and the host computer is used to control the acquisition procedure and to process

and retrieve the recorded image sequences.

 

Horizontal  
camera lenses 

Top camera lens 

Fiber-optic 
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Power link 
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Storage unit 
Host computer Camera motion 

trajectory 

Real-world 
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Fig. 4.1 Cubic-panorama raw-image sequence acquisition: (a) the imag-
ing system and (b) the multi-sensor omni-directional Ladybug camera head.
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The multi-sensor camera head outputs 6 simultaneously sampled color filter array

(CFA) raw images IBr
R, ki (∀ i∈{1, 2, ..., 6}) of the Bayer raw image signal space S̃Br

R at

the kth shot instant of a sequential acquisition process. Here the superscript Br denotes

Bayer, the subscript R represents raw images, and k ∈ {1, 2, ...,K} where K ∈ Z is the

number of shots taken in the whole acquisition process. The mathematic structure most

useful in describing sampling of images is the lattice [16]. The Bayer CFA sampling

structure with the raw images sampled on a rectangular lattice Λ is shown in Fig. 4.2

[15]. The CFA sampling lattice Λ = LAT (V), the sampling matrix V = [v̄1|v̄2] and the

basis vectors v̄1 = [X, 0]T ; v̄2 = [0,Y]T where X and Y are the spatial sampling periods

in horizontal and vertical directions respectively. The raw Bayer CFA images IBr
R, ki

consist of R, G and B components IBr
R, ki =

{

IBr
R, ki, p| ∀p ∈{r, g, b}

}

. Correspondingly,

the sampling structures Λp

(

p∈{r, g, b}
)

of the R, G and B components are represented

as following:

Λr = [X, 0]T + LAT [v̄1r|v̄2r], v̄1r = [2X, 0]T , v̄2r = [0, 2Y]T ,

Λg = LAT (Vg) = LAT [v̄1g|v̄2g], v̄1g = [2X, 0]T , v̄2g = [X,Y]T ,

Λb = [0,Y]T + LAT [v̄1b|v̄2b], v̄1b = [2X, 0]T , v̄2b = [0, 2Y]T .

(4.1)

The unit-cell hyper-volume d(Λg) = | detVg| = 2XY for Λg is half of that for Λr or Λb.

Therefore, the sampling density of the G component as the reciprocal of d(Λg) is twice

that of R or B. The union of the lattice Λg and the shifted lattices Λr and Λb composes

Λ: ∪∀ p∈{r,g,b} Λp = Λ.

In order to obtain larger vertical field of view, the CCD sensors capture the five

horizontal views IBr
R, ki(∀ i∈{1, 2, ..., 5}) in portrait orientation with resolution 768x1024

per view. The view overlap of adjacent lenses is controlled within a small amount of 5

to 10 pixels. Therefore, the horizontal circumference is covered by approximately 3800

pixels. Totally the six CCD sensors capture approximately 4.7M effective pixels at each

shot. The uncompressed streaming raw Bayer CFA image data is transmitted to the
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Fig. 4.2 Bayer CFA sampling structure with the sampling lattice Λ as
the union of the lattice Λg and the shifted lattices Λr and Λb [15].

storage unit through a fiber-optic cable at an adjustable rate of 3.75, 7.5, 15 or 30 fps.

4.2.2 Panoramic Side-Image Formation

One basis cubic panorama consists of six side images IRgb
B, k = {IRgb

B, kj| ∀j∈{1, 2, ..., 6}}
derived from the kth set of six raw images and projected on the six faces of the cube.

Here the superscript Rgb denotes the RGB color format and the subscript B represents

basis images. As a preliminary process to obtain these six side images of a basis cubic

panorama, full RGB images IRgb
R, ki, s (∀s ∈{R,G,B}) in the RGB raw image signal

space S̃Rgb
R need to be reconstructed from the acquired raw Bayer CFA tiled images

IBr
R, ki, p (∀p ∈{r, g, b}): S̃Br

R → S̃Rgb
R , and then obtain IRgb

B, kj, s (∀j ∈ {1, 2, ..., 6}) from

IRgb
R, ki, s (∀i∈ {1, 2, ..., 6}). A demosaicking process is required to interpolate other two

components of R, G and B at each spatial location where there is only one component

captured in IBr
R, ki, p on the sampling lattice Λ.
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Assuming the spatial sampling periods X and Y are equal X=Y and this same

sampling period is taken as the unit of length, the raw Bayer CFA color images IBr
R, ki

can be represented by using the luma component ILcc
R, ki, L and the chroma components

ILcc
R, ki, C1, ILcc

R, ki, C2 in S̃Lcc
R – the LCC raw image space, S̃Lcc

R → S̃Br
R :

IBr
R, ki[n1, n2] = ILcc

R, ki, L[n1, n2] + ILcc
R, ki, C1[n1, n2] exp

(

jπ(n1 + n2)
)

+

ILcc
R, ki, C2[n1, n2] exp(jπn1) − ILcc

R, ki, C2[n1, n2] exp(jπn2),
(4.2)

In order to reduce the reconstruction error, a least-squares design methodology [17]

can be utilized in the filter design for extracting the estimated values of the chroma

components ILcc
R, ki, C1 and ILcc

R, ki, C2, and then the luma component ILcc
R, ki, L can be esti-

mated by using (4.2). After that, IRgb
R, ki, s (∀s ∈{R,G,B}) can be determined by the

following equations [15]

IRgb
R, ki, R = ILcc

R, ki, L − ILcc
R, ki, C1 − 2 ILcc

R, ki, C2 ,

IRgb
R, ki, G = ILcc

R, ki, L + ILcc
R, ki, C1 ,

IRgb
R, ki, B = ILcc

R, ki, L − ILcc
R, ki, C1 + 2 ILcc

R, ki, C2 .

(4.3)

After R, G and B components are interpolated on Λ, a group of six raw full RGB

images IRgb
R, ki (∀i∈{1, 2, ..., 6}) can be used to create a basis cubic panorama IRgb

B, k which

consists of six side images IRgb
B, kj (∀j ∈{u, b, l, f, r, d}) in the full RGB space S̃Rgb

B . The

subscripts u, b, l, f, r and d represent the up, back, left, front, right and down side

images respectively. The camera head is pre-calibrated to facilitate high quality im-

age analysis and processing, and this calibration is retained during the whole process

of acquisition. Now the camera calibration parameters are retrieved for image projec-

tion. The original overlap of 5 to 10 pixels between adjacent IRgb
R, ki is fused by using a

standard blending technique in OpenGL [7] or the more sophisticated multiperspective

plane sweep (MPPS ) technique [88]. Then, by locating the geometric center of a cube C
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at the same common projection center of the group of the six raw images, the six faces

of C are projected into the surface P of the stitched raw images (There is no raw image

corresponding to the down side face of P), and texture mapping is performed from raw

images IRgb
R, ki (∀i∈{1, 2, ..., 6}) of resolution 768x1024 onto the surface of C (Fig. 4.3).

Six side images IRgb
B, kj (∀j ∈ {u, b, l, f, r, d}) of resolution 512x512 or 1024x1024 viewed

from the inside of the cube at the projection center are rendered on the six faces of

C by texture mapping. Each of these side views has 90 degrees of FOV in both the

horizontal and vertical directions. There is a blind area in the bottom view of the cubic

panorama due to the lack of a lens facing down in the camera head unit. An example

of a set of six resulting side images composing a cubic panorama is shown in Fig. 4.4

in a flattened out pattern. 
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Fig. 4.3 Cubic panorama generation: texture mapping from six stitched
raw images to a cubic panorama consisting of six side images.

4.2.3 Format Conversion with Component Transformation

In order to reduce the color data correlation of the tristimulus values IRgb
B, kj, R, I

Rgb
B, kj,G,

and IRgb
B, kj,B and more efficiently represent cubic-panorama image datasets, an inter-



4 Cubic-Panorama Image Dataset Compression 65

Fig. 4.4 An example of a set of six resulting side images composing a
cubic panorama unfolded in a flattened out pattern.

component image transformation from the full RGB image signal space S̃Rgb
B to the YUV

image signal space S̃Yuv
B with one luminance component IYuv

B, kj, Y and two color differences

or chrominance components IYuv
B, kj, U and IYuv

B, kj, V is performed for each RGB side image

IRgb
B, kj of the cubic panoramas. The forward pixel-wise component transformation is

carried out by using the following equation
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IYuv
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IYuv
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. (4.4)
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This forward component transform can be implemented more efficiently as

IYuv
B, kj, Y = 0.299(IRgb

B, kj,R − IRgb
B, kj,G) + IRgb

B, kj,G + 0.114(IRgb
B, kj, B − IRgb

B, kj,G),

IYuv
B, kj,U = 0.564(IRgb

B, kj, B − IYuv
B, kj, Y ), IYuv

B, kj, V = 0.713(IRgb
B, kj,R − IYuv

B, kj, Y ).
(4.5)

The corresponding reverse component transform is
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. (4.6)

As the spatial bandwidths of the chrominance signals are typically lower than that

of the luminance signal, and the human visual system (HVS ) is less sensitive to high-

frequency chrominance signals than luminance signals, the chrominance components

IYuv
B, kj,U and IYuv

B, kj, V are down-sampled by a factor of 2 in both the vertical and the hor-

izontal directions to further reduce the data sizes. This corresponds to the optimized

chrominance format YUV 4:2:0. The sampling structure of the YUV 4:2:0 format of

the basis side images is shown in Fig. 4.5. While the sampling lattice of the lumi-

nance component IYuv
B, kj, Y remains the same as ΛL = Λ, the chrominance components

IYuv
B, kj,U , IYuv

B, kj, V are sampled on the shifted rectangular lattice

ΛC = [X/2,Y/2]T + LAT [v̄1C |v̄2C ], v̄1C = [2X, 0]T , v̄2C = [0, 2Y]T . (4.7)

In the following discussions on image dataset compression, YUV 4:2:0 format of the

image datasets will be used as the default image format unless certain other format is

explicitly specified. Therefore, the superscript Yuv will be removed for simplification

IB, kj ⇔ IYuv
B, kj and IB, k ⇔ IYuv

B, k .
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Fig. 4.5 YUV4:2:0 sampling structure consisting of the luminance sam-
pling lattice ΛL and the shifted chrominance sampling lattice ΛC .

4.3 Spatially Consistent Cubic-Panorama Representation

A spatially consistent representation of cubic-panorama image datasets is introduced

to more efficiently process this specific form of image dataset. A discussion on the

reference block padding with a generic smooth filtering algorithm is made in order

to apply the spatially consistent representation of the cubic-panorama image datasets

to image dataset compression. As a result, unlimited displacement estimation and

compensation can be facilitated to improve the performance of cubic-panorama image

dataset compression.

4.3.1 Consistent Representation for Cubic-Panoramas

For image dataset compression, the straightforward way to deal with a cubic panorama

is to represent it by a planar image, which is obtained by combining the six side im-

ages of the cubic panorama to form a single planar image with a rectangular support.



4 Cubic-Panorama Image Dataset Compression 68

With this generic planar image representation for cubic-panoramas, it is not possible

to form seamless consistent connections between the six side images while maintaining

a rectangular support. In this case, the inconsistent transition of pixel intensity across

side images sacrifices some coding efficiency. Also, the outer boundaries of the con-

nected planar cubic-panorama images constrain the search of displacement vectors and

the corresponding displacement-compensated prediction. In order to overcome these

problems, a spatially consistent representation of cubic panorama image datasets is

introduced (Fig. 4.6), based on the unique features of cubic panoramas.
 

 
 
 

W 

W 

( 0, W -1, 0 ) 

X 

Front image 

Left image 

Down image 

Up image 

Back image  

Right image 

Z

Y 

Scan order of 
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( W -1, 0, 0 ) 

W 

Fig. 4.6 Spatially consistent representation of a cubic panorama with six
side images on the six faces of the cube.

In the spatially consistent representation for cubic panoramas, the six side images of

a cubic panorama are stitched together corresponding to their spatial locations. Suppose

the dominant camera motion direction is along a straight line or the cubic-panorama

basis images are aligned though a well-designed projective rectification process [47]. Let

this dominant direction of the camera motion coincide with the positive Z-axis direction

of the Cartesian coordinate system. Taking the spatial sampling period X as the unit

of length, the back side image IB, kb is positioned in the XOY plane and the front side
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image IB, kf is positioned in the plane z=W−1, where W is the width of the cube side.

The left side image IB, kl is in XOZ plane and the right side image IB, kr is in the plane

y=W−1. The down side image IB, kd and the up side image IB, ku are in YOZ plane and

the plane x=W−1 respectively. A cubic panorama consisting of these six side images

can be represented in a spatially consistent form as

IB, k [n1, n2, n3 ] =



































































IB, ku [W−1− n2, W−1− n3 ], n1 = W−1, 0 ≤ n2 ≤W−1, 0 ≤ n3 ≤W−1;

IB, kb [W−1− n2, W−1− n1 ], 0 ≤ n1 ≤W−1, 0 ≤ n2 ≤ W−1, n3 = 0;

IB, kl [n3, W−1− n1 ], 0 ≤ n1 ≤W−1, n2 = 0, 0 ≤ n3 ≤W−1;

IB, kf [n2, W−1− n1 ], 0 ≤ n1 ≤W−1, 0 ≤ n2 ≤W−1, n3 = W−1;

IB, kr [W−1− n3, W−1− n1 ], 0 ≤ n1 ≤W−1, n2 = W−1, 0 ≤ n3 ≤W−1;

IB, kd [W−1− n2, n3 ], n1 = 0, 0 ≤ n2 ≤W−1, 0 ≤ n3 ≤W−1;

0, otherwise.

(4.8)

Every side image in a cubic panorama has four neighbor side images. The tran-

sitions of pixel intensity from one side image to any of its neighbor side images are

spatially consistent across side image boundaries. This spatially consistent represen-

tation embodies the actual spatial connections between the side images constituting a

cubic panorama. A seamless consistent combination of the six side images is achieved

in this spatially consistent representation.

4.3.2 Reference Block Padding

Displacement estimation and compensation are needed for displacement-compensated

cross-image redundancy removal in compressing the spatially consistent representation

of cubic-panorama image datasets. With block-based displacement estimation, refer-

ence blocks are required to be constructed across side image boundaries in the reference

frames to obtain the matching displacement vectors in the displacement search window.
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If the search for the displacement vectors comes to the corners of the cube, the

reference block need to be constructed with image samples from three adjacent side

images. In this case, no full-size reference blocks can be obtained directly from the

side images in the reference frame. Reference blocks need to be padded for block-based

displacement estimation and compensation. The cubic panorama is laid out to show

the block padding in Fig. 4.7. According to whether the displacement estimation

and compensation are performed for the horizontal side images, the up side image

or the down side image, different methods are used for padding the corner reference

blocks depending on the direction of the dominant image displacement in the current

side image. As a result, reference blocks on the same cubic corner may be padded in

different ways due to different current side images.

 
 
    
 
 
 
 
 
 
 
 
 
 

 
Dominant image 
displacement  Dd 

Reference block 
Current predicted  
   block 

S1 S1 

S4 S2 

S3 S3 

S0 

Cube corner 

S0 : Current cube side 
S1 ~ S4 : Adjacent cube sides 

Br Bc 

S1 

S3 

 

Fig. 4.7 Cubic panorama laid out to show block padding.

The construction of reference blocks on the corners of the cube is illustrated in Fig.

4.8(a). According to the direction of the dominant image displacement, the matching

reference block Br of the current predicted block Bc on Side S0 is more likely located

further into Side S2 rather than Side S1 across side image boundaries. Therefore, the

reference blocks on the corner are padded by using samples of Side S1 rather than
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Side S2. As a result, the samples in a smaller region RGOC enclosed by GOC need

to be padded instead of a bigger region RABOG enclosed by ABOG : RGOC < RABOG.

Accordingly, the inconsistent transition boundary LFO in the padding region is shorter

than LEO (the inconsistent transition boundary in case the padding is performed by

using samples from Side S2): LFO < LEO.
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S0 

S1 S1 
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F 

O 

Bc 

Br 

G C 
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F 

bk(k-1)… bk2     bk1   ak0      ak1      ak2 …ak(k-1) 

 

b21   a20      a21      

 a10  

Fig. 4.8 Block padding on the corner of the cube. (a)Reference block
construction on the cube corner. (b) Filtering in the padding region.

In the process of reference block padding, firstly the padded image samples IP (aki)

(∀k∈{1, 2, ..., KP}, ∀i∈{0, 1, ..., k−1}, KP is determined by the current search range)

enclosed by GOF are produced by simply copying image samples from S1 on the left

side, and the padded image samples IP (bkj) (∀k ∈ {1, 2, ..., KP}, ∀j ∈ {1, 2, ..., k−1})
enclosed by COF are produced by copying image samples from S1 on the right side to

preserve the consistent sample transition on the padding boundaries LGO and LCO. Sec-

ondly, encouraged by the offset-based filtering algorithm for deblocking abrupt changes

appearing at the block boundaries of low bitrate video [83], a generalized smooth filter-

ing algorithm with only shifting and addition operations to reduce the computational

complexity is introduced to operate in the padding region RGOC (Fig. 4.8(b)). Here the
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original algorithm is extended from operating on fixed even number of samples to vary-

ing odd number of samples in order to adapt it to the boundary condition in the block

padding on the cube corners. For the kth row starting from the side image boundary,

the center sample at ak0 is modified as

I ′
P (ak0) = [IP (ak0) + IP (bk1)]/2. (4.9)

Then the padded image samples in the region RGOF are updated as

I ′
P (ak1) = IP (ak1) − [IP (ak0) − IP (bk1)]/4,

I ′
P (ak2) = IP (ak2) − [IP (ak0) − IP (bk1)]/8,

· · · · · ·
I ′

P (ak(k−1)) = IP (ak(k−1)) − [IP (ak0) − IP (bk1)]/2
k.

(4.10)

The padded image samples in the region RCOF are modified as following

I ′
P (bk1) = IP (bk1) + [IP (ak0) − IP (bk1)]/4,

I ′
P (bk2) = IP (bk2) + [IP (ak0) − IP (bk1)]/8,

· · · · · ·
I ′

P (bk(k−1)) = IP (bk(k−1)) + [IP (ak0) − IP (bk1)]/2
k.

(4.11)

An example of cubic-panorama image block padding is given in Fig. 4.9. Image

samples in Ca and Cb are copied to Sb and Sa respectively and with a clockwise 900

rotation for block Ca and an anti-clockwise 900 rotation for block Cb. Then, image

samples in Sb and Sa are filtered according to above introduced algorithm.
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Fig. 4.9 An example of cubic-panorama image block padding: a cubic
panorama flattened out with incomplete corner regions (top image), corner
regions filled with samples from neighbor regions (middle image) and filled
regions after filtering (bottom image).
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4.3.3 Unrestricted Displacement Estimation and Compensation

In order to efficiently exploit cross-image redundancy, displacement estimation and

compensation are performed on the spatially consistent representation of cubic-panorama

image datasets. The search for matching displacement vectors in the reference images

can be naturally extended across side image boundaries into neighbor side images. Be-

cause the six stitched sides of the cube form a closed surface, the spatially consistent

representation eliminates the frame boundaries of the generic planar representation.

There is no limitation for the values of the displacement vectors. The search for dis-

placement vectors as well as matching reference blocks can be extended beyond the

side image boundaries in all four directions (Fig. 4.10). This makes it possible to ob-

tain an optimized matching reference block for a predicted block to further reduce the

prediction error for displacement compensation and improve the compression efficiency.

 

Prediction 
direction 
block 

Displacement 
vector 

Search 
direction 

Reference 
block 

W 

W 

X 

Predicted 
current block Y 

Z

Current basis 
cubic panorama  

Reference basis 
cubic panorama  

Fig. 4.10 Unrestricted displacement vector search with the spatially con-
sistent representation of cubic-panorama image datasets.
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4.4 Cubic-Panorama Image Dataset Compression

Two different coding schemes are adapted to compressing the spatially consistent

representation of cubic-panorama image datasets in order to improve the compression

performance of the coding schemes applied for image dataset compression. They are the

block-based hybrid coding scheme and the displacement-compensated wavelet transform

coding scheme. The baseline coding schemes are applied to just show the value of the

spatially consistent representation for cubic-panorama image datasets. More detailed

descriptions of the coding schemes will be given in the later chapters.

4.4.1 Block-Based Hybrid Coding

A block-based hybrid coding (BBHC ) scheme is adapted to compressing the basis

images of cubic-panorama image datasets with the spatially consistent representation.

