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Abstract

This thesis addresses the problem of performing image magnification to achieve higher

perceived resolution for grey-scale and color images. A new perspective on the prob-

lem is introduced through the new concept of a theoretical camera that can acquire

an ideal high resolution image. A new formulation of the problem is then introduced

using two ingredients: a newly designed observation model and the total-variation

regularizer. An observation model, that establishes a generalized relation between the

desired magnified image and the measured lower resolution image, has been newly

designed based on careful study of the physical acquisition processes that have gen-

erated the images. The result is a major contribution of this thesis: a closed-form

solution for obtaining the observation model. This closed form has been implemented

and observation models were obtained for different typical scenarios, and their perfor-

mance was shown to outperform observation models used in the literature. Two new

theorems for designing the theoretical camera, adapted to the display device used, on

arbitrary lattices have been developed. The thesis presents new analysis with a signal

processing perspective that justifies the use of the total-variation regularizer as a pri-

ori knowledge for the magnified image; this analysis is defined on both the low and

the high resolution lattices simultaneously. The resulting objective function has been

minimized numerically using the level-set method with two new motions that interact

simultaneously, leading to a solution scheme that is not trapped in constant-image

solutions and converges to a unique solution regardless of the initial estimate. For

color images, the human visual system characteristics were involved in the choice of

the color space used in the implementation. It was found that a proper color space

such as YCbCr that focuses on magnifying a better luminance channel provided the

same result as a vectorial total-variation formulation, but at a reduced computational

cost. The quality of the magnified images obtained by the new approaches of this

thesis surpassed the quality of state-of-the-art methods from the literature.
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Chapter 1

Introduction

1.1 Problem area

This thesis addresses the problem of image magnification to achieve higher perceived

resolution from a variety of acquired sensor data. The raw image output of the sensor

is considered to be the lower resolution (LR) image(s); this means that the resolution

is lower than that desired or required by the application. The desired higher resolution

(HR) image will be a better representation than the LR images in terms of two aspects:

size and perceived information content (resolution). The LR images here are obtained

by capturing a real-world natural scene by a physical imaging system. Imaging systems

provide the coarse information content of the scene as well as a portion of the finer

details. The extent of this portion depends on the quality of the imaging system.

High quality images with deep fine details can be obtained by using higher quality

(expensive) imaging systems. Unfortunately, many applications demand higher quality

images than the most high-end current existing imaging system, or specifically higher

than the capability of the imaging system available. Imaging systems are governed

by design requirements like size and weight and the technology of the sensors that

capture the light. These requirements and the current technology limits appear in the
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form of optical and electronic processes that degrade the LR images obtained. These

degradations usually result in LR images suffering from loss of resolution and noise.

The scene’s finer details are the most affected by these degradations. Should higher

perceived resolution and size be required, an appropriate digital image magnification

technique is necessary.

Fortunately there are two important facts: first, natural images possess far greater

fine details compared to what can be captured by any current imaging system. Second,

the degradation in the imaging system does not fully eliminate all the image fine de-

tails but rather attenuates them. Based on these two facts, some of the fine details are

expected to be embedded and exist in the given LR images by the digitization process.

This is called aliasing, which might be perceived as outlier patterns in the LR images.

This invigorates research in digital image magnification that will hopefully be capable

of utilizing and reconstructing these embedded information contents as much as pos-

sible in the HR image. This kind of reconstruction approach is called super-resolution

in the image processing literature. The approach in this thesis belongs to this class.

In this thesis the approach is named a more self-descriptive one which is regularized

image up-sampling, in accordance with the theory of digital signal processing and the

mathematical theory for solving ill-posed inverse problems like this one.

The problem area described above is specified by the definition of the underlying

sensor data. This thesis covers two different types of sensor data, namely grey scale and

color. Every type stands alone as a separate problem and many research approaches

address each one separately. In this thesis, some of the theorems developed is used in

both of them, namely a new designed observation model. Additionally, independent

theory is developed to specifically suit each case. Two additional problems that can

greatly benefit from the solutions developed in this thesis are the ones associated with

color filter array and color image sequence sensor data. The associated four problems

for these types of sensor data are listed below in increasing level of complexity.
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1.1.1 Regularized grey scale image up-sampling

In this problem the sensor data is a grey-scale LR image. There is extensive literature

addressing this problem. Usually the success of the formulation for this basic problem,

as verified by the results, is crucial and considered to be the basis for further extension

in solving the other more complex related problems below.

