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Abstract

Super-resolution is the process of obtaining either a higher resolution still image

or a sequence of higher resolution images from a corresponding sequence of low

resolution images of a particular scene. It extends the performance limits of single

image interpolation by leveraging the unique information present in the multi-

ple albeit slightly different images. These multi-image techniques seek to recover

frequency content beyond that present in any of the individual observed images

and are hence termed ‘super-resolution’ algorithms. In its simplest form, a super-

resolution algorithm aims to align the mutually shifted low resolution images on

a higher resolution grid. The alignment process requires precise knowledge of the

displacement occurring in the scene, which is estimated using the low resolution

images. This allows a formulation of multiple observed data constraints that can

be used together with knowledge about the imaging process to estimate the high

resolution image. Although super-resolution algorithms have been shown to per-

form well in synthetic scenarios, many of the modeling assumptions break down

in real world imaging conditions. Super-resolution performance is then heavily

dependent on how the forward imaging model is constructed, which is a recur-

ring theme of this thesis. We constrain ourselves to a specific imaging device and

examine the effects of super-resolution when the characteristics of the camera are

uniquely identified. Displacement estimation has been identified as a major fac-

tor in the performance of super-resolution and the choice of displacement models

for different scenes is examined in the thesis. The estimation of the high resolu-

tion image is carried out using regularization-based methods (both algebraic and

stochastic). The thesis also addresses artifacts arising from inaccurate displace-

ment estimates either due to inconsistent displacement models and/or occlusions

occurring in the scene. A complete system is built in this thesis and the results

obtained show significant improvement over single image bi-cubic interpolation.
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Chapter 1

Introduction

“There will come a time when

you believe everything is

finished. That will be the

beginning.”

Louis L’Amour.

The goal of super-resolution (SR) is to increase the resolution of an image or

a sequence of images beyond the resolving power of the imaging system. Image

processing literature has traditionally used the term ‘resolution’ to refer to the im-

age size in terms of the number of pixels. However, the conventional unit of pixel

count is not an appropriate measure of resolution because increasing the number of

pixels in the image may not contribute towards enhancing fine details in the image

content. Correspondingly, the hardware-based solution of increasing resolution by

reducing the pixel size and increasing the number of pixels per unit area does not

always lead to satisfactory results. In digital cameras, a pixel corresponds to the

detector sensor which is usually a CCD (charge-coupled device) or CMOS (com-

plementary metal-oxide semiconductor) sensor. These photo-sensitive detectors

work by integrating the available light impinging on them for a specified period

called the aperture time. When the user presses the camera shutter release, each

of these pixels has a ‘photosite’ which is uncovered to collect and store photons in

a cavity. Once the exposure finishes, the photosites are closed and an assessment

of how many photons fell into each cavity is made. The relative quantity of pho-

tons in each cavity are then sorted into various intensity levels, whose precision
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is determined by the bit depth1. A reduction in sensor size leads to the collection

of photons over a smaller area and hence, an increased sensitivity to shot noise.

Thus, resolution enhancement by sensor manufacturing techniques is limited by

the minimum sensor area beyond which shot noise overwhelms the image. It has

been reported that the imaging industry has already reached this pixel size limit of

40 µm2 for a 0.35 µm CMOS process [2]. Moreover, hardware-based solutions are

often too expensive to employ in the ubiquitous applications of digital images. A

software-based method is more attractive because it can be applied after the image

sequence has already been captured and can thus leverage higher computational

power utilizing more complex algorithms in an off-line scenario.

Super-resolution falls under the umbrella of image restoration techniques which

have a wide variety of documented applications. From the simple need to en-

hance the resolution of digital photographs to more sophisticated computer-vision

algorithms, the demand for higher resolution (HR) images is pervasive in vari-

ous areas. The more popular applications alluded to in recent literature include

surveillance applications like facial and license plate recognition; medical imaging

applications fusing images from different modalities; resolution enhancement of

astronomical and satellite imagery; and converting low resolution video to high

resolution video amongst others.

As opposed to single-image interpolation techniques, super-resolution algo-

rithms utilize multiple images to recover resolution that is lost in the imaging

process. Each image in the set of mutually shifted images contributes unique in-

formation to aid in the recovery of a higher resolution view of the scene. Super-

resolution is a particularly effective technique for low resolution (LR) images suf-

fering from aliasing. Although natural scenes contain an infinite amount of de-

tail, typical imaging devices are only capable of capturing the scene at a limited

1This simplistic description ignores the wavelength (color) dependence of the sensor
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resolution. In other words, natural scenes are not band-limited signals and any

attempt to digitally acquire an image of such a scene will inevitably result in alias-

ing. However, the camera optics typically serve as anti-aliasing filters because of

their low-pass behavior. While this can mitigate the effects of aliasing, the resolv-

ing power of the sensor array in digital cameras is weaker than that of the camera

optics. As a result, a small amount of aliasing is invariably present even when op-

tical pre-filtering is carried out. In its most naive form, super-resolution by simply

registering each low resolution image onto a higher-resolution sampling lattice can

achieve an increase in resolution up to the diffraction limit [3]. Further increase in

performance beyond the diffraction limit can be achieved by more elaborate super-

resolution algorithms which require additional knowledge concerning the various

blur degradations that the desired image undergoes as well as prior knowledge

about the nature of the scene to be reconstructed.

A typical super-resolution algorithm involves three sub-tasks: registration, fu-

sion and de-blurring. The set of low resolution images are first mutually aligned

on a common high resolution lattice. This is generally referred to as image reg-

istration. The aligned pixel values (usually resulting in a non-uniform sampling)

are then interpolated over the reference high resolution lattice to obtain a fused

high resolution image. A subsequent de-blurring of the fused image results in a

higher resolution image provided that a sufficient number of low resolution im-

ages are available and that the image alignnment is carried out to sub-pixel accu-

racy. While these sub-tasks have been separately identified for conceptual clarity,

they are often performed in a joint fashion.

The observed low resolution images in a given set may differ from each other

in various ways. Recent work on super-resolution using alternative cues like blur

has been reported [4] (information from differently blurred images). However, this

thesis primarily deals with the more common scenario of extracting useful infor-
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mation from images that differ from each other via either camera motion or object

motion in the scene or both. The use of motion as a cue in enhancing vision is bio-

logically inspired [3]. The human eye undergoes micro-tremblings called saccades

to prevent image fade-out in the retina. Due to these random movements, the hu-

man eye is also capable of sensing an alias-free version of the scene. While the

scene is not actually reconstructed on a finer grid, a finer localization of edges is

made possible leading to higher perceived resolution [3]. It is interesting to draw a

parallel from biological vision systems and see how they apply to digital cameras.

The human retina has a limited density of photo-receptors which limits visual acu-

ity (ability to resolve fine detail) to 1’ of visual angle. However, the human eye was

found to be able to resolve certain stimuli at a much higher resolution of the order

of 5” of visual angle. This enhanced capacity is termed hyperacuity [5]. Quantita-

tive tests were carried out in [6] to validate the hypothesis that hyperacuity results

from micro-movements of the eye. These results motivate the use of motion as a

cue to improve the resolution of images captured from digital cameras.

We define the problem under consideration in this thesis in Section 1.1. A short

introduction is given in Section 1.2 regarding the specific imaging sensor used.

The organization of the thesis is detailed in Section 1.3. Finally, a highlight of the

contributions made in the thesis is given in Section 1.4.

1.1 Problem definition

In this thesis, we are mainly concerned with the resolution enhancement of a sin-

gle image using spatial diversity from multiple views. In particular, we examine

the resolution enhancement that can be obtained when an imaging sensor like the

ViewPlus ProFUSION25 camera array is used to image a particular scene. Typical

super-resolution algorithms trade off temporal resolution in a video sequence for

higher spatial resolution [7]. For example, every five frames in the video could
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be replaced by one SR frame. The ProFUSION25 camera array provides us with

multiple views of the same scene. In essence, there is no temporal variation be-

cause each camera in the array is synchronized to capture the scene at the same

time. Such a scenario in which spatial resolution is enhanced by the use of multi-

ple views presents unique challenges that have not been directly addressed previ-

ously to the best of our knowledge. In a typical imaging scenario, loss of resolution

occurs mainly due to the following:

1. Aliasing: In this scenario, images are obtained with negligible optical blur,

but the required fine details are unavailable because of the low spatial sam-

pling density of the camera.

2. Blur: In this scenario, the sensor sampling density is adequate to capture the

required details, but the images are degraded by some blurring function.

In aliasing dominated cases, an increase in pixel count can lead to more detail.

However, in blur dominated cases, an increase in pixel count may not necessarily

lead to more detail. In such a case, details are revealed by removing the blur degra-

dation through a de-convolution process. Since we do not know a priori which of

these effects dominate in a given image, it is difficult to give a precise definition

of what is meant by an improvement in resolution. In this thesis, we use a sub-

jective albeit perceptually motivated definition of resolution enhancement like the

one used in [8]:

The super-resolved image should demonstrate an improvement in the

perceived detail content compared with that of the low resolution im-

ages. This typically involves restoration of the high frequency content,

which may require an increase in pixel density.
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(a) high resolution license
plate image

(b) Resolution loss due to mo-
tion blurring

(c) Aliasing effects due to in-
sufficient sensor density

Figure 1.1: Blurring and aliasing effects in the loss of resolution

Examples of both aliasing and blur dominated low resolution images are shown

in Figure 1.1. The original high resolution is that of a license plate1. Both the

blurred and aliased versions lack sufficient resolution. The aliasing effects in Fig-

ure 1.1(c) can be characteristically identified by the jagged edges that appear in the

image.

With the definition stated above and the particular scenario of multi-view im-

ages taken from the ProFUSION25 camera array, a description of the problem can

be stated as:

Given a set of low resolution multi-view images {gi, i = 0, 1, ..., k}, of

size M × N pixels taken with the ProFUSION25 camera array, and a

magnification factor m, reconstruct a higher resolution image of size

mM×mN pixels that satisfies the definition of resolution improvement

stated above.

1.2 The ProFUSION25 camera array

The ProFUSION25 system is a camera array of 25 cameras arranged on a 5x5 grid.

A picture of the camera array is shown in Figure 1.22. We chose to use the Pro-

FUSION25 camera for a variety of reasons. Each camera in the array is capable

1The image was retrieved from http://www.coolpl8z.com
2The image was retrieved from http://www.viewplus.co.jp
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Figure 1.2: The ProFUSION25 camera array

of delivering an image sequence at 25 frames per second (FPS). However, for the

purposes of this thesis, the camera has only been used in one-shot mode to re-

strict the possibility of temporal motion of objects in the scene. As a result, any

displacement occurring between the images is entirely due to a change in viewing

position. The ProFUSION25 camera array outputs raw 8-bit gray-scale images of

pixel resolution 640 × 480. The results discussed in this thesis are thus applied

only to gray-scale images. Multi-view images like the ones captured by the Pro-

FUSION25 are ideal for super-resolution applications. The small baseline between

each camera in the array allows the multiple views to adequately sample the high

resolution image. This is shown to be a condition for obtaining nearly optimal

super-resolution performance in [9]. While many papers merely state that super-

resolution from multi-view images is possible, very few carry out experiments on

a representative data set. Furthermore, an array like the ProFUSION25 essentially

uses 25 different cameras each of which may have a different point spread function

(PSF) and other imaging defects. These are issues that raise interesting questions

regarding the performance of super-resolution algorithms.

The critical reader may wonder what motivates us to use an array like the Pro-

FUSION25 rather than a single higher resolution camera? The principal motiva-
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tion of this work is to be able to render a higher-resolution three-dimensional rep-

resentation of a scene using the diversity presented by the multiple views. For

convenience, we imagine a scene consisting of a sculpture in a museum. Is it pos-

sible to use the disparity between multiple views of this sculpture to generate a

high resolution three-dimensional representation of this sculpture? Can we ren-

der a super-resolved image from a novel view-point, i.e., from a view that was not

one of the original viewing positions? This scenario is the original motivation for

work with this particular camera sensor array. Before we can address the questions

raised above, we need to examine whether any resolution enhancement can be at-

tained from viewpoints that already exist. We pose this as the following questions

to be answered during the course of this thesis:

1. Can we achieve an enhancement in resolution for simple planar scenes from

current viewpoints?

2. If so, can we achieve similar resolution enhancement for scenes with depth

discontinuities (more complex scenes with 3D objects)?

3. What do we need to know about the ProFUSION25 camera array to achieve

resolution enhancement?

4. How can we combine all the components required for super-resolution to

create a complete system?

Some of the questions raised above have been addressed in isolation in the current

literature. However, our specific scenario brings up issues that have not been ad-

dressed together as it relates to super-resolution. A literature survey of relevant

papers is provided in Chapter 2.
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1.3 Organization of the thesis

Following this introductory chapter, a brief review of existing work in super-resolution

is presented in Chapter 2 as they relate to the objectives of the thesis. Some rele-

vant background material is also presented. Chapter 3 deals with regularization

methods in super-resolution. We present super-resolution as an inverse problem

which is typically solved using regularization. A comparison of both algebraic

and stochastic approaches is made and the use of a total-variation based regular-

izer is also advocated, which is solved using the method of level sets. We pos-

tulate in Chapter 4 that accurate knowledge of the imaging pipeline is essential

for the success of any super-resolution algorithm. Consequently, the components

of the ProFUSION25 camera array are characterized. We identify the camera blur

and demonstrate the effect of camera specific degradations like vignetting. Super-

resolution methods are known to suffer from artifacts due to inevitable errors in

displacement estimation. In Chapter 5 an adaptive weighting approach is pro-

posed to alleviate the effect of incorrect displacement estimates. We also demon-

strate occlusion-aware super-resolution by using an occlusion detection scheme to-

gether with dense displacement maps when reconstructing images of scenes with

depth discontinuities. Finally, we make concluding remarks in Chapter 6, summa-

rize the contributions of the thesis and present avenues for future work.

1.4 Thesis highlights

An exhaustive list of contributions is provided in Chapter 6, however, a brief men-

tion is made here to prime the reader for the contributions made in subsequent

chapters. In Chapter 2, a locally affine but globally smooth optical flow estimation

technique [10] is described which has already been used in medical image registra-

tion. However, the integration of this algorithm within our super-resolution algo-
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rithm is a novel contribution as such a technique has not been tested specifically in

super-resolution applications using dense displacement estimates. In Chapter 3,

no original contributions are made. However, the implementation of a TV reg-

ularizer using mean curvature evolution has not been previously used in super-

resolution of multi-view images. In Chapter 4, a characterization of the ProFU-

SION25 camera is carried out via its point spread function (PSF) and its vignetting

function. This is an original contribution of this thesis. Moreover, a novel PSF iden-

tification technique is proposed. Finally, in Chapter 5, an intensity based occlusion

detection scheme is used to remove artifacts related to erroneous displacement

estimates. This particular method is another novel contribution. At present, no

study has been carried out on the feasibility of using a specific sensor for super-

resolution. The trend in super-resolution literature is to use image sequences that

are artificially shifted, blurred or sub-sampled. These are not representative of real

world scenarios. Consequently, the fact that we have used a real sensor (the ProFU-

SION25) with real images is not only an original contribution but also a significant

one.
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Chapter 2

Background

“Euclid taught me that without

assumptions there is no proof.

Therefore, in any argument,

examine the assumptions.”

- Eric T. Bell

The well-studied field of super-resolution draws from related research in im-

age restoration and motion estimation. These fields are immense research areas

by themselves and a comprehensive review of related work in all pertinent areas

is infeasible. In Section 2.1, a brief review of super-resolution is presented for is-

sues that are directly related to those considered in this thesis. Super-resolution

is formulated as an inverse problem in Chapter 3. Such a formulation first re-

quires a forward (or observation) model that is specified in Section 2.2. The dis-

placement estimation techniques used in this thesis have been briefly introduced

in Section 2.3. Finally, chapter highlights are presented in Section 2.4.

2.1 Literature review

Super-resolution has been extensively studied and a vast body of research is avail-

able in the literature. We will not repeat a drawn out review of existing techniques

but point the reader towards the excellent review articles [2] and [7]. We will how-

ever present a review of topics related to super-resolution as they apply to this

thesis in the following sub-sections.
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2.1.1 On super-resolution restoration methods

The restoration method forms the backbone or engine that drives the super-resolution

process. A targeted review of super-resolution is carried out to choose the best re-

construction to use in this thesis. The earliest attempt at super-resolution is that by

Tsai and Huang [11] which is carried out in the frequency domain. Their approach

is based on formulating a system of equations that relates the discrete Fourier

transform (DFT) coefficients of the low resolution images to samples of the con-

tinuous Fourier transform of the original scene. The recovered samples, obtained

after solving the system of equations, are used to obtain a high resolution image

using the inverse DFT. However, their observation model only considered ideal

down-sampling while neglecting the effects of blurring and noise. A related class

of methods are those based on the multi-channel sampling theorem. A recent pa-

per using the multi-channel sampling theorem is by Vandewalle, Susstrunk and

Vetterli [12] which computes sub-pixel shifts between the low resolution images

and registers them on a common high resolution grid. The registered pixel values

are non-uniformly spaced and hence, a non-uniform interpolation is carried out to

obtain a high resolution image on a uniformly spaced grid. The resulting image

is subsequently de-blurred. This method is commonly used in the literature be-

cause it is conceptually intuitive. However, it ignores the role of the observation

model. Such methods are also referred to as interpolation-restoration methods be-

cause they consist of a non-uniform interpolation stage followed by a subsequent

de-blurring stage. Irani and Peleg [13] propose the iterative back-projection (IBP)

approach that was borrowed from methods in computer-aided tomography. The

observation model is used to generate a set of simulated low resolution images

from an initial high resolution image. The high resolution image is then updated

until the error between the simulated low resolution images and the observed low

resolution images is minimized. The updates are carried out by passing the error
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through a back-projection operator. The selection of the back-projection operator

is not clear and the approach forces the high resolution image to match the ob-

served data. This might not necessarily be the best strategy in the presence of

noisy images. These shortcomings led to the class of regularized super-resolution

algorithms which are categorized as either stochastic or algebraic regularization

methods. Regularization methods are used to include useful a priori information

that help to disambiguate between the possible solutions of the ill-posed super-

resolution problem. Schultz and Stevenson [14] utilize a Bayesian framework to

formulate the super-resolution problem and solve it using MAP estimation. A

stochastic image prior is used to regularize the problem. The specific prior used is

the Huber-Markov random field (HMRF) which is able to preserve discontinuities

and hence serves to better represent edges in an image. A block-based displace-

ment estimation scheme is used to register the low resolution images in their work.

As opposed to the stochastic case, a deterministic algebraic regularizer called the

total-variation regularizer is used by Ng et al. [15]. The total-variation regular-

izer has been receiving burgeoning interest from the image processing community

because of its demonstrated effectiveness in preserving edges. Ng et al. jointly

estimate a dense displacement field together with the high resolution image. The

experimental results compare the different types of total-variation regularizers in-

cluding those using the L1-norm and bi-lateral total variation (BTV). The seminal

paper by Baker and Kanade [16] presents a sequence of results which show that

as the magnification factor increases, the observation model provides far less use-

ful constraints. The regularizer dominates at high magnification factors leading

to overly smooth high resolution images. As a result, a recognition-based prior is

proposed that is learnt from a database of high resolution images of specific images

like faces or text. A whole class of recognition-based super-resolution algorithms

has evolved as a result but we resist from taking such an approach because the
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image prior is only applicable to a specific class of images that it has been trained

on.