The structure of the baseline BBHC scheme is depicted in Fig. 4.11. The main compo-

nents included in the scheme are displacement estimation, displacement-compensated

prediction, forward and inverse spatial transformation, forward and inverse quantiza-

tion and entropy coding. The BBHC scheme is primarily a combination of a spatial

transformation with cross-image prediction enhanced by displacement compensation.

With block-based coding, each basis image is partitioned into blocks of image samples.

The spatial transform, the displacement estimation and compensation, the quantization

and entropy coding are all performed on the block base.

Cross-image prediction is an effective and efficient technique to decorrelate image

datasets across basis images. With the assistance of displacement estimation and com-

pensation, the performance of cross-image prediction can be significantly enhanced. For

displacement-compensated prediction, the current basis image IB,k is predicted from an

already encoded reference basis image IB,k′. Suppose the displacement vector is D[x̄]
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Fig. 4.11 Block-based hybrid coding (BBHC ) scheme adapted to com-
pressing the spatially consistent representation of cubic-panorama image
datasets.

at the sample position x̄, the predicting basis image is given by

ĨB,k[x̄] = IB,k′

[

x̄ + D[x̄]
]

. (4.12)

Then, instead of IB,k the prediction error

EB,k[x̄] = IB,k[x̄] − ĨB,k[x̄] (4.13)
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is spatially transformed, quantized and encoded.

In order to exploit the spatial redundancy existing among image samples in the same

basis image, a block-based spatial transformation is applied for each disjoint block of

size 8 × 8. The discrete cosine transform (DCT ) is the most popular spatial transform

to serve this purpose. The separable, orthogonal, 2D forward DCT for an M×N block

is given as

CB,k[i, j] =

√

βiβj

MN

M−1
∑

m=0

N−1
∑

n=0

EB,k[m,n] cos(
(2m+ 1)iπ

2M
) cos(

(2n+ 1)jπ

2M
), (4.14)

where βi = 1 for i = 0; βi = 2 for i ∈ {1, ...,M − 1}, and βj = 1 for j = 0; βj = 2 for

j ∈ {1, ..., N − 1}. The corresponding 2D inverse DCT is

EB,k[m,n] =
1√
MN

M−1
∑

i=0

N−1
∑

j=0

√

βiβjCB,k[i, j] cos(
(2m+ 1)iπ

2M
) cos(

(2n+ 1)jπ

2M
). (4.15)

4.4.2 Three-Dimensional Discrete Wavelet Transform Coding

Also, a three-dimensional displacement-compensated discrete wavelet transform cod-

ing (DC-DWTC ) scheme is adapted to encoding the spatially consistent representation

of cubic-panorama image datasets. The structure of the baseline DC-DWTC scheme is

depicted in Fig. 4.12. The DC-DWTC process mainly consists of cross-image displace-

ment estimation, the displacement-compensated cross-image discrete wavelet transform,

spatial discrete wavelet transform, uniform decomposition coefficient quantization and

embedded entropy coding.

Block-based full-search displacement estimation is performed for every block of the

current predicted cubic-panorama basis image in the spatially consistent representa-

tion. A multi-layer displacement vector searching procedure is conducted in order to
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Fig. 4.12 Displacement-compensated discrete wavelet transform coding
(DC-DWTC ) scheme adapted to compressing the spatially consistent rep-
resentation of cubic-panorama image datasets.

accelerate the displacement estimation and reduce the computational complexity. The

resultant displacement vectors are utilized in the prediction and update stages of the

cross-image wavelet transform. The Haar kernel is used in the cross-image wavelet

analysis for obtaining the required low delay and facilitating flexible random access to

and efficient selective decoding of the coded bit-stream of the cubic-panorama image

dataset. A two-dimensional separable spatial wavelet transform is performed on the

decomposed wavelet coefficients resulting from the cross-image wavelet analysis pro-

cess. Decomposition wavelet coefficients in spatial and cross-image subbands are then

quantized by uniform threshold quantization. Finally, all the resulting quantized coeffi-

cients are encoded in the embedded entropy coding process. More detailed investigation

into this wavelet-based compression scheme will be conducted in the following chapter

on the scalable lifted wavelet-based scheme with displacement compensation for cubic-

panorama image dataset compression.



4 Cubic-Panorama Image Dataset Compression 79

4.5 Experimental Results

In the experiments, the software implementations of the wavelet-based compression

scheme DC-DWTC and the block-based hybrid compression scheme BBHC presented

in the previous section were applied respectively to encoding the testing cubic-panorama

image datasets with the spatially consistent representation. The experimental results

are compared with those of both of these compression schemes applied to encoding the

same testing cubic-panorama image datasets with the generic planar representation.

The coding schemes which are compared in the experiments have the same implemen-

tation structure, using the same set of compression techniques presented in Fig. 4.11

and Fig. 4.12. However, when the schemes are used to code cubic-panorama image

datasets with the spatially consistent representation, they are modified to be able to

take this specific format of representation as input, and the required prediction block

padding and filtering are integrated into the schemes to facilitate the unrestricted dis-

placement estimation and compensation. When the coding schemes are used to com-

press cubic-panorama image datasets with generic planar representation, the six N ×N
side images of each cubic-panorama basis image are concatenated in the order of top,

down and 4 horizontal side images to form a 6N ×N planar image with a rectangular

support. Therefore, no modification must be made for the coding schemes to compress

the cubic-panorama image datasets. In this case, they are treated as generic planar

image sequences like the generic video sequences. The testing cubic-panorama image

datasets used in the experiments are Lab (Fig. 4.13) and Corridor (Fig. 4.14). They

were generated from the raw image sequences captured with the Ladybug imaging sys-

tem. Some information about these two testing cubic-panorama image datasets is given

in Table 4.1.
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Fig. 4.13 Experimental cubic-panorama image dataset - Lab (extended
horizontal view) obtained with the Ladybug imaging system.

 

Fig. 4.14 Experimental cubic-panorama image dataset - Corridor (ex-
tended horizontal view) obtained with the Ladybug imaging system.

Image
Dataset

Basis
Images

Resolution Environment Data
Size

Lab 112
frames

6x512x512 Research labora-
tory

504 MB

Corridor 120
frames

6x512x512 Corridor in the
building

540 MB

Table 4.1 Information about the testing cubic-panorama image datasets
used in the experiments

The objective metric used for evaluating the image quality of the compressed cubic-

panorama image datasets and the performance of the compression schemes applied
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in the experiments is the peak signal-to-noise ratio (PSNR). Suppose the sampling

structure of the cubic-panorama basis images IB, k is represented by LC defined on the

surface of the cube (Fig 4.6), and the total number of the samples on LC is |LC| =

6 × N1×N2, where N1×N2 is the resolution of each side image involved in a cubic-

panorama basis image. The mean square error (MSE ) is computed as

EMS =
1

|LC|
∑

∀ [n1,n2,n3 ]∈LC

(

IB, k [n1, n2, n3 ] − ÎB, k [n1, n2, n3 ]
)2
, (4.16)

where ÎB, k [n1, n2, n3 ] is the image sample value at the sample position [n1, n2, n3 ]

reconstructed from the compressed cubic-panorama basis image IB, k. Then, PSNR is

given by

PSNR = 10 log10

(

IB,max − IB,min

)2

EMS
. (4.17)

Firstly, the DC-DWTC scheme was applied to compress the cubic-panorama image

dataset Lab. The experimental results are shown in Fig. 4.15 in terms of the PSNR ver-

sus the frame number of the 112-frame Lab image dataset. The PSNR of the luminance

component Y of the Lab basis images encoded at the bitrate Rb = 400 kbpc (kilobits

per cube) is presented for each basis image. The spatially consistent representation ap-

proach (SCRA) shows an improved performance over the generic planar representation

approach (GPRA). The average PSNR of the entire dataset of the former is 0.48 dB

higher than that of the latter.

The experimental results of the Lab image dataset encoded with DC-DWTC at

different bitrates are shown in Fig 4.16. Varying improvements of average PSNR for

SCRA are obtained with different bitrates compared to GPRA, ranging from 0.45 dB to

0.59 dB. Also, the experimental results of the Corridor image dataset encoded by using

DC-DWTC with SCRA and GPRA at different bitrates are presented in Fig. 4.17. The

improvements of average PSNR for encoding the Corridor image dataset with SCRA

range from 0.38 dB to 0.48 dB. Greater average PSNR values and less improvements are
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Fig. 4.15 Frame-by-frame PSNR of the luminance component Y for
the112-frame Lab image dataset at Rb = 400 kbpc. Average PSNR: GPRA

— 39.45 dB, SCRA — 39.93 dB.

observed for compressing the Corridor image dataset due to its less intensive texture

feature compared with the Lab image dataset.

At several typical compression ratio levels, the compression performance of DC-

DWTC with SCRA applied for the two testing cubic-panorama image datasets Lab

and Corridor are presented in comparison with the performance of DC-DWTC with

GPRA in Table 4.2 (for the compression ratio RC = 30, 60, 100, 200 respectively). It

shows that at the same levels of compression ratios, the performance of SCRA compared

with that of GPRA in terms of the PSNR of the luminance component is about 0.53

dB higher on average for the Lab image dataset and 0.44 dB higher on average for the

Corridor image dataset over the compression ratio range RC : 30 ∼ 200.
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Fig. 4.16 Compression performance comparison of SCRA and GPRA

with changing bitrates for the image dataset Lab encoded by DC-DWTC.
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Fig. 4.17 Compression performance comparison of SCRA and GPRA

with changing bitrates for the image dataset Corridor encoded by DC-

DWTC.
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Compression
Ratio

Image
Dataset

Comp.a PSNR (dB)
of GPRA

PSNR (dB)
of SCRA

Gain (dB)

Y 31.55 32.13 +0.58
Lab U 40.57 40.99 +0.42

RC = 200 V 39.01 39.41 +0.40
Y 36.82 37.30 +0.48

Corridor U 42.62 42.97 +0.35
V 41.80 42.20 +0.40
Y 35.43 35.99 +0.56

Lab U 42.85 43.26 +0.41
RC = 100 V 41.48 41.92 +0.44

Y 40.94 41.39 +0.45
Corridor U 45.55 45.88 +0.33

V 44.91 45.32 +0.41
Y 38.07 38.60 +0.53

Lab U 44.30 44.68 +0.38
RC = 60 V 43.33 43.74 +0.41

Y 43.89 44.33 +0.44
Corridor U 47.54 47.91 +0.37

V 47.11 47.53 +0.42
Y 41.99 42.44 +0.45

Lab U 46.98 47.30 +0.32
RC = 30 V 46.31 46.66 +0.35

Y 47.31 47.70 +0.39
Corridor U 50.67 50.96 +0.29

V 50.48 50.84 +0.36

aComponent

Table 4.2 Performance improvements of DC-DWTC with SCRA com-
pared with DC-DWTC with GPRA applied to encoding cubic-panorama
image datasets Lab and Corridor at RC = 30, 60, 100, 200.
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The experimental results of the block-based hybrid compression scheme BBHC re-

spectively with SCRA and GPRA applied to encoding the two testing cubic-panorama

image datasets are presented in Fig. 4.18 and Fig. 4.19 in terms of the average PSNR

of the luminance component Y versus the bitrate. In order to obtain compressed basis

images with steady image quality, no bitrate control is used in this BBHC scheme. The

frame quantization parameter QF is fixed for each basis image, and greater values of

QF for the intra-coded basis images are chosen compared with the QF values of the

predicted basis images to obtain compressed basis images with quality levels as similar

as possible. Improved compression efficiency resulting from the use of SCRA compared

with GPRA can be observed for both of the testing cubic panorama image datasets.
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Fig. 4.18 Compression performance comparison of SCRA and GPRA

with changing bitrates for the image dataset Lab encoded by BBHC.
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Fig. 4.19 Compression performance comparison of SCRA and GPRA

with changing bitrates for the image dataset Corridor encoded by BBHC.

Tables 4.3 and 4.4 show the bitrate reductions of the BBHC scheme with SCRA

over the BBHC scheme with GPRA at several different quality levels for the Lab image

dataset and the Corridor image dataset respectively. It can be summarized that bitrate

reductions of about 12% for the Lab image dataset and about 14% for the Corridor

image dataset in the bitrate range Rb : 100 - 600 kbpc can be achieved with the use of

SCRA compared with using GPRA.

Also, the coding performance of the HHBC scheme applied to the testing image

datasets in terms of compression ratios is presented in Fig. 4.20 and Fig. 4.21. It

shows that for the same levels of compression ratios, the average PSNR of the HHBC

scheme with SCRA is obviously higher than that of the HHBC scheme with GPRA. A

superior coding performance of SCRA for cubic-panorama image dataset compression

is achieved over GPRA.



4 Cubic-Panorama Image Dataset Compression 87

BBHC
with GPRA

/SCRA

PSNR Y
(dB)

PSNR U
(dB)

PSNR V
(dB)

Bitrate
(kbpc)

Bitrate
Reduct.

GPRA 39.41 43.40 42.79 149.10 —

SCRA 39.42 43.45 42.87 125.76 15.66%

GPRA 42.70 45.73 45.30 266.90 —

SCRA 42.64 45.78 45.40 224.86 15.75%

GPRA 44.87 47.47 47.12 416.91 —

SCRA 44.83 47.47 47.18 359.63 13.74%

GPRA 46.78 49.63 49.42 664.43 —

SCRA 46.74 49.59 49.42 582.45 12.34%

Table 4.3 Bitrate reduction of the BBHC scheme with SCRA applied to
encoding experimental cubic-panorama image dataset Corridor

BBHC
with GPRA

/SCRA

PSNR Y
(dB)

PSNR U
(dB)

PSNR V
(dB)

Bitrate
(kbpc)

Bitrate
Reduct.

GPRA 37.05 42.62 41.31 209.66 —

SCRA 37.14 42.67 41.38 183.46 12.49%

GPRA 38.43 43.18 42.01 267.56 —

SCRA 38.51 43.24 42.08 234.11 12.50%

GPRA 40.66 44.22 43.22 401.22 —

SCRA 40.72 44.25 43.29 352.05 12.25%

GPRA 42.93 45.62 44.87 601.85 —

SCRA 42.99 45.67 44.92 534.48 11.19%

Table 4.4 Bitrate reduction of the BBHC scheme with SCRA applied to
encoding experimental cubic-panorama image dataset Lab
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Fig. 4.20 PSNR versus compression ratio of BBHC with SCRA and
GPRA applied for encoding the image dataset Lab.
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Fig. 4.21 PSNR versus compression ratio of BBHC with SCRA and
GPRA applied for encoding the image dataset Corridor.
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4.6 Summary

Efficient compression of cubic-panorama image datasets is crucial to reducing the re-

quired huge storage space and the high transmission bandwidth. In order to cope with

the problem of coding efficiency sacrifice due to the inconsistent side-image connec-

tions in the conventional planar representation of cubic panoramas, a spatially consis-

tent representation of cubic-panorama image datasets is proposed. With this spatially

consistent representation applied to cubic-panorama image dataset compression, the

constraints of side image boundaries and frame boundaries on the displacement vec-

tors are eliminated. The search for displacement vectors as well as matching blocks in

the reference basis images can be naturally extended across side image boundaries into

neighbor side images in all directions. A specific block padding algorithm of reference

block construction is desinged for displacement estimation and compensation. Opti-

mized matching reference blocks can be obtained to reduce the prediction errors and

improve the compression efficiency.

A displacement-compensated discrete wavelet transform coding (DC-DWTC ) scheme

and a block-based hybrid coding (BBHC ) scheme are adapted to compressing cubic-

panorama image datasets with the proposed spatially consistent representation. These

two compression schemes are applied to encoding the testing cubic-panorama image

datasets. Experimental results show that coding performance improvement of about 0.5

dB on average is obtained with the DC-DWTC scheme and more than 12% of bitrate

reduction is obtained by utilizing the BBHC scheme. Superior compression perfor-

mances are achieved with the spatially consistent representation of cubic-panorama im-

age datasets compared with that of the generic planar representation of cubic-panorama

image datasets.
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Chapter 5

Scalable Lifted Wavelet-Based
Scheme with Displacement
Compensation for Cubic-Panorama
Image Dataset Compression

Spatial-resolution scalable coding is extremely desirable for compressing image data-

sets used for image-based virtual environment navigation. As the synthesized zooming

views, which are frequently required by users in exploring the image-based virtual en-

vironments, are generated by changing the field-of-view of the synthesized images and

displaying them with the same spatial image resolution, basis images with different lev-

els of spatial resolution are required to maintain stable quality of synthesized zooming

images. In the standardized video coding schemes, scalable coding is recommended

but is not practically applicable because of the high cost of reduced coding efficiency

for incorporating scalable coding into the schemes. Discrete wavelet transform (DWT)

coding techniques are characterized by their potential to provide temporal, spatial and

image quality or SNR scalabilities in addition to their high compression performance,

and are suitable for the purpose of image dataset compression with the spatially scal-

able requirement. However, it poses some challenges to develop a wavelet-based coding

scheme for image dataset compression as a more complicated tradeoff among the cod-
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ing efficiency, the spatial-resolution scalability and the random access and selective

decoding flexibility should be made. More sophisticated compression techniques need

to be applied in the design of a spatial-resolution scalable wavelet-based coding scheme

while keeping high compression efficiency and facilitating required random access and

selective decoding.

Motivated by the breakthrough and further developments in the research on motion-

compensated three-dimensional wavelet transforms applied to video sequence compres-

sion [22, 56, 64, 66], a scalable lifted wavelet-based coding scheme with cross-image

displacement-compensated filtering is developed for cubic-panorama image dataset com-

pression with the spatial-resolution scalability requirement. In this wavelet-based com-

pression scheme, emphasis is put on achieving the desired spatial-resolution scalability

in a highly efficient coding scheme while supporting the required random access and

selective decoding by adapting the coding scheme to cubic-panorama image dataset

compression. Displacement estimation and compensation are incorporated into the

cross-image filtering process to enhance the compression efficiency of the wavelet trans-

form across basis images in the image dataset. Both the cross-image wavelet transform

with displacement compensation and the spatial wavelet transform are factorized into

lifting operations and thus fast, memory-saving and in-place wavelet analysis and syn-

thesis are achieved.

A new embedded entropy coding approach named independent block with layered

data partition (IBLDP) is proposed and combined with the displacement-compensated

lifted wavelet transforms to form an efficient image dataset coding scheme. Unlike the

widely-applied EZW [73] and SPIHT [69] wavelet entropy coding approaches, IBLDP

does not rely on exploiting inter-subband redundancy to improve coding efficiency and

consequently removes the restriction of inter-subband coding against resolution-scalable

coding. Different from most wavelet entropy coding approaches like SPECK [32] and

EZBC [27] which put all decomposition coefficients of a decomposed image in a subband

into a coding dependency chain, IBLDP partitions the decomposition coefficients in a
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subband into independently coded coefficient blocks and makes spatial random access

to image segments of basis images possible. Also, the independent coefficient block

coding improves error resilience performance of the assembled output bit-stream, easily

supports efficient and fast parallel processing of coded basis images and provides the

flexibility of organizing code streams of coefficient blocks in different orders in the output

bit-stream to satisfy the requirements of various applications. With the compact layered

bitplane data representation and simplified coding structure, IBLDP features reduced

computational and implemental complexity and hence is more suitable for the efficient

and interactive image rendering application.

In this scalable displacement-compensated lifted wavelet-based compression scheme,

a rectangular subregion side-image random access mechanism is provided for cubic-

panorama image dataset compression used for image-based virtual environment navi-

gation. A specific hierarchical data structure is designed to accommodate the spatial

image random access and maintain the coding performance at high levels. The corre-

sponding bit-stream syntax supporting this data structure is formed to provide efficient

selective decoding for interactive image rendering. Multi-level index tables are embed-

ded in the bit-stream to assist spatial image random access. This wavelet-based image

dataset compression scheme is characterized by a suitable compromise between the cod-

ing efficiency and the random access flexibility. It reduces the decoding delay, simplifies

the implementation of a random access mechanism and easily facilitates fast interactive

image decoding. It can well meet the requirements for image dataset compression used

in image-based virtual environment navigation.

5.1 Introduction

Spatial-resolution scalability is a key requirement for compressing image datasets

used in image-based virtual environment navigation. In exploring the image-based

virtual environments, the most common user behavior, next to panning and tilting

with the virtual camera, is to take a close shot or a long shot with it. When, for
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example, a user wants to zoom into the scene and get a close-up image of it, higher

spatial-resolution basis images should be available to synthesize the close-up images

with stable image quality.

