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Abstract

This thesis addresses the challenging problem of obtaining 3D models for real environments

from stereo images and translational video sequences. The problem is partitioned into two

main parts: matching and disparity estimations to obtain depth maps and separate 3D mod-

els for different image locations, and the combining of these separate 3D models into one

3D model for the whole environment. Solutions are proposed dealing with these two main

issues respectively, and the results from implementing these solutions are also presented.

The novelty for the solution of the first part – which deals with the matching problem –

lies in the fact that it combines the pixel-based approach and region-based approach. A

hybrid algorithm is developed for disparity estimation between stereo images and transla-

tional video sequences, so that some intrinsic problems in the pixel-based and region-based

approaches (like the detection of sky) can be solved in a combined way while keeping the

object boundaries sharp and crisp, and hence give disparity and depth maps which are qual-

itatively better than traditional methods. The novelty for the solution of the second part

– which deals with the integration of separate 3D models from different image locations –

comes from the usage of region information obtained from the disparity estimation process,

the estimation of ego-motion parameters, as well as to the integration of the object surfaces

from different 3D models. For the ego-motion estimation, instead of using the bundle ad-

justment or iterative closest points (ICP) which perform the estimation in 3D space, our

algorithm uses large regions with correspondence information in each image to determine

the homogeneous transformations in image space. For the integration of separate 3D models,

these large regions from different models are also used to adjust and expand the shape of

regions which belong to the same surfaces, so that even the occluded surfaces in one image
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location can be filled by integration of surfaces from other images. The results are shown

with the image rendering at novel viewpoints as well as with PSNR values measured between

the rendered images and existing images at real image locations.
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Chapter 1

Introduction

The field of image-based virtual environments is a promising research area. This technology

allows one to navigate through a photo-realistic environment, in which all the novel views

are rendered based on a set of precaptured images or video sequences of that environment.

The related applications include virtual museums, virtual sightseeing, flight simulation, aug-

mented reality, computer games, etc.

The objective of this thesis is to develop an application in which, based on a set of

precaptured images and videos in and around a real environment, the 3D model of the whole

environment can be obtained through disparity estimation and 3D model integration. Then

a user can virtually and freely move around in this environment and see the scene from novel

viewpoints along his/her virtual trajectory, just like moving a virtual camera through the

environment and generating the image sequence that camera could have acquired. As shown

in Fig. 1.1, where the solid line represents the path of the real camera capturing the scene,

and the dashed line represents the path of a virtual camera generating novel views, the path

of the virtual camera and view directions can be controlled by the user and be completely

different from those of the actual camera.

This application has some aspects in common with 3D model construction and rendering

in computer graphics, in which one can arbitrarily synthesize a 3D model of an environment

and then move around this synthetic environment through graphic view rendering. However,

the difference between the proposed application and the computer graphics approach lies in

1
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Figure 1.1: Image/video capture and virtual rendering

the fact that the representation of the environment is obtained from the acquired images

and video sequences rather than synthesized by computer graphics. Therefore, our objective

can be summarized as follows: acquire a set of images and videos of a real environment, and

then generate an arbitrary sequence of novel views within this environment.

1.1 Problem Area

The objective of this thesis is closely related to the techniques of image-based rendering

(IBR). As shown in Fig. 1.2 [1], the existing techniques for image-based rendering can be

arranged according to their dependence on geometric information of the scene, from the most

geometry-dependent texture mapping, to light-field rendering which requires no geometric

information. The number of images and the constraints on the positions where pre-captured

images are taken increase as the geometric dependence decreases. We summarize these tech-

niques in the following in the order of increasing dependence on geometries:

(1) Light field, lumigraph, concentric mosaic and panorama – these techniques require
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Figure 1.2: Classification of image-based rendering (adapted from [1])

no geometric information or only a little geometric information (lumigraph). However, they

require a large number of images to be acquired. Especially for the light field and lumigraph,

those images have to be captured at equally-spaced grid positions surrounding the scene. This

makes the image acquisition stage very demanding, and the effective storage and retrieval

of these images are very challenging work. For the concentric mosaic and the well-known

panorama technique, circular movements are used for image acquisition. The requirements

for the number of images and acquisition positions are not as demanding as for the light

field and lumigraph, but the rendered viewpoints have to be constrained to the central point

of the circle (panorama), or within a very small area around the central point (concentric

mosaic).

(2) View interpolation and layered depth image (LDI) – these techniques require implicit

geometric information. The “implicit geometric information” means the matching or corre-

spondence relation among the acquired images, which is usually related to the scene depth.

For view interpolation, instead of setting up the 3D models of the scene, the matching or

depth information is exploited to render novel views by interpolations based on multiple

images, e.g., [5]– [10]. These algorithms usually render the intermediate views between a

stereo pair or any two consecutive images in a video sequence [5]–[9], or a novel view which

is a little bit off the line that connects the stereo pair [10]. Although these algorithms do not

deal with 3D models directly, they need dense or sparse correspondence for the interpolation

processes, and the quality of the correspondence is directly linked to the performance of

interpolation results. The layered depth image (LDI) was developed so that there is no need

to construct the actual objects from their depth information, but just to combine the depth
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information from different images to one reference location to form a layered depth – a kind

of 3D image where each pixel coordinates has not only one pixel value, but also the values of

pixels behind it for the same coordinates [11][12]. Those pixels are detected from other image

locations and are arranged by their depth values. The rendering can thus be achieved based

on such 3D LDI to any novel viewpoints through transformation and interpolation as long as

the LDI is dense enough to supply sufficient information to these viewpoints. Thus, we can

see that the main difference between the view interpolation and LDI is that the rendering

of LDI is less constrained, rather than being limited to be near the intermediate viewpoints

as for the view interpolation. However, this comes at the cost of higher demand for the ac-

curacy of the matching process since the construction of LDI needs accurate information for

the relative locations of different images in order to transform the scene depth at different

locations to the reference location. A method of obtaining LDI for a real scene, which is

actually a small object located in the center of a rotating round table was developed in [13],

where the rotation angles are known and only the LDI of the central object rather than the

whole environment is constructed.

(3) Texture mapping – using explicit geometry. Texture mapping is usually used in com-

puter graphics where the scene is composed of synthetic objects and thus the geometric

information of the whole scene is known. However, until now, using texture mapping for a

real environment is very difficult due to the difficulty in obtaining the depth information of

the scene from images, and the difficulty in combining the depth information from different

images to get the geometric information of all the objects in order to construct the whole

scene. Although 3D scanners can be used to obtain the model of the real scene, there are

still matching problems – the matching of scanned models and the texture on the surface

of these models – to be solved, along with the problem of 3D registration in order to merge

the 3D models from different viewpoints. In addition, those 3D scanners are usually very

expensive and hence makes the application very costly.

Therefore, for IBR, there is always a trade-off between the difficulty of obtaining the

depth and geometric information of the real scene and the difficulty of capturing and storing

a large number of images at required positions. Due to these difficulties, until now, only the
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algorithms related to concentric mosaic and panaroma, which require no geometric infor-

mation nor large amounts of image data, are comparatively mature, at the cost that the

rendering is only limited to the center point or a central area.

1.2 Unsolved Problems for 3D Model Construction of

Real-World Scenes

Comparing our objective and the summary of the existing IBR techniques, we can see that in

order to achieve this objective we should use the method of either LDI or texture mapping,

since only these two methods allow us to render novel views comparatively far away from

the actual camera paths, rather than near to the locations of acquired images. The reason

that we do not choose the light field or lumigraph is that they are too demanding and

expensive (they need a large number of cameras) for their image acquisition processes to

apply them to practical applications, especially for large environments. Choosing between

the LDI and texture mapping methods, we propose to use the method of texture mapping.

The reason is that, after transforming the depth informations from all images to one reference

location, the texture mapping approach tries to form models of the scene by converting

these 3D points to surfaces while the LDI approach only organizes these points as 3D point

clouds according to their depth values without constructing surfaces and geometric models

for different objects. This makes the rendering process for the LDI approach inconvenient

and vulnerable to artifacts since there is a complex formula to determine a block size for

each pixel in LDI to interpolate on the novel image [11], and if the novel viewpoint is far

from the reference location then those interpolated blocks will affect each other. For the

texture mapping approach, no matter whether the novel viewpoint is far from, or near to,

the reference location, its rendering process will not bring artifacts such as blocking and

ringing, since the rendering is based on the constructed model with certain geometries.

Furthermore, there are software tools like OpenGL which supply integrated functions for the

interpolation process of texture mapping, and this will make the rendering procedure in our
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objective efficient and convenient.

To apply texture mapping on the real environment, a matching process, which is actually

the estimation of pixel displacements among different images for the same 3D points, has to

be performed on the captured images and videos in order to obtain the depth information

at different image locations. Some recent examples are [7], [14] and [15], among others. Such

a matching process can be performed either by extracting and matching feature points [16]

or edges [17], or by using disparity estimation from stereo images [18].

Thus we can see that, for the purpose of setting up the application of image-based virtual

environments using explicit geometry, the basic starting point is the estimation of displace-

ment and depth maps; the following issue is how to combine those depth maps together or

how to make use of them. Displacement estimation includes motion estimation for video se-

quences, disparity estimation for stereo images or multiview images, or joint disparity/motion

estimation for stereo video sequences. Fig. 1.3 shows a general block architecture for the con-

struction of 3D models for the real scene. Once the matching process (disparity and/or motion

estimation) is performed for one image location, then the depth map for that location can

be obtained from disparity or from motion values through the algorithm of structure from

motion (SfM). Then, to obtain the 3D models for other locations, a stereo video sequence

is usually adopted for disparity and stereo approach (upper branch of Fig. 1.3) and joint

disparity/motion estimation should be applied to obtain disparity/depth maps of different

locations as well as to obtain the homogeneous transform parameters among these locations.

If a monocular video sequence is adopted (lower branch of Fig. 1.3) then motion estimation

and SfM can be applied to the following images so that the depth maps for other locations

can be obtained together with the estimation of homogeneous transform parameters from

motion values. Finally, with the estimated depth maps for different locations and the as-

sociated homogeneous transform parameters, the structure or 3D model for the whole real

environment can be constructed by combining the separate 3D models transformed to the

reference location, and novel views can be rendered based on such structure or 3D model.

The basic reason that the image-based virtual environment using an explicit-geometry

approach is not becoming a popular approach so far lies in the fact that there are no robust
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Figure 1.3: Block architecture for setting up 3D model for real environment

and general solutions for both disparity and motion estimation, i.e., there are no algorithms

which can accurately estimate scene depth either from stereo images or from motion analysis.

In addition, even with perfect depth maps at different locations, we still have the problem

of how to integrate them. In detail, the difficulties come from the following facts:

(1) Both algorithms – disparity and motion estimation – are matching processes, and

matching is an ill-posed inverse problem. The ambiguities contained in these matching pro-

cesses can bring many errors in the estimated depth images, such as noisy outliers and

incorrect depth values for an entire large region. Such errors can greatly affect the following

steps to set up one 3D model for the whole environment. Some typical difficulties in depth

estimation are the matching for the pixels in untextured and slanted surfaces, the matching

for sky areas (especially when the sky is segmented by some trees), etc.

(2) In order to set up a 3D model within which free navigation can be achieved, each

surface of different objects has to be represented as a whole entity, e.g., by triangular meshes

or NURB splines. Otherwise, if the 3D model is constructed simply by putting all the 3D

points together, then in the rendering process the scene will split. This requires that the

3D surfaces be identified based on depth maps from disparity estimation, or SfM must be

performed, so that the surfaces that belong to different objects can be distinguished and

prevented from mixing with other objects. The difficulties in this issue are mainly related

to the first problem – if the quality of depth maps is poor (like outliers or one surface with

several discontinuous depth values) then no accurate 3D segmentation can be achieved.

(3) In most cases, the depth and the related 3D models estimated at different locations

cover only part of the whole scene, i.e., the 3D models for each location are only separate 3D



CHAPTER 1. INTRODUCTION 8

models. In order to combine these separate 3D models to form one 3D model for the whole

scene, the relations among the locations of these separate 3D models need to be found. After

obtaining such relations, the separate 3D models can be transformed to one reference. At this

reference location, each separate 3D model should have part of the 3D surfaces overlapping

with other 3D models, and part of the surfaces not covered in other 3D models. Thus, in the

combining stage, the overlapping as well as non-overlapping surfaces for each separate 3D

model need to be identified, and the integration strategy on how to combine such overlapping

surfaces along with non-overlapping surfaces needs to be set up. In image-based modelling,

the separate 3D models estimated from images are usually noisy, and this will result in many

ambuiguities for the integration stage and affect the quality of the final model.

1.3 Proposed Solutions

Until now, most of the matching algorithms (both disparity and motion estimation) are

pixel-based, which means the matching process is performed pixel-by-pixel. Compared to the

large amount of literature on pixel-based matching algorithms, there are only a few papers

that make use of image segmentation and region matching techniques. Using region-based

matching techniques can largely alleviate the ambiguities associated with the pixel-based

matching, and the disparity and depth values with good quality can further be used to

obtain 3D surfaces by evaluating if any adjacent regions belong to one 3D surface according

to their disparity and depth values. Therefore, we will combine segmentation and region-

based approaches in order to solve the first two of the three above-mentioned problems

in a joint way. For the third problem, 3D integration, we will estimate the homogeneous

transformation parameters (three rotations plus three translations) between each location

with respect to the reference location. Then, the integration process will be performed by

adjusting and expanding the shape of regions at the reference image location before the

Delaunay triangulation is applied to each region. In detail, our solutions can be divided into

the following steps relative to the three main problems mentioned above:

(1) Making use of region information which comes from the segmentation algorithm, and
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performing region matching for disparity estimation. From the various possible segmentation

algorithms (color-based, pattern-based, etc.), we will choose color-based segmentation for the

first step. Because the segmentation in this first step will be applied to only one reference

image on which the disparity or motion estimation is based, it is more objective to judge

if a group of connected pixels belong to one surface by their colors. Since the color-based

segmentation algorithm is based on color or intensity variations, one surface full of textures

might be segmented into different regions. Although using a region matching scheme can

dramatically reduce the ambiguities associated with the matching process, there are situa-

tions that region matching cannot effectively handle, e.g., the background sky segmented by

foreground objects like trees or shrubs. In such situations, the region matching will bring

results in which the segmented sky regions are considered as part of the foreground objects

and thus have the same disparity/motion values. We handle this problem by developing a

hybrid disparity estimation algorithm in which the pixel-based and region-based approaches

are combined to solve all these problems and to obtain disparity/motion maps with high

quality.

We start the algorithm by pixel-based approach through Gabor filtering or sum-of-

squared-difference (SSD) for an initial and coarse disparity map. Then we implement the

color-based segmentation. Based on the obtained regions and the coarse disparity map, a

region manipulation and merging scheme is carried out so that different but adjacent regions

which actually belong to one object surface can be merged into one region if their disparity

values show some smooth and continuous properties along the borders of these adjacent

regions. In addition, the regions with zero disparity value can be identified by a variational

regularization approach. Finally, a region matching algorithm is applied to the regions with

non-zero disparity values.

(2) Once we obtain regions with disparity values for each image, we apply a Delaunay tri-

angulation to each region so that each region represents a 3D surface with triangular meshes.

Then, the parameters of homogeneous transforms which describe the relations among differ-

ent image locations in 3D space will be estimated in the image domain. This is unlike the

usual alignment method used for laser scanned models in which the parameters of homoge-
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neous transform are estimated in 3D space by searching the nearest 3D points, since we have

not only the depth and 3D information as from laser scanned models, but also the texture

information on all the 3D surfaces from the images. In order to fully exploit such texture

information, we will use a cost function expressed by image data directly combined with

parameters of homogeneous transforms. After these homogeneous transforms are estimated,

the 3D surfaces from each of the separate 3D models will be transformed to the reference

location. Then the integration process is applied to the regions at the reference image loca-

tion by adjusting and expanding the regions according to the shapes of their corresponding

regions from other images. After the regions in the reference image are integrated with their

corresponding regions from other regions using such procedure, we apply the Delaunay tri-

angulation to these regions, and the textures can be mapped to these regions from different

images.

One distinct property of our algorithm is that it makes use of region information for the

disparity estimation. Among the current disparity estimation algorithms, most of them are

pixel-based, while some others use region matching. Due to the ill-posed nature of disparity

estimation, there are intrinsic problems which both pixel-based matching and region match-

ing could not solve, e.g., the matching for untextured areas in pixel-based matching, and the

matching for sky areas with foreground objects in region matching. In addition, for region

matching, there is the problem on how to obtain the correct regions through segmentation

and how to efficiently manipulate them (e.g. merging). Our disparity estimation algorithm

uses a set of procedures incorporating both pixel-based matching and region matching in

order to solve such intrinsic problems in a joint way.

Currently, our disparity estimation algorithm only works for parallel stereo cases in which

disparities only happen along horizontal direction. For non-parallel stereo cases in which

there are also vertical disparities, rectification is needed to adjust the images so that there

are only horizontal disparities between the rectified images, before applying our algorithm

to the stereo image pair.

One feature of our algorithm is that there are many parameters to be chosen for different

stages of the whole process. For example, the quantization parameter for the segmentation
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stage, the threshold of the number of pixels for the definition of large regions and small

regions, the number of iteration steps for the variational regularization, etc. Currently, most

of them are determined empirically, and are used for all the three image sets in this thesis.

Although the robustness of these parameters to other image sets needs to be verified, some

of them can compensate each other and therefore there exists some internal robustness (e.g.,

if the quantization parameter for segmentation is small, resulting in more small regions, such

more regions might still be merged with surrounding regions in the later small region merging

stage to eliminate outliers in the disparity maps).

1.4 Summary of Contributions

This thesis contains contributions in two main areas related to image-based 3D reconstruc-

tions: image matching and 3D model integration.

Our matching algorithm is mainly focused on dense disparity estimation for stereo images,

which starts from pixel-based approaches [19][20], as well as from the traditional block-based

SSD (sum-of-squared-difference). We extend these algorithms to a hybrid approach which

depends on both pixel-based and region-based matching techniques. In this way, we can

obtain disparity maps with very high subjective impression which are coherent to actual

object surfaces. The main value of our algorithm, as well as a property which makes it distinct

from other disparity estimation algorithms, lies in the fact that it combines the pixel-based

and region-based approaches so that some intrinsic problems (keeping the object boundaries

sharp and crisp, linear variation for slanted surfaces, identification of zero disparity for sky

regions, etc.) of each approach can be solved in a combined way.