Based on the literature surveyed on reconstruction methods, we believe that

regularization techniques are the most promising approach to use as the engine

that drives our super-resolution algorithm. The frequency domain methods re-

strict the displacement model to global models which are not conducive to the

type of scenes being considered in this thesis. Regularization methods allow us

to leverage a priori information about the observation model as well as impose

desired characteristics on the high resolution image which other methods cannot

fully incorporate. A further study is required to choose a suitable regularization

method which is the topic of Chapter 3.

2.1.2 On super-resolution using multi-view images

The super-resolution community has traditionally only considered temporal se-

quences of images in super-resolution experiments because they are easily avail-

able in the form of a video sequence. However, there has been an increasing inter-

est in super-resolution from multi-view images. This is motivated by the inherent

trade-off between capturing a larger area of the scene and preserving detail in the

image. Given a certain pixel resolution, a larger view of the scene results in fewer

pixels being used to represent individual features in the scene. A way to com-

pensate for this is to use multiple overlapping images of a scene to create a larger

composite image. An interesting question that arises then is whether the multiple

views of the scene can be used to increase the perceived detail in a scene using

super-resolution principles. This is the primary motivation of this thesis. Capel

and Zisserman [17] consider computer vision applications of super-resolution us-

ing multi-view images. However, they only consider global displacement models

which relate different views of a scene through a homography. A photometric reg-

14



istration stage is also considered which compensates for intensity changes between

images. The photometric registration considered only accounts for a brightness

and contrast difference between the images. A more complicated photometric dis-

tortion cannot be accounted for using such a procedure. The high resolution image

is recovered using a maximum a posteriori (MAP) estimation approach. A number

of different priors including the Huber-Markov random field are utilized to obtain

the high resolution image.

We feel that there is a paucity of super-resolution papers that directly exam-

ine multi-view images. While super-resolution techniques for temporal image se-

quences can be directly applied to multi-view imagery, a study of this specific sce-

nario (not without its peculiarities) is useful. This is the theme that we maintain

throughout the thesis.

2.1.3 On blur identification and super-resolution

The problem of de-blurring a single image has been extensively studied under

the title of blind de-convolution. An excellent review of single image blind de-

convolution techniques can be found in [18]. However, the problem of simulta-

neously estimating an unknown blur from the observed low resolution images

and performing super-resolution is yet to be satisfactorily solved [19]. Existing

techniques either treat the blur identification separately from the super-resolution

part or jointly estimate the high resolution image and the unknown blur. Nguyen,

Milanfar and Golub [20] take the latter approach and perform multi-image de-

convolution which utilizes information from multiple images to obtain a de-blurred

high resolution image. However, they parameterize the blur to depend on only one

parameter. Such a parameter could represent the width of a gaussian blur or the

radius of an out-of-focus blur. Moreover, the PSF support is assumed to be known

or is set to be equal to the magnification factor in each dimension. A similar ap-
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proach where a one-parameter blur is jointly estimated with the high resolution

image is carried out in [21] and [22]. The restriction placed by a one-parameter

blur is considered to be very limiting for most real applications.

Lertrattanapanich and Bose [23] also perform super-resolution using multiple

images but separately identify the blur which is used to de-blur a non-uniform in-

terpolation of registered low resolution images. A Delaunay triangulation is used

to create a set of triangular patches for the non-uniformly spaced sampling loca-

tions that result from registering the low resolution images. A surface approxi-

mation using bi-variate polynomials is constructed for each triangular patch that

is used to convert the non-uniform sampling to a uniformly spaced high resolu-

tion grid. The image that is obtained after the non-uniform interpolation is noise-

filtered and de-blurred using a point spread function that is estimated using mul-

tiple low resolution images. A modified Richardson-Lucy algorithm [24] is used

in the multi-image blur identification.

The most recent published work on simultaneous super-resolution and blur

identification is that carried out by Sroubek, Cristobal and Flusser [25]. The super-

resolution problem is formulated as a regularization problem involving both the

image domain and the blur domain. This regularization problem is solved using

an alternating minimization approach. In the alternating minimization approach

using steepest descent, the iterations alternate between a descent in the image sub-

space followed by a descent in the blur sub-space. This is a viable approach be-

cause each term in the energy function is quadratic independently but not as a

whole. A further improvement suggested in [25] was to use the centroid of the

blur estimated at the high resolution scale to infer shifts between the images (re-

portedly to a sub-pixel) accuracy. The work that is most similar to that contained

in this thesis is that of Chen, Luo and Hu [26] who also use an alternating min-

imization between the image sub-space and the blur sub-space. They utilize an
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anisotropic diffusion framework to solve the restoration problem. However, the

observation model used considers blurring to take place before warping which is

different from the observation model used in this thesis. The warping model is

also constrained to consist only of translational shifts.

Based on these papers, we feel that it would be worthwhile to investigate the

effects of correctly identifying the blur in each ProFUSION25 camera. We expect an

increase in super-resolution performance over assumed blurs which is validated in

Chapter 4.

2.1.4 On super-resolution using dense displacement maps

A survey of super-resolution techniques brings up the surprising finding that few

attempts have been made in applying dense displacement maps (also used syn-

onymously with optical flow) to super-resolution. The first attempt of super-

resolution using optical flow is reported by Baker and Kanade [27] using images

taken from a multi-baseline stereo camera. This is one of the few papers using

multi-view images rather than a temporal sequence of images. Their study is mo-

tivated by the use of super-resolution in face recognition. They use a hierarchical

Lucas-Kanade [28] optical flow algorithm to register the low resolution images on

the high resolution grid. The registered images are then fused by an averaging

operation across the registered images. Motivated by the same application in face

recognition, Lin et al. [29] also examine super-resolution using optical flow. They

state that face images are non-planar, non-rigid, non-Lambertian and prone to self

occlusions. These characteristics of faces cause global parametric displacement

models to fail in providing sufficient resolution enhancement for face recognition

tasks. Their technique utilizes an interpolation-restoration framework. However,

they obtain the optical flow directly at the high resolution scale by estimating the

flow between low resolution images that are interpolated using bi-cubic splines.
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Sub-pixel shifts are not estimated and the registered images are fused using a me-

dian operation. This is also a simplistic fusion approach which results in a blurred

high resolution image.

Zhao and Sawhney [30] address the important issue of the feasibility of super-

resolution using optical flow. They allege that most super-resolution algorithms

implicitly or explicitly assume that images in a sequence are related through global

parametric transformations. A simple iterative back-projection (IBP) reconstruc-

tion method is used to reconstruct the high resolution image. While definitive

conclusions are not made, an important remark made is that the optical flow es-

timates should be consistent in the forward and backward direction for the best

performance. The regions where the forward and backward flow are inconsistent

tend to be occluded regions or areas with little texture where reliable flow esti-

mates cannot be made.

An investigation of basic optical flow methods on planar and omni-directional

images is carried out by Nagy and Vamossy [31]. They use the non-uniform in-

terpolation framework to obtain the high resolution image. The Lucas-Kanade

[28] and Horn-Schunck [32] optical flow algorithms along with block-based dis-

placement estimation techniques are used to estimate a dense displacement field

at the low resolution scale. This displacement field is used to obtain displacement-

compensated images on the sampling grid of a chosen reference image. These

images are finally averaged to obtain a fused high resolution image. We feel that

averaging in such a manner is an overly simplistic way of image fusion which ig-

nores the observation model. A post-processing step is suggested to sharpen the

image.

The recent work by Krylov and Nasonov [33] uses optical flow together with

a regularization framework to solve the super-resolution problem. They use a

feature-based image registration algorithm together with Lucas-Kanade optical
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flow to obtain an accurate dense displacement field. This is used in a Tikhonov

regularization approach to restore the high resolution image. Fransens, Strecha

and Van Gool [34] present one of the first reported approaches to combine occlu-

sion detection and optical flow estimation within the super-resolution process. An

expectation-maximization (EM) algorithm is used to solve the problem which is

formulated as a maximum a posteriori estimation problem. The EM algorithm al-

ternates between i) detecting the occlusions based on photometric mis-match and

ii) optimizing the dense displacement fields and the high resolution image. The

image prior used in the MAP framework is similar to a Gauss-Markov random

field which results in blurring across edges. The occlusion detection used in this

work depends on intensity mis-match which generates a visibility map. This vis-

ibility map is not a binary map of visible/occluded pixels but rather behaves like

a weighting image. The intensity of each pixel in the visibility map is a weight

that reflects the possibility of that pixel being occluded. These visibility maps are

viewed as hidden variables and are updated iteratively with the high resolution

image. The demonstrated results are only compared to a poor nearest neighbor

interpolation of the low resolution image. While the super-resolution result is su-

perior to the nearest neighbor interpolation, we feel that the test sets used do not

contain significant occlusion areas to comment on the effectiveness of the visibility

maps used. Shen et al. [35] propose segmentation of the image, estimation of the

displacements and finally recovery of the high resolution image, all done in a joint

fashion. A cyclic coordinate descent scheme is used to estimate the displacement

fields, segmentation fields and high resolution image alternatingly given the other

two. The segmentation field is partitioned into objects which are separately labeled

and tracked through the low resolution image sequence. The displacement of each

object is estimated using an affine homography. While such a scheme does not

give dense correspondences for each pixel, it results in displacement fields that are
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more accurate than those arising from global models. Ng et al. [15] allow for non-

visible (occluded) pixels within their observation model but details on occlusion

detection are not given in their paper. The experimental setup mistakenly asso-

ciates occluded pixels with ‘missing’ pixels. A synthetic scenario is constructed

where regions of the image are blacked out. Occlusion may create missing dis-

placement vectors but the images themselves do not contain missing pixel values.

In any case, conclusive experiments demonstrating occlusions are lacking.

Based on the literature surveyed in this sub-section, we feel that the super-

resolution of multi-view images would benefit from the use of a dense displace-

ment estimation technique. Furthermore, a conclusive paper on methods to ac-

count for occlusion in super-resolution is absent. This motivates the study in Chap-

ter 5.

2.2 Observation model

The observation model is sometimes referred to as the forward model in this the-

sis to emphasize the fact that super-resolution is an inverse problem. An accurate

description of the observation model is vital for the success of the super-resolution

algorithm. Such a description involves characterizing the imaging sensor as com-

pletely as possible and making appropriate assumptions about the type of scene

being imaged. Such assumptions impact the choice of displacement model used

and the prior knowledge incorporated into the super-resolution algorithm.

A skeleton diagram of a general observation model is shown in Figure 2.1. The

fundamental components comprise the warp operator, the blur operator and the

down-sampling operator. The warp operator describes the displacement that takes

places between two images in a sequence. The displacement between images could

arise from camera motion, object motion in the scene or a combination of both.

The most general description of such an operator would take the form of densely
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populated displacement estimates providing horizontal and vertical displacement

vectors for each pixel in the image. However, simplified parametric models are

often used to varying degrees of success. Such models include translational mod-

els, affine models and more general homographies. Piece-wise parametric models

have also been successfully used either over blocks or arbitrarily shaped regions

in the image. The blurring operator describes the cumulative blurring effects from

sensor averaging, motion blur and an out-of-focus blur etc. These cumulative ef-

fects can be combined into a single blurring operator represented by a single point

spread function. Commonly used assumptions include a rectangular averaging

blur to represent sensor averaging and a circular disk to represent de-focus. An

important modeling ambiguity is pointed out in [36] regarding the correct order

of the warp and blur operators. The physical process of generating each LR image

that agrees with imaging physics is that of warping followed by blurring. Many

super-resolution algorithms implicitly follow this warp-blur paradigm. However,

certain algorithms like the interpolation-restoration algorithms advocate the blur-

warp model which assumes that blurring precedes the warping operation. This

paradigm also models physical reality with the difference being that atmospheric

blur is considered the major contributor to the blurring process. On the other hand,

the warp-blur model considers the blur induced by the camera to be dominant.

Following the notation used in [37], consider a set of k + 1 low resolution images

gi, i ∈ [0, 1, ..., k]. Each of these images associate a two-dimensional coordinate x

on a low resolution lattice Γ with an intensity value gi(x). The goal is to estimate a

high resolution image f0 from the same point of view as the reference low resolu-

tion view g0 but on a higher resolution lattice Λ.

Considering the case of arbitrary displacements, a position x in f0 is mapped

onto a position Ti(x) in gi by a free-form transformation Ti. This transformation

can be decomposed into an warping operator Fi and a down-sampling opera-
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tor D such that Ti = D ◦ Fi. The warping operator Fi maps positions [x, y] onto

[x + ui(x, y), y + vi(x, y)] where ui(x, y) and vi(x, y) are the horizontal and vertical

displacement field components. The down-sampling operator D maps [x, y] onto

[x/m, y/m] where m is the magnification factor.

The resulting transformation is

Ti : Λ → Γ :







x

y






→







(x + ui(x, y))/m

(y + vi(x, y))/m






,

where Λ is the high resolution lattice and Γ is the low resolution lattice. The in-

verse warping operator T −1
i associates a two-dimensional pixel co-ordinate x in gi

(on the low resolution lattice Γ) to a corresponding position T −1
i (x) (on the high

resolution lattice Λ) in f0. Descriptively, given a horizontal (ui(x, y)) and vertical

(vi(x, y)) displacement field, the two-dimensional coordinates T −1
i (x) describe the

original locations of the pixels on the high resolution grid of the reference image

f0.
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Figure 2.1: A general observation model
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The low resolution images gi are assumed to be generated by the high reso-

lution reference image f0. First, the relative displacement between gi and f0 is

realized by applying the warping operator Fi to f0. The warped image fi is then

convolved with the point spread function Bi. The PSF kernel Bi can represent

the cumulative effects of sensor averaging, de-focus and other effects like motion

blur. Finally, a down-sampling operator D is applied which performs ideal im-

pulse sampling. As in any measurement system, the low resolution images are

subject to additive noise ni.

The imaging model can then be mathematically formulated as

gi(x) = D ↓ (Bi ∗ f0(Fi(x))) + ni(x), (2.1)

where D ↓ refers to the down-sampling operation. We have abused notation

slightly by using the same warping operator Fi and down-sampling operator D

in a transformation of the domain from Λ → Γ as well as a transformation in the

signal space from fi → gi. Nonetheless, it is more convenient to express each of the

operators as equivalent matrix multiplications to develop the discussion in sub-

sequent chapters. This requires a lexicographic ordering of the images involved.

Each of the M × N low resolution images gi can be ordered into a vector gi of size

MN × 1. Similarly, the mM × mN high resolution reference image f0 can be or-

dered into a column vector f0 of size m2MN × 1. The warping operator Fi can be

represented by a square matrix Fi of size m2MN × m2MN . Convolution with the

PSF kernel Bi can be represented by an equivalent convolution matrix Bi of size

m2MN ×m2MN . The structure of this matrix Bi depends on the boundary condi-

tions used. Finally, the down-sampling operator D can be represented as a matrix

D of size MN ×m2MN . The additive noise is a column vector of size MN ×1. The
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imaging model can now be expressed as

gi = DBiFif0 + ni. (2.2)

This observation model is essential for the formulation in Chapter 3. It is also

instructive to relate the topics discussed in the thesis to where they fit into the

observation model.

2.3 Displacement estimation

Displacement estimation is a vast field which has been extensively studied in lit-

erature with varied applications in video compression and other computer vision

tasks. It is often used synonymously with the term ‘motion estimation’, ‘dispar-

ity estimation’, ‘warp estimation’, ‘image alignment’ or ‘image registration’ de-

pending on the application domain being studied. A good review of displacement

estimation algorithms is given in [38]. Since this thesis deals primarily with multi-

view images of static scenes, there is no real motion taking place between the im-

ages. As a result, we prefer to use the term ’displacement’ to refer to changes in

spatial location. The use of the term ‘motion’ indicates a temporal aspect which is

not dealt with in this thesis. However, in general discussions, we will continue to

use the term ‘motion estimation’. Displacement estimation forms an integral part

of super-resolution because:

1. knowledge about the displacements between images provides essential con-

straints to aid in the solution of the ill-posed super-resolution problem.

2. inaccurate estimates of the displacement leads to objectionable artifacts in the

high resolution image.

3. the degree of resolution enhancement that can be achieved depends on the
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sub-pixel accuracy of the displacement information [39].

In certain applications like satellite imaging, the relative displacement between

low resolution images can be calculated based upon the orbital path and veloc-

ity of the satellite. However, in most cases, the displacement has to be estimated

as a pre-processing step for super-resolution. The motion of objects in the real

world can be described by a three-dimensional (3D) velocity field. Its projection

on the image plane can be described by the corresponding two-dimensional (2D)

motion field. When an estimate of the projected motion is required, we are faced

with the motion estimation or displacement estimation problem. The estimated

motion is typically described using instantaneous velocity (flow) or displacement

vector fields [39] which are equivalent descriptions under the assumption of con-

stant velocity motion between images. However, in an imaging system, only the

spatio-temporal variation of the scene radiance is available as information. This

variation in scene radiance arises from complex interactions between scene illumi-

nation, the motion of objects and the parameters of the camera (orientation, focal

length, etc.) [39]. The projected 2D motion field has to be inferred using this in-

tensity variation. However, not all changes in image intensity contribute to the 2D

motion field. In Chapter 4, an intensity distortion is examined which causes inten-

sity changes between images that is not motion related. Nevertheless, even in the

presence of such ambiguities, it is possible to recover an approximation to the 2D

displacement field which is popularly referred to as optical flow.

Consider a point X = [x, y, z]T on an object in three dimensional space. A

camera at a particular viewing position indexed by i projects the 3D point X on

the image plane at xi = [xi, yi]
T . Given two such viewing positions indexed by

i, j and corresponding image intensities f(xi) and f(xj) (or alternatively, fi(x) and

fj(x)), the position of the projection of the 3D point X on the image plane from

viewing position i may be related to that from the viewing position j in two ways:
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1. The forward displacement or disparity xj − xi describes the displacement

of the projected 3D point when there is a change in viewing position from

position i to position j. When the forward displacement is used to predict

image fj(x) from the intensity values of the pixels of image fi(x), we term

this process forward registration.

2. The backward displacement or disparity xi − xj describes the displacement

of the projected 3D point when there is a change in viewing position from

position j to position i. When the backward displacement is used to predict

image fi(x) from the intensity values of the pixels of image fj(x), we term

this process backward registration.

The estimation of displacement fields is most easily categorized under non-

parametric and parametric displacement fields. A non-parametric displacement

field is a representation of the 2D motion field on a finite set of points in the image

plane. It is common to choose the set of points to correspond with the uniformly

spaced, discrete image sampling lattice Γ. Such a method is the most general ap-

proach to displacement estimation and is advantageous because it can recover ar-

bitrary motion fields. The displacement between sampling points can be obtained

through a suitable interpolation. However, the large number of parameters to be

estimated makes the problem under-determined and difficult to solve without the

inclusion of additional constraints. These non-parametric methods are also typi-

cally called dense because they can recover correspondences between regions that

may be as small as a pixel. A parametric displacement field, on the other hand,

represents the 2D motion field as a continuous function of the spatial location x

that is determined by some parameters. Common parametric models range from

a two parameter shift to a twelve parameter homography. However, it is not pos-

sible to represent arbitrary displacement using global parametric methods. With

this short introduction to displacement estimation, we present the displacement
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The ProFUSION25 array
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Figure 2.2: The 5 × 5 grid on which the ProFUSION25 sensors are arranged.

models and the estimation techniques used in this thesis.