1.1.2 Regularized color image up-sampling

In this problem the sensor captures 3 different measurements from the visual light

spectrum of the scene. The spectrum is usually analyzed by a beam splitter. The

sensor data output are three (or more) values called the color channels. When ap-

propriately combined together by a display device, these color channels will produce

similar color-sensation of the scene to a viewer. The problem of obtaining the HR

color image from this LR color image comes as a natural extension to the problem in

section 1.1.1. This problem benefits from the formulation in section 1.1.1. However,

the correlation of information in the color channels needs to be utilized to the greatest

extent. The proposed approach here deals with this correlation and also addresses the

choice of a color space that is oriented towards the human visual system (HVS).

1.1.3 Regularized color filter array image up-sampling

This problem is of special interest because most commercial color CCD cameras use

the color filter array sensor and it is believed that these will continue to exist in

the market for some time. Unlike the sensor describing the problem in section 1.1.2

this sensor provides only a single color channel value (data) alternatively at each

location of the LR image. The rationale behind using this technology is because it is

much cheaper than the beam-splitter technology used in the sensor of the problem in

section 1.1.2. This means that in total only one-third of the total color information

is given in comparison to the case in section 1.1.2 for the three color channel type.
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It is then required to obtain the other two-thirds of the color information only from

the observations given. This problem is called demosaicking of the color filter array.

There is a wide literature addressing this problem.

1.1.4 Regularized image sequence up-sampling

In this problem the sensor data is a full color image sequence representing time-

varying imagery. The LR color images can be thought to be shots of the scene at

uniform time steps. This sensor type is used with most video imaging systems. These

LR images can contain different information about the scene if there exists relative

motion between the scene objects and the imaging system. If these motions are reliably

exploited and then the additional information is appropriately registered, a significant

resolution gain will be evident in a produced HR image of the scene thought to be

at a specific time instant. Approaches possessing these capabilities are called image-

sequence super-resolution and are recently referred to as simply super-resolution. The

success of these approaches heavily rely on the reliability of the motion estimation

technique used to deduce the motions. Hence this problem can be classified into two

groups: global motion and arbitrary motion field.

1.2 Motivation

Image magnification to achieve higher perceived resolution is a problem with many

potential applications such as:

1. Law enforcement and surveillance applications where usually poor quality LR

images are obtained from typical low-quality commercial interlaced video cam-

eras or snapshots acquired in a non-ideal imaging environment. From these poor

LR images it is required to have a better quality HR image with clearer details

that enhance its use as evidence and to support crime scene analysis.
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2. Broadcasting and entertainment applications where standards conversions from

one sampling structure to another is always a demand. In cinema production

the high quality cameras used have large size and weight. These cameras are not

suitable for use in highly dynamic scenes and cannot be mounted in all locations.

The current remedy to this problem is to acquire these scenes with high-quality

video cameras, because they are lighter and easier to mount. However, the

quality of video cameras is far behind that of cinematic counterparts. Then

the demand is to use digital techniques to up-convert the spatial resolution and

interpolate the temporal component of the acquired video sequence.

3. Printing applications, especially in the field of advertisement, where an HR image

poster is to be printed from an acquired LR image. When the source LR image

is acquired by a color filter array CCD digital camera and the poster size is

typically larger than one square meter in area then the situation is problematic.

The problems arise in the form of misalignment in the color boundaries of the

objects and the grainy effects in the smooth regions of the printed poster.

4. Aerial and satellite imaging where it is often required to zoom in a specific region

of interest in the LR image sequence physically acquired or to view details beyond

the limit of the satellite imaging system resolution, which is currently around

one sample per meter.

1.3 Thesis overview

Chapter 2 introduces the problem formally and discusses its ill-posed nature and the

challenges in solving it. Some definitions and background material are also presented

in the chapter. The chapter commences with a new formulation of the problem. This

formulation is the first contribution of the thesis. It surveys the solution approaches to

the problem and discusses some previous approaches that are considered to be the cur-
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rent state-of-the-art. The chapter analyzes the drawbacks of the solution approaches

and the weaknesses of the discussed state-of-the-art approaches.

Chapter 3 introduces the proposed approach to address the weaknesses discussed

before in chapter 2. Ingredients of the general formulation will be discussed. Back-

ground on the total-variation regularizer used is discussed. The solution method for

this regularizer is derived.

Chapter 4 discusses one of the major contributions of the thesis which is the design

of the first ingredient of the formulation, the observation model. A full chapter is

reserved for this part because of its overarching nature in solving the two problems

that the thesis addresses. The theory is derived, the design procedures are discussed,

and several case studies are presented. A new concept introduced in this chapter, the

theoretical camera is optimally designed in adaptation to the properties of the display

device used. Its design theory is derived and some results are presented.