Our 3D model integration scheme is performed in image space by using image intensi-

ties and disparities, rather than in 3D space by using 3D point sets as for some popular

algorithms. Thus, both of our ego-motion estimation and final integration procedure are

performed in image space with implicit 3D information and with Delaunay triangulation ap-

plied only at the very final stage, rather than in 3D space with explicit 3D information and

triangular meshes. This is a main difference of our integration procedure with most of the
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existing algorithms, which is also a novelty for our approach. Compared with the integration

in 3D space for laser scanned models, such procedure will increase the efficiency while reduce

the ambiguities cause by the usually noisy 3D models from image matching results.

1.5 Thesis Organization

In this thesis, we first give in Chapter 2 an overview of the disparity and motion estimation

algorithms currently used, as well as the algorithms for 3D alignment. Then in Chapter 3, the

new hybrid matching algorithms that we developed are shown, in which a robust pixel-based

disparity estimation scheme based on the Gabor transform is first given, followed by the

description on how we combine a color-based segmentation algorithm (Mean Shift) to the

region matching based on the pixel-based matching results. Also in Chapter 3, we present

our modified hybrid matching algorithm in which the problem on how to identify the regions

with zero motion can be better handled (this is particularly useful for the detection of sky

regions which usually give zero disparity values in stereo images), and apply this modified

matching algorithm to a translational video sequence with outdoor scenes in order to show the

effectiveness of this modified matching algorithm. In Chapter 4, we continue to improve our

hybrid matching algorithm based on our own color-based segmentation scheme and region

merging techniques along with some point-based 3D reconstructions. Then in Chapter 5,

the methods that we developed for 3D model alignment and integration, which are different

from the frequently used methods for laser scanned 3D models are presented, together with

mesh-based 3D reconstructions and some quantitative performance measurements. Finally,

conclusions and future directions are given in Chapter 6.



Chapter 2

Background on Disparity/Motion

Estimation and 3D Model Integration

In this chapter, we give a review of the current literature and algorithms for disparity and

motion estimation, as well as for the integration of separate 3D models.

2.1 Disparity Estimation

In the area of computer vision, disparity estimation using stereo image pairs has been a

longstanding problem. As shown in Fig. 2.1, assume we have a pair of stereo images Il (left

image) and Ir (right image). The disparity value for a pixel with coordinates (x, y) in Il is

defined as the displacement between the coordinates of (x, y) and its corresponding pixel

(xr, yr) in Ir. In the special case of parallel stereo, which we are dealing with in this thesis,

this displacement can be approximately regarded as only occurring in horizontal direction

d(x, y) = x− xr (2.1)

with y = yr. The depth value for (x, y), which is the distance between its real 3D world

coordinates (X,Y, Z) and the baseline (the line that connects the two projection centres of

Il and Ir), can be obtained as

Z(x, y) =
fB

d(x, y)
(2.2)

13
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Figure 2.1: A standard stereo pair

where f is the focal length of the camera, and B is the baseline distance.

Many algorithms have been proposed to handle the issue of disparity estimation, and

they can be classified into the following main categories:

• Feature-based methods : These algorithms find the correspondence between some feature

points of the stereo image pair, and usually give sparse disparity maps.

• Block-based methods : The most often used methods, which find the correspondence

for a block area in one image by comparing it with some blocks in shifted regions in

another image.

• Energy-based methods : These approaches estimate the correspondence in a minimiza-

tion and regularization formulation, which usually consists of an iterative solution of

the associated discretized Euler-Lagrange equations [21]–[25], or use of some optimiza-

tion algorithms like graph cuts [2][3] for the minimization of the associated functionals.

• Phase-based methods : Based on the Fourier phase information, the correspondence is

estimated from the phase difference between the left and right Fourier-phase images.

Another important algorithm that belongs to this category is to apply the Gabor

transform to the images and find the disparity from the coefficients of the transform

[26][27][10].
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• Parametric model methods : This kind of method uses a function which depends on

several parameters to express the shape of a disparity map, converting the problem

of disparity estimation to the problem of parameter optimization for the disparity

functions [28][29].

2.1.1 Feature-Based Methods

There is a great deal of literature dealing with the matching of feature points and edges, under

various conditions like small-baseline or large-baseline, two-view or three-view, etc. Since such

methods only give sparse disparity maps, while what we need are dense ones, they did not fall

into our interests at first. However, as our research results so far have demonstrated, we found

that it is very helpful to combine the matching results from feature-based methods with the

matching process of dense disparity. This can give significant improvement in keeping the

contours and shapes of objects clear in dense disparity matching.

There are different selection criteria for features and the resulting features selected vary,

e.g. Harris corners [30] and SIFT features [31], and this gives only feature points. The match-

ing for these feature points can be performed in two-view or three-view contexts [32] exploit-

ing epipolar constraints. Other criteria include contour-based [33][34][35] as well as the one

based on line segments [36]. These contour- or line-based algorithms usually detect edge

pixels first, and then form a certain number of contours by linking connected edge pixels and

try to find the mapping of those contours in another image by some optimization methods

like least squares.

2.1.2 Block-Based Methods

Block-based methods are the most traditional methods for disparity estimation and are still

used extensively. The basic idea is to compare the pixel values in a small block of one image

in the stereo image pair with several candidate blocks in another image. There are three main

matching cost functions for block-based methods: sum-of-squared-difference (SSD), sum-of-

absolute-difference (SAD), and normalized cross-correlations. A very good survey of these
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methods as well as some extension methods based on block-based techniques can be found

in [37].

The general matching cost function of SSD is given as (assuming horizontal disparity

only)

ESSD(d) =
∑∑

x,y∈B
[Il(x, y)− Ir(x− d, y)]2 (2.3)

where Il and Ir are left and right images respectively, and B is the block containing a certain

number of pixels. Usually there is a searching range for d ∈ {0, dmax} d ∈ Z is an integer, and

the disparity d̂ for the pixels in B is determined to be the value which gives the minimum

value of ESSD(d) in the searching range:

d̂ = arg min
d

ESSD(d). (2.4)

Similarly, for the case of SAD, the matching cost function is defined as

ESAD(d) =
∑∑y

x,y∈B
|Il(x, y)− Ir(x− d, y)| (2.5)

and the disparity value d̂ for a block is determined in the same way as Eq. (2.4) for the SSD.

For the case of normalized cross correlation, its matching cost function is

Ecorr(d) =

∑x ∑y
x,y∈B[Il(x, y)Ir(x− d, y)]√∑x ∑y

x,y∈B I2
l (x, y)

√∑x ∑y
x,y∈B I2

r (x− d, y)
(2.6)

and the disparity d̂ for the pixels in B is determined to be the value which gives the maximum

value of Ecorr(d) in the searching range:

d̂ = arg max
d

Ecorr(d). (2.7)

We show some disparities estimated by SSD and SAD. The software can be downloaded

from www.middlebury.edu, and the related document is [37]. First, we need to introduce some

standard stereo image pairs that are used frequently in the literature on disparity estimation.

The first one is called Tsukuba, its left and right images are shown in Fig.2.2. This pair also

has a manually labeled disparity map – the so called ground truth disparity – in order that

the estimated disparity for Tsukuba from any algorithm can be compared with a “true”
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(a) (b)

Figure 2.2: Original Tsukuba pair (288×384): (a) left image; (b) right image.

disparity map to obtain a quantitative performance measure for that algorithm. The ground

truth disparity is shown in Fig. 2.3, in which the intensity values are proportional to disparity

values – the brighter the intensity the larger the disparity values. Although Fig. 2.3 is called

“ground truth”, it doesn’t mean that the disparities for all the pixels are correct, because

it does not take into account occluded pixels, and does not reflect the continuous variation

of disparity values (all the disparity values in Fig. 2.3 are integers). The disparity maps

estimated by SSD and SAD (using a block with size 9× 9) are shown in Fig. 2.4.

The second stereo pair is from the sequence Flower Garden, which was taken by trans-

lational movement of the camera. Here we use the 21st and 23rd images as left and right

images, as shown in Fig. 2.5. The disparity maps for this stereo pair estimated by SSD and

SAD are shown in Fig. 2.6 (9× 9 for block size).

Both Tsukuba and Flower Garden are images of real environments. There are more

synthetic stereo pairs in [37], but since we are dealing with the disparity estimation for IBR

of real environments, we did not use any synthetic image pairs.

The third image pair was taken by ourselves in VIVA Lab, and is shown in Fig. 2.7. The

disparity maps for this stereo pair estimated by SSD and SAD are shown in Fig. 2.8 (9× 9

for block size).

From the results in Fig. 2.4, Fig. 2.6 and Fig. 2.8, we can see that the disparities estimated
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Figure 2.3: Ground truth disparity map for Tsukuba

(a) (b)

Figure 2.4: Estimated disparity for Tsukuba by block-based methods: (a) SSD; (b) SAD.
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(a) (b)

Figure 2.5: Original images from Flower Garden (240×352): (a) left image; (b) right image.

(a) (b)

Figure 2.6: Estimated disparity for Flower Garden by block-based methods: (a) SSD; (b)

SAD.
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(a) (b)

Figure 2.7: VIVA Lab (480×640): (a) left image; (b) right image.

(a) (b)

Figure 2.8: Estimated disparity for VIVA Lab by block-based methods: (a) SSD; (b) SAD.
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by SSD and SAD usually distort the object boundaries (as for Tsukuba), and give blocking

effect for untextured areas (as for VIVA Lab). We will use these three stereo pairs to test

and compare the performance of different disparity estimation algorithms, including our own

in Chapter 3.

2.1.3 Energy-Based Methods

The energy-based methods can be classified into two approaches: variational regularization

with a partial differential equation (PDE) approach, and the approach using discrete opti-

mization methods. They are all based on finding the minimization for the following energy

functional:

E =

∫ ∫
[Il(x, y)− Ir(x− d, y)]2 dx dy (2.8)

where Il and Ir are left and right images respectively, and d is the disparity value at location

(x, y) in the left image. Since disparity estimation is an ill-posed inverse problem in which

one pixel in an image might have many matching pixels in another image, regularization

is needed to control the smoothness of the disparity values. Therefore, there is usually a

regularization term added to Eq. (2.8):

E =

∫ ∫
[Il(x, y)− Ir(x− d, y)]2 dx dy + λER(d, Il) (2.9)

where ER(d, Il) is a disparity- and image-related regularization term and λ is the regular-

ization coefficient. The variational regularization approach and the discrete optimization

approach treat the minimization of Eq. (2.9) in a different way.

Variational Regularization

The variational regularization approach usually uses a regularization term involving the gra-

dient values of the disparity field as well as the image values. This comes from the regular-

ization functionals used in optical flow techniques in which the gradient values of the motion

vectors are used. Some functionals also exploit image gradients to make the regularization

more precise along edge pixels, and this feature is usually adopted for the regularization

functionals in disparity estimation in order to preserve depth discontinuities.
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In the following, we use ∇d = [ ∂d
∂x

, ∂d
∂y

]t and ∇Il = [∂Il

∂x
, ∂Il

∂y
]t to represent the gradients of

d and Il.

There are two main forms of the regularization functionals used in disparity estimation.

The first one is [21][23]:

ER(d, Il) =

∫ ∫ [
(∇d)tD(∇Il)∇d

]
dx dy (2.10)

where D(∇Il) is a matrix defined by:

D(∇Il) =
1

|∇Il|2 + 2υ2








∂Il

∂y

−∂Il

∂x







∂Il

∂y

−∂Il

∂x




t

+ υ2Id



 (2.11)

where Id is the identity matrix and υ is an arbitrary positive real number. The regulariza-

tion term ER(d, Il) is anisotropic: in homogeneous areas the disparities are smoothed in all

directions since the values of ∇Il are very small and thus the smoothing power of ER(d, Il)

is large, while in textured areas including edges the smoothing is mainly along the edge

but not across it since the values of ∇Il are large along the edges and thus the smoothing

power of ER(d, Il) is small. This functional was developed from the Nagel and Enkelmann

functional [38], which was shown to be the best quadratic smoothness constraint for optical

flow estimation [39].

The second regularization functional frequently used is [24][25]:

ER(d, Il) =

∫ ∫
1

(1 + |∇Il|2)2
|∇d|2 dx dy. (2.12)

Thus, in the variational regularization approach, the final goal is to minimize the overall

energy functional of (2.9) with respect to the disparity d. The minimization process is carried

out by first obtaining the associated Euler-Lagrange equation of (2.9); then assuming a

pseudo-time variable t, we apply the gradient descent method to the Euler-Lagrange equation

to obtain a converged disparity d. The corresponding Euler-Lagrange equation for (2.9) with

regularization functional as (2.10) is:

∂d

∂t
= [Il(x, y)− Ir(x− d, y)]× Ir,x(x− d, y) + λdiv(D(∇Il)∇d) (2.13)
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and the Euler-Lagrange equation for (2.9) with regularization functional as (2.12) is:

∂d

∂t
= [Il(x, y)− Ir(x−d, y)]× Ir,x(x−d, y)−λ

{
∂

∂x

[
dx

(1 + I2
l,x)

2

]
+

∂

∂y

[
dy

(1 + I2
l,y)

2

]}
(2.14)

in which we modified (2.12) since from our experiments we found that using the regularization

term reflected in (2.14) gives better results. We will leave the topic of the discretization

scheme for the numerical solutions of (2.13) and (2.14) to next chapter in which we actually

use the variational regularization approach for the disparity estimation.

In [21]–[24], the disparity estimated from block-based methods (correlation or SSD) is

used as a coarse estimation for the initial values of d in (2.13) and (2.14), and the iteration

procedures for solving (2.13) and (2.14) act as refinement processes for the disparity field.

Thus, the disadvantage of the block-based methods also affect the performance of the varia-

tional regularization approach, because the final solutions or converged values of (2.13) and

(2.14) can easily fall into local minima if the initial values are not accurate enough.

Discrete Optimization Approach

Several years ago, a new stereo algorithm called graph cuts was developed for disparity

estimation [2][3]. This algorithm is based on discrete combinatorial optimization techniques.

The idea of this approach is to construct a graph consisting the pixels of the image as well as

the labels (disparity values) for the energy function to be minimized, and using an efficient

combinatorial optimization algorithm like the max-flow algorithm so that the minimum cut

applied on the graph also minimizes the energy. It also treats Eq. (2.9) with two terms

E(f) = Edata(f) + Esmooth(f) (2.15)

where f is a labeling which assigns a label fp to a pixel p. Edata is a data penalty term similar

to the first term in Eq. (2.9) which measures how well fp fits pixel p

Edata(f) =
∑

p

Dp(fp) (2.16)

where Dp could be a squared difference function as in the first term of Eq. (2.9). Esmooth

performs as a regularization term corresponding to the second term in Eq. (2.9), which
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measures the smoothness of the labels f . In [2], Esmooth is defined as:

Esmooth(f) =
∑

{p,q}∈N
Vp,q(fp, fq) (2.17)

where N is the set of neighboring pixels, and Vp,q(fp, fq) can be defined as

Vp,q(fp, fq) = min(K, |fp − fq|2) (2.18)

or

Vp,q(fp, fq) = min(K, |fp − fq|) (2.19)

with K a constant.

The approach of graph cuts can give, up to the present, the best disparity maps for some

images in which the surfaces of most of the objects are fronto-parallel (surface that is parallel

to the lens of the camera). The typical example is Tsukuba, as shown in Fig. 2.9. Although

graph cuts can not give a global optimization, it can bring the solution to a strong local

minimum.

(a) (b)

Figure 2.9: Disparity for Tsukuba by graph cuts: (a) result from [2]; (b) result from [3].

However, one main disadvantage of graph cuts is the fact that it does not handle tex-

tured/untextured slanted surfaces well. This is due to the fact that the labels assigned to

all the disparity values are discrete, and hence the disparity values are all integers, and also

because the minimization processes of graph cuts does not take into account the derivatives
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of image densities as well as disparity values. As shown in Fig. 2.10, we can see that graph

cuts gives poor performance especially for those slanted surfaces, in which it could not iden-

tify linear variation for untextured surfaces, or gives highly quantized disparity values for

textured slanted surfaces. In addition, some fine features like the twigs in Flower Garden

could not be clearly distinguished by graph cuts.

(a) (b)

Figure 2.10: Disparity estimated by graph cuts [3]: (a) Flower Garden; (b) VIVA Lab.

2.1.4 Phase-Based Methods

Disparity can also be estimated by comparing the phase difference between the two images.

Since disparity values vary over the whole image, the localized phase information is needed.

Therefore, the windowed Fourier transform, or preferably, the Gabor transform, is usually

employed.

In order to show how the disparity can be obtained from the Fourier phase information

of the stereo images, first assume that the right image is a pure horizontal translation of the

left image:

Ir(x, y) = Il(x− d, y) (2.20)

where d is constant over the whole image. From the properties of the Fourier transform:

Îr(ω1, ω2) = Îl(ω1, ω2)e
−iω1d. (2.21)
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Therefore, we have:
Îl(ω1, ω2)Î

∗
r (ω1, ω2)

|Îl(ω1, ω2)||Îr(ω1, ω2)|
= eiω1d (2.22)

Hence from the above normalized phase-correlation we can obtain the phase difference be-

tween Îl(ω1, ω2) and Îr(ω1, ω2), and the disparity can be obtained by taking the inverse

Fourier transform of the correlation product, resulting in an impulse at the location d.

However, in practice, the disparity values vary over the whole image. Thus it is desirable

to measure the phase difference locally rather than globally. In order to do this we need to

use the windowed Fourier transform. The best choice is to use the Gabor function because

the Gaussian window performs the localization in both the spatial and the frequency do-

mains simultaneously. The Gabor functions are Gaussian functions modulated by complex

sinusoidals. For the 2-D case, they are defined as follows:

g(x, y) =
1

2πσxσy

exp

[
−

(
x2

2σ2
x

+
y2

2σ2
y

)]
× exp [i (ω10x + ω20y)] (2.23)

where ω10 and ω20 define the spatial frequencies in x and y directions respectively. Its Fourier

transform has the form:

G(ω1, ω2) = e−π[σ2
x(ω1−ω10)2+σ2

y(ω2−ω20)2]. (2.24)

The Gabor functions are practically implemented by Gabor filters, which are actually

discretized versions of (2.23). In the method of [26], assume the Gabor filter is tuned to a

single frequency, and the outputs for the left and the right images are Gl(x, y) and Gr(x, y),

with φl(x, y) and φr(x, y) representing their phase components. Let φl,x(x, y) and φr,x(x, y)

represent the x-derivatives of φl(x, y) and φr(x, y), which is calculated as

φl,x(x, y) =
Im[G∗

l (x, y)Gl,x(x, y)]

|Gl(x, y)|2 (2.25)

and similarly for φr,x(x, y). Then the estimated disparity d(x, y) for location (x, y) is deter-

mined by [26]:

d(x, y) =
2[φl(x, y)− φr(x, y)]2π

φl,x(x, y) + φr,x(x, y)
(2.26)

where [θ]2π denotes phase-wrapping, i.e., [θ]2π ∈ (−π, π].
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In [27], a set of quadrature-pair Gabor filters is used. Each quadrature-pair Gabor filter is

a set of discretized samples of a Gabor function tuned with different ω10 and ω20 to different

directions. Assume that the outputs of the kth filter pair are Gk
l (x, y) and Gk

r(x, y) for the

left and right images respectively. Instead of doing the phase-wrapping, a local weighted

phase-correlation between the two images is calculated as

Ck(x, y, τ) =
W (x, y)⊗ [Gk

l (x, y)Gk∗
r (x + τ, y)]√

W (x, y)⊗ |Gk
l (x, y)|2

√
W (x, y)⊗ |Gk

r(x + τ, y)|2 (2.27)

where W (x, y) is a small and localized window, ⊗ represents correlation, and τ is a preshift

of the right filter output. Then a summation is obtained over all the filters:

S(x, y, τ) =
∑

k

Ck(x, y, τ) (2.28)

and the disparity for location (x, y) can be estimated by finding a peak in the real part of

S(x, y, τ) and verified by a zero near (x, y) in its imaginary part.