Scalable coding is recommended in block-based hybrid video coding schemes in sev-

eral international video coding standards [36, 37, 40, 41]. However, the recommended

scalable coding is seldom applied in practice because of the high expense of the sacrificed

compression performance for implementing scalable coding in these standard compres-

sion schemes. Wavelet-based coding techniques provide an effective and efficient alterna-

tive approach for image dataset compression. The ability of providing temporal, spatial

and image quality or SNR scalabilities in addition to the high compression efficiency

makes wavelet-based coding techniques more attractive to some applications with scal-

able coding requirements. As the spatial-resolution scalability feature of wavelet-based

coding techniques is particularly needed in image-based virtual environment naviga-

tion, a scalable wavelet-based coding scheme is adopted here for cubic-panorama image

dataset compression with the spatial-resolution scalable requirement.

A conventional wavelet-based compression scheme comes with a complex implemen-

tation structure due to the use of filter banks, and the wavelet transform coefficient

decomposition and reconstruction are not computationally efficient enough by the tra-

ditional convolution methods. The development of the lifting schemes [81] greatly alle-

viates this problem. It leads to faster, memory-saving, in-place wavelet decomposition

and reconstruction and makes wavelet-based compression techniques more feasible for

practical applications. For this reason, the lifted wavelet transform is adopted in JPEG

2000 [34, 50] as a standard coding technique for still image compression. On the other

hand, conventional wavelet-based compression schemes are not able to efficiently exploit

the redundancy in the cross-image direction if directly applied to inter-frame image se-

quence compression. This prevented wavelet-based compression schemes from achieving

the desired high coding efficiency in video sequence compression for supporting scalable

coding. The breakthrough and developments in the research on wavelet transforms



5 Scalable Displacement-Compensated Lifted Wavelet-Based Scheme 94

with motion-compensated temporal filtering (MCTF) for video sequence compression

[22, 64, 66] solve this problem and make wavelet-based coding schemes more attractive

to image dataset compression with the required coding scalability.

MCTF combines motion compensation with 3D wavelet transforms applied to video

sequence coding, facilitating the desired scalable coding and maintaining high compres-

sion efficiency. The original research on MCTF can be tracked in Ohm’s work [63]. He

presented his study on the concepts of temporal-axis decomposition along the motion

trajectory and deeply investigated the issue of temporal subband signal encoding. Choi

and Woods [14] applied a temporal Haar wavelet transform in a motion-compensated

3D subband coding (MC-3DSBC) scheme. They improved unconnected pixel process-

ing and proposed a bit-stream optimization technique. Hsiang and Woods [27] also

used a Haar wavelet transform in the temporal wavelet decomposition and incorpo-

rated the invertible motion compensation with half-pixel accuracy into MC-3DSBC.

For further improving the coding efficiency, context-based modeling and embedded zero-

block coding (EZBC) were also introduced into the coding scheme combined with the

invertible motion compensation, and the coding scheme named motion-compensated

EZBC (MC-EZBC ) was developed in [28]. Later, backward block motion estimation

and compensation were added to MC-EZBC by Chen and Woods [12], and the wavelet

transform analysis and synthesis procedures were factorized into lifting steps to optimize

the wavelet transform processing.

It presents some difficulties to adapt the wavelet-based coding scheme with motion-

compensated temporal filtering for generic video sequence coding to image dataset com-

pression and make a more complicated tradeoff among the spatial-resolution scalability,

the coding efficiency and the random access and selective decoding flexibility. Some

compression schemes for image datasets have been proposed based on wavelet trans-

forms. Luo et al. [55] presented a wavelet-based compression scheme for coding concen-

tric mosaic image datasets. To support random access to the coded image dataset and

minimize the relevant computational expense, Wu et al. [95] proposed the progressive
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inverse wavelet synthesis (PIWS) scheme. As an effort to further exploit the cross-

image redundancy and improve the coding efficiency of the wavelet-based compression

scheme, a smart rebinning scheme is presented in [96]. Girod et al. [23] applied wavelet

transforms for coding light field image datasets. They developed a novel approach with

a disparity-compensated lifting scheme. However, none of these proposed schemes were

designed for compressing cubic-panorama image datasets. Although some comments

on spatially scalable coding for image dataset compression were made in some devel-

oped image dataset compression schemes, no effective spatially scalable coding scheme

was demonstrated. It poses a challenge to conduct deep research into the relevant is-

sues and adapt the wavelet-based coding scheme to a new application for compressing

cubic-panorama image datasets.

All these motivate our work on a wavelet-based coding scheme based on the frame-

work of motion-compensated temporal filtering with lifting operations to accommodate

spatial-resolution scalable coding with high compression efficiency and effective random

access and selective decoding for cubic-panorama image datasets used in image-based

virtual environment navigation. With the assumption that static environments are

under discussion, the temporal filtering in video sequence compression is replaced by

cross-image filtering in the image dataset compression. The displacement compensa-

tion to enhance the cross-image coding efficiency of the wavelet-based coding scheme

for image dataset compression takes the place of motion compensation in video se-

quence compression. Thus, this newly-developed scheme is called the scalable lifted

wavelet-based coding scheme with cross-image displacement-compensated filtering.

5.2 Discrete Wavelet Transforms with Lifting Schemes

Discrete wavelet transforms are powerful tools for image and video sequence com-

pression due to their capability of efficient image and video sequence representations

with inherent scalabilities. A wavelet transform is a linear operation on image samples
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to represent images in a compact form, which can be described as

Cw = TW { Ix} = WIx (5.1)

where TW denotes the wavelet transform operation, Ix is a column vector of image

samples, W is a matrix representing the wavelet transform and Cw is a column vector

of wavelet transform coefficients. Wavelet transforms exploit the image redundancy

over a larger scale and eliminate the problem of block artifacts at low bitrates. They

have proved to be effective and efficient for image and video sequence compression.

Combined with embedded entropy coding, wavelet transform compression schemes are

highly scalable in temporal rates, spatial resolution, bitrates and image quality or SNR.

Lifting schemes for wavelet analysis and synthesis developed in [81] significantly

enhance the performance of wavelet-based compression schemes and extend their appli-

cations once limited by the complex implementation of the wavelet transform due to the

use of filter banks. Wavelet transforms are factorized into lifting operation structures

for fast and memory-saving computation.

5.2.1 Wavelet Transform Kernels

As shown in Fig. 5.1, a one-dimensional wavelet transform can be well described by a

two-channel perfect reconstruction (PR) filter bank [87]. The first part of the structure

representing the forward wavelet transform is an analysis filter bank consisting of a

low-pass filter (LPF) h0(n) and a high-pass filter (HPF) h1(n) with a down-sampling

operation by a factor of two following each of the two analysis filters. The second part

of the structure includes a synthesis filter bank comprising a synthesis LPF go(n) and

a synthesis HPF g1(n) with an up-sampling operation by a factor of two before each

of the two synthesis filters. This corresponds to an inverse wavelet transform.

For the perfect reconstruction of the input signal X(n) by X̂(n), the Z -transforms
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Fig. 5.1 One-dimensional two-channel wavelet perfect reconstruction fil-
ter bank consisting of an analysis filter bank and a synthesis filter bank.

H0(z), H1(z) of the analysis filters h0(n), h1(n) and the Z -transforms G0(z), G1(z) of

the synthesis filters g0(n), g1(n) need to satisfy the following equations

H0(z)G0(z) + H1(z)G1(z) = 2,

H0(−z)G0(z) + H1(−z)G1(z) = 0.
(5.2)

In order to remove the aliasing component, the synthesis filters are derived from the

analysis filters based on the second equation in (5.2), resulting in

G0(z) = −Sz−DH1(−z), G1(z) = Sz−DH0(−z), (5.3)

where S is a scaling factor determining the normalization of the wavelet kernel, and D

is an integer constant indicating the delay of the analysis filter bank and the synthesis

filter bank.

For the cross-image wavelet transform, the length of the cross-image filter is a very

important consideration. Shorter kernel wavelet transforms are more suitable for achiev-

ing the required low delay and facilitating flexible random access to and efficient se-

lective decoding of the coding bit-stream. Due to this consideration, we apply the
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Haar wavelet kernel with normalization (1, 1) for cross-image wavelet transform. The

one-dimensional Haar wavelet kernel is specified as

H0(z) = 1
2
(1 + z−1),

H1(z) = 1
2
(1 − z−1).

(5.4)

Alternatively, the bi-orthogonal LeGall 5/3 wavelet kernel [51] can be used as a

relatively longer wavelet transform for cross-image filtering. Improved compression

efficiency can be obtained by using longer wavelet kernels at the cost of sacrificed

random access and selective decoding flexibility. The LeGall 5/3 wavelet kernel of

normalization (1, 2) corresponds to

H0(z) = 1
8
(−1 + 2z−1 + 6z−2 + 2z−3 − z−4),

H1(z) = 1
2
(1 − 2z−1 + z−2).

(5.5)

The wavelet transform kernel for the two-dimensional spatial discrete wavelet analy-

sis and synthesis is the separable bi-orthogonal Daubechies 9/7 proposed in [4] with its

high image compression performance. The Daubechies 9/7 wavelet analysis is applied

to the cross-image decomposition coefficients following the displacement-compensated

cross-image wavelet analysis. The coefficients of the one-dimensional analysis filters of

the separable two-dimensional Daubechies 9/7 kernel with the (1, 2) normalization for

the spatial wavelet analysis are presented in Table 5.1.

5.2.2 Cross-Image and Spatial Wavelet Analysis

With the Haar wavelet kernel used for the cross-image wavelet analysis, two con-

secutive basis images are combined to generate one high-pass subband image and one

low-pass subband image (Fig. 5.2(a)). Here BI designates the basis images, and HP

and LP denote the decomposition high-pass images and low-pass images respectively

in the figure. To further remove the remaining redundancy, Mallat dyadic or pyramid
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n LPF h0(n) n HPF h1(n)

0 0.602949018236360 -1 1.115087052457000
-1, 1 0.266864118442875 -2, 0 -0.591271763114250
-2, 2 -0.078223266528990 -3, 1 -0.057543526228500
-3, 3 -0.016864118442875 -4, 2 0.091271763114250
-4, 4 0.026748757410810

Table 5.1 Analysis filter coefficients of the Daubechies 9/7 wavelet trans-
form kernel applied for the spatial wavelet transform

analysis is used by applying additional Haar wavelet analysis on the consecutive low-

pass images resulting from the previous level of Haar wavelet analysis. A three-level

cross-image Mallat dyadic Haar wavelet transform is depicted in Fig. 5.2(b) as an ex-

ample of multilevel cross-image wavelet analysis. Mallat dyadic wavelet analysis is more

efficient than other multilevel analysis structures as little improvement can be achieved

if additional wavelet analysis is applied on the high-pass images.

For alternatively using the LeGall 5/3 wavelet kernel for cross-image wavelet anal-

ysis, the dependent relationship between the basis images and the resulting low-pass

and high-pass images is more complex than that of using the Haar wavelet kernel. For

example, a low-pass image at the first level of wavelet analysis is derived based on five

basis images, and a high-pass image based on three basis images.

The 2D separable spatial Daubechies 9/7 wavelet analysis is performed in two steps

on each decomposed image of spatial resolution M ×N resulting from the cross-image

analysis process (Fig. 5.3(a)). Firstly, a horizontal 1D Daubechies 9/7 wavelet analysis

is applied on each row of the decomposed image, resulting in a low-pass image or

subband L and a high-pass image or subband H of resolution M/2 × N . Secondly, a

vertical 1D Daubechies 9/7 wavelet analysis is applied on each column of the resultant

low-pass and high-pass subbands L and H, resulting in four subbands LL, LH, HL
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Fig. 5.2 One-dimensional two-band cross-image Haar wavelet analysis.
(a) One-level cross-image Haar wavelet analysis. (b) Three-level cross-
image Mallat dyadic wavelet analysis.

and HH of decomposition coefficients with halved resolution in both the horizontal

and vertical directions: M/2×N/2. Also, Mallat dyadic Daubechies 9/7 is utilized for

multilevel spatial wavelet analysis in the low subbands in order to further decorrelate

the decomposition coefficients. As an example of multilevel spatial wavelet analysis, a

three-level Mallat dyadic wavelet transform is depicted in Fig. 5.3(b). With NL levels

of spatial wavelet analysis, the basis images can be represented at NL+1 different spatial

resolution levels. Thus, the desired spatial resolution scalability can be achieved.
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Fig. 5.3 Two-band 2D separable spatial wavelet analysis. (a) One-level
2D separable spatial wavelet analysis. (b) Multi-level 2D Mallat dyadic
spatial wavelet analysis.

5.2.3 Lifted Wavelet Transform Operations

The lifting scheme of a wavelet transform mainly comprises a series of alternating

prediction and update operations as shown in Fig. 5.4. The trivial transform parti-

tions the input signal into an even-number indexed input sequence and an odd-number

indexed input sequence, and feeds them into the upper port and the lower port respec-

tively. A prediction operation Pi(z) (i∈{1, 2, ..., D}, D∈Z) uses a linear combination

of the neighboring even-number indexed inputs to estimate an odd-number indexed

input and is followed by a subtraction of this estimate from the odd-number indexed

input to obtain a prediction error. An update operation Ui(z) (i ∈ {1, 2, ..., D}) uses

a linear combination of the modified prediction errors for updating an even-number

indexed input and is followed by an addition of this value to the even-number indexed

input. These prediction and update operations form a ladder structure of the lifted

wavelet transform. The number D of the prediction and update steps contained in

a lifted wavelet transform structure depends on the wavelet transform kernel in use.

The output of the adder following the last update operation is the low-pass output

after scaled by a constant factor GL, and the output of the adder following the last
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prediction operation is the high-pass output after scaled by a constant factor GH .
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Fig. 5.4 Structure of a wavelet transform factorized into a lifting scheme
with a series of prediction and update operations.

The lifted wavelet transform scheme alleviates the problem of complex filter banks

in traditional wavelet transforms. It features memory saving and in-place computation.

Both forward wavelet analysis and inverse wavelet synthesis can be factorized into the

fast lifting operations. Moreover, the lifted wavelet transform structure allows the

incorporation of other required operations in the prediction-update steps. All wavelet

kernels can be put into their corresponding lifting structures.

For the cross-image Haar wavelet analysis, the high-pass subband decomposition

image SH, k[x̄] (k ∈ {1, 2, ..., N/2}, N is the number of the basis images in the image

dataset) corresponds to the normalized difference of two consecutive basis images, and

the low-pass subband decomposition image SL, k[x̄] corresponds to the average of the

two basis images. Mathematically, the cross-image Haar wavelet analysis factorized into

the lifting operations is given by

SH, k[x̄] = 1
2

(

IB, 2k[x̄] − IB, 2k−1[x̄]
)

,

SL, k[x̄] = IB, 2k−1[x̄] + SH, k[x̄],
(5.6)

where IB, 2k[x̄] and IB, 2k−1[x̄] are two consecutive basis images.
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With the bi-orthogonal LeGall 5/3 wavelet transform, the cross-image lifting oper-

ations are expressed as following

SH, k[x̄] = IB, 2k+1[x̄] − 1
2

(

IB, 2k[x̄] + IB,2k+2[x̄]
)

,

SL, k[x̄] = IB, 2k[x̄] + 1
4

(

SH, k−1[x̄] + SH, k[x̄]
)

.
(5.7)

The lifted bi-orthogonal LeGall 5/3 for cross-image wavelet analysis can be intu-

itively presented in a data flow chart as shown in Fig. 5.5(a). The lifting operation of

the LeGall 5/3 forward wavelet analysis consists of two steps of prediction and update

operations. Based on the number of input samples, half number of nodes is calculated

in each step. An elementary lifting operation unit includes one multiplication and two

additions (Fig. 5.5(b)). The computation of the elementary lifting unit refers to

s = t+ wc × (u+ v) (5.8)

where t, u and v are the inputs or intermediate data, wc is a lifting coefficient and

s is the output or intermediate data. The input samples, intermediate results and

decomposition coefficients can all be stored in the same memory unit for memory saving

and this easily enables an in-place computation. The implementation of the wavelet

synthesis process with lifting operations can be obtained by straightforward inversion

of the data flow.

For the spatial wavelet transform, one-dimensional forward bi-orthogonal Daubechies

9/7 wavelet analysis is factorized into the lifting operation as depicted in Fig. 5.6. On

the left side, the input decomposition coefficients resulting from the cross-image analysis

are represented by cn (n∈{1, 2, ..., 2i−1, 2i, 2i+1, ..., Nc}); Nc is the number of decom-

position coefficients. The input decomposition coefficients are extended periodically and

symmetrically beyond image boundaries to ensure that the lifting operation is work-

ing properly at the boundaries. The lifting operations of the Daubechies 9/7 forward

wavelet analysis consist of four steps. wj (j ∈ {1, 2, 3, 4}) denotes the lifting coeffi-
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Fig. 5.5 Lifting operation of the bi-orthogonal LeGall 5/3 forward DWT.
(a) LeGall 5/3 analysis operations. (b) An elementary lifting operation
unit.

cients. The high-pass decomposition coefficients cH, l (l∈{1, 2, ..., i−1, i, i+1, ..., Nc/2})
and the low-pass decomposition coefficients cL, m (m∈ {1, 2, ..., i−1, i, i+1, ..., Nc/2})
are output on the right side. The output high-pass coefficients cH, l are modified by a

weight GH = 1.230174105, and the low-pass coefficients cL, m are modified by a weight

GL = 1/GH. The corresponding lifted Daubechies 9/7 wavelet synthesis can be carried

out by inverting the data flow.

5.3 Lifted Displacement-Compensated Cross-Image Filtering

Cross-image filtering is less efficient when directly applying the wavelet transform

across basis images in the image datasets, as the image displacements decorrelate the

image samples at the same spatial locations in the consecutive basis images. To alleviate

this problem, efforts at improving the coding efficiency for image dataset compression
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Fig. 5.6 Lifting operation of the 1D bi-orthogonal Daubechies 9/7 for-
ward DWT for 2D separable spatial wavelet analysis.

were made in some developed coding schemes by the smart image re-binning approach

[96], the image reorganization method [74], the image alignment scheme [55] or more

generally through arbitrary frame warping operations [70]. However, the improvements

on compression efficiency in the cross-image direction were quite limited by these mea-

sures. In addition, these measures are not effective for more complex displacement field

distributions, such as the contraction and expansion displacement field distributions,

and they bring about no further improvement in coding performance with longer wavelet

kernels. The developments of motion-compensated temporal filtering (MCTF) under

the framework of wavelet transform coding schemes [22, 64, 66] overcome the limitations

of these measures. Adapting wavelet transforms enhanced by MCTF to compressing
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image datasets makes wavelet-based coding schemes more attractive to image dataset

compression with the required coding scalability for image-based virtual environment

navigation.

5.3.1 Displacement-Compensated Wavelet Transform

Displacement compensation is a successful technique to efficiently exploit the cross-

image redundancy of the basis images in image datasets and significantly improve the

coding performance of the compression schemes. It aligns the image samples along the

displacement trajectory and enhances the potential of removing large amount of cross-

image redundancy in the following wavelet analysis process. In order to compensate

the image displacement between adjacent basis images in the image datasets, the dis-

placement compensation makes the appropriate spatial coordinate shift based on the

displacement vector distribution obtained in the displacement estimation procedure.

The displacement-compensated wavelet transform is an adaptive method in nature.

Each image block or even each image sample can be assigned a displacement vector to

adapt to the local image feature. The displacement compensation can be combined with

a variety of wavelet transform kernels ranging from the Haar wavelet to long wavelet

kernels for cross-image filtering. Any displacement model for representing and estimat-

ing displacement distributions can be incorporated into the displacement-compensated

wavelet transform schemes. The displacement-compensated wavelet transform becomes

a non-linear operation as a result of the combination of the non-linear displacement

compensation with the linear wavelet transform.

5.3.2 Cross-Image Filtering with Lifting Operations

Displacement-compensated cross-image filtering with lifted wavelet transforms was

initially applied to image sequence compression in [67] and [70]. The structure of

the lifted wavelet transform with displacement compensation is shown in Fig. 5.7.
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The non-linear displacement compensations are incorporated into the framework of

the lifted wavelet transform scheme. DCP
i and DCU

i (i ∈ {1, 2, ..., D}, D ∈ Z), sep-

arately denoting the displacement compensation for the prediction operation and the

update operation, are respectively added before each prediction and update operation.

The lifted displacement-compensated wavelet transform structure consists of a series of

displacement-compensated alternating prediction and update operations.
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Fig. 5.7 Lifted displacement-compensated wavelet transform consisting
of a series of displacement-compensated prediction and update operations.