2.3.1 Sub-pixel shift estimation

The ProFUSION25 camera array consists of individual cameras that are arranged

on a regular 5×5 grid as shown in Figure 2.2. Each observed low resolution image

can be considered to have been obtained by translating a camera to one of the 25

viewing positions on the 5 × 5 grid. In light of such a scenario, the most intuitive

displacement model is that of a two parameter translational shift. It is expected

that the pixels in the image undergo a translation that is proportional to the trans-

lation in the camera position. A spatial-domain technique proposed by Keren et

al. [40] has been used to estimate the two-parameter shift in this thesis. The algo-

rithm proposed in [40] is a gradient-based technique and was originally intended

to estimate shifts as well as a rotation around the origin. However, in this thesis,

only the shift parameters have been estimated using this algorithm. Consider a

shifted image g(x, y) which is related to a reference image f(x, y) through the re-
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lation g(x, y) = f(x + p1, y + p2). The horizontal and vertical shift parameters can

be represented by the parameter vector p = [p1 p2]
T . To cast the problem in an

optimization framework, an error function is defined by

E(p) =
∑

x,y

[f(x + p1, y + p2) − g(x, y)]2 . (2.3)

However, the function in Equation 2.3 is non-linear in the parameters p. Using

the first order Taylor series expansion of the reference image intensity, the shifted

image can be expressed in terms of the reference image by

g(x, y) ≈ f(x, y) + p1
∂f(x, y)

∂x
+ p2

∂f(x, y)

∂y
, (2.4)

where p1 and p2 are the horizontal and vertical shift parameters to sub-pixel ac-

curacy. The error function can then be expressed as a linear function of the shift

parameters,

E(p) =
∑

[

f(x, y) + p1
∂f(x, y)

∂x
+ p2

∂f(x, y)

∂y
− g(x, y)

]2

. (2.5)

Differentiating E(p) with respect to p1 and p2 and equating the respective partial

derivatives to zero, provides the necessary equations to solve for the shift param-

eters. The shift parameters p1 and p2 can be obtained by solving,

p = M−1k,

where M =







∑

fx(x, y)2
∑

fx(x, y)fy(x, y)

∑

fx(x, y)fy(x, y)
∑

fy(x, y)2







and k =







∑

g(x, y)− fx(x, y)f(x, y)

∑

g(x, y) − fy(x, y)f(x, y)






.

(2.6)
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In Equation 2.6, fx(x, y) and fy(x, y) refer to the horizontal and vertical spatial

derivatives. A multi-scale approach is used whereby at each level, the shift pa-

rameters are propagated to the next finer level by appropriate scaling of the shift

parameters. Such an approach serves to reduce the computational burden in the

iterative process.

2.3.2 Affine displacement estimation

The translational motion model proves to be inadequate even when imaging suffi-

ciently planar scenes. This is due to the fact that individual cameras in the 5×5 Pro-

FUSION25 camera array are not perfectly aligned. This results in images that may

differ in scale and/or by small rotations. Hence, a six parameter affine displace-

ment model was chosen to provide better image registration. The affine model can

account for shear, rotation, scale and translation. Consider again the warped im-

age g(x, y) which is related to the reference image f(x, y) through the affine motion

model g(x, y) = f(p1x + p2y + p5, p3x + p4y + p6). The parameters p1, p2, p3 and p4

form the affine matrix and the parameters p5, p6 form the translation vector,

A =







p1 p2

p3 p4






and t =







p5

p6






.

The goal of affine parameter estimation is to estimate the parameter vector p =

[p1, p2, p3, p4, p5, p6]
T which is done through minimization of the error function,

E(p) =
∑

x,y

[f(p1x + p2y + p5, p3x + p4y + p6) − g(x, y)]2 . (2.7)
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The error function is expressed as a linear function of the parameters ~p using a

first-order Taylor series expansion given by

E(p) =
∑

x,y

[f(x, y) + (p1x + p2y + p5 − x)fx(x, y) + (p3x + p4y + p6 − y)fy(x, y) − g(x, y)]2 .

(2.8)

Equation 2.8 can be written more compactly in the form,

E(p) =
∑

x,y

(

cTp− k
)2

, (2.9)

where the coefficient vector c and the scalar k are defined as,

c = [xfx(x, y) yfx(x, y) xfy(x, y) yfy(x, y) fx(x, y) fy(x, y)]T

and

k = [f(x, y) − g(x, y) − xfx(x, y) − yfy(x, y)] .

By differentiating the error function and equating it to zero, the parameter vector

p can be obtained by solving,

p =
∑

x,y

(

ccT
)−1

(ck) . (2.10)

The implementation details of this affine estimation technique are provided in [10].

The authors also provide a MATLAB implementation1 of this technique as a sub-

routine in their dense displacement field estimation algorithm which is discussed

next.

1http://www.cs.dartmouth.edu/farid/research/registration.html
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2.3.3 Dense displacement estimation technique

A recent optical flow estimation technique proposed in [10] is used in this thesis to

provide dense displacement estimates. An implementation is provided online by

the authors which is used in this thesis. This method models the warping between

images as locally affine but globally smooth. The affine model in the previous

sub-section is applied to a small region (typically a rectangular block) in the im-

ages being registered. A smoothness assumption is then applied which constrains

the model parameters to vary smoothly across space. A new energy function is de-

fined which incorporates a term like the one in Equation 2.7 and a new smoothness

term. This energy function is minimized in an iterative fashion. Similar to previ-

ous approaches, a coarse-to-fine scheme is used in order to contend with larger

motions. The original application of this displacement estimation technique was

for medical images where it performs satisfactorily. However, the registration of

two 480 × 480 images takes approximately 90 minutes. The algorithm was tested

on a laptop with a Intel Core2 Duo T9600 processor running at a clock speed of

2.8GHz. Despite its computational complexity, we use this dense displacement

estimation algorithm because of the availability of an implementation.

2.4 Summary

This chapter presents certain background material that is essential to the work car-

ried out in subsequent chapters. A literature review was presented in Section 2.1

which presented some of the shortcomings in the literature that this thesis hopes

to address. The observation model was developed in Section 2.2. The assump-

tions made in the observation model have a profound effect on the success of the

super-resolution process which is repeatedly pointed out in this thesis. Finally, the

displacement estimation techniques used in this thesis are presented in Section 2.3.
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Chapter 3

Regularization methods in super-resolution

“Far better an approximate

answer to the right question,

which is often vague, than an

exact answer to the wrong

question, which can always be

made precise.”

- John W. Tukey

In this chapter, super-resolution is introduced as an ill-posed inverse problem.

A brief introduction to inverse problems is given in Section 3.1. This formula-

tion as an inverse problem is pertinent because it justifies the use of regularization

methods to make the problem well-posed. These concepts are further expounded

in Section 3.2. In Sections 3.3-3.5, the most widely used regularization methods in

image processing and super-resolution literature are discussed at a level that is suf-

ficient to demonstrate the key features of each method. Finally, chapter highlights

are listed in Section 3.6.

3.1 Inverse problems and super-resolution

In systems theory, given knowledge about the parameters and/or the physical pro-

cesses involved, the outcome of an associated measurement can be predicted. The

process of predicting the result of such measurements involving known character-

istics of a system is called the forward problem. The corresponding inverse prob-

lem consists of using the actual result of such a measurement to infer the values of
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the parameters that characterize the system [41]. The forward and inverse prob-

lems form a chicken-and-egg scenario in which the formulation of one involves

all or part of the solution of the other. In certain cases, the forward model is eas-

ier to solve while in others, the inverse problem is more tractable. For example,

consider the forward problem of finding the roots of a polynomial and the inverse

problem of constructing the polynomial from its known roots. In this case, the for-

ward model is the harder one. Super-resolution has traditionally been cast as a in-

verse problem of inferring the formative high resolution image from the observed

low resolution images. The associated forward model is the imaging process that

generates the low resolution observations given the high resolution image. Not

only is the inverse super-resolution problem harder to solve, it is also an ill-posed

problem with numerical stability issues. The definition of ill-posedness was first

described by Hadamard in the field of partial differential equations [42]. A wide

variety of applications involving inverse problems has shifted the focus from ill-

posed problems being studied exclusively as mathematical curiosities to ones of

great practical interest (early vision problems, computer tomography, etc.) [43]. A

well-posed problem is one for which (a) a solution exists, (b) the solution is unique

and (c) the solution depends continuously on the initial data. In other words, the

solution must be stable to perturbations in its arguments. The third condition does

not imply robustness. For the solution to be robust, the problem must also be nu-

merically well-conditioned. A problem that violates any of these conditions is said

to be ill-posed. A hand-waving argument for the ill-posedness of super-resolution

can be made by examining each of the Hadamard conditions [39].

1. Non-existence of the solution: The presence of noise in the imaging process

(given its characteristics) may result in a sequence of observed low resolu-

tion images that is inconsistent with any high resolution image. As a result,

the forward model is non-invertible and a high resolution image cannot be
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estimated.

2. Non-uniqueness of the solution: Any portion of the high resolution image

that lies outside the band-limit of the imaging sensor (often modeled as a

low-pass filter) belongs to the null space of the system operator. Since such

out-of-band data could be explained by more than one high resolution im-

age, the solution can be argued to be non-unique. Furthermore, because the

number of constraints in super-resolution is typically less than the number

of parameters to estimate, the system is under-determined which leads to

non-unique solutions.

3. Discontinuous dependence of the solution on the data: Consider a blur op-

erator in the forward model that asymptotically goes to zero as the spatial

frequency increases. While theoretically invertible, in practice, even a small

noise component at a large enough frequency will cause a large spurious

signal in the reconstructed high resolution image. Such a scenario leads to

stability issues.

The ill-posedness of the inverse problem is inextricably linked to the informa-

tion loss that occurs as a result of the realization of the forward model because

the low resolution images contain less information than the high resolution image.

Regularization refers to the methods which attempt to compensate for this infor-

mation loss by leveraging a priori information about the desired high resolution

image. This information is termed a priori because it cannot be typically estimated

from the low resolution observations. The a priori information serves to constrain

the set of feasible solutions by imposing characteristics like positivity, smoothness

and minimum energy on the desired high resolution image.

From an optimization point of view, regularization methods are used to ‘scalar-

ize’ multi-criterion optimization problems through the use of regularization pa-
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rameters. Multi-criterion problems involve objective functions that are vector-

valued functions. Each component of such a vector-valued function comes from

one of the multiple and often conflicting criteria used in the objective function.

The regularization parameters can be thought of as weights that signify the rel-

ative importance of these different criteria. Typically, the terms in the objective

function represent a trade off between conflicting resources. The subsequent min-

imization of a regularized problem results in a Pareto-optimal point. The choice of

regularization parameter selects different Pareto-optimal points along the optimal

trade-off surface. While each solution along the optimal trade-off curve has the

same value for the objective function, they may physically represent drastically

different solutions.

3.2 Regularization in an optimization framework

In [44], the super-resolution problem is shown to fall under the class of image

restoration problems. Recalling the matrix-based observation model introduced in

Section 2.2, the mathematical formulation of super-resolution can then be cast in

the familiar form of an image restoration problem,















g0

...

gk















=


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


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
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
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






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












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...
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












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












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...
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













f + n

g = Hf + n, where

H =















H0

...

Hk















and n =















n0

...

nk















.

(3.1)
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To further elucidate the notation in Equation 3.1, g denotes a stacked version of

the lexicographic ordering for each low resolution observed image gi. The cor-

responding column vector g is of size (k + 1)MN × 1. Similarly, the matrix H

represents a stacking of the generative matrices Hi for each observed image. The

resulting matrix H is of size (k+1)MN ×m2MN . The column vector n is of similar

construction. The high resolution image to be estimated is represented by f (the

zero sub-script is dropped for convenience). This mathematical notation is intro-

duced to conform to the conventional notation used in super-resolution and image

restoration literature.

We can now attempt to solve the super-resolution problem by a straight-forward

objective function that is constructed in the classical least-squares sense. This ob-

jective function represents how closely the estimated high resolution image matches

the observation model. Consequently, it is also referred to as a data fidelity term

because it measures the fidelity of the high resolution estimate to the observed low

resolution images.

fLS = arg min
f

Jd (f , g) ,

Jd (f , g) = ‖Hf − g‖2.

(3.2)

In Equation 3.2, the norm ‖·‖ refers to the L2 norm. When the system matrix H has

full column rank (the columns are linearly independent of each other), the solution

to the least-squares formulation is obtained by solving the set of normal equations

given by
(

HTH
)

f = HTg. (3.3)

A full column rank implies that the null-space of H is empty and guarantees a

unique solution to the system of equations. However, this is seldom the case and

hence the problem of a non-unique solution crops up. The null-space of the sys-
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tem matrix N (H) is the set of input images which result in a zero image when

passed through the imaging system (observation model) H . For a predominantly

low-pass filtering system H , an example of an image belonging to the null-space

N (H) would be an image containing frequencies in the stop band of the system

H . In such a case, there will be an infinite number of high resolution images that

produce the same set of low resolution observations. If fp is a particular solution

to Equation 3.3, then the optimization problem defined solely in terms of the data

fidelity criterion will generate an infinite number of solutions given by

fLS = fp + fN , where fN ∈ N (H). (3.4)

It is often infeasible to construct the system matrix H and the computational cost

involved in its inversion can be prohibitive. The subsequent operations are carried

out more easily through point-wise shifting for warping, convolution for blurring

and interpolation/decimation for re-sampling operations. These can be combined

with iterative procedures to solve the normal equation 3.3 using gradient descent

as follows,

fLS
n+1 = fLS

n − ǫ∇fLS
n

∇fLS
n = HT HfLS

n − HTg

fLS
n+1 = fLS

n − ǫ
(

HTHfLS
n − HTg

)

.

(3.5)

The action of the operator H in the imaging process Hf = DBF f is the aggre-

gate of first warping the high resolution estimate f with the operator F , followed

by blurring with the operator B and finally down-sampling with D. The adjoint

operator of the imaging system HT = F TBT DT is interpreted as first up-sampling

by zero-insertion through DT , blurring by the filter represented by BT and finally

undoing the warping operation (backward motion) through the operator F T . The
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blurring operation represented by BT is carried out by convolution with the space-

reversed kernel b(−x). If the original PSF b(x) is symmetric around the origin, then

BT is the same as the original convolution matrix B. We demonstrate in Figure 3.1

that depending on the initial estimate chosen, the iterative minimization of Equa-

tion 3.2 leads to different solutions among the solution space represented by Equa-

tion 3.4. By using two different initial estimates, a zero image and a uniformly

random image, the least-squares optimization results in different high resolution

estimates. In all the experiments performed in this chapter, synthetic scenarios

have been used to demonstrate each concept. The experiments are carried out by

first shifting a given image using only translational shifts. The original high reso-

lution image that is used is the famous cameraman image. The particular version

of the cameraman image used in this thesis was obtained by scanning (at a 600 dpi

resolution) a photographic print of the original cameraman image that was pro-

vided by Dr. William F. Schreiber, Professor Emeritus, Massachusetts Institute of

Technology. The shifted images are then blurred using a rectangular averaging

filter of kernel size 3 × 3 and finally down-sampled by ideal impulse sampling to

generate a set of low resolution images. A total of four low resolution images are

generated through this process, each with a different sub-pixel shift on the low

resolution grid. The resulting four low resolution images are then used in each of

the schemes described in subsequent sections.

To deal with the non-uniqueness of the least-squares solution that is demon-

strated in Figure 3.1, regularization terms, which are often referred to as smooth-

ing terms, are imposed as constraints. Perhaps the simplest regularization term

is that seeking a solution of minimum energy. It is referred to as the generalized

inverse and can be interpreted as the solution f † having minimum energy ‖f‖ in

the solution space represented by Equation 3.4. The optimization problem has the
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(a) low resolution im-
age

(b) Least-squares super-resolution result with a
zero image as initial estimate (×4 magnification)

(c) Least-squares super-resolution result with a
random (uniform) image as initial estimate (×4

magnification)

Figure 3.1: Non-uniqueness of the least-squares solution
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form,

f † = arg min
f

{Js(f) such that Jd(f , g) = 0}

where Jd(f , g) = ‖Hf − g‖2 and Js(f) = ‖f‖2.

(3.6)

The generalized inverse solution gives equal importance to all frequency bands.

However, natural images have an exponentially decaying spectrum and thus a reg-

ularizer that is able to weight different frequency bands is more useful. As we shall

demonstrate in Sections 3.3, 3.4 and 3.5, the physical plausibility of the solution

rather than its uniqueness is a more important concern in regularization analysis.

This physical plausibility translates into an appropriately chosen smoothing term

Js(f).

3.3 Tikhonov regularization

The most widely used class of regularizers are the Tikhonov regularizers having

a smoothing term Js(f) = ‖Cf‖2. A high-pass filter is a common choice for the

operator C that is used in the regularization term. In this thesis, the Laplacian filter,

which serves as an approximation to the second-order derivative of the image f(x),

is used. The frequency response of the Laplacian filter and its corresponding blur

kernel are shown in Figure 3.2.

Based on the high-pass operator C used, Tikhonov regularization employs a

specific class of so-called ‘stabilizing functionals’ to restrict admissible solutions to

spaces of smooth functions. This reflects our expectation that natural images have

minimum energy in higher frequency bands. Since noise patterns typically reside

in higher frequencies, Tikhonov regularizers also serve to suppress noise and spu-

rious high frequency artifacts. However, perceptually important edges also appear

as high frequency components. Since the Tikhonov regularizer cannot differentiate
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(b) Frequency response of the Laplacian filter

Figure 3.2: The Laplacian filter in the spatial and frequency domains
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between noise and edges, the resulting high resolution image undergoes undesir-

able smoothing. An example of super-resolution using Tikhonov regularization

is shown in Figure 3.3(b). The original high resolution image used is also shown

in Figure 3.3(a). A reference low resolution image is shown in Figure 3.1(a). The

optimization problem using Tikhonov regularization is formulated as,

fTik = arg min
f

Jd(f , g) + λJs(f), where

Jd (f , g) = ‖Hf − g‖2 and Js(f) = ‖Cf‖2.

(3.7)

The minimizer of the optimization problem in Equation 3.7 is given by the normal

equations,

HTg − (HTH + λCT C)fTik = 0. (3.8)

The parameter λ is called the regularization parameter which allows us to control

the trade-off between the stability of the solution in the presence of noise and the

nearness of the regularized solution to the generalized solution in the ideal case

of no noise. A large value of the regularization parameter leads to smoother im-

ages (and better noise suppression). On the other hand, a smaller regularization

parameter ensures a closer match to the observed images. There are many tech-

niques to select the optimal value of the regularization parameter which have not

been discussed in this thesis. A collection of methods to select optimal values of the

regularization parameter is presented in [45]. A more recent approach geared to-

wards choosing the regularization parameters for super-resolution problems can

be found in [46]. We solve Equation 3.8 iteratively using a gradient descent ap-
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(a) Original high resolution image

(b) Tikhonov regularized result (×4 magnifica-
tion)

Figure 3.3: Tikhonov regularized super-resolution result
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proach.

fTik
n+1 = fTik

n − ǫ∇fTik
n

∇fTik = HT HfTik
n − HTg + λCT CfTik

n

fTik
n+1 = fTik

n − ǫ
(

HT (HfTik
n − g) + λCT CfTik

n

)

(3.9)

In Equation 3.9, the subscript n is used to refer to the iteration number. The al-

gorithm is initialized with a nearest-neighbor interpolation of the reference low

resolution image that we are attempting to magnify. The step-size ǫ is chosen

to be small enough to converge within a suitable number of iterations without

large oscillations in the value of the objective function. However, after performing

Tikhonov regularization we can observe the excessive smoothing in Figure 3.3(b).