2.1.5 Parametric Model Methods

Parametric model-based disparity estimation differs from the above mentioned algorithms

in that it tries to express the disparity map as a function, and the function itself is depen-

dent on several parameters. Therefore, the problem of disparity estimation for each pixel is

transformed to the estimation of parameters for the function that express the shape of the

disparity map for a certain region [28][29].

In [29], a hierarchical scheme is used and the disparity map is expressed as

d(x, y) =
N∑

k=1

wkφk + w0 (2.29)

where φk is the kth Gaussian function:

φk = e
−
[

(x−tx,k)2

σ2
x,k

+
(y−ty,k)2

σ2
y,k

]
(2.30)

and N is the number of Gaussians which is dependent on the hierarchical scheme; wk is

the combination weight; w0 is a constant shift. To save the computational cost, in [29], only
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the wk are treated as free parameters, and are estimated iteratively through a variational

function containing the derivatives of an error function with the wk.

In [28], a disparity surface is defined as

S(x, y) = w0 + wy · y + wx · x +
N∑

i=1

wi · e
− (x−µx

i )2+(y−µ
y
i
)2

σ2
i (2.31)

Then the parameters of Gaussian functions, i.e., the centers (µx
i , µ

y
i ), the spreads σi are

estimated along with the weighting parameters, by a constrained nonlinear optimization

scheme – sequential quadratic programming (SQP) [40].

The main advantage of parametric model methods is that such algorithms can avoid the

noise and outliers in the estimated disparity maps that usually happen in pixelwise-based

methods.

2.2 Motion Estimation with Variational Regularization

Among the large amount of literature and algorithms for optical flow and motion estima-

tion, differential techniques [41][42] with variational regularization form a major class. These

techniques involve a functional including the displaced frame difference and a smoothing

term, and usually descent-based methods are used to minimize the functional by solving its

associated Euler-Lagrange equations. Since this class is closely related to the variational reg-

ularization approach for the disparity estimation, and is also an approach that we adopted

in later chapters, so we give a short introduction to this class of motion estimation.

The algorithms of this class are all based on the assumption that the intensities of image

objects in subsequent frames remain constant:

I(x + u, y + v, t + 1) = I(x, y, t) (2.32)

where the displacement field (u, v)T is called optical flow and is in pixel unit, and the frame

interval is assumed to be 1. Under the condition of small displacements, a first order Taylor

expansion can be applied to (2.32) yielding the well known optical flow constraint

Ixu + Iyv + It = 0 (2.33)
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where subscripts represent partial derivatives. To alleviate the noise and outliers in the esti-

mated optical flow field, Horn and Schunck embedded a quadrature regularization functional

into a global energy function

EHS(u, v) =

∫∫
[(Ixu + Iyv + It)

2 + α(|∇u|2 + |∇v|2)] dx dy (2.34)

and (u, v)T can be calculated in a recursive descent approach by solving the associated

Euler-Lagrange equations of (2.34) with respect to u and v.

(2.34) is an early functional with regularization term used for motion estimation, and

there are extensions based on it which, except for the gradients of optical flow field, also

make use of the gardient values of image intensities in the regularization term, similar to

(2.10) and (2.12).

2.3 3D Model Integration

The algorithms involved in the problem of 3D model alignment, or 3D registration, can be

divided into two major steps: ego-motion estimation, and integration of separate 3D models.

2.3.1 Ego-Motion Estimation

Ego-motion estimation, or global motion estimation, is the estimation of the camera motion

in 3D space represented by six parameters – three rotational parameters and three trans-

lational parameters. The transformation that transfers the 3D coordinates of one camera

location to another one is called homogeneous transformation. In order to accurately align

3D models estimated at different locations, we need to transfer these 3D models to one

reference location, which can be achieved once we have accurate ego-motion parameters.

Currently, depending on the application area, there are two main approaches for ego-

motion estimation: the bundle adjustment (usually for real image sequences) and the iterative

closest point (ICP, usually for laser scanned 3D models).
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Bundle Adjustment

Bundle adjustment originated in the field of photogrammetry [43], and is widely used in the

computer vision community for most of the feature-based multiview structure (3D positions

of feature points) and ego-motion estimation (camera poses) algorithms. An overview of its

applications in computer vision can be found in [44], and an implementation with C++ by

exploiting its sparse structure can be found in [45].

According to [45], suppose there are n 3D points in m views, we represent the projection

parameters of each camera j by a vector aj, and the 3D coordinates of each 3D point i by

a vector bi. Assume the projection of the i-th point on image j be xij. Then the bundle

adjustment tries to minimize the reprojection error with respect to all 3D points and camera

parameters by

min
aj ,bi

n∑
i=1

m∑
j=1

||Q(aj,bi)− xij||2. (2.35)

Q(aj,bi) is the predicted projection of point i on image j, which implicitly includes camera

pose parameters (Q(aj,bi) = Aj(R|T)bi where R and T represent rotation matrix and

translation vector, and Aj represents the projection matrix of camera j), and ||x − y||
represents the Euclidean distance between the image points x and y. Then bundle adjustment

minimizes (2.35) using a non-linear Levenberg-Marquardt optimization method to jointly

estimate aj which implicitly includes camera pose parameters, and bi.

Iterative Closest Point (ICP)

Starting from the foundation paper by Besl and McKay [46], ICP has become the major

algorithm for 3D model registration, especially for laser-scanned 3D models. Although there

are many variants of ICP [47], it has two basic steps which should be carried out iteratively:

(1) finding the closest point pairs by searching nearest neighbor in 3D space using kd-tree

algorithm [48]; (2) calculating the best homogeneous transformation between all matched

point pairs. During each iteration step, the parameters of the homogeneous transformation
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can be estimated by minimizing the following cost function

E =
1

N

N∑
i=1

|Ai −RBi −T|2 (2.36)

where Ai and Bi are 3D coordinates of the two sets of given point pairs, and N is the

total number of points Ai as well as Bi. The details on how to solve (2.36) to estimate the

rotational matrix R and the translational vector T can be found in [49] and [46].

Ego-Motion Estimation in Image Space

Both bundle adjustment and ICP algorithms perform 3D alignment in 3D space. On the

other hand, there exist image intensity-based ego-motion estimation methods, such as [50].

In this approach, it is the image intensity, rather than the coordinates of 3D points like in

(2.36), that is involved in the cost function which includes the parameters of a homogeneous

transformation. In [50], it is assumed that the main motion of the camera is translational,

with slight rotations around x and z axis. Then the two consecutive frames Ik−1 and Ik have

the following motion model:

P + Tx = R−1P′ (2.37)

where P and P′ are corresponding 3D points in the coordinate systems of Ik−1 and Ik, and

Tx = [Tx, 0, 0]t represents the horizontal translation. The matrix R represents the rotation

from Ik−1 to Ik. Based on the assumption of small rotations, as well as the constant depth

for each pixel due to the translational motion, the image coordinates of Ik−1 and Ik have the

following relations:

xk−1 − TxDk−1(xk−1, yk−1) = cos(α)xk − sin(α)yk

yk−1 − b = sin(α)xk + cos(α)yk (2.38)

where Dk−1(xk−1, yk−1) is the normalized disparity for (xk−1, yk−1) (disparity of (xk−1, yk−1)

over Tx), α denotes the rotation about z axis, and the rotation around the x axis is approx-

imated by a uniform vertical translation b. Also, with small rotation about the z axis, we
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have cos(α) ≈ 1 and sin(α) ≈ α, and these give the following cost function to be minimized:

E(Tx, b, α) =
∑

xk−1,yk−1

[Ik−1(xk−1 + TxDk−1(xk−1, yk−1), yk−1)− Ik(xk − αyk, yk + b + αxk)]
2.

(2.39)

Using the first order Taylor expansion, we have following approximations:

Ik−1(xk−1 + TxDk−1(xk−1, yk−1), yk−1) ≈ Ik−1(xk−1, yk−1) +
∂Ik−1

∂xk−1

TxDk−1(xk−1, yk−1)

Ik(xk − αyk, yk + b + αxk) ≈ Ik(xk, yk)− ∂Ik

∂xk

(αyk) +
∂Ik

∂yk

(b + αxk) (2.40)

and we obtain the final cost function by substituting Eq. (2.40) into Eq. (2.39):

E(Tx, b, α) =
∑

xk−1,yk−1

[Ik−1(xk−1, yk−1)− Ik(xk, yk) +
∂Ik−1

∂xk−1

TxDk−1(xk−1, yk−1)

+
∂Ik

∂xk

(αyk)− ∂Ik

∂yk

(b + αxk)]
2. (2.41)

The minimization of Eq. (2.41) can be achieved by taking the derivatives of the cost function

with respect to the three ego-motion parameters and equalize them to zero, giving a set of

three linear equations with three variables. Therefore, the translation as well as the rotation

matrix of homogeneous transformation can be estimated by such direct method based on

image intensities.

2.3.2 Integration of Separate 3D Models

Once the ego-motion parameters are obtained, we have the relative poses of cameras at

different locations. Thus the separate 3D models at different locations can be transfered

to the reference location by homogeneous transform. Then, as a final stage, the remaining

problem is how to integrate them into one whole 3D model.

The existing algorithms for 3D model integration can be classified into two categories

[51]: the volumetric approach, and the surface approach.

The volumetric approach, e.g. [52] and [53], partitions the 3D space into voxel grids,

and puts 3D points from all models into such grids. Then, the surface of the model can be

generated by triangulation using an Iso-Surface algorithm – marching cubes [54].
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The surface approach, such as [55] and [56], generates initial triangular meshes in separate

3D models, and then these triangular meshes are stitched together. The stitching processes

usually starts with the detection of the overlapping and non-overlapping mesh parts from

different 3D models, and then determines which models’ contribution to the overlapping

region need to be kept, while the others to be discarded. Finally the gaps between the

meshes of the overlapping and non-overlapping parts are filled by applying triangulation on

the vertices of existing triangles along the gaps.

According to [51], surface approach is limited to processing 3D data in image format,

and is superior to the volumetric approach if the purpose is to generate the most accurate

triangular meshes possible relative to the original data. This is because the surface approach

triangulates the data at the original resolution. However, the surface approach usually needs

more memory space than that of the volumetric approach since it needs to keep all the

original data points in memory, while for the volumetric approach once a point has been

processed it can be discarded.

2.4 Summary

For all the disparity estimation algorithms listed in this chapter, one limitation is that most

of them are not robust. There are two aspects to this issue:

• For block-based methods, the block size needs to be determined according to the com-

plexity of the scene. Since most of the variational regularization methods use the dis-

parity results from block-based methods as initial values, this also makes the algorithms

involving variational regularization not robust. Although there are adaptive algorithms

for the selection of block size, they are very time-consuming.

• The algorithms based on graph cuts method, which are popular approaches now, only

favor objects with fronto-parallel surfaces. For scenes with slanted surfaces, the perfor-

mance of such algorithms decreases dramatically.
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In order to address the robustness issue for disparity estimation, we use the following two

approaches:

• Use Gabor transform to estimate a coarse disparity map as initial disparity values for

variational regularization, instead of block-based ones, since the methods that we use

based on Gabor transform do not need to determine any block size in advance.

• Exploit image segmentation and perform region-matching for the further improvement

of disparity maps.

For 3D model integration, we use the image intensity-based method for the ego-motion

estimation, as well as the surface approach for the final 3D model integration, since such a

procedure will give us a more direct and simple, less ambiguous method which is suitable for

image-based 3D modeling with results close to the original image data, while the procedure

with ICP and volumetric approach might be more suitable for laser scanned 3D models.

We will give the detailed discription and results for our disparity and motion estimation

algorithms in Chapter 3 and Chapter 4. In Chapter 5, the detailed procedure that we used

for integrating 3D models estimated at different camera locations will be presented with

results measured both visually and quantitively, followed by a conclusion in Chapter 6.



Chapter 3

Region-Based Disparity Estimation

In this chapter, we present our new developments on the issue of disparity estimation ex-

ploiting segmentation techniques and region matching. First we would like to unify the use

of the terms “disparity” and “motion”. Both disparity and motion estimation concern find-

ing the pixel displacements between different images. The main difference is that the scenes

in images for disparity estimation are usually static (only the camera is moving) and thus

the displacements involved in these images can be seen as rigid motion, while for motion

estimation both objects in the scenes and the camera could be moving. Therefore, disparity

estimation can be seen as a special case of motion estimation. Usually disparity estimation

is applied to a pair of stereo images and the pixel displacements involved can be as high

as dozens of pixels, while motion estimation can be applied to any two or more consecutive

image frames with (in many cases) comparatively smaller pixel displacements (several pix-

els). In this thesis, each sequence we use has more than two images and the scenes inside

these images are all static. Therefore we will use the term “disparity” when we apply our

algorithms to two images, and use “multiview disparity” when we apply our algorithms to

more than two images in the sequences.

Our algorithm can be seen as a combined approach using both pixel-based and region-

based matching techniques. For the pixel-based method, we use the Gabor transform and

variational energy method, in which the disparity results from the Gabor transform are used

as coarse disparities to serve as initial values for the partial differential equations (PDE) from

35
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the variational energy functional, so that these coarse disparities can be further refined by

variational regularization in an iterative process. For the region-based method, a color-based

segmentation algorithm is used and a region-matching process is applied to each region.

The final disparity estimation values are joint results by analyzing the results from both

pixel-based matching and region matching to each region in order to to obtain a better

solution.

3.1 Disparity Estimation

As shown in section 2.1.2, the frequently used disparity estimation methods SSD and SAD

have some disadvantages like the distortion of object boundaries and losing tiny features.

Although we can alleviate these problems to some extent by adjusting the block size of

SSD and SAD. This makes SSD and SAD not robust. In order to have a robust disparity

estimation method independent of scene complexities, we developed a disparity estimation

algorithm based on the Gabor transform for which there is no need to select a block size in

advance.

3.1.1 Disparity Estimation Using the Gabor Transform

As stated in section 2.1.4, due to the fact that the disparity values vary over the whole image,

it is desirable to perform disparity estimation by making use of the localization properties

of the Gabor transform in both the spatial and the frequency domain. The localization

in the spatial domain limits the regions taken into account by the Gabor transform to a

small neighborhood around that particular pixel location, while in the frequency domain it

can bring band-pass filtered information at different frequencies for detailed analysis. We

show these ideas in Fig. 3.1 in which the real and imaginary parts of a Gabor function with

ω10 = ω20 = 0.5π are shown as well as its Fourier transform. We can observe the localizations

in both spatial and frequency domains, and the function is tuned to 45◦ with respect to the

x-axis since ω1 = ω2.

We use a set of discretized version of (2.23), which is shown in Chapter 2, as Gabor filters
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Figure 3.1: Gabor function with ω10 = ω20 = 0.5π: (a) real part; (b) imaginary part; (c)

Fourier transform.

with different frequencies tuned to different directions, to implement the Gabor transform

on the stereo images. The method that we use to estimate the disparity differs from the

methods of Fleet et al. in that we avoid the phase-wrapping, and the uncertainty from phase

correlation (2.28) in which a peak in its real part and a zero in its imaginary part need to

be identified to jointly determine a disparity value. We propose a new and simple method to

process those Gabor coefficients [20] in which the disparity d̂ ∈ [0, dmax] for a position (x, y)

in the left image is determined as:

d̂(x, y) = arg min
d

∑

k

[|Re{Gk
l (x, y)} −Re{Gk

r(x− d, y)}|2

+|Im{Gk
l (x, y)} − Im{Gk

r(x− d, y)}|2] (3.1)

where Re{Gk
l (x, y)} and Im{Gk

l (x, y)} are real and imaginary parts of Gk
l (x, y), and similarly

for Gk
r(x, y). (3.1) is like performing SSD using Gabor coefficients, since each Gabor filter
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has a certain length (like a window with a certain width) and therefore each coefficient from

Gabor filtering at a specific location (x, y) is the result of convolving this Gabor window

with the pixels at (x, y) and its neighboring pixels under this Gabor window. Thus we can

do this pixel-by-pixel rather than using a block with pre-determined size.

We use three values {π/16, π/8, π/4} for the central frequency ω0 =
√

ω2
01 + ω2

02 of these

Gabor filters. For each frequency, there are four filter pairs tuned to orientations 0◦, 45◦,

90◦ and 135◦ respectively. To test this algorithm under different scene conditions, we applied

these filters on the three sets of stereo image pairs used in Chapter 2: Tsukuba, Flower

Garden and VIVA Lab. The results are shown in Fig. 3.2 and Fig. 3.3, from which we

(a) (b)

Figure 3.2: Coarse disparities estimated by (3.1): (a)Tsukuba; (b)Flower Garden.

can see that from a coarse point of view the disparities estimated by (3.1) are good except

for VIVA Lab. In this case, the estimated disparity is noisy for the untextured and slanted

surfaces. Also, the method that we used here is robust in the sense that (3.1) is a pixel-based

approach for images with different kinds of scenes and texture levels, i.e., the disparities

are estimated pixel-by-pixel independently of the characteristics of images, rather than pre-

determining a block size like in the SSD and SAD. However, there are still some obvious

errors in the disparity maps, like some noisy values or outliers in homogeneous areas, or some

distorted edges, as can be seen from Fig. 3.2. To alleviate such errors we need to ensure that
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Figure 3.3: Coarse disparities estimated by (3.1) for VIVA Lab

the disparity values for continuous surfaces are changing smoothly, while maintaining the

disparity discontinuities at the object boundaries. To achieve such properties, we chose to

use an energy-based variational regularization approach.

Before we go further to the next section, we show some performance results for the

disparities estimated by SSD, SAD, Gabor transform, and graph cut (GC) methods. The

method that we used to obtain the performance is to interpolate the right image Ir using the

left image Il and the disparity map, and then measure the peak-signal-to-noise-ratio (PSNR)

value between the interpolated Ir and the original Ir. The interpolated Ir for the three image

sets based on SSD, SAD, Gabor transform, and graph cut (GC) are shown in Fig. 3.4 – 3.6.