The Haar wavelet transform with displacement compensation for cross-image anal-

ysis refers to the displacement-compensated normalized difference and average of two

consecutive basis images. It can be mathematically represented as [70]

SH, k[x̄] = 1
2

(

IB, 2k[x̄] −D2k−1→2k(IB, 2k−1)[x̄]
)

,

SL, k[x̄] = IB, 2k−1[x̄] +D2k→2k−1(SH, k)[x̄],
(5.9)

where D2k−1→2k designates the displacement-compensated mapping from basis image

IB, 2k−1[x̄] to the coordinate system of the basis image IB, 2k[x̄], and D2k→2k−1 desig-

nates the backward displacement-compensated mapping from basis image IB, 2k[x̄] to

the coordinate system of the basis image IB, 2k−1[x̄]. For the simple case of Haar wavelet,
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separate forward and backward displacement models can be used for displacement com-

pensation.

For the bi-orthogonal LeGall 5/3 wavelet transform with displacement compensa-

tion, the multi-reference displacement-compensated forward transform in lifting opera-

tions is mathematically given by

SH, k[x̄] = IB, 2k+1[x̄] − 1
2

(

D2k→2k+1(IB, 2k)[x̄] +D2k+2→2k+1(IB,2k+2)[x̄]
)

,

SL, k[x̄] = IB, 2k[x̄] + 1
4

(

D2k−1→2k(SH, k−1)[x̄] +D2k+1→2k(SH, k)[x̄]
)

.
(5.10)

Efficient displacement compensation results in small ghosting artifacts in low-pass

subband images SL, k[x̄] and small values of high-pass subband images SH, k[x̄]. The

low-pass subband images SL, k[x̄] are ideally as close to IB,2k[x̄] as possible.

5.4 Wavelet Decomposition Coefficient Quantization

Unlike the traditional block-based hybrid coding schemes, which use quantization

as the key to control the image distortion and bit-stream rate, and adopt the more

complicated quantization matrix adapted to the features of the human vision system

(HVS), wavelet-based schemes apply a relatively simple uniform scalar quantization

with small fine quantization step-sizes.

5.4.1 Uniform Quantization with Dead-Zone Thresholds

The decomposition wavelet coefficients in each subband are quantized by using a

uniform scalar quantizer with a central dead-zone. Wavelet decomposition coefficients

can be well approximated with a Laplacian probability distribution, and the uniform

scalar dead-zone quantization is optimal for the feature of the Laplacian probability

distribution and easily satisfies the requirement of the rate-distortion optimization [78].
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The width of the central dead-zone is twice the quantization step size. The uniform

quantization with a central dead-zone is illustrated in Fig. 5.8.
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Fig. 5.8 Uniform quantization of wavelet decomposition coefficients with
a central dead-zone of 2δi.

Suppose δi (i∈{1, 2, ..., I}, I∈Z) represents the quantization step-size in a subband

SBi. Ci[x̄] denotes the wavelet decomposition coefficient in SBi, and Qi[x̄] denotes

the quantizer index of Ci[x̄]. The quantizer scales all the decomposition coefficients in

subband SBi to quantization index values as

Qi[x̄] = sign(Ci[x̄])⌊|Ci[x̄]|
δi

⌋. (5.11)

The quantization step-size δi for each subband SBi is determined based on the con-

tribution of the quantization noise in the subband to the overall mean-squared difference

(MSD). The more the quantization noise in the subband contributes to the overall MSD,

the smaller the quantization step-size is for quantizing the decomposition coefficients

in that subband. According to this consideration, the L2−norm of the subband SBi is

taken to determine the value of the quantization step-size δi.
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5.4.2 Partial Decoding and Reconstruction of Quantized Coefficients

When a wavelet decomposition coefficient is quantized, the output of the uniform

quantizer is the index of the quantized decomposition coefficient. This quantizer index

Qi[x̄] is represented by a string of DS-digit binary symbols SB. Decoding a part of SB is

equivalent to applying a scaled quantization step-size δ̃i with respect to δi. In the case of

partial decoding of DP digits of the binary symbols out of the original DS-digit binary

symbols starting from the most significant bit (MSB) towards the least significant bit

(LSB) of SB, the equivalent coarser quantization step-size becomes

δ̃i = δi · 2DS−DP . (5.12)

This corresponds to image quality as well as bitrate scalable coding. It means that

the encoder can cease the coding process at intermediate points to meet the bitrate

requirement while generating streaming output with scaled image quality. On the other

hand, the decoder can just receive or decode fractions of the bit-stream with limited

bitrates and reconstruct the coded images with the corresponding image quality. Small

original quantization step-sizes δi can be used to meet a wide range of scalable image

quality and bitrate requirements.

The reconstruction values of quantized coefficients are chosen at the center points

of the uncertainty intervals, and alternatively the statistical means of the probability

distribution function (PDF) of the reconstruction errors can be utilized to determine

the reconstruction values for potential improvements [73].

5.5 Context-Based Arithmetic Entropy Coding

Wavelet transforms need to be combined with effective entropy coding approaches

to form an efficient compression scheme. Embedded progressive coding is a desired

feature of the entropy coding approaches to obtain the target output bit-stream rates
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and control the distortion of the compressed images. Shapiro [73] developed the em-

bedded zero-tree wavelet algorithm (EZW). It is based on the hierarchical subband

decomposition of the wavelet transforms, and generates a fully embedded bit-stream

by assembling codes in the order of importance. Said and Pearlman [69] offered an

alternative exposition of the EZW principles. They proposed a new extension and im-

plementation of progressive embedded encoding called SPIHT (set partitioning in hi-

erarchical trees). EZW and SPIHT are important embedded coding techniques widely

applied in wavelet-based compression schemes. They exploit the inter-subband redun-

dancy to enhance the compression efficiency while sacrificing the ability of resolution

scalable coding and restricting the flexibility of random access to coded image datasets.

Taubman [84] developed an image compression algorithm of embedded block coding

with optimized truncation (EBCOT). It introduces a block coding technique without

utilizing the inter-subband dependency and provides the potential of random access to

image segments. However, it increases the implementation complexity by making use

of fractional bitplane coding to provide a large number of bit-stream truncation points

for obtaining finely embedded bit-streams.

A new context-based arithmetic entropy coding approach named independent block

with layered data partition (IBLDP) is proposed in this thesis. IBLDP combines the

independent decomposition coefficient block coding with a compact quad-tree bitplane

data representation, and features flexible spatial random access and bit-stream assem-

bling, reduced computational expense and implementation complexity, and improved

coding efficiency. As an embedded entropy coding approach, IBLDP independently

generates a progressive code stream for each decomposition coefficient block in each

subband. Although some coding efficiency is lost because no inter-subband redundancy

is exploited as the necessary cost for obtaining the spatial resolution scalability, it in-

creases the flexibility for combining the code streams of independent coefficient blocks in

different orders in the output bit-stream according to the requirements of applications.

IBLDP has a significantly simplified coding structure because of its efficient quad-tree
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building procedure, simplified bitplane coding passes and no inter-subband dependency

employed. It is suitable for image dataset compression, especially for cubic-panorama

image dataset compression, providing the required random access to and selective de-

coding of coded basis images of the image datasets by benefiting from independent

block coding, and facilitating efficient interactive novel-view image rendering with the

assistance of the simplified codec structure.

5.5.1 Binary Arithmetic Bitplane Encoder

The quantizer indices of the wavelet transform decomposition coefficients in a sub-

band are coded with a binary arithmetic bitplane encoder. First of all, the quantized

decomposition coefficients in subband SBi are organized into rectangular coefficient

block CBi, j (∀j ∈ {1, 2, ..., J}, J ∈Z). The width and the height of CBi, j are Wi and

Hi respectively. Each quantized coefficient block CBi, j in SBi is independently encoded

to provide image segment random access, flexible bit-stream assembling and improved

error resilience performance.

The binary symbols of the quantizer indices in a coefficient block CBi, j are encoded

by the arithmetic bitplane encoder one bitplane after another in a fixed order starting

from the MSB bitplane to the LSB bitplane, according to their contributions to the

distortion reduction. The procedure of encoding a bitplane refers to a bitplane pass, and

encoding a coefficient block CBi, j is performed through a series of bitplane passes. This

multiple-pass block encoding process accommodates efficient and sufficiently accurate

bit-rate control. Truncating the code-stream of each CBi, j is allowed at the boundaries

of the bitplane passes to control the bitrate and SNR. Progressive bitplane coding

facilitates embedded bit-stream assembling by putting the coded quantizer indices of

decomposition coefficients into hierarchical representations in order of importance.

In order to provide fine progressive bitrate and SNR scalable coding, fractional

bitplane or sub-bitplane passes are carefully designed in some bitplane coding schemes



5 Scalable Displacement-Compensated Lifted Wavelet-Based Scheme 113

[84]. As fine granularity scalability (FGS) of bit-rates or SNR is not the major concern

in image dataset compression, the bitplane encoder in our compression scheme reduces

the implementation complexity due to the simplified entropy coding approach without

fractional bitplane processing. Meanwhile, the proposed compression scheme is still

able to keep the same optimized rate-distortion features at bitplane boundaries even

without the computation-intensive sub-bitplane passes.

Suppose Ci, j[nx, ny] denotes a decomposition coefficient at [nx, ny] in coefficient

block CBi, j . In the process of encoding a bitplane Pm (m ∈ {1, 2, ...,M}, M ∈ Z), a

decomposition coefficient Ci, j [nx, ny] is marked “insignificant” and its significance state

is set si, j [nx, ny] = 0 if the current binary symbol of its quantization index Qi, j [nx, ny]

still remains zero up to Pm, and it is marked “significant” and its significance state is

set si, j [nx, ny] = 1 as soon as its first non-zero MSB is encountered. Binary quantizer

index symbols following the first non-zero MSB are called refinement bits. Generally,

the majority of the quantized coefficients should be insignificant, especially in the early

bitplanes, as the wavelet transform analysis concentrates the signal energy to the lowest

subband. Most decomposition coefficients are of very low amplitudes, and the distri-

bution of the insignificant coefficients locally spreads in some way due to the spatial

correlation between these coefficients. Taking this feature of quantized decomposi-

tion coefficient distribution into consideration, more compact decomposition coefficient

representations, such as the zero-tree representation [73] and the hierarchical tree set

partitioning representation [69], can be combined into entropy coding techniques. In

our coding scheme, a quad-tree data partition representation similar to that used in

[28, 32] is applied. The establishment of a quad-tree data structure is depicted in Fig.

5.9. The quad-tree nodes at the first or bottom level of the quad-tree structure consist

of the binary quantizer index symbols of the decomposition coefficients Qi, j [nx, ny] in

CBi, j at the current bitplane Pm. Four consecutive quad-tree nodes at a lower quad-tree

level correspond to a parent quad-tree node at the next higher quad-tree level. This

parent node is significant and is assigned a significance status value equal to 1 if any of
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its four child nodes equals 1. Otherwise it is insignificant and assigned a value of 0. The

quad-tree structure can be built in this way one level after another from the bottom

level up to the top level. The number of the descendant nodes covered by a node at the

top level increases to 2 2·(LT −1) where LT is the number of quad-tree levels. By using the

quad-tree set partition of quantized decomposition coefficients, the information content

in the bitplanes becomes quite low. The binary arithmetic coding can then be applied

to efficiently represent the quantizer indices in the bitplanes.

  

 

Quad-tree level  1 

:   Significant node 

Quad-tree level  2 Quad-tree level  3 

:   Insignificant node 

Quad-tree level  4 

Fig. 5.9 Quad-tree construction for the compact representation of quan-
tized decomposition coefficients in bitplanes.

The binary arithmetic bitplane encoding maps the probability estimations of the

binary symbols into the recursively partitioned probability sub-intervals. The probabil-

ity estimation is performed based on the contexts of the local decomposition coefficient

distribution in a model. The resulting codeword refers to a binary fraction locating the

sub-interval after the final interval partition. One single binary symbol is encoded each

time. One codeword is generated for each coefficient block CBi, j to represent all the

binary quantization index symbols in the entire CBi, j .

5.5.2 Context-Based Probability Modeling

As arithmetic entropy coding is applied for representing Qi, j[nx, ny], the binary

quantizer index symbols in each bitplane Pm are encoded in cooperation with their



5 Scalable Displacement-Compensated Lifted Wavelet-Based Scheme 115

probability estimates. The probability estimation of the binary symbols is adaptively

updated according to their histories and present states. This refers to a context-based

probability estimation process. It makes the bitplane coding adapted to the local feature

of the quantized decomposition coefficient distribution.

In the process of binary arithmetic bitplane coding, the probabilities of the current

binary symbol of the quantizer index are to be estimated in each of the arithmetic

sub-interval iterations. These probabilities are related to all the coded binary symbols

preceding the current symbol as well as its spatial neighbors. To obtain the proper prob-

ability estimates, a context-based probability model including eight immediate neigh-

bors of the current quantized decomposition coefficient QO is utilized (Fig. 5.10). The

model “context” CM is introduced in assistance of the probability estimation. It is re-

lated to the statuses of the quantized decomposition coefficients involved in the model.

The model context scheme in [84] which carefully reduces the number of contexts in

the probability modeling process is utilized in our arithmetic coding approach. In this

scheme, the immediate neighboring coefficients of the current decomposition coefficient

QO are grouped into three categories in the probability estimation model: the horizontal

neighbors QW and QE ; the vertical neighbors QN and QS; and the diagonal neighbors

QNW , QNE , QSW and QSE.

 

SWQ  SEQ  

NEQ  NWQ  

WQ  EQ  OQ  

SQ  

NQ  

Immediate neighbors of 
used in modeling  

OQ  

Others not used in modeling  

Fig. 5.10 Context-based probability modeling with eight immediate
neighbors of the current quantized decomposition coefficient Qo.
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For coding the binary symbols of insignificant decomposition coefficients in a bit-

plane Pm, the accumulated values of the significance states of the three categories of

coefficient neighbors are computed as follows, with their range of possible values:

µh[nx, ny] = si, j [nx − 1, ny] + si, j [nx + 1, ny], 0 ≤ µh[nx, ny] ≤ 2,

µv[nx, ny] = si, j [nx, ny − 1] + si, j [nx, ny + 1], 0 ≤ µv[nx, ny] ≤ 2,

µd[nx, ny] = si, j[nx − 1, ny − 1] + si, j[nx + 1, ny − 1]+

si, j[nx − 1, ny + 1] + si, j [nx + 1, ny + 1], 0 ≤ µd[nx, ny] ≤ 4.

(5.13)

The neighborhood significance states used in the equations are obtained in the current

bitplane pass up to the current binary quantizer index symbol and in the preceding

bitplane pass as well. Based on these accumulated values of significance states, the

number of contexts for coding the binary symbols of insignificant coefficients is simplified

from 2 8 = 256 to nine as shown in Table 5.2, in order to minimize the implementation

complexity and reduce the cost of probability model adaptation.

LL,LH and HL Bands HH Bands

µh µv µd CM
µd µh + µv CM

0 0 0 0 0 0 0
0 0 1 1 0 1 1
0 0 > 1 2 0 > 1 2
0 1 x 3 1 0 3
0 2 x 4 1 1 4
1 0 0 5 1 > 1 5
1 0 > 0 6 2 0 6
1 > 0 x 7 2 > 0 7
2 x x 8 > 2 x 8

Table 5.2 Model contexts for adaptive binary arithmetic coding of in-
significant coefficients based on the accumulated significance states of three
neighborhood categories.
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The coding of refinement bits of significant coefficients just use three contexts based

on a complementary state variable ρs and the horizontal and vertical significance state

variables µh, µv as well. ρs is initialized as 0 and becomes 1 after the first refinement

bit is encountered. These three contexts are context 0 for ρs = µh = µv = 0; context 1

for ρs = 0 and µh + µv 6= 0; and context 2 for ρs = 1.

When a decomposition coefficient changes from an insignificant coefficient to a sig-

nificant one, its sign needs to be coded. With the context-based arithmetic coding

approach, coding the sign of a decomposition coefficient is related to the sign informa-

tion of its immediate horizontal and vertical neighbors. τh and τv are used to represent

the horizontal and vertical neighboring sign statuses respectively, and ηh and ηv are

derived from τh and τv respectively to decide on the contexts used for coding the signs

of quantized decomposition coefficients. They are given by

τh[nx, ny] = sign(QW ) + sign(QE) = sign(Qi, j [nx − 1, ny]) + sign(Qi, j [nx + 1, ny]),

τv[nx, ny] = sign(QW ) + sign(QE) = sign(Qi, j [nx − 1, ny]) + sign(Qi, j [nx + 1, ny]),

(5.14)

ηh[nx, ny] =



















−1, τh ∈ {−1,−2},
0, τh = 0,

1, τh ∈ {1, 2},

ηv[nx, ny] =



















−1, τv ∈ {−1,−2},
0, τv = 0,

1, τv ∈ {1, 2}.
(5.15)

Five contexts refined from the original 3 4 = 81 possible configurations of the signs

of horizontal and vertical neighbors are listed in Table 5.3. They are described based

on the horizontal and vertical neighborhood sign information represented by ηh and

ηv. These contexts are used in the probability estimation for coding the sign τ of the

new significant coefficients. However, the actual binary symbol encoded by using these

contexts is τ · τp instead of τ itself. τp is the sign prediction listed in Table 5.3.
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ηh ηv τp CM

1 1 1 4
1 0 1 3
1 -1 1 2
0 1 -1 1
0 0 1 0
0 -1 1 1
-1 1 -1 2
-1 0 -1 3
-1 -1 -1 4

Table 5.3 Model contents for adaptive binary arithmetic coding of coef-
ficient signs based on the sign information of the neighborhood decompo-
sition coefficients.

Context-based arithmetic coding has significant advantages over the traditionally

applied Huffman coding. With changes in the symbol probabilities, new codewords need

to be introduced in Huffman coding. In contrast, context-based arithmetic coding can

easily adapt to the symbol probability changes by updating the probability estimation

in context-based modeling without use of new codewords.

5.5.3 Independent Block with Layered Data Partition (IBLDP) Coding

Algorithm

Definitions:

• Ai, j : Significance state array consisting of the significance state elements si, j[nx, ny]

of the quantized decomposition coefficients Ci, j [nx, ny] in coefficient block CBi, j .
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• qi, j, m[nx, ny]: Binary symbol of quantizer index Qi, j[nx, ny] on the mth bitplane

Pm (m∈{1, 2, ...,M}) in coefficient block CBi, j .

• Tm, n: Quad-tree structure of the binary quantizer indices at quad-tree level n (n∈
{1, 2, ..., N}) on the mth bitplane Pm.

• Nm, n[nx, ny]: Quad-tree node in quad-tree structure Tm, n at quad-tree level n of

the mth bitplane Pm.

Main Process:

• 1. Partition quantized decomposition coefficients Ci, j in a subband SBi (i ∈
{1, 2, ..., I}) starting with i = 1 into coefficient blocks CBi,j (∀j ∈{1, 2, ..., J}) of

size Wi ×Hi.

• 2. Initialize the accompanying significance state array Ai, j for a coefficient block

CBi,j (j∈{1, 2, ..., J}) starting with j = 1 in subband SBi.

• 3. Initialize all the model contexts CM, k (∀k ∈ {1, 2, ..., K}) before the start of

coding coefficient block CBi,j.

• 4. At the mth bitplane Pm (m ∈ {1, 2, ...,M}) starting from the MSB bitplane

PM in descent order,

◦ 4.1. build the quad-tree structure Tm, n at all quad-tree levels Ln (∀n ∈
{1, 2, ..., N}) starting from the bottom level n = 1.

∗ For n = 1, Nm, 1[nx, ny] = qi, j, m[nx, ny].

∗ For n > 1, Nm, n[nx, ny] is determined by the logical bitwise inclusive OR

of its four child nodes: Nm, n[nx, ny] = Nm, n−1[2nx−1, 2ny−1] | Nm, n−1[2nx, 2ny−
1] | Nm, n−1[2nx−1, 2ny] | Nm, n−1[2nx, 2ny].

◦ 4.2. At the highest quad-tree level LN , scan each quad-tree nodeNm, N [nx, ny].

For each Nm, N [nx, ny],
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∗ invoke the binary arithmetic coding process (a): Coding Quad-tree Nodes;

∗ if Nm, N [nx, ny] = 1,

invoke the sub-process: Processing Each Quad-tree Node.

◦ 4.3. If m > 1, m = m− 1, and return to step 4.

• 5. If j < J , j = j + 1, and return to step 2.

• 6. If i < I, i = i+ 1, and return to step 1.