Tikhonov regularization encounters serious difficulties in application to real life vi-

sual problems because global smoothness assumptions (implied by the minimiza-

tion of high-frequency content) do not hold indiscriminately across visual discon-

tinuities (depth, intensity, motion). The difficulty is in part also due to the fact that

the quadratic nature of the prescribed L2 norm offers no spatial control over its

smoothness properties [47]. We address this shortcoming of excessive smoothing

in the following sections.

3.4 Statistical regularization

A statistical regularization approach views the measurement noise n and the de-

sired high resolution image f as random fields. The most widely used random

field model is the Markov random field (MRF) made popular in computer vision

applications by Geman and Geman [48]. The underlying principle behind Markov

random fields is the conditional dependence of a pixel’s intensity on a finite neigh-

borhood around it. The super-resolution problem can then be cast into a Bayesian
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framework and maximum a posteriori (MAP) estimation of the high resolution im-

age can be carried out. Bayesian estimation distinguishes between solutions based

on an image prior model (a probability density for the image). A common as-

sumption is that of global smoothness for the image which arises from a Gaussian

prior for the high resolution image. This prior when combined with the Markov

property leads to a Gauss-Markov random field (GMRF). However, such an as-

sumption makes the appearance of sharp edges statistically unlikely, effectively

suppressing the high-frequency information like Tikhonov regularization. A more

plausible prior is one assuming that the high resolution image is piecewise smooth

which is often the case with natural images. Images of real-world scenes corre-

spond to smooth regions separated by sharp discontinuities. The Huber-Markov

random field model (HMRF) is a prior which represents piece-wise smooth data.

It was first used in super-resolution by Schultz and Stevenson [14] and in single

image interpolation [49] showcasing dramatic visual improvement in resolution.

The MAP estimation procedure can be mathematically represented as,

fMAP = arg max
f

Pr{f |g}

= arg max
f

Pr{g|f}Pr{f}

Pr{g}
(using Bayes theorem)

= arg max
f

{ln Pr{g|f} + ln Pr{f} − ln Pr{g}} .

(3.10)

The maximization in Equation 3.10 is converted to a minimization after neglecting

the term ln Pr{g} because it is independent of the variable over which minimiza-

tion is being carried out. This minimization can be written as

fMAP = arg min
f

{− ln Pr{g|f} − ln Pr{f}} . (3.11)

In the following discussion, we will show that the constituent terms of Equa-

tion 3.11 can be exactly interpreted as the data-fidelity term Jd(f , g) and a smooth-
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ing regularization term Js(f). The conditional probability density Pr{g|f} is re-

ferred to as the likelihood of observing the low resolution images g given a certain

high resolution image f . With the assumption of the noise n being i.i.d Gaussian

distributed with a variance of σ2, the likelihood term is represented by

Pr{g|f} =
1

(2πσ2)MN/2
exp

(

−‖Hf − g‖2

2σ2

)

. (3.12)

In Equation 3.12, M and N refer to the width and height (in number of pixels) of

the low resolution image. The high resolution image prior is represented by the

Gibbs random field that is given by

Pr{f} =
1

Z
exp

(

−1

λ

∑

c∈C

Vc(f)

)

. (3.13)
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Figure 3.4: 1st, 2nd and 3rd order neighborhoods

The Hammersely-Clifford theorem [50] proves the equivalence of the Gibbs

random field and a Markov random field. The Gibbs random field is therefore

used as a practical generating distribution for the MRF because it is characterized
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by neighboring site interactions which lead to intuitive image models. The param-

eter Z represents a normalizing constant also called the partition function, λ is the

temperature parameter of the density (also plays the role of the regularization pa-

rameter) and Vc(f) is the potential function of a clique c. A clique is defined as a

single site or a set of sites that are all neighbors of each other [51] which are used

to measure some local property of the image. The summation in Equation 3.13 is

carried out over the set of all cliques C in the image. The Markovian property of

decoupling future from the past is extended to two dimensions through the famil-

iar notion of neighborhoods. A neighborhood is denoted as either first, second or

higher orders based on the number of pixel neighbors that are considered. A picto-

rial depiction is shown in Figure 3.4. Substituting Equation 3.12 and 3.13 in the ob-

jective function and ignoring the terms independent of the high resolution image f ,

we arrive at an equation that consists of the data fidelity term Jd(f , g) = ‖Hf −g‖2

and a smoothing term Js(f) =
∑

c∈C Vc(f).

fHMRF = arg min
f

1

2σ2
‖Hf − g‖2 +

1

λ

∑

c∈C

Vc(f). (3.14)

In the particular choice of the Huber-Markov random field as the image prior,

the clique potentials are a function of second-order directional derivatives which

provide a measure of smoothness (or lack of smoothness). The prior density is

represented by,

Pr{f} =
1

Z
exp

(

−1

λ

∑

c∈C

ρ(dT
c f)

)

(3.15)

The coefficient vector dc represents a spatial activity measure for each clique. De-

pending on the type of clique (classified as horizonal, vertical, diagonal and anti-

diagonal), the spatial activity measure for that clique is a discrete approximation

to a second-order directional derivative. These directions are shown in Figure 3.6.
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When using a Gauss-Markov random field, the function ρ(·) is quadratic in nature

which leads to a convex function that has a unique global minimum. However,

the quadratic nature results in blurring of the edges that is very similar in spirit

to that occurring in Tikhonov regularization. The second-order derivatives are

small in smooth image regions but have a large magnitude at edges. The quadratic

‘penalty’ function drives these large magnitudes even higher thus severely penal-

izing the occurrence of edges. It is then more suitable to select a function that does

not penalize large derivatives by a large amount. The Huber function is given by

ρ(x) =











x2 |x| ≤ T

T 2 + 2T (|x| − T ) |x| > T.

(3.16)

The Huber function is parameterized by the parameter T which is the threshold

at which the behavior of the function changes from quadratic to linear. For small

arguments, the Huber function remains quadratic but at the threshold T , the Hu-

ber function becomes linear. A linear behavior does not penalize larger deriva-

tives (edges) excessively and hence serves to preserve edges in the high resolution

image. The Huber function and the quadratic penalty function are compared in

Figure 3.5. The use of the Huber function has two major implications on the opti-

mization process:

1. The Huber function is convex in nature and hence the corresponding objec-

tive function remains convex.

2. The decreased sensitivity to large derivatives (outliers) allows discontinuities

to be preserved in the high resolution estimated image.

The clique potentials in the smoothing term Js(f) =
∑

c∈C ρ(dT
c f) employ second-

order derivatives along the horizontal, vertical, diagonal and anti-diagonal direc-

tions. Each of these derivatives require interactions between three pixels in the
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Figure 3.5: The Huber penalty function parameterized by the threshold T

chosen direction. The cliques involved and their directions are shown in Figure 3.6.
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3

Figure 3.6: The four cliques and their associated directions

The second order derivatives are calculated using finite difference approxima-

tions (convolution with an equivalent 3 × 3 filter kernel). The minimization is

carried out by the gradient descent method which results in an update equation

given by

fHMRF
n+1 = fHMRF

n + ǫ

(

−∇Js(f
HMRF
n ) −

λ

σ2
HT (HfHMRF

n − g)

)

. (3.17)

Following the same notation used before, ǫ refers to the step-size used in the up-

date and the subscript n denotes the iteration number. Notice that the super-script
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has been changed from fMAP to fHMRF to reflect the use of the Huber-Markov ran-

dom field as a prior image. A super-resolution using the same synthetic scenario

involving the cameraman image is shown in Figure 3.8. It can be observed that the

HMRF is able to preserve edges to a greater degree than Tikhonov regularization.

However, the HMRF-based regularization suffers from certain drawbacks identi-

fied below that make it less attractive [52].

1. The optimization process depends on three parameters viz., the regulariza-

tion parameter λ, the noise variance σ2 and the threshold of the Huber func-

tion T .

2. The HMRF prior is unable to preserve texture well because it reduces the

efficacy of the Markov random field in modeling such regions.

3. The smoothing afforded by the four clique measures is not adequate to pre-

vent smoothing across edges. This effect is demonstrated in Figure 3.7 which

shows the independent effect of each clique measure (by setting the others

to zero) on an arbitrarily oriented edge. We can observe that with the excep-

tion of the clique representing the anti-diagonal direction in Figure 3.7(d),

all the other clique measures in Figures 3.7(a)-(c) perform smoothing across

the edge. The result using all the cliques involves a weighted sum of contri-

butions from each clique measure. Thus smoothing across edges inevitably

occurs even when using the HMRF prior. These are the primary motivations

leading to the use of a variational regularizer which is discussed in the next

section.

3.5 Variational regularization

Variational regularization is derived from applications in the related fields of ther-

modynamics, diffusion and the heat equation. It is also involved in the theory of
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(a) Clique 0 Contribution (b) Clique 1 Contribution (c) Clique 2 Contribution

(d) Clique 3 Contribution

Figure 3.7: Contributions of the different cliques in smoothing

Figure 3.8: Huber-Markov random field regularized super-resolution result (×4
magnification)
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minimal surfaces in pure mathematics and in engineering applications like elastic-

ity and fluid dynamics [53]. The use of variational regularizers in image process-

ing was initiated by [54] for edge detection and in [55] for noise removal. Since

those landmark papers, variational regularizers have been widely used in image

restoration, segmentation and motion estimation. More recently, they have been

used in [52] for regularized image up-sampling with a new observation model.

The demonstrated success of the variational regularizer in such applications moti-

vates its use in super-resolution. The various variational regularizers used in the

literature have a unified form for the smoothing term Js(f), which is given by

Js(f) =

∫

Ω

L(|∇f |)dΩ. (3.18)

Equation 3.18 assumes that the high resolution image is continuous in nature and

is defined over the region Ω, which is a rectangular bounding box in R
2. The func-

tional L(·) ≥ 0 is an increasing function of ∇f , where ∇ represents the gradient

operator. The derivative of the function L′(·) > 0 and L′(∇f) = 0 when ∇f = 0. A

discussion of some of the more successful functions L(·) used in literature can be

found in [56]. We choose to use the function L(|∇f |) = |∇f | in this thesis which is

in the spirit of total variational regularization. However, we continue the following

discussion with a general function L(·).

The energy functional Js(f) can be minimized (similar to steepest descent) by

moving in the negative direction of the gradient through the following partial dif-

ferential equation, which uses an artificial time parameter t,

∂f

∂t
= −∇Js(f) = div

(

L′(|∇f |)
∇f

|∇f |

)

. (3.19)

The gradient of the functional Js(f) is shown to be equal to −div
(

L′(|∇f |) ∇f
|∇f |

)

in

[56]. The desired high resolution image can be recovered through the minimization
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of the energy functional given by

E(f) =

∫

Ω

L(|∇f |)dΩ +
λ

2
‖Hf − g‖2. (3.20)

If E(f) has a unique minimizer, then it satisfies the Euler-Lagrange equation,

HTg − HTHf + λ div

(

L′ (|∇f |)

|∇f |
∇f

)

= 0. (3.21)

Equation 3.21 can be expanded by developing the divergence term. This is done by

decomposing the divergence term using local image structures [57]. In particular,

the normal and tangential directional vectors to isophote curves in the image are

used. Isophotes are constant intensity curves in the image. An example is shown

in Figure 3.9. Only three levels have been used in Figure 3.9(b), yet a large part of

the image structure is observable.

At each point x = (x, y) ∈ R
2, we define the vectors N(x) = ∇f(x)

|∇f(x)|
and

T (x), ‖T (x)‖ = 1 to be orthogonal to N(x). Using the notation fx, fxx to repre-

sent first and second derivatives of the image f in the subscripted directions, the

Euler-Lagrange equation 3.21 is expressed as

HTg − HT Hf + λ div

(

L′ (|∇f |)

|∇f |
f

TT
+ L′′ (|∇f |) f

NN

)

= 0. (3.22)

The second order directional derivatives f
NN

and f
TT

are given by

f
NN

(x) =
1

|∇f |2
(

f 2
xfxx + f 2

y fyy − 2fxfyfxy

)

and f
TT

(x) =
1

|∇f |2
(

f 2
xfyy + f 2

y fxx + 2fxfyfxy

)

.

(3.23)

The decomposition in Equation 3.22 is useful because the action of the opera-

tors in the tangential and normal directions is more clear. The quantity f
TT

is the
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Figure 3.9: Constant intensity curves of an image
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second order directional derivative that is tangential to the isophote lines. It can

also be interpreted as being normal to the gradient ∇f at x. Similarly, the quantity

f
NN

is the second order directional derivative normal to the isophote line which

can be viewed as being along the gradient ∇f . The argument of the function L is

the L1-norm of the gradient of the high resolution image. A small gradient is char-

acteristic of noise or textured region, while a large gradient indicates the presence

of an edge. We are then faced with the following two scenarios.

1. When the variation in image intensity is weak (small gradients), smoothing

should be encouraged equally in all directions. Such an isotropic smoothing

condition is obtained by imposing the conditions that L′(0) = 0, lim
s→0+

L′(s)

s
=

lim
s→0+

L′′(s) = L′′(0) > 0. Thus, at those points where |∇f | becomes small,

Equation 3.22 becomes,

HTg − HT Hf + λL′′(0) (f
TT

+ f
NN

) = 0. (3.24)

However, since f
TT

+ f
NN

= f
xx

+ f
yy

= ∆f ,

HTg − HTHf + λL′′(0) (∆f) = 0. (3.25)

Equation 3.25 represents an equation having strong regularizing properties

in all directions [57]. It behaves similar to the Tikhonov regularization de-

tailed in Section 3.3.

2. The presence of an edge is indicated by a large change in image intensity and

a correspondingly large image gradient. To preserve the edge, it is prefer-

able to diffuse along the edge (in the tangential direction T (x)) rather than

blurring it by diffusing across the edge. In order to accomplish this, it is suf-

ficient to ensure that the coefficient of the derivative in the normal direction
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f
NN

vanishes in Equation 3.22 and that the coefficient of the derivative in the

tangential direction f
TT

remains finite.

The decomposition in Equation 3.22 demonstrates that the diffusion process

behaves like an energy dissipation in two orthogonal directions. The diffusion of

the intensity values of f(x) across the image isophotes (along the spatial gradient)

leads to blurred edges in the image which is an undesirable property. On the other

hand, the diffusion along the image isophotes has an edge-preserving effect along

with smoothing of unwanted texture and noise. Diffusion in an orthogonal di-

rection to the gradient can be viewed as edge-directed filtering without any prior

computation of edge-maps [52]. As a result, the intensity and location of the edges

is preserved while smoothing along them and maintaining their crisp quality.

We choose the function L(|∇f |) = |∇f | put forward by Rudin, Osher and

Fatemi in [55] which is often termed the ROF model in image processing litera-

ture. Such a choice leads to the total variation norm which represents the diffusion

process given by

∂f

∂t
= div

(

∇f

|∇f |

)

= κ. (3.26)

Equation 3.26 defines the mean curvature κ of f(x). The use of the total variation

norm defines a space of high resolution images having bounded total variation in

which discontinuities are permissible. As mentioned before, this is advantageous

because natural images comprise of smooth regions separated by sharp edges. In

fact, the space of functions of bounded variation has been described in [55] as the

proper space for performing many image processing tasks.

To solve the optimization problem in Equation 3.20, we use mean curvature

evolution which relies on the theory of level set methods. We refer the reader to

[58] for a review of level set methods. Osher and Sethian [58] developed the level

set method (LSM) to analyze the motion of a front in two or three dimensions. The
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goal of level set methods is to compute and analyze the motion of a front under a

velocity field. This velocity can be dependent on a number of factors like position,

time and the geometry of the front [59]. In our case, the front is represented by

the constant intensity curves or isophotes of the image. The underlying principle of

level set methods when applied to image processing is to propagate these fronts

with different types of motion. Depending on the characteristics of the motion that

the fronts are subject to, we can obtain effects such as [52];

1. straightening out oscillatory contours

2. shrinking isolated noise patterns

3. preserving the boundaries of small objects and so on.

The formulation of the problem using Equation 3.20 and choosing L(|∇f |) =

|∇f | is given by

fTV = arg min
f

∫

Ω

|∇f |dΩ +
λ

2
‖Hf − g‖2. (3.27)

This minimization problem is solved by the steady-state solution to the partial

different equation arising from the Euler-Lagrange equation 3.21,

∂f

∂t
= κ − λHT (Hf − g), (3.28)

where κ is the mean curvature defined in Equation 3.26 and λ is a regularization

parameter. Equation 3.28 can then be converted into the following iterative process

[52],

fTV
n+1 = fTV

n + ǫ
(

κ − λHT (HfTV
n − g)

)

. (3.29)

The step-size ǫ is also called an artificial time-step. The numerical implementa-

tion of the partial differential equations in the mean curvature term κ is carried

out using second-order central differences which is suggested in [60]. The mean
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curvature term is given by

κ =
fxxf

2
y − 2fxfyfxy + fyyf

2
x

(f 2
x + f 2

y )3/2
. (3.30)

The second-order partial derivatives are approximated using central differences

which are given by,

fx(x, y) =
f(x + 1, y)− f(x − 1, y)

2
,

fy(x, y) =
f(x, y + 1) − f(x, y − 1)

2
,

fxx(x, y) = f(x + 1, y)− 2f(x, y) + f(x − 1, y),

fyy(x, y) = f(x, y + 1) − 2f(x, y) + f(x, y − 1),

fxy(x, y) =
f(x − 1, y − 1) + f(x + 1, y + 1) − f(x − 1, y + 1) − f(x + 1, y − 1)

4
.

(3.31)

The second-order derivatives in Equation 3.31 can be conveniently calculated by

convolution with the corresponding kernels,

hx =

[

0.5 0 −0.5

]

,

hy =

[

0.5 0 −0.5

]T

,

hxx =

[

1 −2 1

]

,

hyy =

[

1 −2 1

]T

,

hxy =















1 0 −1

0 0 0

−1 0 1















.

(3.32)

We have given a mathematical treatment of the various regularizers in this
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Figure 3.10: Total-variation (TV) regularized result (×4 magnification)

chapter for the sake of completeness and to understand their properties and im-

pact on super-resolution. The mechanism of the super-resolution process can be

understood when it is viewed in a graphical (flow-chart) form as shown in Fig-

ure 3.13. This particular flow-chart represents a single iteration in the iterative

total-variation based super-resolution algorithm. Using the total-variation regu-

larizer, the same sequence of cameraman images has been super-resolved in Fig-

ure 3.10. As can be observed, the result is sharper than the Tikhonov and HMRF

based regularization. Furthermore, note the preservation of texture in the camera-

man’s hair as opposed to the HMRF-regularized result. For ease of comparison, we

have included the different regularizers used as well as single image bi-cubic and

nearest neighbor interpolation in Figure 3.12 to demonstrate the visual increase in

resolution. An objective image quality metric that is often used is the peak signal-

to-noise ratio (PSNR). The PSNR requires the availability of an original high res-

olution image to compare with the super-resolution result. It is mathematically
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Figure 3.11: Super-resolution performance (PSNR) as a function of the number of
low resolution (LR) images

expressed as

PSNR = 10 log

(

1

MSE

)

,

where MSE =
1

MN

M
∑

x=1

N
∑

y=1

‖f(x, y) − g(x, y)‖2.

(3.33)

In Equation 3.33, M and N refer to the number of pixels in the horizontal (x) and

vertical (y) image axes. The image intensity values have been assumed to be nor-

malized between 0 and 1. Using the PSNR value, the effect of the number of low

resolution images on super-resolution performance can be quantified numerically.