The PSNR values for these interpolated right images Ir are shown in Table 3.1. From

Table 3.1: PSNR values for interpolated Ir

Tsukuba Flower Garden VIVA Lab

SSD 23.96 15.29 17.94

SAD 24.19 15.29 17.90

Gabor transform 20.87 15.25 18.02

graph cut (GC) 20.84 14.58 18.65
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(a) (b)

(c) (d)

Figure 3.4: Interpolated Ir for Tsukuba: (a) SSD; (b) SAD; (c) Gabor transform; (d) GC.

thesis PSNR values, we can see that PSNR obtained by interpolating Ir does not really

reflect the performance of a disparity estimation algorithm. Although graph cut gives the

best visual quality for Tsukuba, its PSNR value is the lowest. We believe the performance

of a disparity estimation algorithm should be measured by the visual quality of novel views

rendered once the final 3D model is set up, and the views rendered at locations of existing

images can be used to calculated PSNR values as quantitative performance.

With regard to implementation complexity, the running time of SSD, SAD and graph cut

for those three image sets are shown in Table 3.2. Since we use MATLAB to implement our
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(a) (b)

(c) (d)

Figure 3.5: Interpolated Ir for Flower Garden: (a) SSD; (b) SAD; (c) Gabor transform; (d)

GC.

algorithm for disparity estimation based on Gabor transform, the running time ranges from

Table 3.2: Running time (in seconds)

Tsukuba Flower Garden VIVA Lab

SSD 2.3 1.8 6

SAD 2.2 1.7 6

graph cut (GC) 21.4 21.3 186
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(a) (b)

(c) (d)

Figure 3.6: Interpolated Ir for VIVA Lab: (a) SSD; (b) SAD; (c) Gabor transform; (d) GC.

1 to 3 minutes. However, from the nature of the Matlab codes, they should be completed in

seconds if implemented in C, just a little more than SSD and SAD.

Therefore, based on the PSNR values and complexity, we select SSD and Gabor transform

as starting point for our disparity estimation algorithm. In the remainder of this chapter as

well as the next chapter, we show the evolution process of how we reached our final disparity

estimation algorithm. In the remainder of this chapter, we only use the image sets Tsukuba

and Flower Garden, which summarize our work in [20][57][58]. Once we reached our final

algorithm for disparity estimation in the next chapter, we then apply it to all three image
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sets.

3.1.2 Refinement Using Variational Regularization

Variational regularization has had extensive application in optical flow estimation, as well

as for disparity estimation [22][21]. The idea in [21] is to control the smoothing of disparity

variations using the values of image gradients. When the value of image gradient is low the

disparity would get smoothed, and the smoothing process is stopped when the value of image

gradient is high, which represents a possible object boundary. As shown in Chapter 2, which

we repeat here again for clarity, the Euler-Lagrange equations for the overall refinement

functionals are

∂d

∂t
= [Il(x, y)− Ir(x− d, y)]× Ir,x(x− d, y) + λdiv(D(∇Il)∇d) (3.2)

and

∂d

∂t
= [Il(x, y)− Ir(x− d, y)]× Ir,x(x− d, y)− λ

{
∂

∂x

[
dx

(1 + I2
l,x)

2

]
+

∂

∂y

[
dy

(1 + I2
l,y)

2

]}
(3.3)

for the two regularization functionals (2.10) and (2.12) respectively.

The numerical implementation of (3.2) and (3.3) is given by the forward Euler method,

and the spatial derivatives are calculated by the central difference scheme. Let us further

represent (2.11) by

D(∇Il) =
1

|∇Il|2 + 2υ2








∂Il

∂y

−∂Il

∂x







∂Il

∂y

−∂Il

∂x




t

+ υ2Id



 =


 g f

f e


 (3.4)

and use the subindex (i, j) to represent the discretized coordinates of (x, y):

xi,j = (xi, yj) (3.5)

with, e.g.,

gi,j = g(xi, yj). (3.6)
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Then, based on [21], the discretization of (3.2) can be given by

dk+1
i,j − dk

i,j

4t
=[Il(xi, yj)− Ir(xi − dk

i,j, yj)]× Ir,x(xi − dk
i,j, yj)

− λ

[
gi+1,j + gi,j

2
× dk

i+1,j − dk
i,j

h2
1

+
gi−1,j + gi,j

2
× dk

i−1,j − dk
i,j

h2
1

+
fi,j+1 + fi,j

2
× dk

i,j+1 − dk
i,j

h2
2

+
fi,j−1 + fi,j

2
× dk

i,j−1 − dk
i,j

h2
2

+
ei+1,j+1 + ei,j

2
× dk

i+1,j+1 − dk
i,j

2h1h2

+
ei−1,j−1 + ei,j

2
× dk

i−1,j−1 − dk
i,j

2h1h2

− ei+1,j−1 + ei,j

2
× dk

i+1,j−1 − dk
i,j

2h1h2

− ei−1,j+1 + ei,j

2
× dk

i−1,j+1 − dk
i,j

2h1h2

]
, (3.7)

where k is the iteration number, 4t is the pseudo-time step, and h1 and h2 are pixel sizes

for horizontal and vertical directions. After each iteration, the new di,j for the discretized

position (xi, yj) is updated as:

dk+1
i,j =dk

i,j +4t

{
[Il(xi, yj)− Ir(xi − dk

i,j, yj)]× Ir,x(xi − dk
i,j, yj)

− λ

[
gi+1,j + gi,j

2
× dk

i+1,j − dk
i,j

h2
1

+
gi−1,j + gi,j

2
× dk

i−1,j − dk
i,j

h2
1

+
fi,j+1 + fi,j

2
× dk

i,j+1 − dk
i,j

h2
2

+
fi,j−1 + fi,j

2
× dk

i,j−1 − dk
i,j

h2
2

+
ei+1,j+1 + ei,j

2
× dk

i+1,j+1 − dk
i,j

2h1h2

+
ei−1,j−1 + ei,j

2
× dk

i−1,j−1 − dk
i,j

2h1h2

− ei+1,j−1 + ei,j

2
× dk

i+1,j−1 − dk
i,j

2h1h2

− ei−1,j+1 + ei,j

2
× dk

i−1,j+1 − dk
i,j

2h1h2

]}
. (3.8)

For the implementation of (3.3), we use ρ(x, y) and θ(x, y) for the following representa-

tions:

ρ(x, y) =

[
1

(1 + I2
l,x)

2

]

θ(x, y) =

[
1

(1 + I2
l,y)

2

]
(3.9)
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Then, the discretized version of (3.3) is

dk+1
i,j − dk

i,j

4t
=[Il(xi, yj)− Ir(xi − dk

i,j, yj)]× Ir,x(xi − dk
i,j, yj)

− λ

[
ρi+1,j + ρi,j

2
× dk

i+1,j − dk
i,j

h2
1

+
ρi−1,j + ρi,j

2
× dk

i−1,j − dk
i,j

h2
1

+
θi,j+1 + θi,j

2
× dk

i,j+1 − dk
i,j

h2
2

+
θi,j−1 + θi,j

2
× dk

i,j−1 − dk
i,j

h2
2

]
. (3.10)

Thus, after each iteration, the new di,j for the discretized position (xi, yj) is updated as

dk+1
i,j =dk

i,j +4t

{
[Il(xi, yj)− Ir(xi − dk

i,j, yj)]× Ir,x(xi − dk
i,j, yj)

− λ

[
ρi+1,j + ρi,j

2
× dk

i+1,j − dk
i,j

h2
1

+
ρi−1,j + ρi,j

2
× dk

i−1,j − dk
i,j

h2
1

+
θi,j+1 + θi,j

2
× dk

i,j+1 − dk
i,j

h2
2

+
θi,j−1 + θi,j

2
× dk

i,j−1 − dk
i,j

h2
2

]}
. (3.11)

In our simulation, we used h1 = h2 = 1, 4t = 0.01 and k = 800 which were determined

empirically to ensure good convergence. The initial values of d0
i,j for all pixel positions (i, j)

are obtained from the coarse disparities estimated using the Gabor transform (3.1), which

are shown in Fig. 3.2. The refinement results are shown in Fig. 3.7 and Fig. 3.8 for (3.8) and

(3.11) respectively.

(a) (b)

Figure 3.7: Refinement by (3.8): (a)Tsukuba; (b)Flower Garden.
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(a) (b)

Figure 3.8: Refinement by (3.11): (a)Tsukuba; (b)Flower Garden.

From these results, we can see that most of the noisy outliers can be removed from the

coarse disparities. However, as is the case for refinement using variational regularization, the

contours and object boundaries get more or less blurred, especially for tiny features (like the

handle of the lamp in Tsukuba as annotated in these two figures).

3.1.3 Variational Refinement Taking into Account Edge Informa-

tion

As can be seen from the last section, variational regularization can smooth a coarse disparity

and eliminate some outliers in untextured areas, but at the cost of blurring the object

contours, even though some edge-preserving functionals are used. This is because, especially

for real images, the difference of intensity variations between the edge areas and non-edge

areas are not very big, since the intensity variations in some untextured areas are not zero

(an ideal value which only can be reached for many synthetic images). In order to solve

this problem, we propose to consider edge pixels separately. Specifically, in the variational

refinement stage, we allow fewer iterations on the edge pixels while more iterations are used

on non-edge pixels, to suppress the smoothing of edge pixels in the refinement stage and

thus to keep the object contours crisp.
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To do this, we multiply the left image Il by Sobel masks which are the flipped version

of the impulse response of Sobel filters to obtain the Sobel coefficients for each pixel. The

Sobel masks are defined as:

Sx =




−1 0 1

−2 0 2

−1 0 1


 , Sy =




−1 −2 −1

0 0 0

1 2 1


 (3.12)

for x and y directions respectively. Assume that the Sobel filter outputs are Sl x(x, y) in x

direction and Sl y(x, y) in y direction for Il. Then the Sobel coefficients for Il are obtained

by taking the sum of the absolute values of Sl x(x, y) and Sl y(x, y):

Sl(x, y) = |Sl x(x, y)|+ |Sl y(x, y)| (3.13)

and a pixel at (x, y) is determined to be an edge pixel if Sl(x, y) is larger than a threshold

value (we use 0.8 which is determined empirically). The detected edge pixels are shown in

Fig. 3.9.

(a) (b)

Figure 3.9: Edge pixels detected using Sobel masks: (a)Tsukuba; (b)Flower Garden.

Then we apply our new edge-based refinement scheme to the same coarse disparity as

in Fig. 3.2. A certain amount of refinement iterations still need to be applied to these edge
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pixels. In our experiments, we applied 400 iterations on edge pixels, and 800 iterations on

non-edge pixels, which are determined empirically.

The final refinement results using the above scheme which distinguishes between edge

and non-edge pixels are shown in Fig. 3.10 and Fig. 3.11 using (3.8) and (3.11) respectively.

(a) (b)

Figure 3.10: Refinement by (3.8): (a)Tsukuba; (b)Flower Garden.

(a) (b)

Figure 3.11: Refinement by (3.11): (a)Tsukuba; (b)Flower Garden.

Compared with the results shown in Fig. 3.7 and Fig. 3.8, we can see that for the re-

finement process distinguishing edge pixels, the results in Fig. 3.10 and Fig. 3.11 are better
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from the point of view of keeping object boundaries clearer, especially for those tiny fea-

tures like the contours of the lamp in Tsukuba and the twigs in Flower Garden. Here we

are facing a longstanding problem in the area of disparity estimation – how to evaluate the

performance of a disparity estimation algorithm. Although there are benchmark stereo im-

ages like Tsukuba with so called ground-truth disparities, as we stated in Chapter 2, that

is not a completely satisfactory way for the performance evaluation of disparity estimation

algorithms since those ground-truth disparities are manually labeled integers. If 3D models

are set up based on those ground-truth disparities, then we can see the quantization effects

if viewing from the side. Another drawback for those benchmark image sets is that they

do not contain images with complex scenes like in the Flower Garden. Although we used

PSNR values for the coarse disparities in section 3.1.1, using variational refinement may

reduce those PSNR values even though the visual quality is improved. This is because the

functionals like (3.1) or SSD are actually square values of displaced frame difference, and the

minimization of them is just the same thing as obtaining a better PSNR. While variational

regularization is like adding a term involving gradient values of the image to the original

square values of displaced frame difference, so the overall functional is not optimized only

for the minimization of the square values of displaced frame difference. Therefore we can

only judge the quality of these disparity maps by visual impression here. We will propose an

objective way for the performance evaluation of disparity maps in Chapter 5 using the final

3D models.

3.1.4 Disparity from Region Matching

To further increase the quality of our disparity estimation algorithm, we now incorporate

region matching techniques.

Until now, similarly to most of the existing disparity-estimation algorithms, our disparity

estimation approach – from Gabor-based coarse estimation to variational refinement – is

pixel-based; this is one common feature for various otherwise quite different existing disparity

estimation algorithms. Compared to the large number of papers on pixel-based disparity
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estimation algorithms, there are only a few dealing with region-based disparity estimation

[59, 60]. In [59], the mean shift segmentation algorithm developed in [4] was used to segment

the images into different regions. However, in the next steps, like the methods used in [60],

oversegmentation was applied to each region in order to handle the linear variation problems

for untextured and slanted surfaces. Such oversegmentation is a step towards a pixel-based

approach reducing the advantage of a region-based approach. We make the assumption that

each region in one image of the stereo pair can be approximately considered as an affine

transform from the same region in another image, and the region-based disparity estimation

is thus converted to the estimation of the affine parameters for each region.

To better explain our idea on how to combine region matching techinques with our

disparity-estimation algorithm, we show in Fig. 3.12 the block diagram for our overall

disparity-estimation scheme. Our approach starts by filtering the left image Il and the right

image Ir with a set of Gabor filters. The left image Il is also put through a segmentation pro-

cess using the mean shift algorithm, in which each region is formed by grouping pixels with

similar color values and represented by one color value for this region. The Gabor-filtered

outputs of Il and Ir are compared and a coarse disparity map is estimated. Then a varia-

tional regularization using an edge-preserving functional is applied on this coarse disparity

map as a refinement process. After variational refinement, the disparity values in each region

of Il (obtained from segmentation) are used to estimate a set of affine transform parameters

by least squares, so that the matching relation for the pixels in this region with their corre-

sponding pixels in Ir can be represented by an affine transform. The affine parameters for

each region are further adjusted using a descent-based region matching technique, and these

adjusted affine parameters can be used in turn to calculate a more refined disparity map.

Segmentation of Il

We applied the mean shift segmentation algorithm [4] to the image Il, and the segmentation

results for Tsukuba and Flower Garden are shown in Fig. 3.13. The source and binary codes

of mean shift can be downloaded from [61]. The mean shift algorithm applies an averaging

operation on the image and then groups some adjacent pixels with similar color values
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Figure 3.12: Block diagram of our approach

together by assigning these pixels with their mean color value, i.e., each region is indicated

by one color value. Comparing Fig. 3.13(b) with its original in Fig. 2.5(a), we can find

that the mean shift algorithm could not identify some tiny features, which are missing after

segmentation (e.g., some twigs on the tree, and part of the shrubs). To alleviate such a

problem, we have performed an edge-detection using Canny detector and edge linking on Il

and on Fig. 3.13(b), and then compare the detected edges between the two images to pick

out the missing tiny contours that are not detected in Fig. 3.13(b). The new segmentation

result for Flower Garden is shown in Fig. 3.14. Although we get most of the missing tiny

contours back, this method also introduces some extra contours on some existing regions.

Representing Disparity by an Affine Transform

We assume that the coordinates (x, y)T of each pixel in a region in Il are related to those

of corresponding pixels (xr, yr)
T in Ir by an affine transform. In the case of parallel stereo

without vertical displacement (y = yr), we have:

xr = a11x + a12y + a13. (3.14)

Therefore, the disparity d(x, y) is related to these affine parameters by

d(x, y) = x− a11x− a12y − a13. (3.15)
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(a) (b)

Figure 3.13: Segmentation by meah shift: (a) Tsukuba. (b) Flower Garden.

Thus, the estimated d(x, y) for each pixel in one region from the previous variational re-

finement can be grouped and used as known variables so that the affine parameters can

be estimated from (3.14). Since each pixel in the region gives one equation as in (3.14),

and for most of the cases, the number of pixels in a region is larger than the number of

affine parameters (three for 1-D affine transform), the estimation of the three parameters

(a11, a12, a13) can be done by least squares, implemented using singular value decomposition

(SVD). Assume there are N pixels in a region, then we have N equations of (3.15) for this

region, which can be expressed in a form using matrix and vectors

Qa = b, (3.16)

where Q is a N × 3 matrix defined as

Q =




x1 y1 1

x2 y2 1
...

...
...

xN yN 1




, (3.17)
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Figure 3.14: New segmentation with tiny contours recovered (in green color).

and a and b are two vectors with sizes of 3× 1 and N × 1 respectively defined as

a =




a11

a12

a13


 b =




x1 − d(x1, y1)

x2 − d(x2, y2)
...

xN − d(xN , yN)




. (3.18)

The SVD can decompose matrix Q into a product form:

Q = U




w1 0 0

0 w2 0

0 0 w3


V (3.19)

where U is a N × 3 matrix and V a 3× 3 matrix. Both U and V are orthogonal matrices,

which means:

UTU = VTV =




1 0 0

0 1 0

0 0 1


 (3.20)

where VT and UT is the transpose of matrices V and U. Then the three affine parameters

in a can be calculated as:

a = VT




1/w1 0 0

0 1/w2 0

0 0 1/w3


UT . (3.21)
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Once the affine parameters are estimated, a new disparity d(x, y) for each pixel in the region

can be in turn calculated by (3.14).

The new results for Tsukuba and Flower Garden from the above procedure are shown

in Fig. 3.15 based on the previous variational refinement results shown in Fig. 3.11. We

can see that this kind of parameterized estimation process can give more reasonable results

in which the noise in each region is somewhat removed, but non-smoothness exists among

some adjacent regions. To solve this problem, we use region matching to improve the affine

parameters.

(a) (b)

Figure 3.15: New results by applying the affine parameters to the calculation of the disparities

for each region: (a) Tsukuba; (b) Flower Garden.

Further Refinement by Region Matching

The error function that we need to minimize for each region is:

E =
∑

(x,y)∈Wi

[Ir(a11x + a12y + a13, y)− Il(x, y)]2 (3.22)

where Wi represents a region. We need to minimize (3.22) by updating affine parameters a =

[a11, a12, a13]
T iteratively using least squares with Taylor expansion. Assume X = [x, y, 1]T .