Sub-process:

• Processing Each Quad-tree Node:

Visit each child quad-tree node of Nm, n[nx, ny] at [n′
x, n

′
y] ∈ {[2nx − 1, 2ny −

1], [2nx, 2ny−1], [2nx−1, 2ny], [2nx, 2ny]}. Let n′ = n− 1.

◦ For n′ = 1,

∗ with si, j [n
′
x, n

′
y] = 1, encode the refinement bit qi, j, m[n′

x, n
′
y] of the sig-

nificant coefficient Ci, j[n
′
x, n

′
y] by invoking the context-based binary arithmetic

coding process (c): Coding Refinement Bits ;

∗ with si, j[n
′
x, n

′
y] = 0,

- if qi, j, m[n′
x, n

′
y] = 1, encode the sign τi, j [n

′
x, n

′
y] of Qi, j [n

′
x, n

′
y] by invok-

ing the context-based binary arithmetic coding process (b): Coding Coefficient

Signs, and update significant state si, j[n
′
x, n

′
y];

- encode qi, j, m[n′
x, n

′
y] by invoking the context-based binary arithmetic

coding process (d): Coding Insignificant Bits.

◦ For n′ > 1,

∗ encode quat-tree node Nm, n′[n′
x, n

′
y] by invoking the binary arithmetic

coding process (a): Coding Quad-tree Nodes;

∗ if Nm, n′ [n′
x, n

′
y] = 1, reset n = n′ and invoke the sub-process: Processing

Each Quad-tree Node.
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Binary Arithmetic Coding:

• (a). Coding Quad tree Nodes:

Code the binary status symbols of quad-tree nodes Nm,n[nx, ny] as uniformly

distributed binary symbols with binary arithmetic coding. No adaptive model

context is used for coding the quad-tree nodes.

• (b). Coding Coefficient Signs:

With context-based binary arithmetic coding, obtain probability estimates

based on the horizontal and vertical neighborhood coefficient sign configurations

ηh[nx, ny] and ηv[nx, ny] combined with the sign prediction variable τp[nx, ny], uti-

lizing the five model contexts CM, k in Table 5.3.

• (c). Coding Refinement Bits:

Code the refinement bits qi, j, m[nx, ny] of the quantizer index Qi, j [nx, ny] of

significant decomposition coefficients Ci, j[nx, ny] with si, j [nx, ny] = 1 by context-

based binary arithmetic coding. Probability estimates are determined by the co-

efficient state variable ρ[nx, ny] in combination with the significance state configu-

rations of neighboring horizontal and vertical decomposition coefficients µh[nx, ny]

and µv[nx, ny]. Three model contexts CM, k are used.

• (d). Coding Insignificant Bits:

With context-based binary arithmetic coding, obtain the probability estimates

based on the significance states of the eight immediate neighboring coefficients in

the model and encoded the binary symbols qi, j, m[nx, ny] of insignificant coefficients

Ci, j [nx, ny] with si, j [nx, ny] = 0. Use the nine model contexts CM, k in Table 5.2

determined by the combinations of three categories of neighborhood significance

states µh[nx, ny], µv[nx, ny] and µd[nx, ny].
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5.6 Subregion Random Access and Selective Decoding

Providing appropriate random access and selective decoding in an efficient coding

scheme is a unique requirement in compressing image datasets. Novel-view images are

synthesized at interactive rates from image segments taken from basis images. This

requires frequent, fast retrieval and decoding of partial image data out of image dataset

bit-streams. For cubic-panorama image dataset compression, the desired image seg-

ments for synthesizing novel-view images refer to rectangular subregion side-images

from cubic-panorama basis images. Therefore, cubic-panorama image datasets need to

be well organized in the compressed bit-streams, and only the coded partial images nec-

essary for reconstructing the desired rectangular subregion side-images are to be loaded

into the memory for efficient decoding and image rendering. Compression techniques

supporting direct rendering from compressed image datasets are needed. High coding

efficiency as the fundamental objective of image dataset compression should be kept

while accommodating a suitable random access and selective decoding mechanism.

In our proposed cubic-panorama image dataset compression scheme, a mechanism

of rectangular subregion side-image random access to basis images of cubic-panorama

image datasets in the compressed bit-streams is facilitated. A specific hierarchical

data structure is designed to accommodate spatial subregion image random access and

maintain the coding performance at high levels. The corresponding bit-stream syntax

supporting this data structure is formed to provide efficient selective decoding for inter-

active image rendering. Multi-level index tables are embedded in the bit-stream to assist

spatial image random access. A proper tradeoff between the compression efficiency and

the random access flexibility is reached.

5.6.1 Problem Description

Some compression techniques are very important components in image dataset cod-

ing schemes for achieving high compression efficiency. However, they make the random



5 Scalable Displacement-Compensated Lifted Wavelet-Based Scheme 123

access and selective decoding more difficult to achieve with the compressed basis images.

For example, cross-image prediction is an effective technique to exploit the redundancy

across images; nevertheless, it limits the flexibility of random access to the beginning

of the reference basis images. Wavelet transforms decorrelate image samples on a full-

frame scale; however, they make the reconstructions of image samples connected to the

decoding of neighbor samples. Also, arithmetic entropy coding complicates the proce-

dure for locating the required image segments in the arithmetic codewords, although it

is quite effective to improve the entropy coding efficiency. With subband block coding,

a whole decomposition coefficient block has to be decoded even though only one sample

in the block is needed for image rendering. Moreover, some compression techniques, like

multiple-reference prediction and predicted images serving as reference images, could

be applied to further improve the coding efficiency; however, they make the depen-

dency chain longer and the random access and selective decoding more complicated. In

addition, a popular way to provide random access and selective decoding is to utilize

VQ-based techniques. Nevertheless, the compression efficiency of VQ-based techniques

is quite limited.

Although dramatically high coding efficiencies were achieved in some of the devel-

oped coding schemes for image dataset compression [55, 58, 59], there is no random

access and selective decoding mechanism supported in these schemes. The decoder

must preload all the coded basis images. The whole image dataset needs to be decoded

first before the rendering process can begin. This results in an initial delay and requires

a large memory to hold the image dataset. On the other hand, some coding schemes

for image dataset compression accommodate random access to coded image segments

and selective decoding of the image datasets [53, 74, 75, 99], however, they have limited

compression efficiencies. Some compression schemes apply an additional entropy coding

process to enhance the compression efficiency after introducing a random access and

selective decoding mechanism in initial compression [53, 74], but the entire bit-stream

must be loaded into memory and decoded once before the coded image datasets are
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randomly accessible. Also, this incurs an initial delay, slows the decoding process and

makes the coding schemes less efficient. Some other schemes add large overheads in

the bit-streams to enable the random access and selective decoding mechanism and

thus sacrifice the compression efficiency. It presents a challenge to achieve efficient

compression while meeting the random access and selective decoding requirements.

5.6.2 Random Access Mechanism

A mechanism of rectangular subregion side-image random access to basis images

of cubic-panorama image datasets in the compressed bit-streams is required in our

coding scheme. In order to satisfy this requirement, a specific data structure as well

as the corresponding bit-stream syntax supporting the data structure is designed based

on the hierarchical subband structure of wavelet decomposition coefficients and the

independent coefficient block coding technique adopted in the entropy coding approach.

A rectangular subregion side-image at a certain resolution level required by novel-

view image rendering corresponds to a collection of coefficient blocks covering the same

spatial subregion in the original basis images. It consists of a particular group of coef-

ficient blocks from various subbands at different resolution levels. Independently coded

coefficient blocks are used as the basic building blocks for accommodating the required

spatial random access mechanism. The sizes of the coefficient blocks are chosen by

balancing the coding efficiency and the random access flexibility. Coefficient blocks are

organized in a layered structure to easily support the spatial subregion image access.

The code streams of coefficient blocks are assembled in an efficient way to assist the

spatial random access and spatial resolution scalable coding. Specific multi-level index

tables combined with properly distributed start and end codes are utilized and em-

bedded in the bit-stream. Therefore, the collection of the coefficient blocks required

for reconstructing the rectangular subregion side-image can be conveniently located in

various subbands at different resolution levels in the bit-stream, and a small part of bit-
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stream is required to be decoded for reconstructing these coefficient blocks. A tradeoff

between the compression efficiency and the random access flexibility is reached.

5.6.3 Hierarchical Data Structure

A special data structure for facilitating rectangular subregion side-image random ac-

cess at a specific spatial resolution level is designed for cubic-panorama image dataset

compression. At the top layer of this hierarchical data structure, a whole cubic-

panorama image dataset is divided into a number of groups of basis images (GBI).

A GBI consists of a collection of basis images. The number of basis images in a GBI

is determined by the pattern of the cross-image wavelet analysis. For the Haar kernel

applied with LC levels of cross-image DWT, there are 2 LC basis images involved in a

GBI.

Wavelet decomposition coefficients in a subband of a decomposed image are par-

titioned into coefficient blocks. A uniform size is chosen for coefficient blocks in all

subbands at the same resolution level. Coefficient blocks at different resolution levels

are allowed to have different block sizes. Bigger sizes of coefficient blocks result in

more efficient decomposition coefficient representations, but constrain the flexibility of

random access to partial image data. Coefficient blocks are organized into a layered

structure for facilitating the required spatial random access and achieving efficient cod-

ing performance. A set of spatially consecutive coefficient blocks in the same subband of

a decomposed image constitutes a coefficient block-set. Coefficient blocks are grouped

into block-sets in the same manner in the HL, LH and HH subbands at the same res-

olution level. Block-sets corresponding to the same spatial region of the original basis

images in all subbands at the same resolution level compose a block-set packet. Par-

ticularly, a block-set in the LL subband at the lowest resolution level is simultaneously

regarded as a block-set packet. All the block-set packets corresponding to the same

spatial region of the original basis images at all resolution levels constitute a packet
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cluster. A cluster union refers to a set of packet clusters from all decomposed images in

the same GBI. This layered structure of decomposition coefficient block organization is

illustrated in Fig. 5.11.
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Fig. 5.11 Hierarchical data structure for facilitating spatial random ac-
cess to coded basis images at a spatial resolution level.

5.6.4 Adapted Bit-Stream Syntax

All code streams from the coefficient blocks are assembled to form a single output bit-

stream of the cubic-panorama image dataset. The bit-stream syntax is built to efficiently

organize the code streams, support the corresponding hierarchical data structure and

assist the implementations of spatial random access and selective decoding at a spatial

resolution level.

The bit-stream of a cubic-panorama image dataset starts with an image dataset

header. Involved in this header are the global encoding parameters, camera information,

GBI pattern data, the number of GBI involved in the image dataset, the block and

block-set sizes, subband quantization step sizes, and the setup information for starting
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the decoding process. An index table of the code length of each GBI in the image

dataset is also included in the image dataset header.

Following the cubic-panorama image dataset header are the GBI payloads. There is

a GBI header for each basis image group in the coded cubic-panorama image dataset.

The coding parameters applied to the whole image group are put in this header. Also,

a second-level index table indicating the start points of all the block-set cluster unions

in the image group is involved in the GBI header. The entropy-coded displacement

fields are put after the GBI header. The number of displacement fields involved in a

GBI depends on the pattern of the cross-image wavelet transform. For the Haar kernel

applied with LC levels of cross-image DWT, there are 2 LC − 1 displacement fields

contained in a GBI. The code streams of cluster unions follow the coded displacement

fields. There is a union header at the beginning part of each cluster union. A third-level

index table showing the length of each packet cluster in the cluster union is inserted in

the union header. The payload of a cluster union refers to the code steam of a series of

packet clusters in each decomposed image.

The code stream of each packet cluster includes a set of coded block-set packets at

various resolution levels. Each coded block-set packet consists of the code streams of

three block-sets in the HL, LH and HH subbands at the same resolution level. The

code stream of a block-set comprises context-based arithmetic codewords from all the

coefficient blocks contained in the block-set. The organization of the bit-stream syntax

is illustrated in Fig. 5.12.

5.6.5 Selective Decoding Approach

Given a rectangular subregion side-image in a basis image of a cubic-panorama image

dataset required for novel-view image rendering at a certain resolution level, the GBI

number of the basis image group containing this basis image is to be identified first and

the corresponding GBI in the bit-stream can be positioned by using the first-level index
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Fig. 5.12 Bit-stream syntax supporting the designed hierarchical data
structure facilitating spatial random access at a spatial resolution level.

table in the image dataset header. Then, a group as small as possible of block-sets able

to cover the given rectangular subregion side-image is determined based on the sizes

of the coefficient blocks and block-sets. Each of these block-sets can be located in the

bit-stream by using the second-level index table in the GIB header.

The decoding process starts at the beginning of the cluster union payload with the

code stream of the the block-set in the lowest resolution subband LL at the highest

decomposition level, continues, if a higher resolution than the lowest resolution is re-

quired, into the next block-set packet to decode the block-set in the HL, LH and HH

subbands in turn until encountering another level end code, and then according to the

required resolution level of the decoded subregion image, decides whether or not to get

further into the block-set packet at the next higher resolution level until the required

resolution level is reached. After finishing decoding the block-set in the first packet

cluster, the decoding process moves forward to the beginning of the next packet cluster

positioned by using the third-level index table in the cluster union header and follows

the same way to decode the block-set in the next packet cluster until the block-set in

all the required decomposed images of the GBI is decoded. All the coded block-sets
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in the block-set group corresponding to the desired rectangular subregion side-image

are located in the bit-stream by utilizing the multi-level index tables and decoded by

repeating the same procedure.

The wavelet decomposition coefficients in these block-sets are decoded with context-

based binary arithmetic decoders. The reconstructed decomposition coefficients of a

block-set in the LL subband of the highest spatial decomposition level refer to a block-

set at the lowest resolution level. If higher resolution is required, they are combined with

the decomposition coefficients of the block-set in the HL, LH and HH subbands of the

next block-set packet through a wavelet synthesis process. The resultant decomposition

coefficients can then be combined with the decomposition coefficients in the block-set

packet at the next higher resolution level. This process continues until the desired

resolution level is reached, and the decomposition coefficients of the block-set in all

the required packet clusters in the cluster union are obtained. Finally the block-set is

reconstructed by an inverse cross-image wavelet transform with all the reconstructed

decomposition coefficients of the block-set in the cluster union. The required rectangular

subregion side-image is obtained from all the reconstructed block-sets involved in the

predetermined corresponding block-set group.

5.7 Structure of the Scalable Displacement-Compensated

Lifted Wavelet-Based Scheme

The newly-developed scalable displacement-compensated lifted wavelet-based coding

scheme is based on the framework of lifted wavelet transforms enhanced by displace-

ment compensation and combined with embedded entropy coding. It is adapted to the

features of cubic-panorama image dataset compression and provides a spatial subregion

side-image random access mechanism required for compressing cubic-panorama image

datasets. A block diagram depicting the structure of the scalable lifted wavelet-based

coding scheme with cross-image displacement compensation is shown in Fig. 5.13. The
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main components involved in this structure are displacement estimation and compensa-

tion, lifted cross-image and spatial wavelet transforms, uniform quantization, embedded

entropy coding, code stream assembling and bit-stream rate control.
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Fig. 5.13 Scalable lifted wavelet-based coding scheme with cross-image
displacement compensation for cubic-panorama image dataset compression.

The cross-image displacement estimation is performed by a block-based full-search

approach for every block in the current basis images. In order to accelerate the dis-

placement estimation process and reduce the computational complexity, a hierarchical

searching procedure using multi-resolution basis images for obtaining displacement vec-

tors is applied. Half pixel accuracy of displacement vector representations is used in

cross-image displacement estimation. The resulting block displacement vectors are re-

fined in a displacement vector optimization process by balancing the increased overhead

consumed for more accurate displacement vector representations and the reduced bit

rate due to smaller prediction errors [14]. The number of uncovered pixels is calculated
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based on the displacement field distributions. No cross-image wavelet analysis is per-

formed for the associated basis images if the uncovered pixels outnumber a predefined

threshold (e.g. 40%).

Lifted wavelet transforms are applied to convert basis image samples into com-

pact wavelet decomposition coefficient representations and provide the hierarchical data

structure for the required scalable coding. Short kernel wavelet transforms are used for

cross-image wavelet analysis to reduce the coding delay and avoid large memory oc-

cupancy. Mainly, the Haar wavelet kernel is applied for cross-image direction wavelet

analysis. Also, the bi-orthogonal LeGall 5/3 wavelet transform is alternatively used

for cross-image analysis with enhanced coding efficiency but less flexible random access

and selective decoding. Displacement compensation is incorporated into the cross-image

wavelet transforms for improved redundancy reduction across basis images by making

use of the displacement vector fields obtained in displacement estimation. Following

the cross-image wavelet transform, a two-dimensional separable Daubechies 9/7 spa-

tial wavelet transform is performed for all the resulting decomposed images. All these

wavelet analysis processes are factorized into lifting operations for fast decomposition

and efficient memory usage.

The wavelet decomposition coefficients in each subband resulting from the two-

dimensional separable Daubechies 9/7 spatial wavelet transform are scaled with a uni-

form threshold quantizer. One quantization step size is used in each subband. Then, the

quantized decomposition coefficients are partitioned into coefficient blocks. The IBLDP

(independent block with layered data partition) embedded entropy coding approach is

applied for encoding the quantized decomposition coefficient blocks. Each coefficient

block is independently encoded with an embedded context-based arithmetic entropy

encoder. Code streams from all coefficient blocks are assembled into a single output

bit-stream of the compressed cubic-panorama image dataset. The bit-stream rate con-

trol component truncates the code streams of coefficient blocks at the boundaries of

coded bitplanes and thus changes the values of the equivalent quantization step-sizes.
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In this way, it controls the image quality or SNR of the coded basis images as well as

the bitrates of the output bit-stream.

5.8 Experimental Results

The newly-developed scalable lifted wavelet-based coding scheme with displacement

compensation for cubic-panorama image dataset compression is implemented in a soft-

ware codec. This software-based codec is developed based on a motion-compensated

wavelet-based software codec released by the Center for Next Generation Video of

Rensselaer Polytechnic Institute [14, 27]. It is applied to encoding the testing cubic-

panorama image datasets to examine the newly-developed cubic-panorama image dataset

compression scheme and provide support for verifying the proposed algorithms and the-

oretical contributions. The testing cubic-panorama image datasets used in the exper-

iments are Lab, Corridor, Campus and Marie-Curie. To simplify the discussion, our

developed compression scheme is denoted as DCW-IBC (Displacement-Compensated

Wavelet-based scheme with Independent Block Coding) for short.

In order to examine the results of displacement-compensated wavelet transforms

with various levels of cross-image analysis applied to encoding cubic-panorama im-

age datasets, Haar wavelet is used as the cross-image wavelet analysis kernel in the

proposed compression scheme DCW-IBC for compressing the testing cubic-panorama

image datasets. Fig. 5.14 and Fig.5.15 show the compared coding performances (in

terms of the average PSNR values of the luminance Y-component in dB versus the

bitrates in kilobits per cube) of cross-image analysis at various levels LC = 0, 1, 2, 3

applied to encoding the cubic-panorama image datasets Lab and Corridor respectively.

Big performance improvements can be observed for cross-image analysis at LC = 1

compared with LC = 0 (without cross-image wavelet analysis), and obvious perfor-

mance improvements are demonstrated at LC = 2 compared with LC = 1 for these two

cubic-panorama image datasets. However, there is no obvious performance difference
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at level LC = 3 and above compared with LC = 2. Also, it can be observed that the

performance improvements of encoding cubic-panorama image dataset Lab is bigger

than those of encoding cubic-panorama image dataset Corridor between different levels

showed in the figures while the PSNR performance of encoding Corridor is higher than

that of encoding Lab, as there is less content texture information in image dataset Cor-

ridor than in image dataset Lab. Comparison results of cross-image analysis at levels

LC = 0, 1, 2 applied to encoding cubic-panorama image dataset Campus and Marie-

Curie are shown in Fig. 5.16 and Fig. 5.17. There is no obvious performance difference

at level LC = 2 and above compared with LC = 1 as there are much bigger position

shifts of the camera capturing these outdoor image datasets compared with the loca-

tion changes of the camera capturing the indoor image datasets and the performance

improvements with more levels of cross-image analysis are quite limited compared with

encoding indoor cubic-panorama image datasets.