Chapter 5 presents the results for grey-scale image up-sampling and quantifies the

parameters used in the experiments. The implementation algorithms are presented in a

usable fashion. Results are provided and compared to other methods. The second part

of this chapter introduces some aspects of the color spaces that are oriented toward the

HVS. A contribution of the thesis which is the development of a new methodology that

decouples the implementation color space from that of the formulation is discussed in

the chapter. It is shown that the implementation can implicitly be executed in a

perceptually uniform color space while the formulation is in the imaging system color

space, for reasons discussed in the chapter.

Chapter 6 concludes the thesis by a summary of what has been presented. It lists

the achieved contributions in this thesis. Finally, it provides some future directions

for using the achieved contributions and extending the approaches developed to other

closely related problems.
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Chapter 2

Background

2.1 Definitions

Continuous real world scenes are acquired by an imaging system through projecting

them by the optical component on to a plane and cropping to a cuboid WT of size

W×H× τ , where H = 1 ph, W = ar ph, τ are the height, width, and the time interval

respectively. The spatial unit of measure (ph) is the picture height and the aspect ratio

ar = W
H

[2]. In this thesis we are interested in this projected and cropped signal and

consider it to be our starting point. This image will be denoted as fc(x, y, t) : WT → R

when dealing with its grey scale form as luminance only imaging system. The variables

x, y represent the spatial location on the plane and t represents the time parameter.

Dealing with the full visual spectrum of light (colors), in the case of color imaging

system, the signal is either split by a beam splitter for further filtering by different

color filters or alternatively acquired by a color-filter-array. This will produce three

values of the signal at each spatio-temporal location like the RGB values that are

often used. In this case the continuous color signal can be written as a vectorial

signal fc(x, y, t) : WT → R3. For simplicity we can write also the spatio-temporal

variables in vectorial form as fc(x) for grey scale and fc(x) for color continuous image.
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A continuous image fc(x) is acquired by a camera to produce a digital image f [x] as a

function of discrete variables; the square brackets will be used to indicate this. Again,

for the color image fc(x) every color component is treated independently in the same

manner producing the vector discrete image f [x].

2.1.1 Sampling structure

A lattice (sampling structure) Λ ∈ RD, where D = 2 for still images and D = 3 for

space-time images, is defined in terms of linear basis (column) vectors vi as the set

Λ = {n1v1 + n2v2 · · ·+ nDvD | ni ∈ Z, i = 1, 2, .., D}. Following the notation in [3], it

can also be written in matrix form as Λ = LAT(VΛ) where VΛ = [v1 | v2 | · · · | vD].

For example, a rectangular lattice for progressive video sampling with non-square

pixels can be written as Λ = LAT(diag(X, Y, T )), where X, Y, T are the sampling

period in the horizontal, vertical and temporal dimensions respectively. X, Y are

measured in units of ph and T is measured in seconds. The unit-cell PΛ of a lattice is

that cell that when centered on every point of the lattice Λ will tile the space RD with

no overlapping. The volume of the unit-cell of a lattice Λ is given by d(Λ) = | det(VΛ)|
[3].

The definition of a digital image f [x] is incomplete without defining its sampling

structure. If x ∈ Λ and f [x] has finite energy, denoted by f ∈ `2(Λ), then the discrete

space(-time) Fourier transform of f [x] over Λ is given by

F (u) =
∑
x∈Λ

f [x] exp(−j2πu · x), u ∈ RD. (2.1)

It should be noted that the continuous space(-time) Fourier transform of fc(x) given

by

Fc(u) =

∫

WT

fc(x) exp(−j2πu · x)dx, u ∈ RD (2.2)

is aperiodic, as opposed to F (u) which is periodic with a period of PΛ∗ . This difference
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arises from the fact that fc is a continuous-space(-time) signal while f is discrete. PΛ∗

is a unit-cell of the lattice Λ∗, which is the reciprocal lattice of Λ, and is given by

Λ∗ = LAT((V T
Λ )−1) [2]. Then the inverse Fourier transform of F (u) is also given by

f [x] = d(Λ)

∫

PΛ∗
F (u) exp(j2πu · x)du. (2.3)

The sampling process f [x] = fc(x), x ∈ Λ, has an equivalent form in the frequency

domain derived in [3] and is given by

F (u) =
1

d(Λ)

∑
r∈Λ∗

Fc(u + r). (2.4)

It should be noted that all the Fourier transforms are given here in non-normalized

form following the methodology developed by Dubois [3], thus r · x ∈ Z, ∀ r ∈
Λ∗, x ∈ Λ. For D = 3, u = [u, v, w]T, while for D = 2, u = [u, v]T, where u, v are

the horizontal and vertical spatial frequencies and are measured in units of cycles/ph

written as c/ph, and w is the temporal frequency measured as usual in units of Hz.