Let â be the current estimate of affine parameters, and a = â+ ∆â. Then expand Ir around
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the current estimate Ir(a
TX, y) ≈ Ir(â

TX, y)+∆âTXIr,x(â
TX, y); this first order expansion

is valid only when â is close to a. This is the reason that we start the region matching

with the result from pixel-based approach, rather than doing it from the very beginning

without pixel-based results. Substituting the above first order expansion into (3.22), the

error function becomes:

E(∆â) =
∑

(x,y)∈Wi

[ψT ∆â−D]2 (3.23)

where ψ = Ir,x(â
TX, y)X and D = Il(x, y) − Ir(â

TX, y). The solution of (3.23) by least

squares is [62]:

∆â = [
∑

(x,y)∈Wi

ψψT ]−1
∑

(x,y)∈Wi

Dψ. (3.24)

The resulting disparities obtained from the new affine parameters updated using (3.24) are

shown in Fig. 3.16. Compared with Fig. 3.15, the new disparities have some improvements

for regions which belong to the same object surfaces, like the slanted slope surface in Flower

Garden. However, some regions where there are occlusions give worse effects than the same

(a) (b)

Figure 3.16: New disparities after region matching: (a) Tsukuba; (b) Flower Garden.

areas in Fig. 3.15, e.g., the sky areas with twigs and shrubs as foreground objects. This is

because the minimization of (3.23) through (3.24) is trying to minimize the squared intensity

difference between all the pixels (including occluded pixels) in a region of Il with their
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corresponding pixels in Ir. Thus the region matching technique can make such regions shift

along with their foreground objects. This effect can be detected by comparing patterns in the

disparity histogram for a region before and after region matching, and the correct disparities

can thus be determined from these patterns. For example, the disparity histogram for a sky

region (between a twig and the tree) has one peak near zero value before region matching,

and after region matching there are two peaks. There are 3256 pixels in this region, and

most of them have disparity values range from 0 to 0.8, as shown in Fig. 3.17(a). After

region matching, for the same region, the disparity histogram spreads over a range from 0

to 10 with a second peak located around the values 4 to 5, as shown in Fig. 3.17(b). This

second peak with a higher value comes from those occluded pixels near foreground objects.

Once such big pattern changes have been detected, which means it is very possible that some

problems happened from the second peak due to the occlusion, the real disparity values for

such regions is then determined by the lower peak in Fig. 3.17(a) (adopting the lowest value

for that peak), and verified if the mean absolute difference between Il and Ir for that region

(excluding those occluded pixels which are detected from the technique in [20]) is less or

equal to its value by using Fig. 3.17(b). The mean absolute difference for that region is 0.15

in Fig. 3.16(b), and 0.11 in Fig. 3.18(b).
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Figure 3.17: Histogram change for a sky region of Flower Garden: (a) before region matching;

(b) after region matching.

Fig. 3.18 shows the final results after making use of such pattern detections, where we can

see some regions containing occlusions, like the regions left of the lamp and of the neck-of-



CHAPTER 3. REGION-BASED DISPARITY ESTIMATION 57

head in Tsukuba, and the sky regions in Flower Garden, have been identified and the correct

disparities have been assigned.

(a) (b)

Figure 3.18: Results after disparity histogram analysis: (a) Tsukuba; (b) Flower Garden.

3.1.5 Summary for Disparity Estimation

(b)

Figure 3.19: Two sky regions couldn’t be detected

In this section, we showed our development process for disparity estimation which evolved

from pixel-based techniques (Gabor filtering plus variational regularization) to region-based
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approaches. The results obtained until now (as shown in Fig. 3.18), from the visual quality

point of view, show big improvements for some longstanding problems in disparity estimation,

like the linear variation for slanted surfaces, the detection of zero displacements for sky

regions, and keeping the object contours sharp and clear. Although we can not show these

improvements through quantitative performance, these improvements are especially useful

for the purpose of 3D reconstructions.

However, such pixel- and region-based approach still needs further improvements. For

example, for the sky region detection using disparity histograms, there are sky regions that

can not be detected from the method we used in section 3.1.4, as circled out with yellow

lines in Fig. 3.19. This is because, after region matching, such regions do not have a second

peak coming out in their disparity histogram. Therefore, we need some other methods in

such region-based disparity histogram analysis, which we show in the next section.

3.2 Multiview Disparity with 3D Modeling Using Point

Sets

In order to obtain the structure of a whole environment, we need to capture multiview im-

ages or monocular/binocular video sequences throughout it. Therefore, obtaining the depth

information for one location using disparity estimation is not enough, since we still need

to deal with multiview images. In this section, we will improve our pixel- and region-based

disparity estimation approach and apply it to the translational sequence Flower Garden, so

that a preliminary 3D model based on 3D point sets can be integrated by combining the

separate depth maps of two image locations.

3.2.1 Region-Based Disparity Analysis for Translation Video Se-

quence

We now extend our disparity estimation algorithm to the case of translational video sequence,

and the depth information for each image location can be obtained in a straightforward
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fashion, similarly as in the parallel stereo cases. The video sequence that we use for our

simulation is also Flower Garden. However, unlike for the stereo case, we will apply our

algorithm on more consecutive images.

As shown in Fig. 3.20, our system starts by filtering the two consecutive images It and

It+1 from a translational video sequence with a set of Gabor filters. Also It is put through a

segmentation process using the mean shift algorithm. The filtered versions of It and It+1 are

compared and a coarse disparity dG is estimated. Another disparity dR based on variational

regularization using an edge-preserving functional is also estimated iteratively with disparity

values for each pixel initialized with zero. Then the histograms of disparity values from

dG and dR in each region of It (obtained from the segmentation) are compared in order

to identify those regions without movements (zero displacement). Once such regions with

zero displacement are identified, the disparity values for the other regions of It are used to

estimate a set of affine transform parameters by least squares, so that the matching relation

for the pixels in each region with their corresponding pixels in It+1 can be represented by the

resulting affine transform. The affine parameters for each region are further adjusted using a

descent-based region-matching technique, and these adjusted affine parameters can be used

in turn to calculate a more refined disparity map. Once we get this final disparity for It,

the depth image for the location of It is obtained using the reciprocal values of the disparity

values for each pixel. Because we are dealing with a translational video sequence, and similar

to the relations between disparity and depth for parallel stereo, the disparity value is in a

reciprocal relation with the depth value up to a scale factor.

Among the large amount of literature and algorithms for optical flow and motion estima-

tion, differential techniques [41][42] with variational regularization form a major class. These

techniques involve a functional including the displaced frame difference and a smoothing

term, and usually descent-based methods are used to minimize the functional by solving its

associated Euler-Lagrange equations. Recently, Brox et al. significantly improved this ap-

proach by embedding a multiresolution strategy and gradient constancy to a nonlinear ob-

jective functional, and obtained the best results until now for some standard test sequences

like Yosemite [63]. Kim et al. used a similar functional with a modified regularization term
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Figure 3.20: Block architecture for motion analysis

and, to handle large motion fields, used a coarse-to-fine scheme, and solved the associated

Euler-Lagrange equation using recursive iterations [64].

However, the functionals used in the variational regularization approach usually do not

take the occlusion effect into account, i.e., the objective functional that this approach tries to

minimize is the displaced frame difference between all the pixels of It and their corresponding

pixels in It+1. Due to this reason, after iterative calculations to minimize such objective

functionals, those background pixels (which should be occluded) along the foreground objects

usually have motion values similar to the motion values of those foreground pixels, since the

iteration process also tries to find a solution for such occluded background pixels. This will

bring wrong motion values for such occluded background pixels. For example, in [64], the

video sequence Flower Garden was used and from the result of its motion maps, most of the

sky areas are merged with the middle objects and even with the twigs of the foreground tree.

Therefore, although the displaced frame difference between It and It+1 can be minimized to

a small value which is good enough for some other purposes like compression and coding, the

motion values estimated by variational regularization approach could not satisfy the purpose

of 3D model constructions, since part of or most of the untextured background areas will be

merged with the foreground objects, especially when those foreground objects have complex

geometries.
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We will try to solve this problem for translational video sequence by comparing the

results from the variational regularization approach with the disparity estimation results

from the Gabor transform and image segmentation. The Flower Garden sequence is taken

along a straight line, and is approximately equi-distant for any two consecutive images. The

maximum horizontal motion is about 6 pixels/frame. We show the 5th, 22nd, 35th and 65th

images in Fig. 3.21; three of them contain the foreground tree and therefore the disparity

(a) (b)

(c) (d)

Figure 3.21: Original images in Flower Garden: (a) 5th; (b) 22nd; (c) 35th; (d) 65th.

estimation for these images is more difficult than for those without the tree. We will also

show the disparity estimation results for these images.
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Detecting Regions with Zero Displacement Using Variational Regularization Ap-

proach

Similar to the general variational regularization approach, we use the same regularization

functional (2.12) which we write down here together with the data fidelity term for conve-

nience:

E(dR) =

∫∫
[It(x, y)− It+1(x− dR, y)]2 dx dy

+ λ

∫∫ { 1

(1 + I2
t,x)

2
d2

R,x +
1

(1 + I2
t,y)

2
d2

R,y

}
dx dy (3.25)

where λ is a regularization parameter, dR,x and dR,y are derivatives of dR(x, y) in x and y

directions respectively, and similarly for It,x and It,y. The minimization of (3.25) to estimate

dR is carried out by applying a gradient descent method to solve its associated Euler-Lagrange

equation with respect to dR:

∂dR

∂t
= [It(x, y)− It+1(x− dR, y)]× It+1,x(x− dR, y)

− λ

{
∂

∂x

[
dR,x

(1 + I2
t,x)

2

]
+

∂

∂y

[
dR,y

(1 + I2
t,y)

2

]}
. (3.26)

Unlike the coarse-to-fine scheme as in [63] and [64] to prevent the solution from falling

into local minima, we just use the original images and dR are initialized with zero for all

pixels. As shown in Fig. 3.22, with the increase of iteration numbers, dR could reach their true

values for those pixels with small movements (like those houses and shrubs), and could not

completely reach their true values for the pixels with large movements (like the foreground

tree) since they fell into local minima. Most important for 3D reconstruction purpose is

that the disparity values for those background pixels (sky) leave their true values (zero)

and approach the disparity values of their foreground objects with the increase of iteration

numbers. Therefore, as we stated in the beginning of this subsection, the objective functional

can be further minimized with the increase of iteration numbers, but this does not fit our

purpose of 3D model construction. Our solution for this dilemma is to use fewer iterations,

such that most of the pixels with small movements can reach their true disparity values, and

most of the background pixels with zero displacement stay where they are; the finding of
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(a) (b)

Figure 3.22: dR for 22nd image after different numbers of iterations: (a) 2500; (b) 4000.

large disparity values for those foreground object can be left to some other techniques (as

we show later).

For the images in Fig. 3.21, we used 800 iterations for their disparity estimation, and the

results are shown in Fig. 3.23. We can see that the values of dR for most of the sky regions

are black (zero value), and the majority of pixels which should have small displacements

(like the houses and shrubs) also have small disparity values.

Estimation of dG by Gabor Transform

The method that we used for the estimation of dG through the Gabor transform is similar

to the one we used in section 3.1.1, in which a set of quadrature-pair Gabor filters are

used. Assume that the outputs of kth filter pair are Gk
It
(x, y) and Gk

It+1
(x, y) for It and It+1

respectively. Then the disparity d̂G ∈ [0, dmax] for a position (x, y) in It is determined as:

d̂G =arg min
dG

∑

k

[|Re{Gk
It
(x, y)} −Re{Gk

It+1
(x− dG, y)}|2

+ |Im{Gk
It
(x, y)} − Im{Gk

It+1
(x− dG, y)}|2] (3.27)

where Re{Gk
It
(x, y)} and Im{Gk

It
(x, y)} are the real and imaginary parts of Gk

It
(x, y), and

similarly for Gk
It+1

(x, y).
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(a) (b)

(c) (d)

Figure 3.23: dR maps after 800 iterations: (a) 5th; (b) 22nd; (c) 35th; (d) 65th.

The disparity maps dG estimated by (3.27) for the four images in Fig. 3.21 are shown in

Fig. 3.24. We can see that these results are good for pixels with large and medium displace-

ments. However, for part of the pixels with zero displacement but near some middle and

foreground objects, their disparity values tend to be confused with the disparity values for

those objects. For example, for the sky areas above the houses in Fig. 3.21(b), most of their

disparity values are the same as the houses with small displacements as shown in Fig. 4.5(b),

rather than zero which should be shown as completely black.
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(a) (b)

(c) (d)

Figure 3.24: dG maps from Gabor transform: (a) 5th; (b) 22nd; (c) 35th; (d) 65th.

Region-Based Analysis

Comparing Fig. 3.23 and Fig. 3.24, we find that the results from the two methods are

complementary to each other, in which the results from variational regularization approach

are good for zero and small motions and the results from the Gabor transform are good for

large as well as for small displacements. Therefore, we need to complement the two kinds

of results from each other and obtain one good disparity map for the whole displacement

range. In order to do that, we need to consider them in groups of connected pixels that fall

in the same kind of regions that should have similar disparity values. Thus, we need to have

region information from segmentation applied to images It.
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The same as in section 3.1.4, we applied the mean shift segmentation algorithm [4] to

the images It, and the segmentation results for the four images in Fig. 3.21 are shown in

Fig. 3.25. Also, we have to run the contour detection program on these images in order to

get the missing tiny contours back. This is because the mean shift algorithm groups some

connected pixels by averaging their color values first, and once the color values are within

a small range to the average value then they are considered to be in the same region. This

kind of averaging operation might eliminate the color difference of some tiny features with

their backgrounds, like the twigs in Flower Garden.

(a) (b)

(c) (d)

Figure 3.25: Segmentation by Mean Shifts [4]: (a) 5th; (b) 22nd; (c) 35th; (d) 65th.

Once we have the region information, we can compare and analyse the histograms of

disparity values from dR and dG for each region. For example, as shown in Fig. 3.26 for
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a sky region in the 5th image which is between the upper twigs and the foreground tree,

the histogram from dR is mainly located around zero which is the correct disparity value

for this region, while the histogram from dG is spread across the whole range. As another
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Figure 3.26: Histograms for a sky region in 5th image : (a) from dR; (b) from dG.

example shown in Fig. 3.27 for a region of the foreground tree in the 22nd image, we can

see that the histogram from dR is mainly located around zero while the histogram from dG

is mainly located around the highest disparity values (which are correct). From our previous
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Figure 3.27: Histograms for a foreground tree region in 22nd image : (a) from dR; (b) from

dG.

analysis, we already conclude that the disparity values from dR are good for zero and small

displacements, while the disparity values from dG are good for large displacements and the
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small displacements. Based on these observations, we can identify those regions with zero

displacements by comparing the histograms from dR and dG. For example, for the case in

Fig. 3.26, since dR concentrates around zero while dG spreads across the whole range which

means there is uncertainty in the process of obtaining the values of dG for this region,

then dR is selected as the disparity values for this region; for the case in Fig. 3.27, since

dR concentrates around zero while dG mainly concentrates on large disparity values which

means there is more certainty in the process of determining the values of dG, then dG is

selected as the disparity values for this region.

The adjusted disparity maps d after analysis of the histograms of disparity values for each

region are shown in Fig. 3.28. Although we identified most of the sky regions now, most of

the other regions with large disparity values are still in a coarse stage since the motion values

from the Gabor transform are integers (e.g., those slope regions with quantization effects).

We still need to further refine the disparity values for those regions by region matching

techniques.

The refinement process using region matching is the same as in section 3.1.4 using

Eqs. (3.14) – (3.24) except that Il and Ir are changed to It and It+1.

After region matching, the final results for the disparity maps of Fig. 3.21 are shown in

Fig. 3.29.

Then, for each location, the depth value z(x, y) for a pixel at (x, y) can be obtained as:

z(x, y) =
Bf

d(x, y)
(3.28)

where B is the baseline distance between It and It+1, and f is the focal length.

3.2.2 3D Reconstruction Using the Estimated Disparity Maps

We show in this section some 3D reconstructions based on the disparity or depth images we

obtained. We set up the 3D models in OpenGL using 3D point arrays, and using orthographic

projection mode for the rendering of novel views (only rotations allowed). The flow chart for

the setting up of this 3D model and the rendering process is shown in Fig. 3.30.
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(a) (b)

(c) (d)

Figure 3.28: Disparity maps after histogram analysis: (a) 5th; (b) 22nd; (c) 35th; (d) 65th.

We first show in Fig. 3.31 some separate reconstructions based on each depth image

on the four locations of Fig. 3.29 respectively. Fig. 3.31(a) is rendered by rotating about

10◦ around y-axis (vertical axis) from the original viewpoint to the right. Fig. 3.31(b) is

rendered by rotating about 20◦ around y-axis to the left, then rotating up 15◦ around x-axis

(horizontal axis). Fig. 3.31(c)(d) are rendered by rotating about 10◦ around y-axis to the

right, then rotating up 10◦ and 5◦ around x-axis respectively. From these reconstructions,

we can see that the sky has more shifting than the foreground scenes since it has the largest

depth, and the occlusion from the foreground trees and shrubs on the sky can be clearly seen

(black areas). Also, the linear variation of the depth values for the slanted slope surface can

also be seen, especially from Fig. 3.31(d). All these facts indicate that the complex geometric
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(a) (b)

(c) (d)

Figure 3.29: Final disparity maps after region matching: (a) 5th; (b) 22nd; (c) 35th; (d) 65th.

structures detected by our algorithm are largely correct.

Then we attempted to combine the two depth images (5th and 65th) and their textures

together with the 5th image as reference location. Since we assume that there is only trans-

lational shifting for the whole video sequence, the homogeneous transformation between the

two locations is represented by only one parameter K for the horizontal translation. There-

fore, to shift the pixels (x, y) of 65th image with depth value z(x, y) to their corresponding

image coordinates (x0, y0) in the 5th image location, the x0-components can be calculated

as

x0 = x +
K

z
(3.29)

and y0 = y, where K is a constant determined by the baseline distance and the focal length
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Set  up 3D model of It using 3D point array:

for each pixel (x,y)
      z=B/d(x,y);
      glVertex(x,y,z);  //put a 3D point at (x,y,z)
      glColor(It,R(x,y), It,G(x,y), It,B(x,y));  //with color values
end

Waiting
user input

for rotation
parameter R

Render scene using
orthographic

projection after
rotating 3D model

with R

DisplayR

Looping back

Figure 3.30: Flow chart for point-based 3D model setting up and rendering.
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(we used K = 60 for the 5th and 65th images, which was obtained empirically by aligning

the two views). We show in Fig. 3.32 the novel views after combining those two depth images

without the foreground tree (disregard those pixels with lowest z(x, y) values) in order to

clearly show the fusion of the two images for those middle objects. From Fig. 3.32(a), we

can see that the occluded areas in the 5th image (the areas behind the foreground tree) are

recovered after combining with the 65th image, and the missing parts on the right side of the

5th image and on the left side of the 65th image are also filled into one image. A small amount

of discrepancy on the right side of Fig. 3.32(a) can be seen for the right-most house. The

reason for this discrepancy is due to the fact that the motion of the Flower Garden sequence

is not strictly horizontal. There are small vertical displacements between any two consecutive

images, and from the 5th to the 65th image, these vertical displacements accumulate to a

significant amount. Therefore, to construct the 3D model for the whole scene, we need to

extend our motion estimation algorithm to 2D if we want to accurately combine the depth

images for the whole sequence, rather than assuming pure translational motion and using

(3.29) only. Also, in Fig. 3.32(b) we can see occlusion areas on the background sky after a

small rotation from the original viewpoint.