A characteristic graph using the total variation regularizer is shown in Figure 3.11.

This graph shows a steep increase in performance which begins to saturate after

a certain number of low resolution images is used. This is due to the decrease in

useful non-redundant information that each low resolution image contributes to

the high resolution image.
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(a) Bi-cubic Interpolation (b) Nearest Neighbor Interpolation

(c) Tikhonov Regularization (d) HMRF Regularization

(e) TV Regularization

Figure 3.12: Comparison of the different super-resolution results
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3.6 Summary

The discussion in this chapter is mainly aimed towards formulating super-resolution

as an inverse problem and justifying the need for regularization. From an ob-

servation model point of view, the most physically plausible prior (or regular-

izer) is investigated. The impact of some popular regularizers on super-resolution

are demonstrated. The results show that the total-variation regularizer results in

the most noticeable resolution enhancement. In light of this observation, all sub-

sequent results in this thesis use the total-variation regularizer unless otherwise

stated.
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Chapter 4

Characterizing the ProFUSION25 camera array and its

implication on super-resolution

“The best material model of a

cat is another, or preferably the

same, cat.”

- Norbert Weiner

Most of the recent advances in super-resolution performance can be attributed

to the use of increasingly specific prior models for the high resolution image. The

performance of three specific priors, viz., a Tikhonov regularizer, an HMRF prior

and the total-variation regularizer, were demonstrated in Chapter 3. However,

we feel that current literature has paid little attention towards characterizing the

imaging sensor which can play a major role in the super-resolution process. Exist-

ing papers on super-resolution tend to focus on better regularization methods to

achieve incremental gains in performance. This approach is myopic because the

problem is not considered as a whole. The oft-cited paper by Baker and Kanade

[16] demonstrates the use of a learnt prior as the regularizer which can ‘break’ the

super-resolution limit at high magnifications. They argue that a general smooth-

ness prior, like the ones used in this thesis, tends to overly smooth the image at

higher magnifications. This has sparked an increase in the number of techniques

utilizing learnt priors for different categories of images like faces in specialized

applications. However, rather than taking such an approach, we ask the question

whether knowing more about the imaging process itself would be useful in im-

proving super-resolution performance. The techniques employed rarely account
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for the different operations in the imaging pipeline that implicitly occur during

the capture of the scene. Such operations in the imaging pipeline can adversely af-

fect various computer vision tasks if they are not accounted for properly. A review

of the typical components in an imaging pipeline can be found in [61].

In the following discussion, a specific photometric distortion introduced by the

ProFUSION25 camera called vignetting is first examined in Section 4.1. A photo-

metric distortion (as opposed to a geometric distortion) results in pixel intensities

that are not constantly proportional to the luminance of objects in the scene. The

implications of vignetting on super-resolution performance are also examined in

Section 4.2. After correcting for the vignetting, the point spread function (PSF) of

the ProFUSION25 is identified in Section 4.3; this is shown to significantly impact

super-resolution performance in Section 4.4. Finally, a summary of the chapter is

presented in Section 4.5.

4.1 Vignetting effects in super-resolution

Vignetting refers to the radial fall-off of intensity from the center of an image. It can

be observed as the gradual darkening of the image towards the corners. Vignetting

effects can prove to be problematic for a variety of applications. It can affect graph-

ics applications in which sequences of images are stitched together, such as image

mosaicing, image-based rendering, etc. It also affects vision applications which use

the brightness constancy assumption and intensity-based correlation methods to

recover scene structure like optical flow [62]. Since super-resolution involves both

estimating the displacement between images and fusing the image sequence into

a higher-resolution image, vignetting effects prove to be twice implicated in the

detrimental performance of super-resolution algorithms: once in the estimation of

displacements and next in combining the low resolution images. This motivates

us to examine its effect on super-resolution and develop methods to correct for it.
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The four main sources of vignetting as categorized in [62] are:

1. Natural Vignetting: refers to radial intensity fall-off due to optical geometry.

While the irradiance is proportional to the radiance, it decreases as the fourth

power of the cosine of the angle that a ray makes with the optical axis. This

angle changes as the focal distance is varied. It is usually assumed to be the

dominant vignetting effect present.

2. Pixel Vignetting: refers to radial fall-off due to angle dependence of digital

sensors. Light that enters the camera at a right angle to the camera plane

produces a stronger signal than that entering at oblique angles. This type

of vignetting is characteristic mainly of digital cameras which have photon

wells of finite depth in digital sensors. This causes light striking at steeper

angles to be partially occluded by the sides of the well [62].

3. Optical Vignetting: refers to radial fall-off due to light rays blocked in the

lens body by the lens diaphragm. It is also referred to as physical vignetting

or artificial vignetting and is a function of aperture width. As the aperture

size is decreased, the effect of optical vignetting decreases because a smaller

aperture limits light equally at the center and the edge of the image [62].

4. Mechanical Vignetting: is a less common effect of intensity fall-off due to

other camera elements blocking light paths. Such elements can include filters

or hoods attached to the front of the lens body.

Vignetting can thus arise from any of the above mentioned sources. Several

researchers have attempted to estimate models or vignetting functions that can

explain the radial fall-off of intensity. However, the various sources of vignetting

do not facilitate estimation of a simple vignetting function. As a result, we first

perform a naive calibration to estimate a vignetting function that is expected to
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best explain the intensity fall-off. The estimated function (called the prototype

vignetting function) is considered to be the ground truth for practical purposes.

The prototype vignetting function is obtained by capturing an image of a suf-

ficiently matte paper card using the ProFUSION25 camera array. A matte surface

refers to one that has little shine, reflectiveness or gloss. The matte card represents

a homogenous white background that if imaged under ideal conditions should ap-

pear to be uniformly white. However, with the ProFUSION25 camera, it was ob-

served that imaging such a background led to a non-uniform image with the char-

acteristic radial intensity fall-off shown by vignetting effects. A real image taken

with one of the 25 cameras in the ProFUSION25 sensor is shown in Figure 4.1(a).

It can be immediately observed that the center of the image is brighter than the

periphery. These calibration images obtained by imaging the matte card are first

filtered by a 3x3 gaussian filter for de-noising purposes. This filtered version of the

calibration image is stored as the prototype of the vignetting effect. A representa-

tive example amongst the prototype vignetting functions obtained is displayed as

a surface plot in Figure 4.1(b) and as a contour plot in Figure 4.1(c). Every image

that is captured by the ProFUSION25 array is assumed to have its intensity value

scaled by the prototype vignetting function. The vignetting effect is removed by

scaling a particular image with the inverse of the prototype using a pixel-by-pixel

operation.

While such a simplistic calibration is able to eliminate the vignetting satisfac-

torily, it is useful to attempt to fit a model to the vignetting function. Natural

vignetting is assumed to have the most dominant effect and a cosine-fourth model

is used to fit the vignetting function. While this model may not be the most appro-

priate fit to the ground truth, it is still able to eliminate most of the vignetting and

also gives a significant visual performance increase over the case where vignetting

is neglected.
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(a) Vignetting effect from the ProFU-
SION camera

(b) Surface plot of the vignetting re-
sponse
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(c) Contour plot of the vignetting re-
sponse

Figure 4.1: The prototype vignetting function
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A number of vignetting models are used in the literature to parametrize the

characteristic radial intensity fall-off. In particular, the cosine-fourth model and

the Kang-Weiss model have been used in both single-image and multiple-image

vignetting estimation [63, 64].

While working with the ProFUSION25 camera array, it was observed that the

center of the vignetting function, i.e., the point at which the intensity is bright-

est, does not correspond to the geometric center of the image. Moreover, each

of the 25 cameras in the array displayed vignetting functions with different cen-

ters. As a result, the center of the vignetting function (xv, yv) is also included as a

paramater to be estimated in addition to the parameters of the vignetting function

v(r). Since the vignetting function is assumed to be radially symmetric, the con-

ventional Cartesian notation v(x, y) is replaced by the radial distance v(r), where

r =
√

(x − xv)2 + (y − yv)2). A simple cosine-fourth model [65] is sufficient to fit

the vignetting response obtained by imaging the matte paper card. The cosine-

fourth model is represented as,

v(r) = α cos4

(

tan−1

(

r

Fc

))

+ (1 − α). (4.1)

The vignetting function affects the image intensity values through,

f(x, y) = v(x, y)i(x, y). (4.2)

In Equation 4.2, i(x, y) refers to the undistorted image that is free from vignetting

and f(x, y) refers to the distorted image that is affected by vignetting. When i(x, y)

is a white paper card and the intensity values have been scaled in the range [0, 1] (0

denotes black and 1 denotes white), then the distorted imaged f(x, y) = v(x, y) is

the same as the vignetting function. To find the parameters of the model that best

fits the prototype function, the problem is formulated as a least-squares minimiza-
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tion problem that is given by

α = arg min
α

‖vα(x, y) − f(x, y)‖2. (4.3)

The vignetting function has been parametrized by a four element parameter vec-

tor α =

[

α Fc xv yv

]

. These elements represent the scaling factor α, the focal

length of the camera in pixels Fc and the center of the vignetting function (xv, yv)

which may be different from the image center. The minimization of Equation 4.3

is carried out using the simplex search method [66] (with the MATLAB routine

fminsearch). Once the parameter set α is estimated, the vignetting function v(x, y)

is generated by the cosine-fourth model in Equation 4.1 and an image free from the

vignetting effect is obtained by

i(x, y) =
f(x, y)

v(x, y)
. (4.4)

The operation in Equation 4.4 is carried out in a per-pixel fashion where each

pixel of the image f(x, y) is scaled by the corresponding value in 1
v(x,y)

. A real

image (called the Calendar image) taken by the ProFUSION25 array is shown in

Figure 4.2(a). This image suffers from vignetting as can be seen from the char-

acteristic bright center and darker peripheries. The de-vignetted image using the

calibration response is shown in Figure 4.2(b) while the de-vignetted image using

the estimated cosine-fourth model is shown in Figure 4.2(c).

To demonstrate the fit to the calibration response, the estimated vignetting re-

sponse is also plotted as a surface plot in Figure 4.2(d) and a contour plot in Fig-

ure 4.2(e). The amount of model match can be seen from how close the shape and

characteristics of these plots appear to match those of the prototype in Figure 4.1(b)

and Figure 4.1(c) respectively. Furthermore, the de-vignetted image using either the

calibration or the estimated response appear to be the same, at least perceptually.
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(a) Original calendar image suffering
from vignetting

(b) De-vignetted image using the cali-
brated response

(c) De-vignetted image using the esti-
mated response

(d) Surface plot of the vignetting re-
sponse
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(e) Contour plot of the vignetting re-
sponse

Figure 4.2: Fitting a cosine-fourth model to the ProFUSION25 vignetting function
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Any mismatch between the calibrated and estimated reponse is atttributed to er-

rors in finding the center of the vignetting function. An incorrect center of the

vignetting affects the value of all pixel intensities due to the radial dependence of

the vignetting function. The vignetting effect is assumed to occur in the forward

model before the blurring operator. A diagrammatic placement of the vignetting

is shown in Figure 4.3.
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Figure 4.3: Vignetting in the forward model
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4.2 Implications of vignetting in the super-resolution process

Super-resolution can be broken down into a displacement estimation and an im-

age fusion part. Due to the displacement that takes place between each multi-view

image, vignetting appears as a photometric mis-match (intensity distortion). The

most commonly employed displacement estimation algorithms use a similarity

measure that depends on comparing pixel intensities. Since vignetting causes the

brightness constancy assumption to be violated, the accuracy of the displacement

estimates is expected to be negatively affected. The assumption of constant bright-

ness is used in displacement estimation to refer to the premise that an object is

imaged with the same pixel intensity even when its position changes. If a trans-

lational shift is assumed to relate the low resolution images, the accuracy of the

displacement estimation can be measured by the standard deviation of the error in

the horizontal and vertical shift parameters. We demonstrate the implication of vi-

gnetting on displacement estimation by the following experimental procedure. A

test image is first shifted and then distorted by vignetting. The shift (in horizontal

and vertical directions) is then estimated using the shift estimation technique [40]

described in Chapter 2. The estimated shift is compared to the known shift that

was artificially introduced. This process is performed for 100 randomly selected

shifts (ranging from −50 to 50 pixels). The results of the experiment are tabulated

in Table 4.1. The mean error (µx, µy) in each case is very close to zero which im-

plies that there is little bias in the estimation of the shifts. When no vignetting is

introduced, the standard deviation of the displacement estimation error (σx, σy) is

significantly lower. More noticeably, when vignetting is introduced together with

the blurring present in the forward model, the standard deviation of the error in-

creases even further. This leads to two conclusions:

1. Vignetting does affect displacement estimation negatively by itself but the
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problem is compounded with the introduction of blurring. It is prudent to

point out that the error in the displacement estimates arising from vignetting

alone does not constitute too much of a problem for super-resolution pur-

poses. While super-resolution demands sub-pixel accuracy in displacement

estimation, the vignetting-induced errors are of the order of a tenth of a pixel,

and as such are not very significant.

2. The increase in the standard deviation of the error is far more significant (of

the order of half a pixel) when vignetting is considered along with blurring.

This increase is mostly attributed to the blurring process itself which nega-

tively affects displacement estimation. In the next section, the identification

of the correct blur kernel is examined, which is motivated from this experi-

mental outcome.

Table 4.1: Error analysis of displacement estimates in images that are blurred
and/or affected by vignetting

σx σy µx µy

No vignetting 0.0069 0.0048 -0.0005 -0.0017

With vignetting only 0.0942 0.0985 0.0015 -0.0034

With blurring only 0.3322 0.3171 0.0011 -0.0441

With vignetting and blurring 0.4042 0.3464 -0.0891 -0.0903

While we can conclude that vignetting alone does not significantly affect the

accuracy of the displacement estimates, it does affect the perceived quality of the

super-resolution result as shown in Figure 4.2(c). If the vignetting effect is not re-

moved prior to super-resolution, the radial intensity fall-off remains in the super-

resolved image, detracting from the perceptual quality of the image. The super-

resolution result in Figure 4.2(c) was obtained by using four low resolution im-

ages that were corrupted by a vignetting function generated using the cosine-

fourth model. In Chapter 1, the definition of resolution enhancement was stated
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to include an “improvement in perceived content” which can only be achieved

when the vignetting effect is suitably removed. In the following discussion, the

vignetting effect has been removed from all the ProFUSION25 images using the

methods discussed in Section 4.1.

4.3 Identifying the blurring operator

In Chapter 2, the observation model which includes the blurring operator was in-

troduced. For a digital camera like the ProFUSION25 sensors, the most likely point

spread function is either a rectangular averaging blur or a circularly symmetric

out-of-focus blur or a combination of both effects that we refer to as a combination

blur in this thesis. The rectangular averaging blur models the spatial averaging

that takes place when incident light is integrated over the available sensor area.

The out-of-focus blur models the blurring effects due to the optical lens used in

the camera. The out-of-focus blur causes a point source to be imaged as a circular

disk of radius R. The radius R depends on the focal length and aperture number

of the lens as well as the distance between the camera and the object being imaged

[67]. The combination blur represents both these effects and can be mathmatically

obtained by performing a two-dimensional convolution of the averaging blur and

the out-of-focus blur. Representative examples of these blurs as both discrete-space

kernels and their corresponding frequency response magnitudes are shown in Fig-

ure 4.5.

Most super-resolution algorithms assume that the blurring PSF is known. While

this is a reasonable assumption in synthetic scenarios, it is often not applicable

when dealing with a sensor like the ProFUSION25 camera array. When the domi-

nant blurring effect is that of sensor averaging, the rectangular averaging kernel is

assumed as the blurring kernel. In cases where the object being imaged is out-of-

focus, the out-of-focus blur is assumed as the blurring kernel. However, in most
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(a) low resolution im-
age

(b) Super-resolution in the absence of vi-
gnetting (×4 magnification)

(c) Super-resolution in the presence of vi-
gnetting (×4 magnification)

Figure 4.4: Super-resolution in the presence of vignetting
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Figure 4.5: Common blurring kernels and their frequency response
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cases, the dominant blurring effect is not known and furthermore there may be

other effects such as camera shake that introduce other blurring effects. We use the

words blur kernel and point spread function interchangeably in this chapter and

the remainder of this thesis since our implementations are carried out in discrete-

space.

The simplest method of identifying the blur of the camera would be to take

an image of an ideal point source of light. The corresponding image of the point

source is exactly the point spread function of the camera. However, when using

a digital camera, the effect of light integration over a finite sensor area may lead

to an incorrect estimate of the PSF. Moreover, an ideal point source is difficult to

construct. As a result, the image processing community has used the slanted edge

[68] technique successfully in many applications. In this technique, an image is

taken of a slanted step edge. The step edge is slightly slanted to increase the sam-

pling rate of the edge. The corresponding image of the slanted step edge is called

the edge spread function (ESF). By differentiating a one dimensional profile per-

pendicular to the edge, the line spread function (LSF) can be obtained. The LSF

represents the cross-section of the two-dimensional PSF in a given direction. This

method typically assumes that the PSF is circularly symmetric and that the two-

dimensional PSF can be obtained from the one dimensional LSF. Other published

work on blur identification revolved around the regular pattern of zero-crossings

in the frequency response of the point-spread function [69, 70, 71]. The structure

of the zero-patterns characterizes the type and degree of blur. However, such an

approach limits the type of blur to the class of motion blurs or out-of-focus blurs.

Additionally, such frequency-domain methods are ineffective in the presence of

higher noise levels [72]. More recently, maximum likelihood (ML) estimation tech-

niques have been used by assuming that the latent unblurred image can be de-

scribed using the 2D auto-regressive model [67]. Such an approach includes a
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larger class of blur types. Nonetheless, ML estimation techniques suffer from the

restriction of stationarity placed on the image by the auto-regressive model as well

as the assumption of the noise being white and Gaussian in nature. In addition, the

log-likelihood function involved is highly non-linear and has many local maxima

which makes the optimization process computationally difficult.

The recovery of the blur kernel from a single blurred image is an inherently ill-

posed problem [73]. The observed blurred image alone does not provide enough

information to recover an arbitrary PSF. Many combinations of unblurred images

and PSF can be convolved together to give the same blurred image. As a result, all

the techniques mentioned above employ parametric constraints on the type of blur

to disambiguate the solutions [73]. Another type of parametrization is possible

by constraining the size of the blur kernel. For example, the blur kernel may be

assumed to exist on a 5×5 support, which requires the estimation of 25 parameters.

Such a parametrization does not restrict the type of blur. We use such an approach

in this thesis. The blur kernel is assumed to be constrained to a finite support of

size N × N .