The main rationale behind using non-normalized representation is to keep track of the

geometry of the underlying sampling structure that will be used, especially when the

sampling structure is non-square one.

The filtering process of a digital image f ∈ `2(Λ) by a digital finite-impulse-

response (FIR) filter h[x], x ∈ Λ, is given by g[x] = h[x] ∗ f [x], where ∗ denotes

the D-dimensional convolution. The output image g will also be defined on the lattice

Λ [3]. This process is given in the frequency domain as G(u) = H(u)F (u).

A lattice Γ is defined to be a sublattice of Λ if both of them have the same dimension

and every point of Γ is also a point of Λ, written as Γ ⊆ Λ. Also Λ is called to be

superlattice of Γ. This is true iff (VΛ)−1VΓ is an integer matrix [3]. The quantity
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d(Γ)/d(Λ) is called the index of Γ in Λ and is denoted by (Λ : Γ) [3]. Then

Λ =

(Λ:Γ)⋃

k=1

(Γ + ck), k = 1, 2, · · · , (Λ : Γ), (2.5)

where ck ∈ Λ are called the coset representatives of Γ in Λ. Also

Γ∗ =

(Λ:Γ)⋃

k=1

(Λ∗ + dk), k = 1, 2, · · · , (Λ : Γ), (2.6)

where dk ∈ Γ∗ are called the coset representatives of Λ∗ in Γ∗. More details and

notations can be found in [3].

2.1.2 Sampling of continuous images

The acquisition of images by the camera process used in this thesis is modelled as in

[3]. The process is modelled ideally by filtering with a continuous-space(-time) low-

pass prefilter followed by sampling on a lattice Λ. This thesis will refer to these two

processes as the camera model. The prefilter will be referred to as the camera aperture

whose impulse response is denoted by ha(x). The prefilter is used to reduce the effects

of aliasing by trying to band-limit the input image fc(x), as known from the theory

of digital signal processing. After sampling on Λ we obtain the discrete image f [x].

By (2.4) this camera process is written in the frequency domain as

F (u) =
1

d(Λ)

∑
r∈Λ∗

Ha(u + r)Fc(u + r). (2.7)

In practice ha(x) is governed by the physical realization of the camera aperture. Since

the signal here is light and negative light is not defined, then the aperture function

ha(−x) should be in practice a non-negative one. This eliminates the choice of the

sinc function which is the impulse response of the ideal low-pass filter. The commonly
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known practical models for the aperture function ha(−x) are:

1. The Gaussian function as in tube-type cameras.

2. The rect (box) function as in CCD cameras.

3. The circ (circular) function modelling the out-of-focus imaging.

Then practically the frequency response Ha(u) will have a wide frequency profile.

Consequently the filtering process by Ha(u) does not perfectly confine the spectrum

Fc(u) to a unit-cell PΛ∗ ; then it is clear that in this case the summation in (2.7)

will contribute spectral overlap in every PΛ∗ . This is known as aliasing which in

non-avoidable with practical cameras.

2.1.3 Reconstruction by display devices

A digital image like f [x] is useful for storage, transmission, and processing but in order

for it to be viewed, it needs to be reconstructed back to a continuous image f̃c(x).

Continuous images are the suitable form for viewing images by humans, which should

not be mixed with the digital form of an image. The tilde superscript used here is to

denote and emphasize that the reconstructed image is not perfectly the same as the

original fc(x). Indeed, f [x] is suffering from aliasing, as discussed in section 2.1.2. A

display device can be characterized by an analog function φdis(x) called the display

aperture. The space V(φdis) is the space of all images that can be produced by this

display device. This display device aperture function φdis acts as an analog interpolator

for f [x]. The samples f [x] here act as the coefficients for this reconstruction process.

The reconstructed image f̃c(x) is given by

f̃c(x) =
∑

d∈Λ

f [d]hdis(x− d), ∀ x ∈ WT , (2.8)
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where the impulse response hdis(x) = φdis(x). This means that the term f̃c(x) is incom-

plete without specifying the associated V(φdis) because f [x] will have non-identical

reconstructed images that depends on the display device. φdis is governed by physical

realization constraints (electro-magnetic, chemical,... etc). Hence, hdis(x) cannot be

an ideal low-pass filter whose passband is confined to the unit-cell PΛ∗ which includes

u = 0. This results in F̃c(u) that contains a non-negligible portion of the spectral

replicas of F (u).