Alternatively, the LeGall 5/3 wavelet kernel is utilized for cross-image wavelet anal-

ysis. Fig. 5.18 and Fig. 5.19 show the results of LeGall 5/3 applied for encoding

the cubic-panorama image datasets Lab and Corridor in comparison with the results

of the Haar wavelet kernel applied for cross-image wavelet analysis. The coding per-

formance improvements of LeGall 5/3 over Haar range from 0.78 dB to 0.93 dB for

Lab, and from 0.51 dB to 0.64 dB for Corridor. With LeGall 5/3 and Haar applied

to encoding the cubic-panorama image datasets Campus and Marie-Curie, the coding

performance improvements are 0.15 dB to 0.23 dB and 0.25 dB to 0.35 dB respectively

(Fig. 5.20 and Fig. 5.21). Again, the performance improvements for the outdoor cubic-

panorama image datasets Campus and Marie-Curie are less than those for the indoor

cubic-panorama image datasets Lab and Corridor with different wavelet kernels applied

for cross-image wavelet analysis.

Fig. 5.22 to Fig. 5.29 demonstrate the experimental results of spatial resolution

scalable coding of the proposed cubic-panorama image dataset compression scheme

DCW-IBC. The original input basis images (extended horizontal views) from the test-
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ing cubic-panorama image datasets are shown in Fig. 5.22 for Lab, Fig. 5.23 for

Corridor, Fig. 5.24 for Campus and Fig. 5.25 for Marie-Curie. The reconstructed

multi-resolution basis images (extended horizontal views) of Lab compressed at 0.2

bpp, Y-PSNR = 38.72 dB respectively in 1/16 resolution (with quarter resolutions in

both horizontal and vertical directions), 1/4 resolution (with half resolutions in both

horizontal and vertical directions) and full resolution are shown in Fig. 5.26. The re-

constructed multi-resolution basis images of Corridor compressed at 0.2 bpp, Y-PSNR

= 44.40 dB respectively in 1/16 resolution, 1/4 resolution and full resolution are shown

in Fig. 5.27. The reconstructed 1/16 resolution, 1/4 resolution and full resolution ba-

sis images of Campus compressed at 0.4 bpp, Y-PSNR = 37.05 dB are shown in Fig.

5.28, and the reconstructed 1/16, 1/4 and full resolution basis images of Marie-Curie

compressed at 0.4 bpp, Y-PSNR = 38.58 dB are shown in Fig. 5.29.

For the compression scheme comparison purpose, MC-EZBC [28], which is a com-

parable compression scheme based on the framework of motion-compensated three-

dimensional wavelet transforms and an entropy coding approach combining set parti-

tioning with context modeling, is used in our experiments. MC-EZBC uses the same

across-image and spatial wavelet transform scheme as DCW-IBC, but a different embed-

ded entropy coding approach. It treats the cubic-panorama image datasets as generic

video sequences for the compression purpose. Fig. 5.30 and Fig. 5.31 show the com-

pared results of both DCW-IBC and MC-EZBC schemes applied for encoding the

testing cubic-panorama image datasets Lab and Corridor. The coding performances

are demonstrated by setting the bit-stream rates of the MC-EZBC scheme at the same

values as those of the DCW-IBC scheme and obtaining the average PSNR values of the

luminance Y-component for comparison. The results show that the proposed DCW-

IBC scheme outperforms the MC-EZBC scheme over a wide rage of bitrates. Fig. 5.32

and Fig. 5.33 show the compared coding performances of DCW-IBC and MC-EZBC

applied to encoding the testing cubic-panorama image datasets Campus and Marie-

Curie. Again the experimental results show that the newly-developed scheme provides
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better PSNR performance than that of the MC-EZBC scheme.

The coding performances of the newly-developed DCW-IBC scheme compared with

the MC-EZBC scheme for all three color image components Y, U and V are demon-

strated in Table 5.4 and Table 5.5. The PSNR performance of DCW-IBC and MC-

EZBC applied for encoding the cubic-panorama image datasets Lab and Corridor are

shown in Table 5.4 at 0.06, 0.09, 0.12, 0.2 and 0.4 bpp. The performance gains with

DCW-IBC applied for encoding the testing image dataset Lab are 0.46 dB, 0.35 dB and

0.38 dB on average for the Y, U and V components respectively over the range 0.06 -

0.4 bpp, and for encoding the testing image dataset Corridor are 0.57 dB, 0.50 dB and

0.51 dB on average for the Y, U and V components respectively. The PSNR perfor-

mance of DCW-IBC and MC-EZBC applied for encoding the cubic-panorama image

datasets Campus and Marie-Curie are shown in Table 5.5 at 0.06, 0.09, 0.12, 0.2

and 0.4 bpp. The average gains of Y, U and V are 0.34 dB, 0.24 dB and 0.27 dB

with DCW-IBC applied for encoding Campus, and 0.40 dB, 0.27 dB and 0.29 dB for

encoding Marie-Curie.

The average PSNR performances of the Y component versus the compression ratio

for DCW-IBC and MC-EZBC applied to encoding the cubic-panorama image datasets

Lab, Corridor, Campus and Marie-Curie are demonstrated in Fig. 5.34 to Fig. 5.37. As

an efficient coding scheme for cubic-panorama image dataset compression, the newly-

developed scheme achieves improved PSNR performance with the same compression

ratio as that of the comparable MC-EZBC scheme. This also means a bitrate saving

at the same PSNR level.

Besides supporting the required spatial-resolution scalable coding and facilitating

the spatial random access mechanism for cubic-panorama image dataset compression,

the newly-developed compression scheme provides improved coding efficiency for com-

pressing cubic-panorama image datasets. Experimental results of the software imple-

mentation of the scalable displacement-compensated lifted wavelet-based compression
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scheme show its superior coding performance over the comparable MC-EZBC scheme

over a wide range of bit-stream rates.

5.9 Summary

A scalable lifted wavelet-based coding scheme with displacement compensation is

developed for cubic-panorama image dataset compression. This image dataset com-

pression scheme is based on the framework of lifted wavelet transforms enhanced by

displacement compensation and combined with an efficient embedded entropy coding

approach. Wavelet transforms generate the efficient representations of image datasets

with hierarchically structured decomposition coefficients and provide the potential of

spatially scalable coding required by image dataset compression. The lifting operations

put wavelet analysis and synthesis into fast and memory-saving in-place computations

and make wavelet transforms more feasible in image dataset compression. Displacement

compensation significantly improves the coding efficiency of the wavelet transform in

cross-image direction.

The proposed IBLDP embedded entropy coding approach combines embedded in-

dependent coefficient block coding with layered bitplane data partition. Unlike most

wavelet-based entropy coding algorithms, which improve the coding efficiency by ex-

ploiting the redundancies across subbands and between coefficient blocks and thus sacri-

fice the resolution scalability and the spatial random access flexibility, no inter-subband

and inter-block redundancies are exploited in our proposed entropy coding approach.

Coding a subband is independent of other subbands. The independent coefficient block

coding in a subband makes the spatial resolution scalability and spatial random image

access possible, improves the error resilience performance and easily facilitates paral-

lel processing. It also enables flexible code stream organization and thus the flexi-

ble bit-stream syntax. Although some coding efficiency is sacrificed with independent

coefficient block coding, it reduces the decoding delay, simplifies the implementation
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structure and easily facilitates interactive image decoding.

This displacement-compensated lifted wavelet-based coding scheme facilitates an ef-

fective rectangular subregion side-image random access mechanism for cubic-panorama-

based image rendering. A specific hierarchical data structure is designed to accommo-

date the spatial image random access and maintain the coding performance at high

levels. The corresponding bit-stream syntax supporting this data structure is formed

to provide efficient selective decoding for interactive image rendering. Multi-level in-

dex tables are embedded in the bit-stream to assist spatial image random access. This

newly-developed image dataset compression scheme features a proper compromise be-

tween the coding efficiency and the random access flexibility.

Experiments were conducted to examine the newly-developed scalable displacement-

compensated lifted wavelet-based compression scheme for cubic-panorama image dataset

compression and provide supports for verifying the proposed algorithms and theoretical

contributions. Experimental results demonstrate that this image dataset compression

scheme achieves superior coding performance over that of the comparable MC-EZBC

scheme for cubic-panorama image dataset compression.
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Fig. 5.14 Performance comparison of cross-image analysis at LC =
0, 1, 2, 3 applied to encoding cubic-panorama image dataset Lab.
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Fig. 5.15 Performance comparison of cross-image analysis at LC =
0, 1, 2, 3 applied to encoding cubic-panorama image dataset Corridor.
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Fig. 5.16 Performance comparison of cross-image analysis at LC = 0, 1, 2
applied to encoding cubic-panorama image dataset Campus.
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Fig. 5.17 Performance comparison of cross-image analysis at LC = 0, 1, 2
applied to encoding cubic-panorama image dataset Marie-Curie.
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Fig. 5.18 Performance comparison of cross-image wavelet kernels Haar
and LeGall 5/3 for encoding cubic-panorama image dataset Lab.
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Fig. 5.19 Performance comparison of cross-image wavelet kernels Haar
and LeGall 5/3 for encoding cubic-panorama image dataset Corridor.



5 Scalable Displacement-Compensated Lifted Wavelet-Based Scheme 141

100 200 300 400 500 600 700 800 900 1000
28

30

32

34

36

38

40

Rate (kbpc)

PS
NR

(d
B)

:  LeGall 5/3
:  Haar

Fig. 5.20 Performance comparison of cross-image wavelet kernels Haar
and LeGall 5/3 for encoding cubic-panorama image dataset Campus.
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Fig. 5.21 Performance comparison of cross-image wavelet kernels Haar
and LeGall 5/3 for to encoding cubic-panorama image dataset Marie-Curie.
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Fig. 5.22 Extended horizontal view of an input basis image from Lab used as a testing cubic-
panorama image dataset in the experiments.

Fig. 5.23 Extended horizontal view of an input basis image from Corridor used as a testing cubic-
panorama image dataset in the experiments.
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Fig. 5.24 Extended horizontal view of an input basis image from Campus used as a testing cubic-
panorama image dataset in the experiments.

Fig. 5.25 Extended horizontal view of an input basis image from Marie-Curie used as a testing
cubic-panorama image dataset in the experiments.
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Fig. 5.26 Reconstructed multi-resolution basis images (extended horizontal views) in cubic-
panorama image dataset Lab: the full resolution image (compressed at 0.2 bpp, Y-PSNR = 38.72
dB) on the top, the 1/4 resolution image on the bottom left and the 1/16 resolution image on the
bottom right.
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Fig. 5.27 Reconstructed multi-resolution basis images (extended horizontal views) in cubic-
panorama image dataset Corridor : the full resolution image (compressed at 0.2 bpp, Y-PSNR =
44.40 dB) on the top, the 1/4 resolution image on the bottom left and the 1/16 resolution image on
the bottom right.
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Fig. 5.28 Reconstructed multi-resolution basis images (extended horizontal views) in cubic-
panorama image dataset Campus: the full resolution image (compressed at 0.4 bpp, Y-PSNR = 37.05
dB) on the top, the 1/4 resolution image on the bottom left and the 1/16 resolution image on the
bottom right.
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Fig. 5.29 Reconstructed multi-resolution basis images (extended horizontal views) in cubic-
panorama image dataset Marie-Curie: the full resolution image (compressed at 0.4 bpp, Y-PSNR
= 38.58 dB) on the top, the 1/4 resolution image on the bottom left and the 1/16 resolution image on
the bottom right.
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Fig. 5.30 Compression performance comparison of DCW-IBC and MC-

EZBC applied to encoding cubic-panorama image dataset Lab.

100 200 300 400 500 600 700 800 900 1000
36

38

40

42

44

46

48

50

Rate (kbpc)

PS
NR

(d
B)

DCW−IBC
MC−EZBC

Fig. 5.31 Compression performance comparison of DCW-IBC and MC-

EZBC applied to encoding cubic-panorama image dataset Corridor.
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Fig. 5.32 Compression performance comparison of DCW-IBC and MC-

EZBC applied to encoding cubic-panorama image dataset Campus.
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Fig. 5.33 Compression performance comparison of DCW-IBC and MC-

EZBC applied to encoding cubic-panorama image dataset Marie-Curie.



5 Scalable Displacement-Compensated Lifted Wavelet-Based Scheme 150

Bit Rate Image
Dataset

Comp.a MC-EZBC
PSNR (dB)

DCW-IBC
PSNR (dB)

Gain (dB)

Y 31.90 32.27 +0.37
Lab U 40.92 41.21 +0.29

0.06 bpp V 39.34 39.66 +0.32
Y 37.14 37.58 +0.44

Corridor U 42.87 43.23 +0.36
V 42.06 42.46 +0.40
Y 33.92 34.34 +0.42

Lab U 42.01 42.31 +0.30
0.09 bpp V 40.72 41.07 +0.35

Y 39.29 39.81 +0.52
Corridor U 44.37 44.80 +0.43

V 43.66 44.14 +0.48
Y 35.78 36.22 +0.44

Lab U 43.04 43.36 +0.32
0.12 bpp V 41.69 42.06 +0.37

Y 41.24 41.82 +0.58
Corridor U 45.77 46.30 +0.53

V 45.16 45.67 +0.51
Y 38.40 38.89 +0.49

Lab U 44.49 44.90 +0.41
0.2 bpp V 43.50 43.89 +0.39

Y 44.21 44.82 +0.61
Corridor U 47.76 48.33 +0.57

V 47.37 47.90 +0.53
Y 42.31 42.89 +0.58

Lab U 47.76 48.18 +0.42
0.4 bpp V 47.08 47.53 +0.45

Y 47.59 48.29 +0.70
Corridor U 50.91 51.52 +0.61

V 50.69 51.34 +0.65

aComponent

Table 5.4 Coding performance of DCW-IBC and MC-EZBC applied for
encoding the experimental cubic-panorama image datasets Lab and Corri-

dor at 0.06, 0.09, 0.12, 0.2, 0.4 bpp.
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Bit Rate Image
Dataset

Comp.a MC-EZBC
PSNR (dB)

DCW-IBC
PSNR (dB)

Gain (dB)

Y 29.05 29.32 +0.27
Campus U 38.44 38.62 +0.18

0.06 bpp V 38.90 39.11 +0.21
Y 30.16 30.49 +0.33

Marie- U 36.83 37.02 +0.19
Curie V 37.50 37.72 +0.22

Y 30.12 30.42 +0.30
Campus U 39.06 39.27 +0.21

0.09 bpp V 39.51 39.74 +0.23
Y 31.27 31.64 +0.37

Marie- U 37.20 37.47 +0.27
Curie V 38.07 38.36 +0.29

Y 31.22 31.54 +0.32
Campus U 39.77 40.00 +0.23

0.12 bpp V 40.32 40.57 +0.25
Y 32.34 32.74 +0.40

Marie- U 38.02 38.27 +0.25
Curie V 38.80 39.09 +0.29

Y 33.12 33.49 +0.37
Campus U 40.92 41.16 +0.24

0.2 bpp V 41.51 41.78 +0.27
Y 34.40 34.78 +0.38

Marie- U 39.25 39.52 +0.27
Curie V 40.03 40.34 +0.31

Y 36.56 37.01 +0.45
Campus U 43.04 43.39 +0.35

0.4 bpp V 43.49 43.89 +0.40
Y 37.98 38.48 +0.50

Marie- U 41.60 41.97 +0.37
Curie V 42.51 42.87 +0.36

aComponent

Table 5.5 Coding performance of DCW-IBC and MC-EZBC applied for
encoding the experimental cubic-panorama image datasets Campus and
Marie-Curie at 0.06, 0.09, 0.12, 0.2, 0.4 bpp.
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Fig. 5.34 PSNR versus compression ratio of DCW-IBC and MC-EZBC

applied to encoding cubic-panorama image dataset Lab.
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Fig. 5.35 PSNR versus compression ratio of DCW-IBC and MC-EZBC

applied to encoding cubic-panorama image dataset Corridor.



5 Scalable Displacement-Compensated Lifted Wavelet-Based Scheme 153

0 50 100 150 200
28

30

32

34

36

38

40

CR

PS
NR

(d
B)

DCW−IBC
MC−EZBC

Fig. 5.36 PSNR versus compression ratio of DCW-IBC and MC-EZBC

applied to encoding cubic-panorama image dataset Campus
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Fig. 5.37 PSNR versus compression ratio of DCW-IBC and MC-EZBC

applied to encoding cubic-panorama image dataset Marie-Curie.
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Chapter 6

Global Displacement Estimation
and Compensation for
Cubic-Panorama Image Dataset
Compression

One of the main features of the image datasets used for image-based virtual environ-

ment navigation is that the dominant cross-image displacement in the image datasets

demonstrates a certain regular pattern for each type of image dataset. This cross-image

displacement feature, depending on the motion pattern of the camera generating the

image datasets, could be utilized to effectively improve the coding performance of im-

age dataset compression. Based on the dominant cross-image displacement feature of

cubic-panorama image datasets, global displacement estimation and compensation for

cubic-panorama image dataset compression is investigate in this chapter. A unique

block-based scaled depth estimation technique is proposed for obtaining the scaled

depth maps of the predicted images. A new global displacement-compensated image

prediction algorithm combining the block-based scaled depth estimation technique is

presented. By taking into consideration all kinds of camera motions including camera

translations with parameter components perpendicular and parallel to the camera opti-

cal axis, a novel global displacement estimation and compensation approach is developed
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and adapted to the coding scheme for compressing cubic-panorama image datasets, re-

sulting in enhanced coding efficiency of cubic-panorama image dataset compression.

This chapter is organized as following. The first section gives an introduction to

global displacement estimation and displacement-compensated image prediction, fol-

lowed by a review of the relevant research developments in global displacement es-

timation and compensation. After the first introductory section, a discussion about

global displacement analysis is conducted in Section 6.2. The issue of displacement-

compensated image prediction is dealt with in Section 6.3. Global displacement with

block-based scaled depth estimation is discussed and an image prediction algorithm

with global displacement estimation is proposed. The features of global displacements

in cubic-panorama image datasets are investigated and a coding scheme for cubic-

panorama image dataset compression with global displacement compensation is pre-

sented in Section 6.4. Experimental results of the coding scheme are demonstrated in

Section 6.5. Finally, the discussion on global displacement estimation and compensation

for cubic-panorama image dataset compression is summarized in Section 6.6.

6.1 Introduction

Displacement-compensated image prediction is an important component in image

sequence compression systems. With the aid of displacement estimation and compen-

sation, it derives the required predicting image as close as possible to the to-be-encoded

predicted image, and thereafter enables efficient image sequence compression by exploit-

ing the great deal of redundancy across images. On the other hand, global displacement

estimation, which is usually attributed to determining the displacement model param-

eters associated with the motion of the camera capturing the image sequence, can lead

to compact representations of displacement vector fields. Therefore, the combination

of displacement-compensated image prediction with global displacement estimation has

the potential of significantly improving the compression performance if applied to image

dataset compression.
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There are quite a few global displacement estimation techniques which are well

developed and can be applied for global displacement-compensated image prediction.

Usually, for global displacement estimation and compensation, the effect of camera

motions is modeled with a number of global displacement parameters. For example,

four-parameter global displacement models are used for representing the associated

camera motions in [13, 19, 97]; a five-parameter model is used in [48]; six-parameter

models in [26, 103]; a seven-parameter model in [97] and eight-parameter models in

[18, 77]. Generally, global-displacement model parameters are determined by solving

a minimization problem to best adapt the proposed global-displacement model to the

available data derived from the image sequences.

Global displacement estimation techniques can be classified by the types of cam-

era motions covered in the models. A linear global displacement model is employed in

[13] for representing the global image displacement associated with camera zoom and

pan. An iterative least-squares estimation (ILSE) algorithm is applied for obtaining the

model parameters based on the determined local block displacement vectors. By keep-

ing a symmetrical block structure in each iteration step, it decreases the computational

complexity without sacrificing the estimation accuracy. The global displacement models

in [19, 48, 97] cover not only camera zoom and pan, but also camera tilt and swing. In

order to reduce computational complexity, Zakhor and Lari [97] presented an algorithm

accomplished by matching the corresponding locations of one-bit binary edges instead

of eight-bit intensity blocks. To overcome the problem of global displacement estimation

suffering from feature matching errors, local displacement disturbances and measure-

ment noises, Kim [48] proposed a recursive total least-squares (RTLS) algorithm for

image sequences in noisy situations. Evans et al. [19] described a computationally effi-

cient technique for dominant global image displacement estimation. A histogram-type

approach is incorporated by generating a ranked list of the estimated model parameters

and averaging the parameter values close to the median.

A six-parameter affine model is employed in [26, 103]. He et al. [26] presented a
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fast global-displacement estimation approach. A three-level multi-resolution pyramid

of the input images is built. A Gauss-Newton iterative method is used for initial pa-

rameter estimation at the top level, and a Levenberg-Marquardt optimizing method is

applied at the intermediate and base levels to refine the estimation. Zhang et al. [103]

proposed a new global-displacement estimation algorithm by segmenting images into

foreground and background portions. Only the displacement vectors associated with

the background may be used for global displacement estimation.