Finally we show in Fig. 3.33 the full fusion of the 5th and 65th images through their

depth images with the 5th image as reference location. We can see that the tree branches

on the middle top portion of the 65th image have moved to the very top-right part of the

fused images without background, since these tree branches have lowest depth values in the

65th image (or largest motion values) and, while seeing from the location of the 5th image,

the background for these tree branches should come from those images after the 65th image

which we did not put into the fusion process. Also, from Fig. 3.33(b), we can see that there

are no occlusion effects from the foreground tree after a small rotation from the original

viewpoint, because those occluded areas in the 5th image are fused with the 65th image. In

order to show these more clearly, We generated a video file “garden.avi” which contains a

sequence of rendered images around the location of the 5th image. The file is put under the

link www.site.uottawa.ca/∼xhuang/demo. The black holes in the video file are mainly caused

by the occlusion effect of the house on the background sky, for which the information is not
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contained in the original 5th and 65th images.

3.3 Summary

In this chapter, we described a hybrid disparity estimation algorithm which combines pixel-

based and region-based approaches. The novelty of our disparity estimation algorithm lies

in the fact that it provides a robust method to solve some longstanding issues in disparity

estimation, like the smoothness of surfaces, while keeping object boundaries sharp and clear,

and the identification of occluding regions to recover their true disparities by analyzing the

histograms from pixel-based and region-based approaches. These problems cannot be solved

by either approach separately.

After showing the effectiveness of the combined pixel-based and region-based matching

algorithm for disparity estimation, we further improved it for the detection of regions with

zero displacement and applied our algorithm to a translational video sequence Flower Gar-

den. The obtained disparity maps for the four image locations in this sequence have good

visual quality (e.g. linear variation for slope areas, the preserving of tiny objects like those

twigs), as shown in Fig. 3.29. However, after we set up the 3D models with 3D point sets

based on these disparity maps in OpenGL, there are still many disturbing outliers in the

rendered novel views. Although these point-based 3D models can reflect the approximate

3D locations for different objects (like the tree, the houses, etc.) in the scene, the disturbing

effect caused by those outliers increases along with the increase of the rotation angles from

the original viewpoints, as can be seen from the avi file mentioned at the end of last section.

Those outliers are caused by the wrong matching results for many tiny regions which con-

tain only several pixels. Therefore, to further improve our matching algorithm by eliminating

those outliers, we will use region-merging techniques so that most of the tiny regions can be

checked to see if they actually belong to the surrounding (big) regions, and if a tiny region is

determined to belong to a neighboring region, then it will be merged with that neighboring

region. We show our further improved disparity estimation algorithm in the next chapter.
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(a) (b)

(c) (d)

Figure 3.31: Separate reconstruction for different locations: (a) 5th; (b) 22nd; (c) 35th; (d)

65th.
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(a) (b)

Figure 3.32: The fusion of 5th and 65th images without the foreground tree (with 5th image

as reference location): (a) direct reconstruction; (b) with rotation.
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(a)

(b)

Figure 3.33: Full fusion of 5th and 65th images (with 5th image as reference location): (a)

direct reconstruction; (b) with rotation.



Chapter 4

Disparity Estimation Based on a New

Region Technique with 3D Modeling

In the last chapter, we showed the power of combining the region matching technique into the

disparity estimation algorithm. However, the segmentation algorithm – mean shift – which

we used to obtain region information in the last chapter has some defects, in that it could not

identify some tiny details in the image (like the twigs in Flower Garden). Although we can

use some edge detection and contour linking techniques to get some of the details back, the

artifacts are obvious. To solve this problem, we propose to use a simple color-based region

technique – quantization of image intensity values and grouping. In addition, we further have

developed a disparity-based region merging scheme to improve the regions obtained in order

that one surface full of texture can be identified as one region. This kind of region merging

scheme can be very helpful in eliminating outliers in the final matching results.

In addition to the two image sets – Flower Garden and Tsukuba – that we used in the

last chapter, we also apply our final disparity estimation algorithm described in this chapter

to VIVA Lab.

77



CHAPTER 4. DISPARITY WITH 3D MODELING 78

(a)
(b)

Figure 4.1: (a)Mean shift segmentation of Flower Garden with a different spacial bandwidth;

(b)mean shift segmentation of VIVA Lab.

4.1 Defects of Mean Shift

In the user interface of mean shift software, there are some parameters to adjust for some

finer segmentation results (like “spatial bandwidth”). Fig. 4.1(a) shows the segmentation of

the 0th image of Flower Garden using a smaller value for the option of “spacial bandwidth”.

We can see some more twigs show out, but still not all of them. In addition to losing tiny

objects, it is also easier for mean shift to merge two adjacent regions with similar colors which

actually belong to two different objects. We show this point using VIVA Lab in Fig. 4.1(b),

in which the region on the table and one region on the lower part of the box are segmented

as one region.

Therefore, we can see that the mean shift segmentation algorithm tends to merge some

different regions under similar colors into one region. This is not what we need. As shown

in the section about region merging of this chapter, we would even like over-segmentation

in the segmentation stage and then merge those over-segmented regions according to their

disparity values, rather than losing some regions from the beginning. This leads to our own

color-based quantization-grouping process.
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4.2 A Color-Based Region Technique

Our color-based region technique starts with the coarse quantization of the three color (RGB)

values of the image. Assuming each component of the three color values I(x, y) lies in the

range of [0, 255], then the quantized image IQ for each color component is obtained as

IQ(x, y) = 25round[I(x, y)/25] (4.1)

where round(X) rounds X to its nearest integer. The value 25 for the quantization step was

determined empirically. The quantized images for the 0th images of Tsukuba, Flower Garden

and VIVA Lab are shown in Fig. 4.2. Then the pixels with all three R, G and B quantized

values the same and being adjacent to each other are grouped together to form a region.

Although there might be more regions after such quantization-grouping process than that of

the mean shift (especially for images like Flower Garden), as can be seen from the tree area

in Fig. 4.2(b) comparing with Fig. 3.13(b), all tiny details like the twigs in Flower Garden

are retained since their contrast with the sky background is larger than 25.

4.3 Region Manipulation and Matching Based on Our

Region Technique

Similar to our method in Chapter 3, our new disparity estimation process based on our region

technique is shown in Fig. 4.3 in which the quantization-grouping process is first applied to

image It, along with the filtering of It and It+1 using Gabor filters. Based on the Gabor

filtering results, a coarse 1-D disparity map dG is obtained. Another disparity map dR based

on variational regularization using an edge-preserving functional is also estimated iteratively

with motion values for each pixel initialized with zero. Then the histograms of disparity values

from dG and dR in each region of It (obtained from the quantization-grouping process) are

compared in order to identify those regions without movements (zero displacement). The

regions detected as zero displacement for the 0th image of Flower Garden are shown in

Fig. 4.4. We have no images of zero displacement to be shown for Tsukuba and VIVA Lab
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(a) (b)

(c)

Figure 4.2: Image IQ after quantization: (a)Tsukuba; (b)Flower Garden; (c)VIVA Lab.

since our algorithm did not detect any zero displacement regions in these two images, which

is a correct result because all pixels in the indoor environment of Tsukuba and VIVA Lab

should have disparity values larger than zero.

Until now, these procedures in the matching process are similar to our disparity esti-

mation algorithm applied to multiview image sequence in section 3.2 of Chapter 3. Then,

before entering into the region matching stage, we further improved the shape of regions by

developing a region merging scheme based on the Gabor matching result dG. In such region

merging, we merge the regions obtained from the quantization-grouping process that are
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Figure 4.3: Block architecture for disparity estimation

Figure 4.4: Region with zero displacement value (in black) detected for Garden0



CHAPTER 4. DISPARITY WITH 3D MODELING 82

adjacent to each other and have the same disparity values under dG. The “same disparity

values” is defined as follows: if we have adjacent region A and region B and more than 90%

disparity values of region A (under dG) is value A, and more than 90% disparity values of

region B (under dG) is value B, then region A and region B have “same disparity values”

if value A = value B. This kind of merging technique is especially useful in identifying a

surface full of texture on it, e.g., the slope surface full of flowers in Flower Garden. A direct

benefit from such region merging is the reduction of outliers in the final matching results,

since some tiny regions before region merging have less reliable matching results than that

of the larger regions, and such region merging can just merge such tiny regions into larger

regions.

In addition to checking the disparity values under dG, we also check the difference of color

values between adjacent regions. If the mean absolute difference of color values between two

adjacent regions is under a threshold (we use 0.1, which was determined empirically), then

these two adjacent regions will also be merged together.

Here we would like to state that although the block diagram in Fig. 4.3 was originally

developed using the Flower Garden dataset, it is also compatible with the other image sets

that we used in this thesis. As shown above, the same procedure for the detection of zero

displacement regions did not find any zero displacement regions in Tsukuba and VIVA Lab

(a correct result), while the region merging scheme can also reduce the outliers for the final

disparity maps of Tsukuba and VIVA Lab.

The disparity maps dG for the 0th images of Tsukuba, Flower Garden and VIVA Lab are

shown in Fig. 4.5 (it is the same for VIVA Lab as in Fig. 3.3), from which we can see that

most of the slope areas with flowers in Flower Garden are under several large masks in dG.

Then, we merge the regions under the same masks in dG, as well as merge the adjacent regions

between which the mean absolute color difference is within a threshold. After these region

merging, we apply the same region matching technique as in Chapter 3 to all the merged

regions except for the regions determined as zero-displacement region, and the results are

shown in Fig. 4.6, in which we got some basically desired purposes like the linear variation

of depth values for the slope areas in Flower Garden, though there are still outliers from
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(a) (b)

(c)

Figure 4.5: Gabor matching results dG: (a)Tsukuba0 ; (b)Garden0 ; (c)VIVA Lab.

the false matching results for some tiny regions. To alleviate such outliers, we found that

a large part of such tiny regions contain less than ten pixels and have disparity values out

of the range after the region matching, and this allow us to detect them and merge them

with surrounding regions. After this, a second round of region matching is applied to all

the regions including the newly merged regions, and the results are shown in Fig. 4.7, from

which we can see that many outliers are removed, and the visual quality for Flower Garden

is similar to that of the method based the mean shift segmentation, while for Flower Garden

it is better than mean shift-based method from keeping tiny features point-of-view. More
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importantly, we also have region information associated with the depth maps, and this will

allow us to set up 3D model by triangulations.

4.4 Matching Results Based on SSD

In addition to matching results in Fig. 4.7 which is based on Gabor filtering, we also apply

the same procedure to the initial matching results from SSD. The whole procedure, shown

in Fig. 4.8, is similar to the one shown in Fig. 4.3 in which the Gabor filtering and dG are

replaced with SSD and dSSD.

The coarse disparity maps estimated by SSD for the 0th images of Tsukuba, Flower

Garden and VIVA Lab are shown in Fig. 4.9 (it is the same for VIVA Lab as in Fig. 2.8),

from which we can see that, as indicated in Chapter 2, the SSD method brings blocking

effects and contour distortions. However, the disparity maps for Tsukuba and Flower Garden

in Fig. 4.9 are less noisy than in Fig. 4.5, and this will give better results for our region

merging technique as well as the final disparity maps and 3D models. After the region

merging, we apply the first round of region matching to all the merged regions except for

the regions determined as zero-displacement region, and the results are shown in Fig. 4.10.

Similar to the results shown in Fig. 4.6, we have some outliers in each disparity image in

Fig. 4.10 after the first round of region matching. Therefore we apply the same tiny region

merging technique as in last section, then apply the second round of region matching, and

the results are shown in Fig. 4.11, from which we can see that many outliers are removed,

and the visual quality for Flower Garden is better than the Gabor-based result as shown in

Fig. 4.7(b) in which there are less outliers left on the slope and tree areas; while for Tsukuba

and VIVA Lab the visual impression in Fig. 4.10(a)(c) are similar to the Gabor-based results

in Fig. 4.7(a)(c).
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4.5 3D Modeling by Triangulation

The 3D modeling and rendering that we did at the end of Chapter 3 is only achieved by

putting all 3D points together without any kind of connections among these points, and this

will cause the scene surfaces to split into scattered dots when zooming into the scene. To

overcome this problem, we need to use some connection methods such as triangular meshes

to represent each scene surface, while keeping surfaces which belong to different objects

disconnected. Our region information just meets this requirement.

We first detect the border pixels of each region. Then, these border pixels are put into

the process of Delaunay triangulation, and the resulting triangular mesh will represent the

surface covered by this region. For example, assume we have a region surrounded by border

pixels which are represented using little circles in Fig. 4.12(a), and the depth of this region is

zero. Then, after Delaunay triangulation, we have a triangular mesh covering this region as

shown in Fig. 4.12(b). The code that we used for the Delaunay triangulation can be found at

http://cm.bell-labs.com/netlib/voronoi/triangle.zip, and adapted into our code with interface

on the data structure of border pixels. After triangulation, all the obtained triangles are

used to set up the 3D model with the depth information associated with their vertices using

OpenGL, and the related texture information for each triangle is put onto that triangle by

texture mapping.

4.5.1 Gabor-Based Results

The rendered scenes based on the estimated disparity maps in Fig. 4.7 for the 0th images of

Flower Garden, Tsukuba are shown in Fig. 4.13 and Fig. 4.14 respectively.

The rendered images have black holes and lines, even at the original positions, like the

slopes in Flower Garden and the head face in Tsukuba. This is because some surfaces are still

split even after region merging, and the matching results for these surfaces are different which

make their positions in 3D space have gaps. Another thing to be noticed here is, for Flower

Garden, we did not apply triangulation to the sky. We will do that at the end stage in the

next chapter. From these rendered images, and comparing to the rendering results in the last
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chapter for Flower Garden, we can see that although many outliers are eliminated by region

merging techniques, which makes the triangulation applicable to the scene surfaces, there

are still some outliers left due to the incompleteness of region merging. These outliers could

make the visual quality of rendered images at novel positions very disturbing, especially after

triangulation is applied.

Two rendered images for VIVA Lab are shown in Fig. 4.15. From the table areas in these

two images, we can find that they did not show the linear variation property for the slanted

surface of the table. This is due to the reason that the image information contained in the

original image set of VIVA Lab is not sufficient for our disparity estimation algorithm to

determine the untextured table as a slanted surface. Because the table extends to the very

bottom of the image, so our disparity estimation algorithm could not determine whether this

untextured surface is a slanted one or, e.g., a vertical one.

4.5.2 SSD-Based Results

The rendered scenes based on the estimated disparity maps in Fig. 4.11 for the 0th images

of Flower Garden, Tsukuba are shown in Fig. 4.16 and Fig. 4.17 respectively.

Two rendered images for VIVA Lab are shown in Fig. 4.18. Again, like the results in

Gabor-based method for VIVA Lab, the table area did not show the necessary linear variation

property.

4.6 Summary

This chapter shows a new set of region manipulation and matching algorithm based on our

new color- and quantization-based region manipulation process. The final matching results

show some improvements over the results in Chapter 3 which are based on the mean shift

segmentation from the point of view of maintaining small features. In addition, the region

information that we obtained can be used for the triangulation in the 3D model set up.

From the rendered images of Tsukuba and Flower Garden, we find that the SSD-based ap-

proach is better than Gabor-based approach since the original coarse disparity from SSD gives
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better information for region merging process. Although in the coarse disparity estimated by

SSD we can see the distortion for some object contours, our color- and quantization-based

region manipulation process can repair such distortions. However, for both Gabor- and SSD-

based approaches, there are still outliers left in the final estimated disparity maps which

will bring separate and spur-like triangles in the triangulation process for the 3D modeling.

To improve the quality of the final 3D models, we need to further eliminate such outliers,

which we will do in the final process of separate 3D model integration by considering the

information from other locations. This will be presented in the next chapter.

For the image set of VIVA Lab, since our disparity estimation algorithm could not de-

termine the linear variation property for the untextured and slanted table surface in that

image set, we will not use this image set in the next chapter.
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(a) (b)

(c)

Figure 4.6: Results after first round of region matching: (a)Tsukuba0 ; (b)Flower Garden0 ;

(c)VIVA Lab.
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(a) (b)

(c)

Figure 4.7: Final disparity estimation results: (a)Tsukuba0 ; (b)Flower Garden0 ; (c)VIVA

Lab.
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(a) (b)

(c)

Figure 4.9: SSD results dSSD: (a)Tsukuba0 ; (b)Garden0 ; (c)VIVA Lab.
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(a) (b)

(c)

Figure 4.10: Results after first round of region matching based on dSSD: (a)Tsukuba0 ;

(b)Flower Garden0 ; (c)VIVA Lab.



CHAPTER 4. DISPARITY WITH 3D MODELING 93

(a) (b)

(c)

Figure 4.11: Final disparity estimation results based on SSD: (a)Tsukuba0 ; (b)Flower Gar-

den0 ; (c)VIVA Lab.
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Figure 4.12: (a) A region surrounded by little circles (depth z = 0); (b) the region covered

by triangular mesh after Delaunay triangulation.
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(a) (b)

(c) (d)

Figure 4.13: Gabor-based render results for Garden0 : (a)original position; (b)zooming in;

(c)zooming in and rotation to the right; (d)zooming in and rotation to the left.
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(a) (b)

(c) (d)

Figure 4.14: Gabor-based render results for Tsukuba0 : (a)original position; (b)zooming in;

(c)zooming in and rotation to the right; (d)zooming in and rotation to the left.
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(a) (b)

Figure 4.15: Gabor-based render results for VIVA Lab: (a)zooming in and rotation to the

right; (b)zooming in and rotation to the left.
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(a) (b)

(c) (d)

Figure 4.16: SSD-based render results for Garden0 : (a)original position; (b)zooming in;

(c)zooming in and rotation to the right; (d)zooming in and rotation to the left.
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(a) (b)

(c) (d)

Figure 4.17: SSD-based render results for Tsukuba0 : (a)original position; (b)zooming in;

(c)zooming in and rotation to the right; (d)zooming in and rotation to the left.
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(a) (b)

Figure 4.18: SSD-based render results for VIVA Lab: (a)zooming in and rotation to the right;

(b)zooming in and rotation to the left.