I would like to emphasize the following, that is sometimes overlooked in the lit-

erature: it is impossible to perfectly reconstruct F̃c(u) = Fc(u) and it is improper

to assume that Fc(u) is band-limited for natural images acquired by physical digital

imaging system whose aperture impulse response is modelled by ha(x) because:

1. Fc(u)Ha(u) is not confined to a unit-cell of the reciprocal lattice of the imaging

system.

2. Consequently and by (2.7), F (u) has spectral overlap (aliasing).

3. Practically, the passband of Hdis(u) cannot be confined to PΛ∗ located at u = 0

so F̃c(u) contains some of the spectral replicas of F (u).

2.1.4 Image up-sampling

A complete treatment of the ideal process of sampling rate conversions for images can

be found in [3]. The process of up-sampling an image f2[x], x ∈ Γ to a superlattice Λ is

shown in Fig. 2.1. The process consists of two stages. The first is zero-insertions, such

that q[x] =





f2[x] x ∈ Γ;

0 x ∈ Λ \ Γ.

In the frequency domain this implies Q(u) = F2(u).

Since q[x] is defined for x ∈ Λ then Q(u) is periodic with period of PΛ∗ and not

PΓ∗ as it possesses after this stage. Then, it is required to filter out the undesired

spectral replicas that exists in PΛ∗ \ PΓ∗ . Second, is to interpolate (filter) by h[x]
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↑ Γ → Λ h[x]
f2[x] f1[x]

q[x]

Fig. 2.1 Image up-sampling.

whose ideal frequency response is H(u) =





(Λ : Γ) u ∈ PΓ∗ ;

0 u ∈ PΛ∗ \ PΓ∗ ,

in order to cut-

off the undesired spectral replicas in Q[u]. The index (Λ : Γ) is also equal to the

up-sampling factor. It should be noted that H(u) is periodic with period PΛ∗ . Both

images f1[x], f2[x] are then related to each other in the frequency domain by

F1(u) =





(Λ : Γ)F2(u) u ∈ PΓ∗ ;

0 u ∈ PΛ∗ \ PΓ∗ .

(2.9)

In this ideal case the impulse response of h[x] is assumed to be a discrete sinc function.

The practical sinc function can not have an infinite number of coefficients, but the

underlying image f2[x] is suffering from aliasing as discussed in section 2.1.2. These

result in an image f1[x] suffering from terrible ringing and undesirable artifacts. The

sinc interpolation is not recommended in image up-sampling and other filters are used

in practice. Different practical choices for the filter h[x] are the zero-order-hold (ZOH),

linear, and cubic interpolators. These filters try to minimize the spectral leakage at

the expense of a wider main lobe compromising resolution which is perceived as blur.

The design of a good filter h[x] is always a trade off between blur and ringing in the

up-sampled image f1[x]. This blur is acceptable if the goal is just to increase the

size of the image but when a better perceived resolution is also required then better

approaches that are capable of synthesizing high frequency contents are needed.
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2.1.5 Image down-sampling

The process of ideal down-sampling of an image f1[x],x ∈ Λ to a sublattice Γ ⊆ Λ as

commonly treated in the literature is shown in Fig. 2.2. The process consists of two

q[x]
h[x] ↓ Λ → Γ

f1[x] f2[x]

Fig. 2.2 Image down-sampling.

stages; first prefiltering by h[x]. The ideal frequency response of this filter is given by

H(u) =





1 u ∈ PΓ∗ ,

0 u ∈ PΛ∗ \ PΓ∗ .

H(u) is periodic with a period of PΛ∗ . The obtained intermediate image is written in

the frequency domain as Q(u) = F1(u)H(u), ∀u ∈ RD. Second, is sub-sampling from

Λ to Γ to obtain the down-sampled image f2[x] ∈ Γ. The relation between F1(u) and

F2(u) can be derived in non-normalized form as follows;

f2[x] = d(Γ)

∫

PΓ∗
F2(u) exp(j2πu · x)du, x ∈ Γ. (2.10)

Also,

q[x] = d(Λ)

∫

PΛ∗
Q(u) exp(j2πu · x)du, x ∈ Λ,

and using (2.6) we arrive at the relation

q[x] = d(Λ)

(Λ:Γ)∑

k=1

∫

PΓ∗
Q(u + dk) exp(j2π(u + dk) · x)du, for x ∈ Λ.
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Since, dk · x ∈ Z then we can write the expression for q[x] at the points of Γ as

q[x] = d(Λ)

(Λ:Γ)∑

k=1

∫

PΓ∗
Q(u + dk) exp(j2πu · x)du, x ∈ Γ. (2.11)

Since f2[x] = q[x] at the points x ∈ Γ, then equating (2.10) and (2.11) we arrive at

the relation

F2(u) =
1

(Λ : Γ)

(Λ:Γ)∑

k=1

Q(u + dk).