Camera translations are rarely handled in the developed global-displacement estima-

tion techniques. In the case of global image displacements associated only with camera

zoom, pan, tilt, and swing, the global displacement parameters alone are adequate for

deducing the locations of corresponding pixels. However, if a camera translation occurs,

the depth information of the scenes is required in addition to the global displacement

parameters to determine the relationship between the locations of corresponding pixels

in successive images. With an effort to involve camera translations in the model, a ro-

bust and fast approach for global displacement estimation based on an eight-parameter

perspective model is presented in [18]. It is applicable to the scenes able to be ap-

proximated by a planar surface for covering camera translations. A camera motion

estimation technique for MPEG video is described in [20]. The camera translation par-

allel to the image plane is approximated by simply averaging the estimated rotation

displacement field. However, the camera translation along the optical axis direction is

not treated in this technique.

In this chapter, based on a perspective projection model for global image displace-

ment analysis, a new global displacement-compensated image prediction algorithm [45]

is presented, taking into consideration all types of camera motions involving camera

translations with parameter components perpendicular and parallel to the camera axis.

A unique block-based scaled depth estimation technique is incorporated in the image

prediction algorithm. The global displacement-compensated predicting image is gen-

erated by using the rotational and translational model parameters combined with the
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estimated scaled block-depth map. A novel global displacement estimation and compen-

sation approach is developed for cubic-panorama image dataset compression, resulting

in improved coding performance.

6.2 Global Displacement Analysis

This section is devoted to the discussion about global displacement analysis. A per-

spective projection model for global image displacement estimation and compensation

is presented, covering all kinds of motions of the camera in capturing an image sequence.

Based on this analysis model, the formulae of the image coordinate transformations and

the global displacement estimation are derived.

6.2.1 Perspective Projection Model

The perspective projection model used for the analysis of global displacement es-

timation and compensation is shown in Fig. 6.1. By choosing the focal point of the

camera as the origin of the coordinate system, the camera optical axis as the Z axis

and the image plane parallel to the XOY plane, the perspective projection relationship

results in

X = F · x/z, Y = F · y/z, (6.1)

where (x, y, z ) denotes the coordinate of a scene point, F presents the focal length

of the camera and (X, Y ) denotes the coordinate of the scene point projected on the

image plane of the camera.

With this analysis model, the predicted current image can be regarded as an image

captured by the camera undergoing a motion, which is a combination of a translation

with a rotation relative to the position for capturing the reference image. A generic

translation can be represented by a translation column vector T = (Tx, Ty, Tz)
T , and a

generic rotation can be described by three successive rotations of angles θ, ψ, ϕ around
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Fig. 6.1 Perspective projection model used for the analysis of global dis-
placement estimation and compensation.

the X, Y and Z axes respectively. So, the global image displacement associated with

this camera motion is modeled with a parameter set PM = {Tx, Ty, Tz, θ, ψ, ϕ} consisting

of six translational and rotational global displacement model parameters.

The coordinates of a static scene point with respect to the coordinate system with

its origin fixed at the focus of the camera hold the relationship [29]

(xr, yr, zr)
T = R · (xc, yc, zc)

T + T, (6.2)

where (xr, yr, zr) denotes the coordinate of a scene point before the camera motion, and

(xc, yc, zc) denotes its coordinate after the camera motion. The rotation matrix R can

be represented with respect to the rotation angles θ, ψ, ϕ as [29]

R = (rij) 3 3

=











cosϕ cosψ cosϕ sinψ sin θ − sinϕ cos θ cosϕ sinψ cos θ + sinϕ sin θ

sinϕ cosψ sinϕ sinψ sin θ + cosϕ cos θ sinϕ sinψ cos θ − cosϕ sin θ

− sinψ cosψ sin θ cosψ cos θ











.

(6.3)
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In the case that the camera experiences a motion of a translation combined with a

tiny rotation, sin θ ≈ θ, sinψ ≈ ψ, sinϕ ≈ ϕ; cos θ ≈ cosψ ≈ cosϕ ≈ 1. Then, the

rotation matrix R becomes

R ≈











1 −ϕ ψ

ϕ 1 −θ
−ψ θ 1











. (6.4)

6.2.2 Image Coordinate Transformation

With (Xr, Yr) and (Xc, Yc) denoting the coordinates of a scene point projected on

the camera image plane before and after the camera undergoes a motion respectively,

the expressions of Xr, Yr as functions of Xc, Yc together with the determined model

parameter set PM = {Tx, Ty, Tz, θ, ψ, ϕ} or the corresponding rotation matrix R and

translation vector T need to be derived for image coordinate transformations:

Xr = fx

(

(Xc, Yc) | PM

)

,

Yr = fy

(

(Xc, Yc) | PM

)

.
(6.5)

The model parameters or R and T can be obtained by replacing the coordinates of

image correspondence points into the following equation [92]

(Xr, Yr, F ) · E · (Xc, Yc, F )T = 0 (6.6)

where the essential matrix E, expressed with the components of the translation vector

T and the elements of the rotation matrix R, is given by

E = (eij) 3 3 =











Tz · r21 − Ty · r31 Tz · r22 − Ty · r32 Tz · r23 − Ty · r33
Tx · r31 − Tz · r11 Tx · r32 − Tz · r12 Tx · r33 − Tz · r13
Ty · r11 − Tx · r21 Ty · r12 − Tx · r22 Ty · r13 − Tx · r23











. (6.7)



6 Global Displacement Estimation and Compensation 161

While the rotation matrix R can be determined from the essential matrix E, the

translation column vector T can only be obtained to within a scaling factor α, as E can

only be determined up to a scaling factor: T = α ·∆T = α · (∆x,∆y,∆z)T . Using (6.1)

and (6.2), Xr and Yr can be represented by utilizing Xc, Yc as well as the rotational and

translational parameters as

Xr = F · (r11 ·Xc + r12 · Yc + r13 · F ) · zc + αF · ∆x
(r31 ·Xc + r32 · Yc + r33 · F ) · zc + αF · ∆z ,

Yr = F · (r21 ·Xc + r22 · Yc + r23 · F ) · zc + αF · ∆y
(r31 ·Xc + r32 · Yc + r33 · F ) · zc + αF · ∆z .

(6.8)

6.2.3 Displacement Estimation Formulae

For an image sample located at (Xc, Yc) in the current image, the corresponding

displacement vector is D = (Dx, Dy) = (Xr−Xc, Yr−Yc) relative to its matching image

sample at (Xr, Yr) in the reference image. Based on the image coordinate transformation

equations derived in last section, the horizontal and vertical components Dx, Dy of the

displacement vector D are given by

Dx =
[XcF (r11 − r33) + Yc(Fr12 −Xcr32) + F 2r13 −X2

c r31]zc + αF (F∆x−Xc∆z)

(r31 ·Xc + r32 · Yc + r33 · F ) · zc + αF · ∆z ,

Dy =
[YcF (r22 − r33) +Xc(Fr21 −Xcr31) + F 2r23 − Y 2

c r32]zc + αF (F∆y − Yc∆z)

(r31 ·Xc + r32 · Yc + r33 · F ) · zc + αF · ∆z .

(6.9)

In the case that no camera translation is involved in the camera motion, the expres-

sions of the two components of the displacement vector can then be simplified as

Dx =
XcF (r11 − r33) + Yc(Fr12 −Xcr32) + F 2r13 −X2

c r31
r31 ·Xc + r32 · Yc + r33 · F

,

Dy =
YcF (r22 − r33) +Xc(Fr21 −Xcr31) + F 2r23 − Y 2

c r32
r31 ·Xc + r32 · Yc + r33 · F

.

(6.10)
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As shown in (6.9) and (6.10), the displacement estimation formulae include the depth

information zc of the scene due to camera translations, and could be significantly sim-

plified in the case that no camera translation occurs. Most existing global displacement

estimation algorithms deal with global image displacements corresponding to camera

zoom and rotations (pan, tilt and swing), avoiding the more challenging issue related

to camera translations and the scene depth distribution. New global displacement esti-

mation algorithms need to be developed in the case that camera translations occur and

cannot be ignored in displacement estimation.

6.3 Global Displacement-Compensated Image Prediction

A new global displacement-compensated image prediction algorithm is presented,

taking into consideration all kinds of camera motions involving camera translations

with parameter components perpendicular and parallel to the camera optical axis. A

unique block-based scaled depth estimation technique is proposed for global displace-

ment estimation and compensation. Global displacement-compensated image predic-

tion is performed by using scaled block-depth estimates and global displacement model

parameters.

6.3.1 Global Displacement Estimation (GDE)

Firstly, an image matching process is performed to obtain a number of image corre-

spondence pairs located at (Xr, m, Yr, m) and (Xc, m, Yc, m) (m ∈ {1, 2, ...,M},M ∈ Z) in

the reference image and the predicted current image respectively. As these coordinates

of the correspondence pairs are to be used in the following global displacement param-

eter estimation, a sufficient number M of correspondence pairs are needed to obtain

robust model parameter estimates. A variety of image matching techniques can be em-

ployed based on their effectiveness and efficiency in performing feature point selection,

detection and matching.
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The determination of the essential matrix E is a typical optimization process of

estimation error minimization. By replacing the coordinates of the correspondence

pairs into the image coordinate transformation equation (6.6), the sum of the squared

errors is obtained by the following expression

SE =
M

∑

m=1

(Xr, mXc, me11 +Xr, mYc, me12 +Xr, mFe13 + Yr, mXc, me21+

Yr, mYc, me22 + Yr, mFe23 +Xc, mFe31 + Yc, mFe32 + F 2e33)
2.

(6.11)

A linear least-squares estimation algorithm is applied by solving a group of equations

resulting from
∂SE

∂eij
= 0 (i ∈ {1, 2, 3}, j ∈ {1, 2, 3}) to determine the values of the

elements in the essential matrix E.

The translation column vector T = (Tx, Ty, Tz)
T = α · (∆x,∆y,∆z)T can be ob-

tained from the resultant essential matrix E. By solving the homogeneous equations

corresponding to ETT = 0 [91], we have

∆x =
e21e32 − e22e31

[(e22e31 − e21e32)2 + (e11e32 − e12e31)2 + (e11e22 − e12e21)2]1/2
,

∆y =
e12e31 − e11e32

[(e22e31 − e21e32)2 + (e11e32 − e12e31)2 + (e11e22 − e12e21)2]1/2
,

∆z =
e11e22 − e12e21

[(e22e31 − e21e32)2 + (e11e32 − e12e31)2 + (e11e22 − e12e21)2]1/2
,

(6.12)

while ∆x,∆y,∆z satisfy the normalization condition

(∆x)2 + (∆y)2 + (∆z)2 = 1. (6.13)

The rotation parameters of the global displacement model are derived from the

essential matrix E with the singular value decomposition (SVD) given by

E = U · Ξ · VT . (6.14)
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Here, Ξ is a diagonal matrix of the same dimension as E with nonnegative diagonal

elements in decreasing order; U and V are unitary matrices. Then, the desired rotation

matrix is obtained by

R = U ·











0 −1 0

1 0 0

0 0 s











· VT , or R = U ·











0 1 0

−1 0 0

0 0 s











· VT , (6.15)

where s = det(U) ·det(V). The rotation angles θ, ψ, ϕ can be determined upon request

by using (6.3) directly from the rotation matrix R.

Outlier removal is involved in the model parameter estimation process to obtain

more accurate parameter estimates through discarding 10% of the correspondence pairs

that have bigger coordinate differences than others at each iterate step. Then, the model

parameters are re-computed with the remaining correspondence pairs. In this way, the

correspondence pairs are refined and the model parameters are compute recursively

until the model parameters converge, that is, no significant value change of the model

parameter set from the last set.

6.3.2 Block-Based Scaled-Depth Estimation

In the more generic case that the camera experiences a motion involving a translation,

global displacement estimation and compensation cannot be completed by just using

the global displacement model parameters. Also, the scene depth information is needed

for displacement estimation and compensation. A block-based scaled depth estimation

technique is proposed to obtain the scene depth distribution map for the predicted

image based on (6.8).

As the translation column vector T can only be determined up to a scale factor α

based on the essential matrix E, we combine the unknown depth zc and the scale factor

α together and call ds = zc/α the scaled depth. Replacing the newly-defined scaled
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depth ds into (6.8), we obtain

Xr = F · (r11 ·Xc + r12 · Yc + r13 · F ) · ds + F · ∆x
(r31 ·Xc + r32 · Yc + r33 · F ) · ds + F · ∆z ,

Yr = F · (r21 ·Xc + r22 · Yc + r23 · F ) · ds + F · ∆y
(r31 ·Xc + r32 · Yc + r33 · F ) · ds + F · ∆z .

(6.16)

The current image is partitioned into rectangular blocks Bc, n (n∈{1, 2, ..., N}, N ∈
Z) of image samples. The scaled depth values of all the image samples in a block are

approximated with a single value ds, n called the scaled block-depth. This scaled block-

depth needs to be estimated to determine the locations of the predicting block in the

reference image for image prediction.

The scaled block-depth estimation is a procedure of searching for a minimum of the

block prediction error with respect to the scaled block-depth ds, n:

min
ds, n

∑

(Xc, Yc)∈Bc, n

[

IB, r(Xr, Yr) − IB, c(Xc, Yc)
]2
, (6.17)

where IB, r(Xr, Yr) is the sample image intensity in the reference image at (Xr, Yr) and

IB, c(Xc, Yc) the sample image intensity in the current image at (Xc, Yc). A direct Nelder-

Mead simplex search method [49] for finding a local minimum of the block prediction

error with respect to the scaled block-depth ds, n is applied after replacing (6.16) into

(6.17). This refers to an unrestrained nonlinear optimization process. For each sample

block, the optimized search for scaled block-depth starts with an initial value equal to

the previously determined ds, n of an immediate neighbor block.

6.3.3 Image Prediction Algorithm

The displacement-compensated predicting image is generated by utilizing the global

displacement parameters combined with the estimated scaled block-depth map. The

estimates of the scaled block-depths are substituted into the coordinate transformation
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formulae (6.16). Together with the determined global rotational and translational model

parameters, the locations of the predicting pixels in the reference image are obtained.

The intensity values of the predicting pixels are derived by pixel interpolation, as the

predicting pixels obtained from the transformation formulae may not be located on the

sampling grids even though all the pixels in the predicted image are on the sampling

grids. Robust and reliable model parameters and effective block-depth estimation are

necessary for precise displacement-compensated image prediction.

Compared with other image prediction techniques, more accurate predicting images

can be obtained by using the developed global displacement-compensated image pre-

diction with scaled block-depth estimation. As a result of fewer parameters required for

global displacement compensation and reduced image prediction residues, the developed

approach is more efficient when applied for image dataset compression.

In summary, the algorithm of the global displacement-compensated image prediction

consists of the following steps:

• Perform image matching between the reference image and the predicted current

image to obtain a sufficient number of correspondence pairs;

• Compute the global displacement model parameters by replacing the coordinates

of correspondence pairs into the image transformation equation and refine the

resulting parameters through outlier removal;

• Perform scaled block-depth estimation by substituting the determined global dis-

placement parameters into the coordinate transformation formulae and obtaining

the optimized value of the scaled block-depth for each block in the predicted im-

age so that a minimum MSD can be achieved between the reference block and

the predicted block;

• Determine the locations of displacement-compensated predicting pixels corre-

sponding to each block in the predicted image by making use of the perspective
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projection transformation formulae with the optimized scaled block-depth and the

global displacement model parameters;

• Interpolate the intensity values of the global displacement-compensated predicting

pixels based on the pixel values on the sample grids in the reference image;

• Generate the global displacement-compensated predicting image by combining

the interpolated pixel intensity values in all the predicting blocks associated with

all the blocks of the predicted current image.
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Fig. 6.2 Image prediction algorithm with scaled block-depth estimation.

6.4 Cubic-Panorama Image Dataset Compression with Global

Displacement Compensation

In this section, the features of global image displacements in cubic-panorama image

datasets are investigated. Cubic-panorama basis images are adapted to the perspec-

tive projection model for global displacement compensation, and a coding scheme for

cubic-panorama image dataset compression with global displacement estimation and

compensation is presented.



6 Global Displacement Estimation and Compensation 168

6.4.1 Global Displacement Features of Cubic-Panorama Image Datasets

A basis image IB, k ( k ∈{1, 2, ..., K}, K ∈Z) in a cubic-panorama image dataset

S̃D consists of six side images IB, k =
{

IB, kw| ∀w∈{u,b,l,f,r,d}
}

. Each side image IB, kw is

projected on one face of the cube and can be regarded as a standard perspective planar

image with a 90o field of view in both the image height and the image width directions

parallel to each side image plane. The perspective projection model introduced in 6.2.1.

is suitable for describing the global displacement features in each of the side images of

the cubic-panorama basis images.

Suppose that each side image as a perspective planar image is taken by a separate

camera. Altogether there are six such virtual cameras utilized for respectively producing

the six side images of cubic-panorama basis images. As shown in Fig. 6.3, the center

point of the cube serves as the common projection center of the six side images and

locates the focal points of all six cameras at a common spot. A basis coordinate system
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Fig. 6.3 Global displacement analysis across basis images of a cubic-
panorama image dataset in the basis coordinate system.
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is utilized with its origin located at the cube center and the Z axis going through the

image plane center of the front side image IB, kf . Each camera undergoes a movement

from the position where it produces the reference side image IB, rw to the next position

where it produces the current side image IB, cw. As six side images are bound together to

make up a cubic-panorama basis image, the six cameras experience the same movement

from one position to another to generate the next cubic-panorama basis image. This

movement causes global image displacement across basis images and can be modeled

with a set of six parameters PD = {∆x,∆y,∆z, θ, ψ, ϕ} as discussed previously in this

chapter. Generally, in a practical process of acquiring the raw image sequences, the

trajectory of cameras is well planned on a horizontal plane parallel to the coordinate

system plane XOZ. The dominant global image displacements are mainly caused by

the model parameters ∆x,∆z associated with the transverse movements of the cameras

with small rotations in capturing the raw image sequences.

The model parameters are obtained by the approach proposed in the previous sec-

tion. As the same set of model parameters is used for all side images of a basis image

due to a common camera movement, image matching can be performed with side im-

ages on one cube face, the front cube face for example, by choosing enough number of

correspondence feature point pairs to obtain the model parameters and apply the re-

sultant model parameters in displacement-compensated image prediction for the whole

basis image. Alternatively, all side images on the six cube faces can be used in their

respective image matching process to obtain the model parameters separately. Then,

the average values of the parameters are determined as more precise and reliable model

parameters used in the following global image displacement compensation process.

6.4.2 Displacement Compensation in Cubic-Panorama Image Datasets

Despite the fact that six virtual cameras experience the same movement characterized

by the parameter set PD = {∆x,∆y,∆z, θ, ψ, ϕ} to produce the side images making up
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a cubic-panorama basis image, the computations of image coordinate transformations

and the displacement-compensated predicting images are different by applying these

parameters to side images on each cube face. Side images on different cube faces

have different orientations with respect to the common projection center. Localized

coordinate systems are used separately to adapt the perspective projection model to

side images on each cube face (Fig. 6.4). The same model parameter set still can bring

about different computational results due to the different orientations of the localized

coordinate systems. The model parameters in PD = {∆x,∆y,∆z, θ, ψ, ϕ} with respect

to the basis coordinate system need to be converted to the corresponding normalized

translation magnitudes along the coordinate axis directions and rotation angles around

the coordinate axes with respect to each localized coordinate system. The resulting

model parameters are shown in Table 6.1.
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spective projection model to side images on the cube faces.

For the purpose of determining image coordinate transformations and the displace-
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Norm.a Translation Rotation Angle

Cube Face Image (along axis directions) (around coordinate axes)

X Y Z X Y Z

Up side −∆x −∆z −∆y −θ −ϕ −ψ

Back side −∆x ∆y −∆z −θ ψ −ϕ

Left side ∆z ∆y −∆x ϕ ψ −θ

Front side ∆x ∆y ∆z θ ψ ϕ

Right side −∆z ∆y ∆x −ϕ ψ θ

Down side ∆x −∆z ∆y θ −ϕ ψ

aNormalized.

Table 6.1 Global displacement model parameters corresponding to the
localized coordinate systems for the side images on the cube faces

ment compensated predicting images, the associated translation vector Tw (w ∈ {u, b, l,
f, r, d}) for the side images on each cube face corresponding to each localized coordinate

system can be obtained in a straightforward manner from the corresponding normalized

translation magnitudes ∆x,∆y,∆z in Table 6.1 with a proper order and proper signs,

and the associated rotation matrix Rw (w ∈ {u, b, l, f, r, d}) corresponding to each lo-

calized coordinate system can be derived based on the corresponding rotation angles

θ, ψ, ϕ given in the table.