The blurring process, as commonly modeled in image restoration problems, is

given by

g(x) = b(x) ∗ f(x) + n(x). (4.5)

In Equation 4.5, g(x) refers to the blurred image, f(x) refers to the sharp or un-

blurred image, b(x) represents the blurring kernel and n(x) is the observation

noise. The (∗) operation represents a two-dimensional convolution operation given

by,

f(x) ∗ b(x) =
∑

τ∈Ωb

b(τ )f(x − τ ), (4.6)

where Ωb ⊂ R
2 is the support of the blur kernel b(x). In non-blind image restora-

tion, the PSF is typically assumed to be known and the unblurred image f(x) is
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required to be estimated. The deconvolution process involved faces many diffi-

culties due to the ill-conditioning of the blur operation. As a result, regularization

techniques (discussed in Chapter 3) are often employed to solve the restoration

problem. Using a Tikhonov regularization scheme, the following cost function

E(f) is minimized to obtain the unblurred image:

E(f) =
1

2

∑

x∈Ωf

[g(x) − b(x) ∗ f(x)]2 +
λ

2

∑

x∈Ωf

[c(x) ∗ f(x)]2. (4.7)

In Equation 4.7, λ is a regularization parameter and c(x) is a high-pass filter like

the Laplacian filter used in Chapter 3. The summation is carried out over Ωf ⊂ R
2,

which is the support of the image. However, the task at hand is not to estimate

the unblurred image f(x). Instead, we are faced with a symmetric problem to that

represented by Equation 4.7, in which the unknown PSF is to be identified, and

the sharp image is assumed to be known. This is in contrast to the image decon-

volution problem in Equation 4.7 where the blur kernel is known but the sharp

image is to be estimated. The dilemma we are faced with when using the ProFU-

SION25 camera to capture a scene, is that the unblurred image is not available. A

calibration experiment detailed below is devised to work around this problem.

A target calibration image is constructed having shapes with edges in different

orientations. This image is shown in Figure 4.7(a). The calibration image is printed

using a laserjet printer and then captured by the ProFUSION25 camera array. Con-

sequently, both the sharp and blurred versions of the image are now available. The

blurred image g(x) is the image of the printed calibration image. The sharp image

f(x) is available as a vector graphic which was created using Adobe Illustrator.

The symmetric problem of estimating the unknown PSF using a regularization ap-

proach is carried out in a fashion similar to Equation 4.7. The corresponding cost
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function is given by

E(b) =
1

2

∑

x∈Ωf

[g(x) − b(x) ∗ f(x)]2 +
λ

2

∑

x∈Ωb

[c(x) ∗ b(x)]2. (4.8)

This cost function is minimized using steepest descent with the gradient of the cost

function given by

∂E(b)

b
= p(x) = − [g(x) − b(x) ∗ f(x)] ∗ f(−x) + λ [c(x) ∗ b(x)] ∗ c(−x). (4.9)

We have included the regularization term in Equation 4.8 to show the simi-

larity between image deconvolution and blur identification. The implementation

used in this thesis does not include a regularization term when identifying the

blur. The blur kernel is constrained to lie on a finite support of size N × N which

corresponds to the estimation of N2 parameters. The number of blur kernel coef-

ficients N2 are far fewer than the number of constraints available from a typical

ProFUSION25 image of size 640 × 480 pixels. This results in an over-determined

system for which a least-squares estimate, without the regularization term in Equa-

tion 4.8, is sufficient. However, we have used hard constraints in each iteration of

the least-squares estimation. The blur kernel is normalized so that the sum of all

the coefficients is one. Also, the kernel is forced to have quadrantal symmetry. A

blur kernel b(x, y) is said to possess quadrantal symmetry if,

b(x, y) = b(−x, y) = b(x,−y) = b(−x,−y).

In order to verify the validity of the least-squares estimation procedure, we

used a synthetic scenario where the calibration image f(x) is blurred using a 5× 5

gaussian blur kernel (σ = 3) after adding Gaussian noise of zero mean and vari-

ance σ2 = 0.001. The blur kernel b(x) is shown in Figure 4.6(a). Using the approach
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outlined above, the recovered PSF b̂(x) is shown in Figure 4.6(b). The recovered

PSF matches the actual PSF quite closely. However, as mentioned before, we do

not have access to the sharp image when dealing with the ProFUSION25 camera

array. The difficulty with the proposed calibration method lies in the fact that the

captured image does not correspond exactly to the sharp calibration target. The

calibration target has been geometrically and photometrically transformed in the

image capture process. Typically, the captured image is geometrically related to

the original sharp image through a scaling, rotation and translation. This observa-

tion allows us to fit an affine homography relating the sharp and the blurred image.

The image is captured under laboratory conditions and care is taken in keeping the

ProFUSION25 camera parallel to the printed paper so that perspective effects can

be avoided. The affine homography is estimated using the gradient-based affine

displacement estimation technique described in Chapter 2. To recover the blur ker-

nel, the affine transformation must be accounted for by a registration procedure

and only then can the least-squares estimation approach be applied to the blur

identification task. However, the registration procedure invariably contains errors

and the images cannot be aligned perfectly. More importantly, the vignetting ef-

fect also introduces a photometric mis-match between the pixel intensities which

cannot be fully removed. This imperfect geometric and photometric registration

causes the blur identification task to converge to a kernel that does not result in a

satisfactory result after subsequent deblurring. An image that has been deblurred

by using a kernel recovered by the described regularization process is shown in

Figure 4.9. To demonstrate the geometric misalignment, the sharp image and the

blurred image are shown as a pseudo-color image in different color channels. The

misalignment can be clearly seen in the edge areas of Figure 4.8. The extent of the

problem does not end at the geometric mis-alignment. The sharp image is an arti-

ficially constructed black and white image. However, the captured image has also

84



been affected with the vignetting mentioned before as well as other unidentified

effects which cause variations in intensity between the sharp and blurred images

that cannot be explained by the blurring process. Since the blur identification task

essentially relies on solving a set of equations relating pixels in the sharp image to

those in the blurred image, these effects cause inaccuracies in the blur identifica-

tion task. The deblurred results shown in this chapter have been obtained using

the Lucy-Richardson method [74]. This was implemented in MATLAB using the

deconvlucy routine. A dampening parameter is used to restrict iterative updates at

pixels deviating from their original value by a certain threshold. This threshold

was chosen experimentally to reduce ringing.
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Figure 4.6: Regularized blur kernel identification

The factors mentioned above led us to choose an alternative blind deconvo-

lution procedure that does not rely on knowing the sharp image before-hand to

identify the blur. We chose to use a state-of-the-art algorithm by Shan et al. [1] to

perform the blur identification task. The algorithm proposed in [1] uses a unified

probabilistic model of both blur kernel identification and non-blind image restora-

tion. It employs a maximum a posteriori (MAP) estimation approach to recover the
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(a) The sharp target used to identify the blur

(b) The image of the target using the ProFUSION25 camera array

Figure 4.7: The sharp and blurred calibration image pair
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Figure 4.8: Super-imposition of the target and registered captured image to demon-
strate mis-alignment (seen near edges)

Figure 4.9: The deblurred result using the kernel identified by the regularized cal-
ibration approach
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sharp, unblurred image. The deblurred version of the calibration target in Fig-

ure 4.7(a) is shown in Figure 4.10. This result shows some improvement over the

result in Figure 4.9 using the least-squares identification method. The algorithm

[1] is purported to perform better that other published techniques because of the

use of a novel prior for the noise term which takes into account its spatial random-

ness. Additionally, the prior for the unblurred image also includes a term that re-

duces ringing artifacts. The algorithm [1] was originally developed for motion blur

artifact removal occurring during camera shake. However, the results of the de-

blurring procedure on images taken with the ProFUSION25 camera show that it is

extensible towards more general blur identification tasks. We refer the reader to [1]

for further details on the algorithm. An implementation has been made available

online by the authors which was used in this thesis1. The result of using the blur

identification algorithm in [1] is demonstrated in Figures 4.11(b) and 4.12(b) which

show significant sharpening. The identified blur kernels are stored and used in

the subsequent super-resolution part. The results obtained by first identifying the

blurs are significantly better than those obtained without any blur identification.

We show super-resolution results with both synthetic and real scenarios in the next

section. A comparison of the frequency response of the identified blurs using both

the least-squares and the blind deconvolution approach is provided in Figure 4.13.

The frequency response of the identified blurs is not similar to any of the likely

blurs shown in Figure 4.5. However, a common element between the identified

blurs in Figure 4.13(a) and 4.13(b) is the significant energy in the sidelobes. These

hint that perhaps the real camera blurs are not spatially invariant. In retrospec-

tion, looking back at the image in Figure 4.7(b), each of the four ‘+’ markers have

been blurred in a different manner. This also indicates that the real camera blur

is indeed spatially variant. Nonetheless, the assumption of a spatially-invariant

1http://www.cse.cuhk.edu.hk/~leojia/projects/motion_deblurring/index.
html
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Figure 4.10: The deblurred result using the blind deconvolution approach [1]

blur makes the super-resolution analysis more tractable. We will, therefore, persist

in using the identified blur in Figure 4.13(b) because it results in a suitably sharp

image after de-blurring.

4.4 Implications of blur identification in the super-resolution pro-

cess

To demonstrate the advantage of inserting a blur identification step in the super-

resolution algorithm, we first construct a synthetic scenario. An image is passed

through the observation model described in Chapter 2. This involves shifting

the image, blurring with an appropriately chosen blur kernel, subsequent down-

sampling and finally contamination with noise. In the first experiment, a rectangu-

lar averaging blur of size 5 × 5 is used as the blurring operator in the observation

model. A sequence of 4 low resolution images are used in the super-resolution

process by assuming a particular blur type without any identification of the blur.

89



(a) A blurred image taken by the ProFUSION25 camera
(Calendar image)

(b) The deblurred version of the Calendar image

Figure 4.11: Deblurring the Calendar image
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(a) A blurred image taken by the ProFUSION25 camera (Di-
nosaur image)

(b) The deblurred version of the Dinosaur image

Figure 4.12: Deblurring the Dinosaur image
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(a) A blur kernel identified using the least-squares calibra-
tion approach
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(b) A blur kernel identified using the blind deconvolution
approach

Figure 4.13: A comparison of the identified ProFUSION25 camera blurs
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We deal with three types of blur that are:

1. A rectangular averaging blur to mimic the spatial averaging of the sensor

elements.

2. A circular disk blur to mimic the effects of out-of-focus blur.

3. A combination of spatial averaging and out-of-focus that is obtaining by a

two-dimensional convolution of the two blurs.

The total-variation super-resolution results are shown in Table 4.2. Similar exper-

iments are carried out by using the out-of-focus and combination blurs in the ob-

servation model and investigating the effect of assuming other likely blur types in

the super-resolution process. These results are also tabulated in Table 4.3 and 4.4.

Table 4.2: Super-resolution performance (PSNR, in dB) of different likely blurs
when the averaging blur is used in the forward model

Average Blur Out-of-focus Blur Combination Blur

Satellite Image 25.9648 24.6273 24.0438

Boat Image 23.0336 22.0421 21.5339

Elaine Image 20.3095 16.8261 15.5790

Table 4.3: Super-resolution performance (PSNR, in dB) of different likely blurs
when the out-of-focus blur is used in the forward model

Average Blur Out-of-focus Blur Combination Blur

Satellite Image 24.1992 27.2351 26.6452

Boat Image 21.8441 24.5846 24.1240

Elaine Image 17.2004 20.0395 19.2879

The experiment is performed on three different test images which are shown

in Figure 4.14. It is evident that correct identification of the blurring function used

in the forward model significantly impacts the super-resolution result as is shown
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Table 4.4: Super-resolution performance (PSNR, in dB) of different likely blurs
when a combined blur is used in the forward model

Average Blur Out-of-focus Blur Combination Blur

Satellite Image 22.2313 27.0462 28.5668

Boat Image 19.8885 24.2105 25.7723

Elaine Image 14.9690 20.1455 22.2956

(a) The Satellite image (b) The Boat image

(c) The Elaine image

Figure 4.14: The three test images used in experiments for numerical results
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by the peak signal-to-noise ratio increase whenever the correct blur is used in the

super-resolution process. To corroborate the advantage of knowing the correct

blurring function, experiments are also carried out using real ProFUSION25 im-

ages. The blur identification step is introduced into the super-resolution process

as shown diagrammatically in Figure 4.15. The blur identification is carried out

using the low resolution images as a separate step. The identified blurs are then

used in the subsequent super-resolution algorithm. As opposed to other super-

resolution algorithms, it is worthwhile to point out that each of the 25 images in

the ProFUSION25 camera array are taken by different cameras. As a result, blur

identification is separately performed for each low resolution image to output a

possibly different blur for each camera. In conventional super-resolution algo-

rithms utilizing temporal sequences, all the images are obtained from the same

camera. Consequently, only one blur kernel needs to be identified for the camera.

Since each camera in the ProFUSION25 camera array blurs the high resolution

image differently, we intuitively expect a better super-resolution result as opposed

to the case in which all low resolution images are blurred with the same kernel.

This is expected because diversity can be exploited not only from the sub-pixel

displacement between views but also due to the different blurring that relates each

low resolution pixel to a group of high resolution pixels. Further details about

super-resolution from differently blurred images can be found in the recent work

[4]. An experiment is conducted by using different blur kernels (arbitrarily choos-

ing one of the three mentioned before) for each low resolution image in its forward

model generation. The set of generated images is then input to the super-resolution

algorithm. We examine the two scenarios in which:

1. all the low resolution images are assumed to be blurred with the same blur

kernel.

2. the correct blur kernel corresponding to each low resolution image is used in
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Low-resolution
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Figure 4.15: A block diagram of the super-resolution process involving blur iden-
tification
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the super-resolution process.

The super-resolution results from the experiment are displayed in Table 4.5 for

the three test images used throughout this chapter. There is an obvious improve-

ment in the PSNR value when the correct blur in each ‘channel’ is used. Having

demonstrated that accurate knowledge of the blur kernels does afford an objec-

tive performance increase, we now consider the case of real images taken with the

ProFUSION25 camera array.

Table 4.5: Super-resolution performance (PSNR, in dB) when multiple blurs are
used in the forward model

Correct Blurs Average Blur (5x5) Out-of-focus Blur (5x5)

Satellite Image 30.3198 28.4922 28.5164

Boat Image 24.5803 23.3841 23.4369

Elaine Image 27.7707 26.4592 26.4824

When dealing with real images, super-resolution performance cannot be nu-

merically evaluated because a high resolution version of the image to compare re-

sults with is not available. Consequently, we can only comment on the perceptual

quality of the super-resolution results. Two different image sets are considered.

The first image set is of the Calendar image which represents a sufficiently planar

scene. The second set of images is that of the Dinosaur image which represents a

more complex scene with depth discontinuities. In these cases, a noticeable im-

provement in sharpness is noticed with blur identification as oposed to the case of

super-resolution with an assumed blur kernel. In particular, the text in the Calendar

image in Figure 4.17 is more legible than the other results. Similarly, in Figure 4.19,

the texture of the dinosaur as well as creases on its skin are sharper as compared

to the scenario involving an assumed blur in Figure 4.18. The Dinosaur image,

however, suffers from artifacts that arise from the choice of a simplistic transla-

tional model for the displacement occurring between the multi-view images. The
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removal of such displacement-related effects forms the subject matter of the next

chapter.

4.5 Summary

The vignetting function and the PSF of the sensors in the ProFUSION25 camera

array are identified in this chapter. We hypothesize that the vignetting function

results in a photometric distortion that is expected to affect both displacement

estimation and image fusion. The numerical results demonstrate that the accu-

racy of displacement estimation is not affected significantly by vignetting alone.

However, removing the vignetting function is a cheap pre-processing step which

greatly enhances the visual quality of the image. Consequently, all images taken

with the ProFUSION25 and used in this thesis are de-vignetted before being used

in any super-resolution algorithm. A second hypothesis made in this chapter is

that assuming a parametric blur and performing super-resolution on real images

is less effective than first identifying the PSF of the imaging sensor. This hypothe-

sis is tested by different numerical experiments which show that knowledge of the

correct PSF in each image channel results in an increase in super-resolution per-

formance. Two methods are used to identify the blur kernel: a novel least-squares

method which requires a latent unblurred image and a blind method which does

not require the sharp image to be known. Both methods are tested and the latter

is shown to result in better deconvolution. This performance increase is attributed

to the photometric and geometric mis-match between the sharp and blurred im-

ages in the least-squares approach. The identified blurs are compared to the most

probable blur types and are found to be inconsistent with them. This observation

is not unexpected in light of the spatially variant blurring observed in the captured

images. In the next chapter, all super-resolution results are presented after using a

blur identification stage to identify the blur from each ProFUSION25 sensor.
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Figure 4.16: Super-resolution of the Calendar image with an assumed 5 × 5 averaging blur (×4 magnification)

Figure 4.17: Super-resolution of the Calendar image with identified blurs (×4 magnification)
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Figure 4.18: Super-resolution of the Dinosaur image with an assumed 5 × 5 averaging blur (×4 magnification)
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Figure 4.19: Super-resolution of the Dinosaur image with identified blurs (×4 magnification)
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Chapter 5

Occlusion-aware super-resolution using dense

displacement fields

“Nothing hurts a new truth

more than an old error.”

- Johann Wolfgang von Goethe

In Chapter 3, the issue of a plausible image prior was examined, which relates

to properties of the high-resolution image itself. The blurring part of the observa-

tion model was investigated in Chapter 4. However, little has been mentioned so

far about the warping part of the observation model. In this chapter, the warping

part of the observation model is examined from a multi-view perspective. This is

the final results chapter in this thesis which presents results that build on those

using the total-variation regularizer from Chapter 3 and the identified blurs using

the algorithm in [1] from Chapter 4.

The multi-view nature of the images taken from the ProFUSION25 camera

array presents a scenario that is different from the traditional treatment of dis-

placement (or rather motion) in temporal sequences of images. However, a com-

mon need for accurate sub-pixel displacement estimates is identified in the super-

resolution literature for both multi-view and temporal image sequences. This need

for accurate estimation of correspondences between pixels in each of the multi-

view images is identified as the limiting factor in most super-resolution algorithms.

The experiments in this chapter attempt to answer the question, ”How can the ac-

curacy of displacement estimates be ensured?”. Some researchers have resigned
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themselves to the inevitability of displacement estimation errors and have pre-

ferred to employ adaptive techniques to suppress the artifacts arising from such

errors. On the other hand, some research groups have used more complicated

models and displacement estimation techniques to ensure the availability of accu-

rate displacement estimates. The utility of both approaches is examined in Sec-

tion 5.1 and 5.2. However, the use of more complicated models comes with its

own share of caveats which is treated in Section 5.3. Each of the Sections 5.1-5.3 re-

spectively deal with effects related to displacement estimation in super-resolution

arising from the following:

1. The artifacts arising from the propagation of erroneous displacement esti-

mates in iterative super-resolution algorithms.

2. The use of a displacement model that is too simplistic to capture the dis-

placement taking place between the multi-view images. For example, a two

parameter translational shift model is not suited to parameterize scenarios

when the images are rotated with respect to each other.

3. The artifacts arising from regions in the images that are occluded. This sce-

nario is especially relevant to multi-view images because they often involve

self-occlusions of 3D objects as well as occlusions from disparate objects.

5.1 Adaptive suppression of displacement-error artifacts

We begin our discussion by first addressing the issue of erroneous displacement

estimates. At this point, we do not concern ourselves with the source of the dis-

placement errors. To put matters into perspective, the reader is asked to refer

to Figure 3.13 where a typical super-resolution flow chart is shown. The super-

resolution algorithms in this thesis do not include displacement estimation within
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the restoration loop. In other words, the high resolution image and the displace-

ment vectors are estimated independently from each other and not in a joint fash-

ion. As a result, any error in the displacement estimation is carried forward in

every iteration of the high resolution image restoration. We acknowledge the im-

portance of jointly estimating the displacement vectors, but reserve this topic for

consideration as an issue in future endeavors. The reasons for taking such a stance

are discussed in Section 6.2.

When using a two parameter translation shift model or even a six parameter

affine model, small errors in any of the parameters can lead to significant artifacts

in the super-resolution result. To demonstrate such an effect, the cameraman image

is artificially warped and the displacement parameters are intentionally perturbed.