If we Substitute for Q(u), the down-sampling relation becomes

F2(u) =
1

(Λ : Γ)

(Λ:Γ)∑

k=1

F1(u + dk)H(u + dk). (2.12)

It can be seen from (2.12) that unless F1(u+dk)H(u+dk) is confined to a unit cell

PΓ∗ then the summation will contribute spectral overlap (aliasing) to the spectrum

F2(u) in every PΓ∗ . This can only be mitigated by the proper choice of a practical

H(u). A straightforward filter that can be used here is the Gaussian filter. The choice

of the parameters of the Gaussian filter can be used as in [4]. Other desirable filters

also exist, and we designed a new one in chapter 4 as well.

2.1.6 Arbitrary rate conversion

h[x] ↓ Ξ → Λ
f1[x]f2[x]

↑ Γ → Ξ

Fig. 2.3 Image arbitrary rate conversion.

Given f2[x], x ∈ Γ it is desired to change its sampling structure to be Λ, where
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neither Λ nor Γ are superlattice of the other. In this case we need a third intermediate

lattice Ξ such that Λ ⊆ Ξ and Γ ⊆ Ξ analogous to rate conversion with rational factor

in 1-D signal processing. The common superlattice Ξ with least density would be

Ξ = Λ + Γ = {x + y; x ∈ Λ, y ∈ Γ} [3]. If Ξ is not a lattice, then we could slightly

modify Λ so that Λ+Γ becomes a lattice. The conversion process is shown in Fig. 2.3.

First, zero-insertions are performed so that the image f2[x] becomes defined on Ξ.

The second step is to filter (interpolate) by h[x]. Here h[x] simultaneously serves the

role of the prefilter for the down-sampling process. Finally, the sub-sampling from the

superlattice Ξ to the desired lattice Λ is performed. The filter h[x] should have its

passband confined to the volume enclosed by PΛ∗ ∩PΓ∗ . The ideal frequency response

of the filter is given by H(u) =





(Ξ : Γ) u ∈ PΛ∗ ∩ PΓ∗ ,

0 u ∈ PΞ∗ \ (PΛ∗ ∩ PΓ∗).

An illustration for a simple example can be seen in Fig. 2.4. In this example VΓ =

diag(X, 2X) and VΛ = diag(2X,X). It is clear that the least dense lattice Ξ that

contains both Γ and Λ is Ξ = Γ + Λ whose matrix VΞ = diag(X, X). Fig. 2.4 shows a

possible (Voronoi) unit-cell for each sampling structure. The passband PΛ∗ ∩ PΓ∗ of

the filter H(u) is hashed in the figure.

The practical implementation of sampling structure conversion discussed here is

performed using the polyphase implementation. This is practically effective because

the implementation will always be done at the lower rate sublattice. Indeed, there

is no point in calculating products of the filter coefficients by zeros. In addition, it

is a waste of computation power to calculate samples that will be discarded by the

sub-sampling process. Several implementations of the polyphase for many sampling

structures can be found in [5].
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Fig. 2.4 Sample passband of H(u).

2.2 Problem formulation

In this section I present a new formulation of the problem with a new perspective.

This formulation is novel and considered to be the first contribution of this thesis. The

problem formulation scenario for image magnification with higher perceived resolution

is shown in Fig. 2.5. We are given a continuous space(-time) image fc(x) that has been

acquired by a physical camera to produce a digital LR image f2[x]. This camera is

modelled as in section 2.1.2 by filtering with a continuous space(-time) filter h2(x) then

followed by an ideal sampling on Γ. The problem dealt with in this thesis is: given the