Chapter 5

Integration of Separate 3D Models

with Final Results

Although the matching results based on our new hybrid motion estimation algorithm in

the last chapter give very good visual qualities, like the retention of tiny features as well

as the linear variation of depth values for slanted surfaces in Flower Garden, there are still

some outliers in the depth maps, and these outliers in depth values result in more disturbing

outlier triangles in the separate 3D models based on the matching results. Therefore, it is

desirable to further reduce those outliers before a final 3D model for the whole scene can

be integrated. We will try to achieve this purpose by considering the matching results from

separate camera positions, after the camera motion parameters are obtained by ego-motion

estimation.

The block diagram for the final stage in our 3D model integration is shown in Fig. 5.1. The

whole process starts from estimating disparity (depth) maps for each image location using

the same procedure as shown in the last chapter. Then, to achieve the purpose of further

eliminating outliers, we do the first round of ego-motion estimation and transform the large

regions from other image locations to the reference location, so that the tiny regions causing

those outliers in a large region can be removed by the information of its correspondent large

regions from other images. This is done by selecting all the large regions in each image and

101
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Figure 5.1: Block architecture for ego-motion estimation and 3D integration
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estimating the ego-motion parameters by minimizing the matching cost functions for these

large regions between any pair of different image locations. Once we have all the ego-motion

parameters among all the image locations, we propagate these large regions to all other

locations in order to jointly refine the shape of all the large regions. After the large regions

in each image location are further refined, a second matching process will be applied on

all the pixels in that image, and this will give a further improved depth map with reduced

outliers and thus a better separate 3D model for that location.

We present the whole process shown in Fig. 5.1 with results for each main step using

two image sets – Flower Garden and Tsukuba. Also, for each image set, we show the results

based on two different starting approaches for coarse disparity estimation – Gabor and SSD.

5.1 Data Sets

We will try to apply our motion estimation algorithm and 3D integration method on two

sets of images: the first six images from the sequence Flower Garden (garden0 – 5 ) and the

four images from Tsukuba (tsukuba0 – 3, there is also tsukuba4 but that is the last one in the

row so no 3D information can be estimated for that location, since we only estimate motion

and disparity from the left image to the right image), as shown in Fig. 5.2 for Flower Garden

and Fig. 5.3 for Tsukuba.

5.2 First Round of Disparity Estimation

As an initialization, the disparity maps for all image locations are estimated using the same

disparity estimation algorithm described in Chapter 4.

5.2.1 Disparity Maps from Gabor-Based and SSD-Based Approaches

The disparity maps using Gabor-based approach for all the image locations are estimated

as we did to obtain the disparity maps for tsukuba0 and garden0 in Fig. 4.7(a)(b), and are

shown in Fig. 5.4 for Flower Garden, and in Fig. 5.5 for Tsukuba.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Original image set for Flower Garden: (a) garden0 ; (b) garden1 ; (c) garden2 ; (d)

garden3 ; (e) garden4 ; (f) garden5.
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(a) (b)

(c) (d)

Figure 5.3: Original image set for Tsukuba: (a) tsukuba0 ; (b) tsukuba1 ; (c) tsukuba2 ; (d)

tsukuba3.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Disparity maps after 1st round of matching process using Gabor-based approach

for Flower Garden: (a) garden0 ; (b) garden1 ; (c) garden2 ; (d) garden3 ; (e) garden4 ; (f)

garden5.
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(a) (b)

(c) (d)

Figure 5.5: Disparity maps after 1st round of matching process using Gabor-based approach

for Tsukuba: (a) tsukuba0 ; (b) tsukuba1 ; (c) tsukuba2 ; (d) tsukuba3.
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The disparity maps using SSD-based approach for all the image locations are estimated

as we did to obtain the disparity maps for tsukuba0 and garden0 in Fig. 4.7(a)(b), and are

shown in Fig. 5.6 for Flower Garden, and in Fig. 5.7 for Tsukuba.

5.3 Ego-Motion Estimation Exploiting Large Regions

5.3.1 Gabor-Based Approach

As stated at the end of Chapter 2, we will use the image intensity-based method for the

ego-motion estimation, similar to that of [50]. We first select the large regions in each image,

since they have matching results more reliable than those of small regions, which might be

outliers. The criterion for selection as a large region is that the region have more than five

hundred pixels (determined empirically). The large regions selected for all the six images

of garden0 – 5 for the approach starting from the Gabor transform (Fig. 4.3) are shown in

Fig. 5.8, in which each large region in each image has a unique label for display purpose.

The large regions for Tsukuba0 – 3 for the approach starting from the Gabor transform are

shown in Fig. 5.9.

From these large regions, we can see that most of them do not have complete shapes as

what they should be, and some large regions are even missing in some locations, like the

region representing the tree in garden1. In addition, some large regions (especially the slope

regions in Flower Garden which are full of textures) have very small holes inside, which are

actually represented by other small regions not merged with the surrounding large regions;

such very small regions will bring outliers in the 3D models. Therefore, we should further

improve the shapes of these large regions before a final 3D model can be built up. However, in

order to improve the shapes of large regions for one location, we need to propagate the large

regions from other locations to that location, and this requires the ego-motion parameters

to be estimated first. We will use the existing large regions that we have, as in Fig. 5.8 and

Fig. 5.9, to do the ego-motion estimation.

Similarly to the approach in [50], based on the fact that we are using two sets of transla-
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Disparity maps after 1st round of matching process using SSD-based approach

for Flower Garden: (a) garden0 ; (b) garden1 ; (c) garden2 ; (d) garden3 ; (e) garden4 ; (f)

garden5.
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(a) (b)

(c) (d)

Figure 5.7: Disparity maps after 1st round of matching process using Gabor-based approach

for Tsukuba: (a) tsukuba0 ; (b) tsukuba1 ; (c) tsukuba2 ; (d) tsukuba3.



CHAPTER 5. FINAL RESULTS 111

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Large region labels for Flower Garden in Gabor-based approach: (a) garden0 ;

(b) garden1 ; (c) garden2 ; (d) garden3 ; (e) garden4 ; (f) garden5.
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(a) (b)

(c) (d)

Figure 5.9: Large region labels for Tsukuba in Gabor-based approach: (a) tsukuba0 ; (b)

tsukuba1 ; (c) tsukuba2 ; (d) tsukuba3.
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Table 5.1: Ego-motion parameters for Flower Garden in Gabor-based approach

Position Tx b α

garden0→garden1 0.988393 -0.062613 0.000234

garden1→garden2 0.978613 -0.015231 0.000114

garden2→garden3 1.000874 -0.003362 0.000098

garden3→garden4 1.004249 0.002557 0.000001

garden4→garden5 1.001691 0.003529 0.000007

tional image sequences, we also assume the main motion of the camera is translational, with

slight rotations around x and z axis. For the two consecutive images It−1 and It, under the

above assumption and thus the same approximations as in Eq. (2.38), we have for the image

displacements:

xt−1 − TxDt−1(xt−1, yt−1) = cos(α)xt − sin(α)yt

yt−1 − b = sin(α)xt + cos(α)yt (5.1)

where Tx represents the horizontal translation, Dt−1 is the normalized disparity which is the

disparity value divided by Tx for It−1, xt−1 and yt−1 are image coordinates of It−1, and xt

and yt are image coordinates of It. Similar to (2.38), α denotes the rotation around the z

axis, and the rotation around the x axis is approximated by a uniform vertical translation

b. Also, with small rotation around the z axis, we have cos(α) ≈ 1 and sin(α) ≈ α.

We use the same formulae as in (2.39) – (2.41) for the estimation of the ego-motion

parameters Tx, b and α. The estimated parameters for each consecutive set of positions are

shown in Table 5.1 for Flower Garden, and in Table 5.2 for Tsukuba.

To show the quality of the ego-estimation, we show the rendered image of garden0 from

OpenGL after setting up the 3D model using the depth map for the position of garden0,

and the rendered image of garden5 after transforming the separate 3D model of garden5 to

the position of garden0, in Fig. 5.10 (without the sky regions). We can see that both for

the object with large displacement (the tree), and the object with small displacement (the
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Table 5.2: Ego-motion parameters for Tsukuba in Gabor-based approach

Position Tx b α

Tsukuba0→Tsukuba1 1.000224 0.003139 -0.000007

Tsukuba1→Tsukuba2 1.000542 0.003490 -0.000012

Tsukuba2→Tsukuba3 0.999933 0.000178 0.000010

(a)

(b)

Figure 5.10: An example of homogeneous transform after the ego-motion estimation: (a)

direct rendering of garden0 ; (b) rendering of garden5 transformed to the position of garden0.
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Table 5.3: Ego-motion parameters for Flower GArden in SSD-based approach

Position Tx b α

garden0→garden1 0.984231 -0.091047 0.000256

garden1→garden2 0.989103 -0.003425 0.000062

garden2→garden3 0.996749 -0.003728 0.000087

garden3→garden4 1.001183 -0.000138 0.000017

garden4→garden5 1.001676 0.005113 -0.000003

Table 5.4: Ego-motion parameters for Tsukuba in SSD-based approach

Position Tx b α

Tsukuba0→Tsukuba1 0.998399 -0.001166 0.00010

Tsukuba1→Tsukuba2 1.000423 0.012033 -0.000023

Tsukuba2→Tsukuba3 0.999868 0.000395 0.000016

house), the alignment of the two images after the homogeneous transformation is very good

which can be seen by comparing vertically different parts of the tree and the house along

the borders (e.g., each part along the left borders of the tree are almost on the same vertical

line between the two images in Fig. 5.10(a) and (b)).

5.3.2 SSD-Based Approach

Similar to the cases in Gabor-Based Approach, for the approach starting from SSD (Fig. 4.8),

we first pick out the large regions in each image, which are shown in Fig. 5.11 for Flower

Garden, and in Fig. 5.12 for Tsukuba.

Using the same ego-motion estimation algorithm as in the Gabor-based approach ((2.39)

– (2.41)), the estimated parameters Tx, b and α are shown in Table 5.3 for Flower Garden,

and in Table 5.4 for Tsukuba.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Large region labels for Flower Garden in SSD-based approach: (a) garden0 ; (b)

garden1 ; (c) garden2 ; (d) garden3 ; (e) garden4 ; (f) garden5.
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(a) (b)

(c) (d)

Figure 5.12: Large region labels for Tsukuba in SSD-based approach: (a) tsukuba0 ; (b)

tsukuba1 ; (c) tsukuba2 ; (d) tsukuba3.
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5.4 Refinement for the Shape of Large Regions

Once we have the parameters of the homogeneous transformations among all the image

locations, we can propagate the large regions in one image to the locations of other images,

and compare the correspondence relations among them. If a large region in one image is

determined to be the corresponding region for another large region in another image by

comparing the amount of overlapping pixels between them, then the shapes of these two

regions as well as the areas they occupy can be used to compensate each other along with

their associated depth information. Assume we need to refine a large region in image IA with

label value A using the large region label LPIB
propagated from image IB, and a large region

in LPIB
with label value B is determined as the corresponding region for large region A in

IA. The large region label of IA is LIA
, and the disparity maps are dA for IA and dBProp

for dB of IB propagated to IA. Then the procedure to regine large region A in IA can be

summarized as follows:

For each pixel (x, y) in IA, go through following steps:

(1) If LIA
(x, y) = 0 and LPIB

(x, y) = B, then set LIA
(x, y) = A

(2) If LIA
(x, y) not equal to zero, LIA

(x, y) not equal to A and LPIB
(x, y)

equal to B, then check:

(a) If dA(x, y) is less than dBProp(x, y), then set LIA
(x, y) = A

(b) If dA(x, y) is larger than dBProp(x, y) and (x, y) belongs to a region

less than 10 pixels, then set LIA
(x, y) = A

This procedure is very useful in eliminating the very small regions inside a large region

(usually resulting in outliers in the depth map).

5.4.1 Gabor-Based Approach

For the Gabor-based approach, we show the new region labels including all the large regions

for each image after the above refinement procedure which is done by propagating the large

regions of all the other images into its location in Fig. 5.13 for Flower Garden. Comparing
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Refined region labels for Flower Garden after homogeneous transformation using

Gabor-based approach: (a) garden0 ; (b) garden1 ; (c) garden2 ; (d) garden3 ; (e) garden4 ; (f)

garden5.
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Fig. 5.13 with Fig. 5.8, we can see that most of the false small regions in each of the large

regions are filled by large regions propagated from other image locations.

Similarly, for Tsukuba, the new region labels including the refined large region masks are

shown in Fig. 5.14.

5.4.2 SSD-Based Approach

For the approach starting from SSD, the new region labels including the refined large region

masks are shown in Fig. 5.15 for Flower Garden, and Fig. 5.16 for Tsukuba. Comparing

Fig. 5.15 and Fig. 5.16 with Fig. 5.13 and Fig. 5.14, we can see that the large regions for

SSD-based approach are more clean than the large regions for the Gabor-based approach.

This is because the SSD give initial disparity maps with fewer outliers than the Gabor-based

approach.

5.5 Second Round of Matching for all the Image Loca-

tions

After the shapes of large regions are refined to get rid of the false small regions, we put all

the regions to a second round of matching process.

5.5.1 Gabor-Based Approach

The results of the second round of disparity estimation using the Gabor-based approach are

shown in in Fig. 5.17 for Flower Garden, and in Fig. 5.18 for Tsukuba.

We can see that most of the outliers are eliminated.

5.5.2 SSD-Based Approach

The results of the second round of disparity estimation using the Gabor-based approach are

shown in in Fig. 5.19 for Flower Garden, and in Fig. 5.20 for Tsukuba.
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(a) (b)

(c) (d)

Figure 5.14: Refined region labels for Tsukuba using Gabor-based approach: (a) tsukuba0 ;

(b) tsukuba1 ; (c) tsukuba2 ; (d) tsukuba3.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15: Refined region labels for Flower Garden after homogeneous transformation using

SSD-based approach: (a) garden0 ; (b) garden1 ; (c) garden2 ; (d) garden3 ; (e) garden4 ; (f)

garden5.
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(a) (b)

(c) (d)

Figure 5.16: Refined region labels for Tsukuba using SSD-based approach: (a) tsukuba0 ; (b)

tsukuba1 ; (c) tsukuba2 ; (d) tsukuba3.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.17: Disparity maps after 2nd round of matching process using Gabor-based approach

for Flower Garden: (a) garden0 ; (b) garden1 ; (c) garden2 ; (d) garden3 ; (e) garden4 ; (f)

garden5.
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(a) (b)

(c) (d)

Figure 5.18: Disparity maps after 2nd round of matching process using Gabor-based approach

for Tsukuba: (a) tsukuba0 ; (b) tsukuba1 ; (c) tsukuba2 ; (d) tsukuba3.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.19: Disparity maps after 2nd round of matching process using SSD-based approach

for Flower Garden: (a) garden0 ; (b) garden1 ; (c) garden2 ; (d) garden3 ; (e) garden4 ; (f)

garden5.
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(a) (b)

(c) (d)

Figure 5.20: Disparity maps after 2nd round of matching process using SSD-based approach

for Tsukuba: (a) tsukuba0 ; (b) tsukuba1 ; (c) tsukuba2 ; (d) tsukuba3.
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Table 5.5: Second set of ego-motion parameters for Flower Garden in Gabor-based approach

Position Tx b α

garden0→garden1 0.995553 -0.053821 0.000183

garden1→garden2 1.000509 0.000100 0.000050

garden2→garden3 1.002317 -0.001033 0.000070

garden3→garden4 1.002498 0.002248 0.000011

garden4→garden5 1.001633 0.005674 -0.000012

Table 5.6: Second set of ego-motion parameters for Tsukuba in Gabor-based approach

Position Tx b α

Tsukuba0→Tsukuba1 0.995898 -0.014878 0.000131

Tsukuba1→Tsukuba2 0.956393 -0.195677 -0.000431

Tsukuba2→Tsukuba3 1.001717 0.111050 -0.000542

5.6 Second Round of Ego-Motion Estimation

With the new depth maps for each image location in which most of the outliers are re-

moved from the large regions, we can perform a second round of ego-motion estimation. The

procedure is the same as in section 5.3.

The newly estimated ego-motion parameters using Gabor-based approach are shown in

Table 5.5 for Flower Garden, and in Table 5.6 for Tsukuba.

The newly estimated ego-motion parameters using SSD-based approach are shown in

Table 5.7 for Flower Garden, and in Table 5.8 for Tsukuba.
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Table 5.7: Second set of ego-motion parameters for Flower Garden in SSD-based approach

Position Tx b α

garden0→garden1 0.981548 -0.096068 0.000282

garden1→garden2 0.998241 0.000659 0.000041

garden2→garden3 0.997694 -0.002068 0.000057

garden3→garden4 1.000623 -0.000024 0.000015

garden4→garden5 0.999254 0.003270 0.0

Table 5.8: Second set of ego-motion parameters for Tsukuba in SSD-based approach

Position Tx b α

Tsukuba0→Tsukuba1 0.999258 -0.018133 0.000185

Tsukuba1→Tsukuba2 0.983966 -0.056794 -0.000928

Tsukuba2→Tsukuba3 1.002299 0.106683 -0.000581
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5.7 Merging of 3D Models

Finally, with the much improved separate 3D models and the new set of ego-motion param-

eters, we reach the final step to merge these separate 3D models into one combined model.

The method we used to achieve this purpose can be classified as the surface approach (as

opposed to the volumetric approach). In the existing methods for surface approach, surfaces

from separate 3D models with triangular meshes are put together in 3D space. Then, if two

or more separate surfaces are determined to belong to one whole surface, the overlapping

and non-overlapping parts among them are determined. To stitch these surfaces together,

some strategies need to be developed on how to deal with the overlapping parts (keeping

one of the surfaces and abandoning others, or making an average among these overlapping

surfaces). For the non-overlapping parts, usually the triangles connecting them to the over-

lapping parts are abandoned, and a new triangulation process should be applied on those

vertices along the gap of overlapping and non-overlapping parts [55][56]. Therefore, we can

see that the existing surface approach is a tedious and computational expensive process. In

our integration procedure, we do such surface stitching only based on pixels in each regions

with triangulation process applied to the finally merged surfaces.

5.7.1 Results for Gabor-Based Approach

We first show the rendering from the separate 3D model at the location of garden1 in

Fig. 5.21. The black lines and dots on the sky region in the left part of Fig. 5.21(c)(e)(f) are

caused by the fact that the shape of the left sky region is very complex, and the triangulation

process failed on it. In order to present the whole image, we put 3D point array instead of

triangular mesh for this sky region. Thus, when we zoom into the scene, this sky region will

split.