When the super-resolution algorithm is applied using perturbed displacement pa-

rameters, the result suffers from ghosting artifacts which can clearly be seen in

both Figures 5.1(a) and 5.1(b). The image in Figure 5.1(a) was obtained by perturb-

ing one of the displacement estimates by an error of 11.5 pixels (in both directions).

The image in Figure 5.1(b) was obtained by perturbing the rotation angle of one of

the affine parameter estimates by 5 degrees. While such large displacement errors

are highly exaggerated, it serves to show the resulting artifacts more clearly.

To mitigate the effects of such displacement estimation errors, a weighting term

is introduced into the super-resolution algorithm that reflects the degree of confi-

dence in the accuracy of the registration. The contribution of each low resolution

observed image to the estimated high resolution image is weighted by considering

the registration error caused by inaccurate displacement estimates. The proposed

approach is similar in spirit to that proposed in [75] and [76]. The weighting term

αi is designed to satisfy certain properties such that it is:

1. inversely proportional to the magnitude of the data-fidelity term Jd(f , gi).

2. greater than zero.
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(a) SR image with inaccurate shift parameter esti-
mates (×4 magnification)

(b) SR image with inaccurate affine parameter es-
timates (×4 magnification)

Figure 5.1: Inaccurate displacement estimates cause ghosting effects in the super-
resolved image
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The subscript i = 0, 1, ..., k indicates individual low resolution images. The first

property dictates that when the estimated displacements cause a large error in data

fidelity, the corresponding image should be weighted less in the update process.

In light of these, a weighting function of the following form is proposed [76],

αi = L

(

Ti(f) ·
1

Jd(f , gi)

)

, (5.1)

where L(·) is a monotonically increasing function and Ti(f) is a scaling factor that

also takes into account the mis-registration taking place in the other low resolu-

tion images. Using the previously defined data-fidelity term in Equation 3.2, two

choices of the weighting function are examined,

αi =

√

Ti(f) ·
1

‖Hif − gi‖2 + δi

(Type 1) (5.2)

and

αi = log

(

Ti(f) ·
1

‖Hif − gi‖2 + δi
+ 1

)

(Type 2). (5.3)

The scaling factor is given by,

Ti(f) =

k
∑

j=0

‖Hjf − gj‖2

‖Hif − gi‖2 + δi
. (5.4)

The term δi in Equations 5.2, 5.3 and 5.4 prevents the denominator from going to

zero. The data fidelity or residual term ‖Hif − gi‖2 decreases with the number

of iterations because there is a better fit between the observation model and the

high resolution image. However, the residual remains significant in images that

are associated with displacement errors. This causes the contribution of the mis-

registered image to be weighted less in accordance with the weighting function

used. The effectiveness of this technique can be seen in Figure 5.2 which is able
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to satisfactorily remove the artifacts in Figure 5.1(a). An experimental setup was

also constructed to numerically evaluate the effectiveness of this approach. In this

setup, a sequence of 4 low resolution images is synthetically created by passing it

through the forward model described in Chapter 2. The warping model used is

either a translational shift or an affine warp. The warped images are then blurred

with a 5 × 5 rectangular averaging blur kernel and finally ideally down-sampled

by a factor of two. The displacement estimates in both cases are known and are

input to the super-resolution algorithm after perturbing one of them to emulate

outlier displacement errors. We define an outlier displacement estimate as a large

error in the displacement actually occurring. These perturbations are randomly

chosen to lie between 1.5-7.5 pixels (uniformly distributed) at the low resolution

scale. The super-resolution performance for different test images is quantified us-

ing the PSNR measure in Table 5.1. We would like to point out that such outlier

displacement estimates are not totally impractical and can arise in certain situa-

tions. For example, consider two planar objects, object A and object B which are

placed at different depths in a scene. Since the apparent displacement between

images is depth dependent, the two objects appear to be displaced by different

amounts when the scene is imaged from different positions. A global shift estima-

tion technique cannot account for both these shifts simultaneously and hence, a

compromise shift is estimated, which can be considered to be an outlier displace-

ment estimate. This is precisely the scenario faced by us in the scene represented

by Figure 5.9 that is described in a subsequent section.

The improvement in super-resolution performance by using the proposed adap-

tive suppression technique is apparent in Table 5.1 over the case in which the erro-

neous displacement estimates are used without any check in place. However, the

surprising observation is that the super-resolution performance using the weight-

ing technique does not perform better than single image bi-cubic interpolation.
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Table 5.1: Performance comparison of adaptive suppression technique (PSNR, in
dB)

Satellite Image Boat Image Elaine Image

SR with outlier displacements 15.7739 14.7051 15.5108

SR with adaptive suppression (type 1) 21.3882 24.1110 27.0281

SR with adaptive suppression (type 2) 21.8124 24.8648 27.8965

Bi-cubic Interpolation 22.1720 25.1729 27.9460

SR with no outlier displacements 23.2891 26.6197 28.7806

Figure 5.2: Using the adaptive weighting approach to reduce displacement-related
artifacts (×4 magnification)

The suppression of artifacts is achieved by heavily dampening the contribution of

the mis-registered images which reduces the amount of information that is avail-

able in the super-resolution restoration. When there is no displacement error, the

super-resolution result has a much higher PSNR than single image bi-cubic in-

terpolation. On comparing both the functions in Equation 5.2 and Equation 5.3,

we notice that the log function consistently performs better than the function in

Equation 5.2. Consequently, it is used in all experiments henceforth because of the

incremental PSNR performance gain it affords.
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The effect of the erroneous or outlier displacement estimates on the optimiza-

tion process can be gauged by examining the behavior of the objective function.

From Figure 5.3(a), it can be observed that the outlier displacement estimates cause

the objective function to increase after a certain number of iterations. We conjecture

that it takes a few iterations for the information from the low resolution images to

be fused into the high resolution image during which the objective function de-

creases. After that point, the contribution of the mis-registered image dominates

the objective function and causes it to increase. This is in contrast to Figures 5.3(b),

5.3(c) and 5.3(d) which show no increase in the value of the objective function. The

steepest decrease in the objective function is seen in 5.3(d) which represents the

case when no outlier displacements are present. The value of the objective function

does not decrease to zero in Figures 5.3(b) and 5.3(c) because the weighting term

does not allow the images with outlier displacement estimates to contribute to the

high resolution image.

We now demonstrate results on real images taken with the ProFUSION25 ar-

ray. Only 5 images from the set of 25 available images are used in this example.

The viewing positions of the images used are shown in Figure 5.4(e). The images

are registered using a dense displacement estimation scheme (optical flow) which

is discussed in more detail in Sections 2.3 and 5.2. The registered images which

suffer from significant errors are shown in Figure 5.4. We can observe from com-

paring the images in Figure 5.4 that the displacement estimation technique has

failed to recover the correct displacement estimates in Figure 5.4(a) which is la-

beled as ‘1’ in the ProFUSION25 grid. This is evident in the manner in which the

dinosaur looks distorted in comparison to the other images. Nevertheless, this

set of displacement estimates is used to recover a high-resolution image in an ad-

mittedly exaggerated demonstration of the resulting artifacts. The corresponding

TV super-resolution result is shown in Figure 5.6(a). The high resolution image
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ment errors

Figure 5.3: Trends in the value of the objective function
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is expectedly plagued by annoying artifacts. On using the adaptive suppression

technique, the artifacts are suitably removed as shown in Figure 5.6(b). Although

the artifacts have been removed, the result does not demonstrate significant res-

olution enhancement over the bi-cubic interpolation in Figure 5.5 because of the

suppression of the mis-registered images. However, this is only the case when a

small number of low resolution images are used to recover the high-resolution im-

age. In this example, five low resolution images were used. When a larger number

of images are used, the effect of suppressing a lone or few mis-registered images

does not detract from the enhancement of resolution as is expected from the gen-

eral trend in Figure 3.11.

While this method works well to remove the artifacts caused by erroneous dis-

placement estimates, it does so by suppressing the information from individual

low resolution images that are judged to have been registered incorrectly. This is

disadvantageous because every pixel in the image is penalized similarly by the

weighting term even if certain regions have been correctly aligned (one weight for

the entire image). Such a scenario commonly occurs when there are independently

moving objects in the scene. From a multi-view perspective of a static scene, such

a scenario can occur when two planar objects are at different depths in the scene.

When a two parameter translational shift model is used, only one of the objects

can be correctly registered. In such cases, a adaptive weighting of the entire im-

age is not an optimal solution to eliminate displacement related effects. However,

when the situation demands the use of simple displacement models that are of

low computational complexity, such a method can be very useful in getting rid of

displacement artifacts. In Section 5.3, a general treatment is described that is more

selective in the weighting that is performed.
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(a) The reference image 13 registered to
image 1

(b) The reference image 13 registered to
image 5

(c) The reference image 13 registered to
image 21

(d) The reference image 13 registered to
image 25

The ProFUSION25 array

13

1 5

21 25

(e) Viewing positions of the
images under consideration

Figure 5.4: Registration of the reference image to each of the observed low resolu-
tion images 112



Figure 5.5: Single image bi-cubic interpolation of the Dinosaur image (×2 magnifi-
cation)

5.2 On using a more general displacement model

Many super-resolution algorithms assume simple parametric models like a trans-

lational shift for the displacement that occurs between the observed low resolu-

tion images. Such algorithms then proceed to demonstrate a dramatic increase

in the performance of their algorithm over traditional single-image interpolation.

While the theoretical analysis of such algorithms may be rigorous, they are of lim-

ited practical use simply because displacements under real world imaging con-

ditions rarely correspond to simple shifts. The dramatic performance increase is

mainly because the assumed translational shift model exactly matches the manner

in which the synthetic images are created. In [9], the authors prove that assuming

the displacement to be known leads to an almost 10-25% increase in performance

(in terms of mean square error) as opposed to estimating the pixel correspondences

from the observed low resolution images. This oft neglected result explains the su-
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(a) SR image with no suppression of mis-registered images
(×2 magnification)

(b) SR image with suppression of mis-registered images (×2

magnification)

Figure 5.6: Adaptive suppression of mis-registered images using real ProFU-
SION25 images (and dense displacement fields)
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perior results reported by algorithms using synthetically generated low resolution

image sets. The need to produce accurate estimates of the displacement vectors

and the high-resolution image jointly makes the problem drastically harder. To tie

this into the bigger theme of the thesis, the assumed displacement model in the

observation model greatly impacts the super-resolution process. In the discussion

so far, we have assumed a simple translational shift model for the displacement

between multi-view images. While such an assumption is appropriate for planar

scenes like the Calendar image and for small cropped regions from more complex

scenes, it fails when applied to non-planar scenes. An example is shown in Fig-

ure 5.7(a) which demonstrates a TV super-resolution result assuming the transla-

tional shift model. The Dinosaur image represents a scene consisting of a 3D object

with depth discontinuities. Since, the displacement of points in a scene is depth

dependent, the global two parameter translational model cannot account for the

different displacements of regions occurring at different depths. The artifacts aris-

ing from such a scenario where the displacement model itself is inadequate is most

apparent in the areas near the legs of the dinosaur. As a comparison, the results

using a more complicated six parameter global affine model is also shown in Fig-

ure 5.7(b). While the super-resolution image using an affine displacement model

is perceptually sharper, the artifacts near the legs of the dinosaur are still appar-

ent. These results demonstrate the inadequacy of global displacement models for

complex scenes.

While the shift and affine models are not suitable as global representations of

the scene displacement, they are viable models over smaller regions of the image

which can be amalgamated to provide dense displacement vectors for arbitrary

displacements. These smaller regions can be as small as a single pixel or even as

large as an arbitrarily shaped object in the scene. This is the premise of piece-wise

parametric models, block-based models and optical flow estimation techniques
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[77]. As an alternative to global displacement models, a locally affine but globally

smooth optical flow technique [10] that is described in Chapter 2 is chosen to esti-

mate the displacement vectors for the scenes being considered in this thesis. Using

such a displacement model allows us to obtain a dense displacement field that can

account for more complex scenes. We show the result of using this optical flow

technique on super-resolution performance in Figure 5.8. It can be seen that the

high-resolution image does not suffer from the artifacts near the dinosaur’s legs

that were visible in Figures 5.7(a) and 5.7(b). However, it does suffer from objec-

tionable artifacts mainly in the background regions containing little texture where

reliable displacement estimates cannot be found. Additionally, the boundaries of

the image, which can be treated as occlusion areas, display undesirable artifacts

because corresponding regions cannot be found in other low resolution observa-

tions. The removal of such occlusion-related artifacts is treated in the next section.

5.3 Accounting for occlusion in super-resolution

While optical flow can be reliably estimated between image regions visible in both

images being considered, it cannot be estimated in areas that are occluded. Occlu-

sion refers to the phenomenon where an image region that is visible from a partic-

ular viewing position is covered up and can no longer be seen when the scene is

viewed from a different viewing position. This occlusion can be caused either by

the scene structure itself or due to the motion of objects within the scene. An ex-

ample of a real scenario using the ProFUSION25 array is shown in Figure 5.9. The

example shown in Figure 5.9 consists of a scene containing two books at different

depths. Due to a change in the viewing position, the book that is closer occludes

a certain region of the book that is placed further away. A consequence of occlu-

sion is that it is not possible to find correspondences for presently visible points

that become covered when the scene is viewed from a different viewing position.
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(a) SR assuming a translational model (×2 magnification)

(b) SR assuming a affine model (×2 magnification)

Figure 5.7: Inadequacy of parametric displacement models
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Figure 5.8: Super-resolution result using optical flow estimation (×2 magnifica-
tion)
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Figure 5.9: A scene showing occlusion between two objects at different depths

Similarly, regions that become uncovered have no displacement vectors pointing

into them. To account for occlusion-related artifacts in the super-resolution result,

we propose using only the visible pixels in the super-resolution algorithm. This

process calls for identifying the occlusion areas and disabling their contribution in

the super-resolution algorithm. A three step method is proposed for handling oc-

clusion areas in the super-resolution process. First, optical flow is estimated at all

pixel locations in the reference image. The estimated optical flow will result in un-

reliable displacement vectors in occlusion areas. These unreliable vectors are used

to identify occlusion regions. Once the occlusion regions are identified, they are

disabled from taking part in the super-resolution algorithm by using an occlusion

mask (which acts as a binary weighting).

The occlusion detection stage itself is performed on the basis of intensity mis-

match. The estimated displacement fields are used to predict each low resolu-

tion image from the pixel values of the reference image. The predicted images are

then subtracted from the observed low resolution images. The difference image is

squared and thresholded to obtain a binary image which indicates the occluded

areas. The occlusion detection procedure is diagrammatically represented in Fig-
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ure 5.10. A consequence of the intensity mis-match approach described above is

that regions with wrong displacement estimates are also masked in addition to the

occlusion areas. The displacement-related artifacts are a combination of effects

from wrong displacement estimates and occluded regions. Once the occlusion

maps have been obtained, the question arises as to how the occlusion maps can be

used within the super-resolution framework. The following two scenarios are pos-

sible. In Figure 5.11, a typical super-resolution iteration using the total-variation

regularizer is shown. The occlusion maps can be used at two stages marked as

Stage 1 and Stage 2. At Stage 1, the current estimate of the high resolution image

has been warped in accordance with the estimated forward displacement vectors

(or flow fields) as it passes through the observation model. Consequently, the oc-

clusion maps can be obtained by the intensity mis-match between the forward regis-

tration of the reference image (to the sampling lattice of the corresponding low res-

olution observation) and that particular low resolution image itself. At Stage 2, the

difference images arising from the data fidelity term are passed through the adjoint

of the system operator represented by the forward observation model. The adjoint

operator warps each difference image with the corresponding backward displace-

ment estimates. Additionally, this is performed at the magnified spatial resolution

because the adjoint operator includes a zero-insertion up-sampling component.

The occlusion maps to be used at Stage 2 are then obtained from an interpolated

version of the intensity mis-match between the backward registration of each low

resolution image (to positions on the sampling lattice of the reference image) and

the reference image itself. Using the same scene of two books at different depths in

Figure 5.9, an occlusion map is produced and shown in Figure 5.12(a). The occlu-

sion map has been obtained with the intent of using it at Stage 2. A corresponding

occlusion map with the intent of usage at Stage 1 is shown in Figure 5.12(b). These

are different because of the reasons mentioned in the preceding paragraph. The
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dominant areas that show up in these occlusion maps are the regions that are out-

side the field of view of the image being registered. The occluded area between

the books indicated by ellipses in Figure 5.9 also shows up. The occlusion detec-

tion stage depends on the threshold parameter used, which is chosen heuristically.

A very low threshold parameter leads to a noisy occlusion map whereas a high

theshold parameter leads to an occlusion map that is dominated by the pixels that

are beyond the viewing field of the reference camera. The advantage of using oc-

clusion maps over the full-image adaptive suppression approach in Section 5.1 is

that only those regions in the image which are occluded or not aligned properly

are selectively suppressed from contributing to the high resolution image. This

is in contrast to the earlier approach where the entire image was weighted in the

same manner. A TV super-resolution result using the occlusion maps is shown in

Figure 5.14. The corresponding single image bi-cubic interpolation result is also

shown in Figure 5.13. A second example using the Dinosaur image is shown with

the corresponding single image interpolation in Figures 5.16 and 5.15 respectively.

These images do not suffer from annoying artifacts and are also sharper than the

corresponding single image interpolated versions.
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To demonstrate that using occlusion maps is more advantageous than the weight-

ing term used in Section 5.1, an experiment is setup as follows. We use real Pro-

FUSION25 images and pass each image through an observation model. The ob-

servation model used consists of blurring with a rectangular averaging filter and

ideal down-sampling by 2. The images have already been warped due to their

capture from different viewing positions. The set of 25 images is then input to

the super-resolution algorithm and magnified by a factor of two using different

displacement models together with the suppression and occlusion masking tech-

niques. We perform this experiment so that a reference high resolution image is

available to objectively compare the super-resolution result. This allows us to char-

acterize super-resolution performance using a numerical measure like the PSNR.

The results are shown in Table 5.2. Several independent trends can be noticed from

this table:

1. When adaptive suppression is used with any displacement model, the super-

resolution result demonstrates an increase in PSNR over the case when no

adaptive suppression is performed. This is an expected result when the full

complement of 25 images is used in the super-resolution process. When a

lower number of images is used, the PSNR is not higher because of excessive

dampening of the few images that are being considered. As a result, the in-

formation in those images is only weakly incorporated in the high resolution

image.

2. When occlusion detection is included with the optical flow displacement

model, the PSNR of the super-resolution result is the highest amongst all

cases considered. This is also an expected result because the occlusion re-

gions as well as mis-aligned regions are excluded from the super-resolution

process. While a region may be occluded from a particular viewing posi-

tion, it is a visible region from a different viewing position. As a result, even
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(a) Occlusion map after registering Image 1 to
spatial grid of Image 13

(b) Occlusion map after registering Image 13 to
spatial grid of Image 1

Figure 5.12: Occlusion maps produced using the proposed approach
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Figure 5.13: Single image bi-cubic interpolation of the Book image (×2 magnifica-
tion)
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Figure 5.14: Super-resolution of the Book image using optical flow and occlusion
detection (×2 magnification)
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Figure 5.15: Single image bi-cubic interpolation of the Dinosaur image (oblique
view, ×2 magnification)
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Figure 5.16: Super-resolution of the Dinosaur image (oblique view) using optical
flow and occlusion detection (×2 magnification)
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if certain regions are excluded from a particular low resolution image, the

spatial diversity due to different viewing positions allows a net increase in

PSNR. The only exception is the Dinosaur image (side view) in which super-

resolution with occlusion detection results in only a small PSNR gain over

the bi-cubic interpolation case. We believe this is due to the fact that the di-

nosaur has been imaged at a greater distance than the other two images. To

capture as much of the dinosaur as possible in the camera’s field of view,

we had to place the dinosaur at a greater distance than the other two images

considered. As a result, changes in viewing position do not result in signif-

icant self-occlusions and there are no new regions convered/uncovered at

the boundaries like the Book image. The occlusion detection stage has little

impact besides mitigating some of the effects in the background.