LR image(s) f2[x] it is required to obtain the best perceived HR image representation

defined on a denser sampling lattice Λ. The new idea here is to assume that there

exists a very high quality HR image f1[x] defined on Λ that can be obtained directly

from fc(x) by a virtual camera. This virtual camera can be modelled again as in

section 2.1.2 by filtering with a continuous space(-time) filter h1(x) followed by an

ideal sampling on Λ. It should be noted that f1[x] is not given, and what we are

seeking is a good estimate of it denoted by f̂1[x]. Then formally the problem can be
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phrased as: given f2[x] how can we obtain the best estimate f̂1[x]? “How” is the box

labelled with the question mark shown in the Fig. 2.5. In the practical formulation of

this problem in most of the literature, it is assumed that the physical camera aperture

h2(x) is modelled by a rect function as in the CCD cameras. Then they assume

that h1(x) should also be a rect function simulating the CCD camera process. The

treatment of the problem in this thesis is different and sets a novel perspective for the

problem formulation based on analyzing the following questions:

1. Why should we assume that h2(x) is a CCD camera modelled by a rect aperture?

Here we assume it can be any model of existing physically realizable cameras

such as the examples given in section 2.1.2.

2. Why should h1(x) be related by any means to h2(x)? Furthermore, why should

it model a physically realizable camera? Here we assume h1(x) can be any filter

that need not necessarily be a model of a physically realizable camera and is

independent of h2(x). In fact we will design h1(x), as will be shown later in the

thesis, such that it defines nice properties of the HR image f1[x].

This problem formulation scenario has opened a new research arena that addresses

these problems. This will be shown specifically in:

1. Design of the theoretical camera aperture model h1(x) that it is adapted to the

display device used φdis.

2. Partial answer to the question mark posed in this section by design of the accu-

rate and correct observation model for any scenario (h1(x), h2(x), Λ, Γ).

It should be noted that it is impossible to reconstruct f1[x] from f2[x] because a great

amount of details and information that exist in f1[x] are lost in f2[x]. However, we

will try to obtain the best estimate f̂1[x]
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f̂1[x]
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Fig. 2.5 Problem formulation scenario.

2.2.1 Ill-posed problem

According to the setup shown in Fig. 2.5, it can be shown that f2[x] can be related

to f1[x] by down-sampling as given in 2.1.5 or generally by arbitrary rate conversion

as given in 2.1.6 in the case of Γ * Λ. Without loss of generality, we will describe the

case of Γ ⊆ Λ because the other case will just precede by an up-sampling step to an

intermediate super-lattice. A generalized derivation for this is given later in the thesis.

A straightforward special-case setup for the scenario given in Fig. 2.5 was introduced

in [6] and has been used continuously in most of the literature. They assumed that

both h1(x) and h2(x) are rect (box) filters modelling the CCD cameras. In this case

f2[x] can be related to f1[x] by an image down-sampling model as given in 2.1.5.

Specifically, f2[x] can be obtained from f1[x] by filtering with a moving average filter

followed by down-sampling from Λ to Γ. The moving average filter is obtained in this

case because both H1(u) and H2(u) tiles each other in the frequency domain. This

corresponds to averaging of the light collected by the HR sensors to obtain samples

of the LR image f2[x]. Since the moving average pre-filter h[x] is LSI and the down-
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sampling process is linear, but shift-variant, then both processes can be described by

a linear system of equations. If we stack f1[x] and f2[x] into lexicographic column

vectors, then we can describe the system by

f2 = Hf1, (2.13)

where H is a sparse matrix that combines both the filtering and the down-sampling

process. Equation (2.13) is called the observation model. The number of rows of

H is equal to the number of samples in f2[x] and the number of columns is equal

to the number of samples in f1[x]. It is clear that H has a nonempty null space

dim(Null(H)) > 0 [7]. This means that all the components of f1[x] that lie in Null(H)

will not be observed in f2[x]. These components are the high frequencies in F1(u) that

are perceived as fine details. Since our problem here is to obtain f̂1[x] from f2[x], we

want to “undo” the transformation given by (2.13). This is called mathematically an

inverse problem. Hadamard [8] defined a problem to be well-posed if there exists a

solution for it that is unique and depends continuously on the data. In our case here

the uniqueness is violated ; indeed, many different images f1[x] can produce the same

f2[x] using (2.13) because when these differences lies in Null(H) they will not appear

at all in f2[x]. This classifies our problem as an ill-posed inverse problem. This means

that f1 cannot be obtained from f2 by using simple matrix inversion of H. Equation

(2.13) describes an under-determined linear system that has an infinite number of

inverse solutions for f̂1. The remedy is to incorporate additional side knowledge about

the problem in hand so as to select one from these infinite number of solutions. This

knowledge is called a priori image information to convert the problem to be well-

posed. It is the selection of these a priori constraints that differentiates one solution

approach from the others, as shown in the next section.
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2.3 Previous solution approaches