Our merging procedure still starts from large regions in each image. Once the correspond-

ing relations for all the large regions in all images are determined, then to set up one combined

model in one reference image location, e.g., the location of garden1, the large regions from

all other images are propagated to the location of garden1, and each large region in garden1
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(a)
(b)

(c)
(d)

(e)
(f)

Figure 5.21: Rendering from separate 3D model at garden1 : (a) original viewpoint; (b) – (f)

novel viewpoints.
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(a)

(b)

Figure 5.22: An example of large region expansion: (a) An original large region in garden1 ;

(b) Corresponding large regions from other images.

is expanded by the corresponding large regions from all other images. We show this with one

example in Fig. 5.22 using Gabor-based approach, in which Fig. 5.22(a) is one original large

region in garden1, and Fig. 5.22(b) is its corresponding large regions propagated from other

images. We can see the expansion from Fig. 5.22(a) – (b), and this expansion will bring some

geometry and texture information behind the tree for the location of garden1.

This kind of procedure is applied to all the large regions of garden1, and each expanded

large region is triangulated with textures from all images while setting up the final whole 3D

model for the location of garden1. After dealing with large regions, we put the triangulated

small regions of garden1 with textures and this gives us one combined 3D model for the
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location of garden1. Six rendered images after the models of garden0 – garden5 are combined

at the reference location of garden1 are shown in Fig. 5.23.

Comparing Fig. 5.23 with Fig. 5.21, we can find that more surfaces and textures behind

the tree are filled (the house and slope areas on the right side of the tree). However, there

are obvious artifacts along the stitched borders in which two regions belonging to the house

are stitched together with a vertical shift. This is due to the inaccuracy of the estimated

ego-motion parameters.

We also generated the images at the locations of garden0, garden2 and garden3, and

obtained the PSNR results by comparing them with the original images. The results are

shown in Fig. 5.24.

Six rendered images for Tsukuba are shown in Fig. 5.25 for the image location of tsukuba1

after the separate 3D models for tsukuba2 – tsukuba4 are transformed to the location of

tsukuba1 and merged with the model of tsukuba1. We can see the integrated 3D model

for Tsukuba is not as good as for the Flower Garden. This is because Tsukuba has more

occluded areas around the lamp and the head, and many of them are not large regions. Since

our algorithm on 3D model integration so far only works for large regions, so the visual

effects of the finally combined 3D model are worse than that of the Flower Garden, and we

do not calculate the PSNR values for Tsukuba.

5.7.2 Results for SSD-Based Approach

We first show the rendering from the separate 3D model at the location of garden0 in

Fig. 5.26.

Then we transform and combine the models at garden1 – garden5 and combine with

the model at garden0. The six rendered images are shown in Fig. 5.27. Comparing Fig. 5.27

with Fig. 5.26, like in the case of Gabor-based approach in Fig. 5.23, we can find that more

surfaces and textures behind the tree are filled (the house and slope areas on the right

side of the tree). However, unlike in the Fig. 5.23, there are no obvious artifacts along the

stitched borders in which two regions belonging to the house are aligned together without



CHAPTER 5. FINAL RESULTS 134

(a)

(b)

(c) (d)

(e) (f)

Figure 5.23: Rendering from combined 3D models at garden1 : (a) original viewpoint; (b) –

(f) novel viewpoints.



CHAPTER 5. FINAL RESULTS 135

(a) (b)

(c)

Figure 5.24: PSNR results from the final 3D model at garden1 for Gabor-based approach:

(a) garden0, 10.21dB; (b)garden2, 9.34dB; (c) garden3, 8.48dB.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.25: Rendering from combined 3D models at tsukuba1 : (a) original viewpoint; (b) –

(f) novel viewpoints.
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(a)
(b)

(c) (d)

(e)
(f)

Figure 5.26: Rendering from separate 3D model at garden0 : (a) original viewpoint; (b) – (f)

novel viewpoints.
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(a)

(b)

(c) (d)

(e) (f)

Figure 5.27: Rendering from combined 3D models at garden0 : (a) original viewpoint; (b) –

(f) novel viewpoints.
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(a) (b)

(c)

Figure 5.28: PSNR results from the final 3D model at garden0 for SSD-based approach: (a)

garden1, 8.71dB; (b)garden2, 8.56dB; (c) garden3, 7.85dB.

obvious vertical shift. Such results indicate that our ego-motion estimation algorithm works

reasonably well. This indicates that the estimated ego-motion parameters in the SSD-based

approach are better than that of in the Gabor-based approach.

We also generated the images at the locations of garden0, garden2 and garden3, and

obtained the PSNR results by comparing them with the original images. The results are

shown in Fig. 5.28

Six rendered images for Tsukuba are shown in Fig. 5.29 for the image location of tsukuba1

after the separate 3D models for tsukuba2 – tsukuba4 are transformed to the location of

tsukuba1 and merged with the model of tsukuba1. We can see that, similar to the reasons for
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(a)
(b)

(c) (d)

(e) (f)

Figure 5.29: Rendering from combined 3D models at tsukuba1 : (a) original viewpoint; (b) –

(f) novel viewpoints.



CHAPTER 5. FINAL RESULTS 141

Tsukuba in Gabor-based approach, the integrated 3D model for Tsukuba is not as good as

for the Flower Garden. In some areas (e.g. the lamp), the quality of the integrated textures

are even lower than in the separate 3D model cases.

5.8 Summary

In this chapter, we showed the procedure for the estimation of ego-motion parameters as

well as the integration of separate 3D models using both of Gabor- and SSD-based ap-

proaches. These procedures work well for Flower Garden, but not as well for Tsukuba, since

the integration procedure is mainly designed for large regions.

From the rendered images using the combined 3D models for Flower Garden, the SSD-

based approach gives better visual effects as well as more accurate alignment of separate

3D models based on the estimated ego-motion parameters than that of the Gabor-based

approach. This is mainly due to the fact that the initial disparity maps estimated by SSD give

more complete region information and fewer outliers. However, the Gabor-based approach

gives better PSNR results, but this is mainly because some small sky regions in the left

part of the image have not been put to the triangulation and rendering in the SSD-based

approach, since the shape of the sky region in that part is very complex.



Chapter 6

Conclusions and Future Work

This chapter summarizes the results and conclusions of the thesis along with contributions

that we have achieved, and outlines the remaining problems and possible directions for future

work.

6.1 Summary of Algorithms and Conclusions

In this thesis we have presented a set of approaches for the challenging problem of 3D re-

construction from images and videos, for the application of image-based virtual environment

using explicit geometry with texture mapping. These approaches can be classified into two

major parts: the matching with disparity estimation for the determination of separate 3D

models at each image location, and the integration of separate 3D models into one model

for the whole environment.

Matching is an ill-posed problem. At the beginning, we tried to handle this problem by

looking into the existing methods for disparity estimation – SSD, variational regularization,

graph cuts, etc. We found, as we showed in Chapter 2, that the method using blocking match-

ing through SSD usually distorts object boundaries. Although we can reduce such problems

by adjusting the block size of SSD, this makes the matching process not robust to different

kinds of scenes. The method of graph cuts is mainly suitable for objects with fronto-parallel

surfaces, and its complexity is very high. In order to obtain a robust matching algorithm, we

142
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used the Gabor transform, which was motivated by the work of Fleet [26][27], with the main

difference that we use a cost function involving the absolute difference of Gabor filter outputs

between the left and the right images, rather than comparing phase components as in the

work by Fleet. Once we have a coarse disparity map estimated using the Gabor transform,

we put it through variational regularization for further refinement. The refinement process

is carried out by applying the gradient descent method to the Euler-Lagrange equation as-

sociated with the cost function including a data fidelity term and a regularization term.

In the experiments using this kind of Gabor and variational refinement scheme, although

we obtained improved disparity estimates, we found it very hard to obtain a satisfactory

disparity map suitable for the purpose of 3D reconstruction. One difficult issue is that it is

impossible to identify the sky region while retaining small front objects (like the twigs and

sky in Flower Garden). Another hard problem is how to keep some object boundaries sharp

and crisp. Although we can use some edge-perserving regularization functionals, as stated

in Chapter 3, such functionals could not completely distinguish the real object boundaries.

Thus, with the already distorted object boundaries from the coarse disparity map, there

are still distortions left along the real object boundaries after the refinement process. These

difficulties are due to the ill-posed nature of disparity estimation, and we believe that they

could not be completely solved by improving any associated cost functions; rather we felt

they should be solved by making use of region information.

Exploiting region information means that we have to segment the image first, and such

segmentation should give us surfaces of the objects rather than segmenting a surface full of

texture into several regions. However, without 3D information, identifying and segmenting

the real surface with abundant texture inside it for one single image is another ill-posed

problem. Therefore, we need to start from color-based segmentation, even if it results in the

over-segmentation of some surfaces. Then, with the help of 3D information obtained from

disparity maps, we can manipulate the segmented regions so that several regions under one

real surface (usually with same disparity values in SSD- or Gabor-based coarse disparity

maps) can be merged together in order to form one surface.

We first tried an existing color-based segmentation algorithm, mean shift [4]. Combining
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the obtained region information with a kind of disparity histogram analysis on each region

brings us improved disparity maps in which most of the object contours remain crisp, and

some large regions with zero displacement (like the sky regions) can be identified. In such dis-

parity histogram analysis, the disparities come from a hybrid disparity estimation approach,

in which pixel-based approaches and region matching are used together. The pixel-based

approaches are implemented using the SSD- or Gabor-based coarse disparity estimation fol-

lowed by variational refinement. The intermediate disparity maps obtained from the pixel-

based approaches are then put through a region matching scheme, and the disparities finally

obtained are used for the disparity histogram analysis on each region. However, one main

drawback for the mean shift algorithm is that it might miss some tiny objects (like the twigs

of a tree) and merge them with the surrounding or background regions. Another issue is that

in order to obtain one complete region for a surface full of textures, we need to merge all

the over-segmented regions by such a color-based segmentation algorithm inside the surface.

These two issues led to the following reasoning: if we need to solve the over-segmentation

issue for the regions coming from a color-based segmentation algorithm which could miss

some tiny objects, then why not start from some simple segmentation scheme which could

retain these tiny objects and solve the over-segmentation later?

The above consideration leads to our quantization-grouping process applied on the image

intensity values to replace the mean shift segmentation algorithm, as described in Chapter

4. In this process, the image intensities are quantized, and the adjacent pixels with the

same quantized intensity values are grouped together to form one region. In addition to

the replacement of the mean shift algorithm with this quantization-grouping process, we

also changed the zero displacement detection scheme in which a variational regularization

process is applied to the whole image with the initial disparity for all the pixels starting

from zero. For the disparities obtained this way, most of the disparitiy values for the regions

with zero displacement will remain around zero, and this can be used to determine if a

region has zero displacement. After such regions with zero displacement are identified, the

remaining regions are put through a region merging process in which the adjacent regions

under the same disparity (the initial coarse disparity maps coming from the SSD- or Gabor-
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based disparity estimation) masks are merged together. Then a region matching is applied to

the regions after the region merging process (except for those regions determined as having

zero displacement) with initial disparity values coming from the SSD- or Gabor-based coarse

disparity maps. The disparities obtained using the above procedure can give us disparity

maps with good visual quality in which most of the object boundaries remain crisp with the

tiny objects being retained, while the regions with zero displacement (like sky regions) can

be identified. Based on such disparity maps together with the region information, we can set

up separate 3D models with good quality using Delaunay triangulation on each region.

For the final 3D model integration stage, we first performed ego-motion estimation using

the correspondence relations of large regions between each pair of two consecutive images,

since the matching results for large regions are usually more reliable than those of the small

regions. Doing ego-motion estimation in this way is different from the usual bundle adjust-

ment and ICP algorithms in which the 3D information (or 3D points) are used explicitly

in the associated cost function. In our ego-motion estimation approach, we use image in-

tensities in the cost function along with disparities rather than 3D points. Therefore, we

achieved ego-motion estimation in image space with implicit 3D informaiton, rather than

in 3D space using explicit 3D points. This method increases the estimation efficiency and

avoids the ambiguities coming along with the noise in disparity maps (which will result in

outliers in 3D space), and the latter point is particularly useful for image matching-based

modeling since the matching results usually contain more noise than, e.g., a laser scanned

3D model.

After the ego-motion parameters are estimated, we can transform the separate 3D models

to a reference image location and combine these models with the 3D model at that image

location. In our algorithm at this stage, the integration process is only applied to large

regions. With the correspondence information, the shape of each large region in the image at

the reference location can be adjusted and expanded, and this procedure can eliminate most

of the outliers inside the large region. Then, with the shape of each large region adjusted, all

the regions in the reference image are put through a second round of matching to obtain an

improved disparity map. Using such a procedure, with the disparity maps of all the images
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updated, we perform a second stage ego-motion estimation. Then, with the separate 3D

models transformed to the reference location again, each large region is merged with their

correspondent large regions and the Delaunay trangulation is applied on these merged large

regions. The texture mapping is also achieved by first determining, for each large region,

which parts of pixels are from which images, and then the textures can be mapped on this

large region from the respective images.

From the rendered images, the SSD-based approach gives better visual quality, for sepa-

rate 3D models of both Flower Garden and Tsukuba, in which there are less outliers and the

regions are closer to the actual object shapes. For combined 3D models, since the SSD-based

approach has better region information, the ego-motion parameters are more accurate than

those of the Gabor-based approach and therefore give better alignment for separate models.

Thus, our conclusion for Gabor- and SSD-based approaches is that the Gabor-based ap-

proach might give disparity maps with better visual quality at the initial pixel-based stage,

while the SSD-based approach usually gives better results after region matching and the

whole procedure of our algorithm. This is mainly because the coarse disparity maps esti-

mated by SSD contain fewer outliers and give better region information. Although there are

two main problems for SSD (blocking effect and distortion of object boundaries), they can

be corrected by our segmentation and region manipulation processes.

6.2 Thesis Contributions

1. We developed disparity estimation method using Gabor filters with a new cost function.

This method is robust to scenes with different complexities, in the sense that we do

not need to predetermine any block size like in the case of SSD. Related publications

are:

• X. Huang and E. Dubois, “Disparity estimation for the intermediate view inter-

polation of stereoscopic images”, Proc. IEEE Int. Conf. Acoustics Speech Signal

Processing, pp. II-881–II-884, March 2005.
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• X. Huang and E. Dubois, “Three-view dense disparity estimation with occlusion

detection”, Proc. IEEE Int. Conf. Image Processing, pp. III-393–III-396, Sept.

2005.

2. A whole set of procedures defining a hybrid algorithm for disparity estimation. The

basic idea of our algorithm is to combine the pixel-based and region-based matching

schemes in order to obtain disparity results with quality that neither pixel-based nor

region-based matching method could reach. Matching is a long standing problem, and

we believe that it should be solved in a joint analysis approach utilizing both pixel and

region information, rather than depending on one or two functionals from only pixel-

based or region-based method. There are two versions of our algorithm depending on

the segmentation methods:

(A) Using segmentation algorithm ‘mean shift’, we developed a hybrid disparity es-

timation algorithm in which the previous disparity results obtained from the

pixel-based procedures are combined with segmentation results for further re-

gion matching as well as for disparity histogram analysis within each region, so

that the disparity in each of the segmented regions can be jointly refined and

hence eliminate the outliers in each region. Most of the background regions with

occlusions can also be identified through histogram analysis in order that the true

disparity values for such regions can be restored from the results of pixel-based

procedures. Related publications are:

– X. Huang and E. Dubois, “3D reconstruction based on a hybrid disparity

estimation algorithm”, IEEE Int. Conf. Image Processing, Oct. 2006.

– X. Huang and E. Dubois, “Region-based motion analysis and 3D reconstruc-

tion for a translational video sequence”, Int. Symposium on 3D Data Process-

ing, Visualization, and Transmission, Jun. 2006.

(B) We proposed a new and simple quantization-grouping process to replace a color-

based segmentation algorithm (mean shift) in order that the very small regions can
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be retained after segmentation. Then a region merging and manipulation process

is applied on the regions, which gives a better region matching results with fewer

outliers and thus a better 3D model. In addition, most of the sky regions can also

be detected.

3. We used an ego-motion estimation method performed in image space with implicit 3D

information, rather than the traditional bundle adjustment and ICP which is performed

in 3D space. Thus we can perform ego-motion estimation with more efficiency, and avoid

the ambiguities caused by most of the outliers from separate 3D models if performing

ego-motion estimation using bundle adjustment or ICP. Here we want to state that

our idea of using large region to perform ego-motion estimation in image space came

out at the same period when Rav-Acha’s technical report was published [50], therefore

we just implemented our idea by making use of the cost functions in [50].

4. We proposed a 3D model integration method utilizing large regions with texture map-

ping, in which corresponding large regions from different 3D models can be stitched

together. The stitching process is achieved mainly using pixel information without the

manipulation of triangular meshes which come along with different 3D models. This

is a main difference between our method and the existing common methods and thus

the efficiency of stitching process is also increased.

In summary, we have contributions in both areas of disparity estimation and the 3D

integration process. Our algorithms contain novel ideas that have dramatic differences with

current approaches in both areas. This thesis can be seen as the initial implementation with

initial results for our algorithms.
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6.3 Remaining Problems and Future Work

6.3.1 Disparity Estimation and Matching

Our hybrid disparity estimation algorithm only works for two consecutive images. A better

matching result is expected if we can extend our matching procedure to multiview matching.

For example, we estimated the disparity maps between each pair of consecutive images from

garden5 to garden0. Based on these disparity maps, if we do the disparity estimation between

garden0 and garden5 directly, then more details should be coming out (e.g., the small tree

with slanted posts right in front of the house, they should show different disparty values

after the disparity between garden0 and garden5 is estimated), and thus give more detailed

3D information.

In addition, if we want to capture the 3D structure of an environment by taking un-

constrained videos, we should also solve the problem of extracting 3D information from a

zooming video sequence. For doing this, we should use stereo cameras since in a zooming se-

quence from a single camera, the pixels on objects which lie around the centre of the zooming

might give zero motion values, and thus the associated 3D information is ambiguous. Thus,

if we combine the 3D information from stereo image pairs in each position of the zooming, we

could solve such ambiguities. Therefore, combining our disparity estimation with 2D motion

estimation for arbitrary stereo video sequences is another important direction.

6.3.2 3D Model Integration

From the model integration results on Tsukuba, we can see that our integration scheme needs

to be further improved. At this stage, our integration scheme only work for large regions.

We should extend it to smaller regions. In addition, our integration scheme can handle the

expansion of large regions which could extend a large region to behind the occluding object

(like filling the house area behind the tree in Flower Garden), but could not handle the

situation once the two large should be connected to form one region (like the connection

between the right and left areas of the tree and completely filling the pixels behind the it in
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Flower Garden). This problem should be solved by identifing more situations in the model

merging process.
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