3. When using occlusion masks with optical flow displacement estimation, the

PSNR is higher than the scenario in which the adaptive weighting technique

is used. This is also an expected result because only occluded or mis-aligned

regions are excluded from contributing to the high-resolution image as op-

posed to weighting of the entire image.

4. When just a shift or affine displacement model is considered, the PSNR is

higher than that of super-resolution results using optical flow. This is not

an intuitive result. We expect optical flow to perform better because it can

produce more accurate displacement vectors for the type of displacements

taking place in scenes with 3D objects. However, the optical flow estima-

tion technique is not perfect and it fails to produce accurate displacement

vectors in regions with little texture like the background wall and in cov-

ered/uncovered regions. Inaccurate displacement estimates in these areas

forces the PSNR to drop even though there is significant resolution enhance-
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ment in well aligned regions as evidenced in the comparison between Fig-

ures 5.7 and 5.8.

Table 5.2: Performance comparison of techniques to alleviate displacement-related
effects (PSNR, in dB)

Dinosaur Image Books Image Dinosaur Image

(Oblique Profile) Books Image (Side Profile)

SR with shift model 25.2852 20.8836 25.0365

SR with shift model and

adaptive suppression 26.0286 21.7521 25.8573

SR with affine model 24.6357 18.5842 22.3095

SR with affine model and

adaptive suppression 25.8917 20.6895 25.8994

SR with optical flow 22.7832 22.8830 23.1087

SR with optical flow and

adaptive suppression 25.8811 26.6022 26.0463

SR with optical flow and

occlusion detection 29.2154 28.3106 28.6029

Bi-cubic Interpolation 28.0299 27.2429 28.4378

5.4 Summary

The aim of this chapter was to make the reader aware of the need for accurate dis-

placement estimates in obtaining good super-resolution performance. An adaptive

weighting approach was proposed to mitigate the effect of erroneous displacement

estimates that is mostly effective when global parametric models are imposed on

the displacement taking place between images. While this method was shown to

be effective in removing displacement related artifacts, it does so by sacrificing

resolution enhancement when a small number of low resolution images are used.

When a larger number of images are used, it is successful in both resolution en-

hancement as well as reducing displacement-related artifacts. A locally affine but
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globally smooth dense displacement estimation technique is adopted for use with

scenes containing 3D objects. Such a model allows the estimation of arbitrary dis-

placements that is demonstrated to result in better super-resolution performance

rather than global parametric models like translation shift or affine models. Finally,

a novel intensity based method for detecting occlusions, which is a more general

form of the weighting approach, is proposed and the resulting super-resolution

result not only has reduced displacement-related artifacts but also demonstrates a

resolution enhancement over single image bi-cubic interpolation.

The results in this chapter represent a cumulative increase in performance by

using the components developed in Chapters 3-5. The use of the total-variation

regularizer was shown to preserve edges to a better degree than the other regu-

larizers used. The process of identifying the PSF was then also demonstrated to

result in a subjective as well as an objective performance increase over the scenario

where a reasonable blur is assumed for the camera PSF. Putting all these results

together with the use of a dense displacement estimation technique results in the

performance increases seen in this chapter. Furthermore, the use of an occlusion

detection stage helps remove the artifacts associated with inaccurate displacement

estimates. These different components applied together are essential to produce a

clean, pleasing, visually superior high resolution image. It is important to mention

that all results in this chapter with real ProFUSION25 images were super-resolved

by a magnification factor of 2. While the improvement over bi-cubic interpolation

at this magnification is certainly noticeable, we believe that the improvement will

be more significant for higher magnifications. However, due to the computational

costs of the displacement estimation stage, we were unable to provide results at

higher magnifications.
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Chapter 6

Conclusions and future research

“I hope that posterity will judge

me kindly, not only as to the

things which I have explained,

but also to those which I have

intentionally omitted so as to

leave to others the pleasure of

discovery.”

- Rene Descartes

In this chapter, we summarize the study carried out during the course of this

thesis, suggest avenues for future work and highlight the main contributions. In

Chapter 1, this work was introduced as a smaller part of a larger project. This

umbrella project envisions a system that allows a user to experience a realistic,

high-resolution three-dimensional view of a certain environment. For example,

imagine a user navigating a virtual environment created from panoramic images

of a museum. The user should be able to walk up to a certain exhibit, for instance,

a statue or other 3D objects and be able to view the exhibit in high resolution. An

added benefit would be to be able to view the exhibit as a 3D representation. This

representation could take the form of a stereo pair. A 3D representation is possible

only when the structure of the exhibit can be inferred. This is largely carried out by

using multiple views of the same object. There is a fundamental tradeoff between

the size of the scene captured and the resolution at which it is captured. As the cap-

tured scene area becomes larger, the resolution of an object in the scene decreases.

In the overall quest for a panoramic viewing experience, resolution is often sac-
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rificed. In the light of such an ambitious project, the objective of this thesis was

to investigate super-resolution performance from multi-view images taken by the

ProFUSION25 camera array which can then be incorporated within the panoramic

environment. This was motivated by two main observations from the literature

surveyed:

1. Existing super-resolution algorithms are geared towards super-resolution from

a temporal sequence of images and not from a multi-view perspective. As a

result, the performance of super-resolution algorithms are mainly available

for super-resolution from temporal sequences of images.

2. A majority of the algorithms perform super-resolution without identifying

the characteristics of the imaging sensor and assuming simplistic displace-

ment models.

In Section 6.1, major conclusions based on the entire study are given. We make

general comments on super-resolution itself as well as comments specific to multi-

view images and the ProFUSION25 camera array. This study is by no means com-

plete and there are several issues for future consideration that are outlined in Sec-

tion 6.2. Finally, the main contributions of the thesis are identified in Section 6.3.

6.1 Conclusions

The over-arching question that this thesis attempts to answer is, ”Is there a possi-

bility for resolution enhancement of a captured scene using multi-view images

from the ProFUSION25 array?”. If so, how can we achieve this? If not, what

are the factors that make this difficult? In our quest towards answering these

questions, we first examined the most appropriate super-resolution reconstruction

method that should be used as the core of our algorithm. The surveyed literature

pointed towards best results using regularized super-resolution. As a result, an
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in-depth study of regularization-based approaches was conducted in Chapter 3.

Super-resolution was formulated as an inverse problem and a justification for us-

ing a regularization-based approach was given. The three most popular regular-

izers used, viz., Tikhonov, HMRF and TV regularizers were compared within a

super-resolution scenario. The Tikhonov regularizer was shown to cause excessive

smoothing and resulted in a blurry high resolution image. The HMRF-based statis-

tical regularization performed better than Tikhonov regularization. However, its

dependence on the clique activity measure in specified directions caused smooth-

ing across edges which is not desirable. Finally, the TV regularizer was demon-

strated to preserve edges as well as produce the most visually appealing high res-

olution image. This was attributed to the fact that the TV regularizer does not

smooth the image across edges. Additionally, the effect of the number of images

on super-resolution performance was also demonstrated. We observed that as the

number of low resolution images used was increased, the PSNR of the high resolu-

tion image also increased until a saturation level was reached. Beyond this point,

an increase in the number of low resolution images led to very small changes in

PSNR. This is due to the redundant information in the large number of low reso-

lution images. We found that when using real images captured from the ProFU-

SION25 camera array, the increase in super-resolution performance (visually and

using PSNR) was not as marked as for synthetic scenarios. This is primarily due

to the fact that the displacement taking place between images is not known nor

can it be estimated to a high degree of accuracy. Furthermore, the imaging process

itself affects the low resolution image by introducing blurring and other photo-

metric distortions. These effects are not known a priori and formed the subject of

investigation in Chapter 4.

The multi-view images taken by the ProFUSION25 camera are affected by a

photometric distortion which has a characteristic radial fall-off called vignetting.
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This photometric distortion is expected to affect the accuracy of intensity-based

displacement estimation techniques. We found that while vignetting does affect

the accuracy of displacement estimation technique, it does not do so to a degree

such that super-resolution becomes infeasible. The standard deviation in the dis-

placement estimation error was found to be of the order of a tenth of a pixel which

only becomes significant when the magnification factor is more than ten. However,

we concluded that an intensity distortion detracts from the overall visual quality of

the high resolution image. As a result, vignetting was corrected by a suitable cali-

bration technique. This gave satisfactory results in removing the vignetting effect.

An exercise in finding a vignetting model that best explained the ProFUSION25

camera vignetting effect was also carried out. We found that the cosine-fourth

model can be used to fit the vignetting effect generated by the ProFUSION25 cam-

era. The fit was carried out using a least-squares technique. The advantage of

knowing the correct PSF in the super-resolution process is also investigated. We

found that when the correct PSF is known, the PSNR of the high resolution im-

age is at least 2 dB higher than when a likely blur is assumed. The ProFUSION25

camera array consists of 25 different sensors with the possibility of different PSFs

for each sensor. We showed experimentally that knowing the correct blur in each

channel or sensor also increases super-resolution performance significantly. The

blur identification was carried out in two ways. First, a calibration experiment us-

ing a known target was used to obtain a least-squares estimate of the blur. This

did not produce satisfactory results because of inaccurate geometric and photo-

metric registration. As an alternative, a blind de-convolution technique was used

to identify the camera PSF. On subsequent de-blurring with the identified blur, the

ProFUSION25 images were shown to be much sharper and clearer. These iden-

tified blurs were also used in the super-resolution process with significant visual

increase in resolution. The conclusion we can draw from these experiments is that
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the identification of the PSF plays an important role in increasing super-resolution

performance. Moreover, the use of assumed parametric blurs is not sufficient be-

cause they do not correspond to the actual ProFUSION25 camera blurs. In fact, we

believe that the real camera blur is not spatially-invariant as explained in Chap-

ter 4.

In the final Chapter 5, occlusion-aware super-resolution with dense displace-

ment estimates was examined. Initially, a global parametric displacement model

was used in the observation model which was shown to be prone to outlier dis-

placement estimates due to its inability to account for complex displacements. An

adaptive weighting mechanism was proposed to weight the contribution of mis-

registered images which led to a largely artifact-free high resolution image. How-

ever, the weighting term did not allow the low resolution images to contribute

much towards overall enhancement of resolution. As a result, we proposed a more

general displacement model that was based on a locally affine but globally smooth

dense displacement estimation technique. This technique was shown to work well

except where reliable displacement estimates could not be found (in regions with

little texture) and in occluded regions. Subsequently, an intensity-based occlusion

detection scheme was proposed which was able to remove artifacts due to inac-

curate displacement estimates as well as provide resolution enhancement in the

high resolution image. This was demonstrated using both visual results and the

numerical PSNR measure.

Going back to the question raised at the beginning of this section, we were able

to demonstrate a visual as well as quantitative increase in super-resolution per-

formance using multi-view images. The increase in visual quality over bi-cubic

interpolation is significant but not remarkable. In Chapter 1, aliasing and blur-

ring were identified to be the major causes of loss in resolution. However, the

ProFUSION25 camera does not produce images with significant blurring. More
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importantly, the ProFUSION25 images do not suffer from extensive aliasing. In

most super-resolution literature, aliasing is forced into the images by synthetically

down-sampling the image sequence by a large factor. This accounts for the re-

markable resolution gains that can be obtained. Finally, the computational costs

involved in the estimation of displacements as well as the eventual reconstruc-

tion may be too costly for the increase in resolution that super-resolution from the

ProFUSION25 array affords. Having said that, using a simple displacement esti-

mation technique in conjunction with the adaptive weighting approach does not

have a very steep computational cost. In such a scenario, super-resolution could

be feasible and cheap to implement.

6.2 Future work

Super-resolution using multi-view images offers a variety of avenues for future

consideration. With the bigger picture of the fore-mentioned project in mind, the

next step would be super-resolution of a novel viewpoint. While the ProFUSION25

camera array provides 25 different viewpoints, a user in an immersive environ-

ment would prefer a continuous rendering of high resolution views of a scene.

This would typically involve super-resolution from viewpoints that are not part

of the original set of viewing positions. Such a scenario presents difficulties that

need to be addressed. For example, the issue of computing displacement esti-

mates between the novel viewing position and a reference view is an interesting

issue. Furthermore, since the intensity values at that position are not known, oc-

clusion regions cannot be identified with certainty. A common approach that is

undertaken in the literature is to perform a calibration between the cameras to ob-

tain their extrinsic and intrinsic parameters. These parameters relate the projection

of a point in 3D space to the image plane. Using this information, a cloud of 3D

points can be generated from the multiple views to build a three-dimensional rep-
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resentation. A novel viewpoint can be obtained if information about extrinsic and

intrinsic parameters of a camera placed at that viewing position can be obtained.

These parameters are then used together with the 3D cloud of points to generate

the novel view.

The issue of super-resolution of color images is another important research

front. Mono-chrome processing by applying super-resolution to each color chan-

nel independently is not optimal because it does not take into account the spectral

correlation between the channels [19]. If the channels can be de-correlated using

a transform like the Karhunen-Loeve transform (KLT) [78] or in a suitable color

space, then the super-resolution algorithm can be applied to each de-correlated

channel separately and transformed back to the original domain or color space.

However, the ProFUSION25 camera array only outputs gray-scale images. We en-

vision a scenario where each camera sensor in the array can be overlayed with an

optical color filter. Each camera in the array can thus output different color chan-

nels which can later be combined using available techniques into a color image.

The specific work performed in this thesis can also be built upon. With regard

to regularization, we have not explored the possibility of recognition-based pri-

ors which was mentioned in the literature review in Chapter 2. For example, if we

were to use the ProFUSION25 camera to obtain 3D portraits of a face, a database of

high resolution face images can be used to learn a more relevant prior (or regular-

izer). Similarly, if we constrain our application to museum artifacts, a correspond-

ing database of images of artifact like objects can be used to learn an application

specific prior. These would be particularly useful at higher magnifications where

the observation model constraints cannot provide sufficient information.

We comment in Chapter 4 that the real camera blur is probably spatially-variant

as is observed in the captured images. This opens up a whole field of research us-

ing space-variant blurs. A straight-forward approach to space-variant blur identi-
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fication would be to approximate a space-variant blur as space-invariant blurs in

different sections of the image. This suggests local image processing operations

on sectioned regions of the image which need to be handled with properly chosen

boundary conditions. The advantage of using such an approach over the space-

invariant assumption has not been widely studied in super-resolution literature.

The encouraging results in this thesis of knowing the correct blur hint that such an

approach may be promising.

In Chapter 5, we have chosen to use a relatively simple dense displacement

estimation technique which enforces smoothness constraints by ensuring that the

affine parameters between local regions change smoothly. A more recent approach

[79] that includes stronger constraints could also be used to obtain more accurate

displacement estimates. This is especially relevant if the ProFUSION25 camera

array is not used in one-shot mode. If a video stream of multi-view images is ob-

tained, the problem is made harder due to the possibility of temporal motion. In

such a case, a smoothness constraint in the temporal dimension also has to en-

forced by using an additional term in the energy function being minimized.

We also remark in Chapter 5 that the joint estimation of displacement fields

and the high resolution image could prove to be beneficial. We have not included

displacement estimation within the restoration loop because of the added com-

putational cost involved. However, a computationally cheap dense displacement

estimation technique used within the restoration loop could lead to potentially

better displacement estimates in each iteration. This is especially relevant for high

magnification factors because accurate displacement estimates are harder to obtain

from extremely small aliased images.

As a final note, the occlusion detection scheme used in this thesis was based

on intensity mis-match. While this gives satisfactory performance in our case, it

may not prove to be useful in situations that are affected by large intensity distor-
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tions. For example, in a typical scene, the lighting conditions may vary from point

to point which may lead to significant intensity differences. These could cause

the occlusion detection to go awry. A geometry-based occlusion detection scheme

[80] could prove to be useful in such situations. Geometry-based occlusion detec-

tion is based on the fact that uncovered regions (occluded regions in the reference

frame) do not have displacement vectors pointing to them. This can be used as

a distinguishing feature to detect occluded regions. While there are other issues

for consideration, we feel that these topics are especially relevant to the case of

super-resolution from multi-view images. In the next section, a brief highlight of

the thesis contributions is given.

6.3 Thesis contributions

At the risk of repeating ourselves, we feel that it is necessary to reiterate the con-

tributions of this thesis and the work carried out during the course of this thesis.

1. A comprehensive survey of super-resolution literature was carried out to be-

gin with. The literature survey identified a need for consideration of the case

of multi-view images which has received little attention. An original con-

tribution of this thesis is a novel super-resolution application of multi-view

images taken using the ProFUSION25 camera array.

2. After choosing the regularization-based approach as the core of our super-

resolution algorithm, an in-depth study of regularization-based approaches

was performed to determine the most suitable regularizer. The experiments

performed at this stage helped us realize the importance of blur identification

and the need for dense displacement estimates. Each of the regularized ap-

proaches mentioned were implemented using MATLAB. The Tikhonov and

HMRF approaches were implemented ourselves. The TV-based regularizer
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was implemented using level set methods. This involved computation of the

mean curvature which was obtained using an implementation provided by

Dr. Eric Dubois (part of a thesis [52] which was supervised by Dr. Dubois).

3. The ProFUSION25 camera was found to suffer from a photometric defect

called vignetting. We corrected for this effect using a calibration method.

A cosine-fourth model was also used to fit the observed vignetting effect.

All ProFUSION25 images were subsequently de-vignetted before applying

any super-resolution algorithm. Next, a calibration experiment was setup to

identify the camera blurs using a known sharp and blurred image pair. This

is an original contribution of this thesis although we have not performed

an extensive literature review on this topic. Consequently, a state-of-the-art

blind de-convolution procedure [1] is adopted to identify the camera blurs.

An implementation released by the original authors is used. The use of this

particular blind de-convolution approach has not been previously reported

in super-resolution literature. To sum it up, the characterization of the Pro-

FUSION25 camera via its PSF and its vignetting effect is an original contri-

bution.

4. The identified camera blurs are used in all subsequent super-resolution stages.

A shift or affine displacement estimation technique were initially used to

obtain the required displacement estimates. The shift estimation technique

was implemented ourselves while an implementation was available for the

affine estimation technique. These global models turned out to be inadequate

to represent the displacements occurring in the scenes considered. Conse-

quently, an optical flow estimation technique was proposed to obtain dense

displacement estimates. The optical flow algorithm implementation was also

available. However, its use in a super-resolution setting is a novel contribu-
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tion. In addition, a weighting method to suppress the artifacts from erro-

neous displacement estimates is implemented. Due to the shortcomings of

this weighting technique, a more general intensity mis-match based occlu-

sion detection scheme is implemented. The application of such an occlusion

detection scheme is novel in a super-resolution scenario.

5. Since this thesis forms a smaller part of a larger intended project, a super-

resolution toolbox was created for use in future endeavors. This toolbox

contains a collection of functions for implementing each component in the

super-resolution process as discussed in this thesis. It is largely intended for

multi-view images, although it can easily be used for temporal sequences.

This toolbox is an original contribution of this thesis. We intend to make this

toolbox available online in the interest of reproducible research.
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