With the side images IB, kf on the front face of the cube, the associated rotation

matrix Rf = (rf, ij) 3 3 can be calculated by directly using formula (6.3) presented

in Section 6.2.1. The rotation matrix Rb = (rb, ij) 3 3 for the side images IB, kb on

the back face of the cube can be obtained from Rf by the relationship equations:

rb, 12 = −rf, 12; rb, 21 = −rf, 21; rb, 23 = −rf, 23; rb, 32 = −rf, 32 and rb, ij = rf, ij for all

other elements of Rb.
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For the side images IB, kl on the left face of the cube, the associated rotation matrix

Rl = (rl, ij) 3 3 is given by the following equation based on the rotation angles corre-

sponding to the localized coordinate system for the left side images:

Rl =











cosψ cos θ cosψ sin θ sinψ

sinϕ sinψ cos θ − cosϕ sin θ cosϕ cos θ + sinϕ sinψ sin θ − sinϕ cosψ

− cosϕ sinψ cos θ − sinϕ sin θ sinϕ cos θ − cosϕ sinψ sin θ cosϕ cosψ











.

(6.18)

Then, the associated rotation matrix Rr = (rr, ij) 3 3 for the side images IB, kr on

the right face of the cube can be obtained from Rl by the relationship equations:

rr, 12 = −rl, 12; rr, 21 = −rl, 21; rr, 23 = −rl, 23; rr, 32 = −rl, 32 and rr, ij = rl, ij for all other

elements of Rr.

With the up side images IB, ku, the associated rotation matrix Ru = (ru, ij) 3 3 can

be derived from the corresponding rotation angles as following

Ru =











cosϕ cosψ cosϕ sinψ cos θ + sinϕ sin θ cosϕ sinψ sin θ − sinϕ cos θ

− sinψ cosψ cos θ cosψ sin θ

sinϕ cosψ sinϕ sinψ cos θ − cosϕ sin θ sinϕ sinψ sin θ + cosϕ cos θ











.

(6.19)

Then, the associated rotation matrix of the down side images IB, kd can be obtained from

Ru: Rd = (rd, ij) 3 3 where rd, 12 = −ru, 12; rd, 21 = −ru, 21; rd, 23 = −ru, 23; rd, 32 = −ru, 32

and rd, ij = ru, ij for all other elements of Rd.

Based on the above obtained translation vectors Tw (w ∈ {u, b, l, f, r, d}) and the

rotation matrices Rw (w ∈ {u, b, l, f, r, d}), displacement vector fields can be determined

for the predicted basis images of cubic-panorama image datasets with the assistance of

scaled block-depth estimation by applying (6.17) while replacing (6.16) into the formula.

After that, the global displacement compensation can be performed for cubic-panorama

basis images by invoking (6.9) for displacement-compensated image prediction.
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6.4.3 Compression Scheme with Global Displacement Compensation

A compression scheme with the global displacement estimation and compensation

approach (GDEC ) for cubic-panorama image dataset compression is depicted in Fig.

6.5. It is designed by modification to a standardized video compression scheme with

incorporation of the global displacement estimation and compensation. This compres-

sion scheme is based on the framework of block-based hybrid coding of displacement-

compensated cross-image prediction combined with spatial transformation.
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Fig. 6.5 Coding scheme with global displacement estimation and com-
pensation (GDEC ) for cubic-panorama image dataset compression.
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By making use of a generic standard video coding scheme to build a basis structure

to incorporate the proposed GDEC approach into the block-based hybrid coding frame-

work, this compression system takes the basis image input from cubic-panorama image

datasets. The coding model decision component divides the input basis images into intra

reference images and inter prediction images. Reference basis images are intra-coded

by bypassing the inter prediction step. Global displacement estimation is performed

for each predicted basis image by image matching between the input predicted cur-

rent basis image and an input reference basis image stored in the input frame memory.

Then, the resultant global displacement parameters are applied to scaled block-depth

estimation using the input predicted basis image taken from the input frame memory

and a reconstructed reference basis image taken from the frame memory located in the

prediction loop. After that, displacement compensation is performed by making use of

the reconstructed reference basis image, the global displacement model parameters as

well as the scaled block-depth estimates to generate a predicting image for the current

predicted input basis image.

The image redundancies across basis images are removed through the cross-image

prediction enhanced by global displacement compensation. The prediction residues of

the input predicted basis image and the displacement-compensated predicting image

are feeded into the spacial discrete cosine transform component to decorrelate image

samples in the spatial domain. Then, the resulting transform coefficients are scaled

in the quantization component and the resultant quantized transform coefficients are

sent to the entropy coding component to generate the streaming basis image output.

Meanwhile, the quantized transform coefficients are also sent to the displacement-

compensated prediction loop for producing the reconstructed reference images. In the

entropy coding process, the global displacement model parameters and the scaled block-

depth maps are encoded and combined with the coded image sample coefficients into

an output image dataset bitstream.



6 Global Displacement Estimation and Compensation 175

6.5 Experimental Results

The proposed coding scheme depicted in Fig. 6.5 for cubic-panorama image dataset

compression is implemented in a software-based codec obtained by modification to a

baseline codec of H.264/MPEG-4 AVC Reference Software [38] to incorporate the global

displacement estimation and compensation (GDEC ) approach into a block-based hybrid

coding scheme for cubic-panorama image dataset compression. Experiments with test-

ing cubic-panorama image datasets were carried out to verify the effectiveness of the de-

signed coding scheme with GDEC applied for cubic-panorama image dataset compres-

sion. The experimental results are compared with those of the baseline H.264/MPEG-4

AVC reference software [38] with the traditional block matching algorithms (BMA)

commonly used in all standardized video sequence coding schemes.

Resulting from the global displacement estimation process, an example of the global

displacement parameter estimates for the predicted basis images in a group of 12 basis

images of the testing cubic-panorama image dataset Lab (Fig. 4.13 and Table 4.1)

is shown in Table 6.2. It can be observed that the dominant normalized translation

is along the Z axis with respected to the basis coordinate system attached directly

to the front side image, and the rotation angles along the coordinate axes are quite

small. This is the typical situation for cubic-panorama image datasets especially for the

indoor cubic-panorama image datasets captured along a segment of a well planned image

acquisition trajectory. Although these parameters demonstrate a dominant translation

along the camera axis direction directly applicable to the front side images, the dominant

translations of other side images may be along the directions perpendicular to the

camera axis direction because of the different orientations of the side images. Thus, the

complicated translation situation is revealed in cubic-panorama image datasets.

Using the block-based hybrid coding scheme with GDEC applied to encoding the

testing cubic-panorama image datasets, the experimental results of the average PSNR

for the luminance component Y of the reconstructed basis images versus the bitstream
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Predicted
Basis Image

Translation Magnitude
(normalized values)

Rotation Angle (in degrees)

∆x ∆y ∆z θ ψ ϕ

P01
-0.0345 -0.0868 0.9956 0.0917 -0.0401 0.0172

P02
0.0456 -0.0166 0.9988 -0.0573 0.2235 -0.0859

P03
-0.0098 -0.0900 0.9959 0.0401 -0.1089 0.0516

P04
0.0053 -0.0219 0.9997 -0.1261 -0.1604 -0.0172

P05
0.0331 -0.0333 0.9989 -0.0286 -0.1089 -0.1031

P06
-0.0062 -0.0927 0.9957 0.1432 -0.2292 -0.0458

P07
-0.0080 -0.0257 0.9996 -0.1948 -0.3953 0.0172

P08
0.0214 -0.0350 0.9992 -0.1203 -0.0516 -0.1261

P09
0.0205 -0.0301 0.9993 -0.1833 -0.0057 0.0401

P10
0.0108 -0.0405 0.9991 -0.1146 -0.1891 -0.0401

P11
0.0123 -0.0297 0.9995 -0.1719 -0.2693 0.0749

Table 6.2 Global displacement parameter estimates for a group of pre-
dicted basis images in experimental cubic-panorama image dataset Lab

rate are shown in Fig. 6.6 for cubic-panorama image dataset Lab, and in Fig. 6.7

for cubic-panorama image dataset Corridor (Fig. 4.14 and Table 4.1). Meanwhile, for

the comparison purpose, experimental results of the same compression scheme structure

with the traditional BMA in place of GDEC applied to the same testing cubic-panorama

image datasets are provided, and shown in these two figures. A typical exhaustive search

in a coarse-to-fine manner over a fixed-size window is used in the traditional BMA.
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Fig. 6.6 Compression performance comparison of GDEC and BMA ap-
plied to encoding cubic-panorama image dataset Lab.
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Fig. 6.7 Compression performance comparison of GDEC and BMA ap-
plied to encoding cubic-panorama image dataset Corridor.
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Regarding to the image dataset coding performance in term of PSNR versus the

bitstream rate, significant improvements over the traditional BMA are achieved with

the GDEC approach applied to encoding the testing cubic-panorama image datasets.

More accurate predicting images are obtained using the GDEC approach compared

with using the traditional BMA especially on the cube faces with contraction or ex-

pansion displacement field distributions. On the other hand, with the same levels of

reconstructed basis image quality, the bitstream rates of the GDEC approach are lower

than these of the BMA. Table 6.3 and Table 6.4 show the experimental results of the

bitrate reductions brought about with the GDEC approach compared with the BMA.

Over a wide rang of bitrates from approximately 100 kbpc to 500 kbpc, about 17% of

Displacement
Compensation
Approach

PSNR Y
(dB)

PSNR U
(dB)

PSNR V
(dB)

Bitrate
(kbpc)

Bitrate
Reduct.

BMA 35.70 42.05 40.74 139.92 —

GDEC 35.78 42.13 40.90 113.57 18.83%

BMA 38.56 43.21 42.08 233.59 —

GDEC 38.63 43.30 42.14 191.45 18.04%

BMA 40.75 44.23 43.26 348.43 —

GDEC 40.81 44.32 43.29 290.80 16.54%

BMA 42.17 45.00 44.21 455.23 —

GDEC 42.18 45.05 44.27 381.16 16.27%

BMA 43.70 46.07 45.39 605.07 —

GDEC 43.81 46.14 45.52 513.58 15.12%

Table 6.3 Bitrate reduction of the coding scheme with GDEC applied
to encoding experimental cubic-panorama image dataset Lab
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bitrate reduction on average is obtained for encoding the testing cubic-panorama image

dataset Lab, and about 13% of bitrate reduction on average for encoding the testing

cubic-panorama image dataset Corridor.

The compression performances of the block-based hybrid coding schemes with GDEC

and BMA with respect to compression ratios are shown in Fig. 6.8 applied for encoding

cubic-panorama image dataset Lab and Fig. 6.8 applied for encoding cubic-panorama

image dataset Corridor. As a result of fewer parameters required for displacement

compensation and reduced prediction residues, the developed GDEC approach is more

efficient for compressing the testing cubic-panorama image datasets. Experimental re-

sults demonstrate the superior performance of the developed GDEC approach over the

traditional BMA applied to cubic-panorama image dataset compression.

Displacement
Compensation
Approach

PSNR Y
(dB)

PSNR U
(dB)

PSNR V
(dB)

Bitrate
(kbpc)

Bitrate
Reduct.

BMA 39.85 43.60 42.94 114.76 —

GDEC 39.89 43.67 43.01 98.37 14.28%

BMA 43.99 46.68 46.23 241.42 —

GDEC 44.26 46.98 46.56 210.09 12.98%

BMA 45.03 47.55 47.19 305.72 —

GDEC 45.10 47.63 47.29 265.15 13.27%

BMA 46.07 48.80 48.50 393.95 —

GDEC 46.12 48.92 48.57 342.70 13.01%

BMA 47.42 50.16 49.98 569.89 —

GDEC 47.54 50.29 50.04 506.35 11.15%

Table 6.4 Bitrate reduction of the coding scheme with GDEC applied
to encoding experimental cubic-panorama image dataset Corridor
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Fig. 6.8 PSNR versus compression ratio of the coding schemes with
GDEC and BMA for encoding cubic-panorama image dataset Lab.
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Fig. 6.9 PSNR versus compression ratio of the coding schemes with
GDEC and BMA for encoding cubic-panorama image dataset Corridor.



6 Global Displacement Estimation and Compensation 181

6.6 Summary

Based on a perspective projection model corresponding to the six-parameter cam-

era motions, a new displacement-compensated image prediction algorithm is presented,

taking into consideration all kinds of camera motions involving camera translations

with parameter components perpendicular and parallel to the camera optical axis.

A novel global displacement estimation and compensation approach is developed for

cubic-panorama image dataset compression. By replacing the coordinates of corre-

spondence pairs into the transformation formulae, the essential matrix is determined

by using a least-squares estimation algorithm. The rotational and translational pa-

rameters of the global displacement model are derived from the essential matrix by

singular value decomposition (SVD). A unique block-based scaled depth estimation

technique is proposed for obtaining the scaled depth map of the predicted image. The

displacement-compensated predicting image is generated by using the global rotational

and translational model parameters combined with the scaled block-depth map. Com-

pared with the traditional block matching algorithm (BMA) for displacement estima-

tion and compensation, more accurate predicting images are obtained with the proposed

displacement-compensated image prediction algorithm. As a result of fewer parameters

required for displacement compensation and reduced prediction residues, the devel-

oped global displacement estimation and compensation approach is more efficient when

applied for cubic-panorama image dataset compression. Experimental results of the

testing cubic-panorama image datasets show the effectiveness of the developed global

displacement estimation and compensation approach, and also demonstrate its supe-

rior performance over the traditional BMA applied for cubic-panorama image dataset

compression.
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Chapter 7

Conclusions

Image dataset compression is one of the most important and fundamental issues in

developing an image-based virtual environment navigation system. It is significantly

different from the generic image and video sequence compression; coding techniques

and schemes specially designed for image dataset compression need to be developed. A

specific form of image dataset — the cubic-panorama image dataset, is becoming more

popular and is expected to be widely applied with its superior features over other forms

of image datasets. This thesis addresses the key problems in the design of a scheme

for cubic-panorama image dataset compression to adapt the coding methods to the

characteristics of cubic-panorama image datasets, satisfy the special requirements for

cubic-panorama image-based rendering and efficiently represent cubic-panorama image

datasets in the compressed streaming output.

7.1 Contributions

This thesis work faces some challenges presented in the coding scheme design for

compressing image datasets, particularly the cubic-panorama image datasets. It would

be, to my knowledge, the first publicly available work on cubic-panorama image dataset
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compression. In summary, the following contributions are made in this thesis.

• The common characteristics of image datasets used for image-based virtual en-

vironment navigation are systematically summarized, and the requirements for

image dataset compression, the key issues and strategies for compressing image

datasets are generalized. All these provide a valuable reference to researchers who

are interested in working on image dataset compression. Although the research on

image and video sequence compression has been conducted for quite a few years,

image dataset compression is a relatively new research area.

• A spatially consistent representation of cubic-panorama image datasets is pro-

posed with a block padding algorithm for image dataset compression. In con-

ventional compression schemes, cubic-panorama image datasets would be treated

as planar image sequences with a rectangular support. It is inevitable to sac-

rifice some coding efficiency because of the inconsistency on the boundaries of

connected side images. With the proposed spatially consistent representation of

cubic-panorama image datasets, the search for displacement vectors in reference

images can be naturally extended across side image boundaries into neighbor

side images. This eliminates the image boundary constraints on displacement

vector search. A block padding algorithm for constructing the reference blocks

is designed for displacement estimation and compensation. Optimized matching

reference blocks can be obtained to reduce the prediction errors and improve the

compression efficiency.

• A new context-based arithmetic entropy coding approach named independent

block with layered data partition (IBLDP) is proposed for image dataset com-

pression with wavelet-based coding schemes. Unlike the widely-applied EZW [73]

and SPIHT [69] wavelet entropy coding approaches, IBLDP does not rely on ex-

ploiting inter-subband redundancy to improve coding efficiency and consequently

removes the restriction of inter-subband coding against resolution-scalable cod-
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ing. Different from most wavelet entropy coding approaches like SPECK [32] and

EZBC [27] which put all decomposition coefficients of a decomposed image in a

subband into a coding dependency chain, IBLDP partitions the decomposition

coefficients in a subband into independently coded coefficient block and makes

spatial random access to image segments of basis images possible. With the

compact layered bitplane data representation and the simplified coding structure,

IBLDP features reduced computational and implemental complexity and hence

is more suitable for the efficient and interactive image rendering application.

• A rectangular subregion side-image random access mechanism is designed for

cubic-panorama image dataset compression with wavelet-based coding schemes.

Providing appropriate random access and selective decoding is a unique require-

ment for compressing image datasets. A specific hierarchical data structure is

proposed to accommodate spatial image random access and maintain the coding

performance at high levels. The corresponding bit-stream syntax supporting this

data structure is formed to provide efficient selective decoding for interactive im-

age rendering. Multi-level index tables are embedded in the bit-stream to easily

facilitate the required spatial image random access.

• A scalable lifted wavelet-based coding scheme with cross-image displacement com-

pensation is developed for cubic-panorama image dataset compression. It poses

some challenges to develop a coding scheme for compressing image datasets be-

cause a more complicated balance among the coding efficiency, the spatial-resolution

scalability and the random access and selective decoding flexibility needs to be

made. This developed cubic-panorama image dataset compression scheme is built

based on the scalable lifted wavelet transform framework enhanced with displace-

ment compensation. It incorporates the new context-based arithmetic entropy

coding approach and combines the specially designed random access mechanism.

A suitable tradeoff among the compression efficiency, the spatial-resolution scala-

bility and the desired random access flexibility is reached by adapting the coding
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scheme to cubic-panorama image dataset compression.

• A novel global displacement estimation and compensation approach with scaled

block-depth estimation is developed for cubic-panorama image dataset compres-

sion. Most global displacement estimation algorithms deal with global image

displacements associated with camera zoom, pan, tilt and rotation, avoiding the

more challenging issue arising from camera translations that relate displacement

compensation to the depth distribution of the scenes. Few papers deal with cam-

era translations but limit the discussions to the scenes able to be approximated

by a planar surface, confine the translation to the camera optical axis direction or

assume the scene depth distribution determinable. In this thesis, based on a per-

spective projection model of six-parameter global displacements, a displacement-

compensated image prediction algorithm is presented, taking into consideration

all kinds of camera motions involving camera translations with parameter compo-

nents perpendicular and parallel to the camera axis. A unique block-based scaled

depth estimation technique is proposed. Superior coding performance over that

of the comparable BMA is achieved with the proposed approach.

7.2 Future Research Work

Although some compression techniques and schemes have been developed for com-

pressing cubic-panorama image datasets, some problems still remain to be investigated

to work out more efficient and effective cubic-panorama image dataset compression

schemes for image-based virtual environment navigation.

The developed coding scheme with global displacement estimation and compen-

sation for cubic-panorama image dataset compression demonstrates superior coding

performance. However, it is currently applied to the indoor image datasets which are

captured in relatively stable conditions. For outdoor image datasets, this coding scheme

needs to be improved to adapt to the unsteady movement of the camera in capturing
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the image sequences and the uneven changes of lighting conditions.

Random access and selective decoding are unique requirements for image dataset

compression, and spatial scalable coding is extremely desirable for rendering images

in steady quality. It presents some challenges to satisfy all the coding requirements

while maintaining the high coding efficiency. Currently, a proper balance among these

requirements is made in the proposed schemes. Optimized compression schemes in

terms of compression efficiency under the constraint of providing the required spatially

scalable coding and random access will be investigated and evaluated to provide more

precise and optimized control over meeting all these requirements in the compression

schemes.

Currently, in our work, compressing the spatially consistent representation of cubic-

panorama image datasets, scalable lifted wavelet-based cubic-panorama image dataset

coding and global displacement estimation and compensation for cubic-panorama image

dataset compression are implemented separately in different compression schemes based

on either block-based hybrid coding or wavelet-based coding. It is very necessary and

quite valuable to combine all these methods in a single compression scheme, most likely

a wavelet-based scheme, to further benefit from the superior features of these methods

in practical applications of cubic-panorama image dataset compression. This presents

a challenge to our future work on cubic-panorama image dataset compression.

Besides the above mentioned work, the quality of cubic-panorama image datasets

needs to be enhanced for more precise image analysis required by image dataset com-

pression schemes. Special treatment of the down side image is necessary to remove its

negative influence on the coding results. All these suggest the potential future work on

image dataset compression.
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