2.3.1 Linear methods: re-sampling an underlying continuous space

The basic idea here is to fit a continuous image on the samples of f2[x] and then

re-sample it to the denser sampling structure Λ. A reconstructed continuous image

f̂c(x) is dependent on the choice of an underlying (reconstructing) continuous function

ϕ(x). Then the reconstructed continuous image f̂c(x) becomes

f̂c =
∑

d∈Γ

c[d]ϕ(x− d) ∀x ∈ WT , (2.14)

where c[x] are the reconstruction coefficients that are derived from f2[x] such that

f̂c(x) = f2[x] ∀x ∈ Γ. Under this framework many methods are realized, such as:

• Reconstruction by sinc function (Shannon’s sampling theory);

• Linear interpolation;

• Spline based interpolation;

• Wavelet based interpolation.

Inspired by 1-D signal processing, the sinc interpolator is the optimal reconstruction

function, in the least-squares sense, if the underlying LR image f2[x] was obtained from

fc(x) by bandlimiting its spectrum Fc(u) to a unit cell PΓ∗ using an ideal low-pass fil-

ter. Then we can obtain f̂c(x) by setting ϕ(x) = sinc(VΓx)1 and c[d] = f2[d], ∀ d ∈ Γ.

The HR image f̂1[x] is obtained by an ideal sampling of f̂c(x) on Λ. This is equiv-

alent to the image up-sampling method described in 2.1.4 with the implementation

of the filter h[x], as in Fig. 2.1, to become a discrete sinc function. The results ob-

tained using this setup is shown in Fig. 2.7(b) where the original image f2[x], shown

1

Here, the vector argument of a function means separability; sinc(x) =
∏D

i=1 sinc(xi), where xi, i =
1, · · ·D are the components of the vector x.
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Fig. 2.6 Spectrum of the image in Fig. 2.7(a)
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in Fig. 2.7(a), is up-sampled by a factor of 25 (5 in each direction) from orthogonal to

orthogonal sampling structure. The implementation of this process was performed in

the frequency domain, because the sinc function has infinite-impulse-response (IIR),

as follows. First, zero samples were inserted to redefine the image on Λ and then

the discrete Fourier transform (DFT) was calculated. This is followed by ideal low-

pass filtering to eliminate all the spectral replicas. Finally, the image was converted

back to the spatial domain using the inverse DFT. The result shown in Fig. 2.7(b)

is not useful and suffers from severe ringing artifacts. This is expected because f2[x]

has a spectrum that is non-negligible at the border of a unit-cell of PΓ∗ as shown in

Fig. 2.6. The power spectral density (PSD) of the image in Fig. 2.7(a) is plotted in

Fig. 2.6. This PSD is estimated using the Welch-modified periodograms method [9]

with a Blackman-Harris window [10]. With the PSD estimate plotted in the figure,

a sharp cut-off by an ideal-low pass filter for interpolation will introduce very sharp

frequency transition inside the band PΛ∗ and not at its border. Specifically, this sharp

frequency transition will be at the location of the border of PΓ in PΛ. In other words,

it can be thought as the proportion of how PΓ compares to PΛ. This in-band sharp

frequency transition has the effect of introducing these oscillations seen all over the

resulting image and being very obvious in the smooth regions.

The other most straightforward and least complex methods for solving the problem

are the linear models. The reconstruction coefficients are set to be c[x] = f2[x], ∀ x ∈
Γ. They are commonly used and are implemented directly to represent h[x] as [11]:

• Zero-order-hold (pixel repeat), where ϕ is assumed to be piecewise constant.

The result is shown in Fig. 2.7(c).

• Bilinear, where ϕ is assumed to be piecewise linear. The result is shown in

Fig. 2.7(d).

• Bicubic, where ϕ is assumed to be a cubic polynomial [12]. The result is shown

in Fig. 2.7(e).
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The assumption here is that f2[x] is free from aliasing and therefore there will

be no attempt to extrapolate its spectrum when up-sampling to f̂1[x]. Based on

this assumption one is not hoping to obtain any perceived resolution gain in the

magnified image. The linear approaches answer the question on how to obtain f̂1 from

f2 by simply using the image up-sampling method described in 2.1.4. Generally many

underlying functions ϕ can be used which affect the results. The linear interpolation

which characterizes this class is known for its inability to produce any new information.

This is because this linear class assumes that the LR image samples f2 completely

represent the original continuous image fc. In other words, fc is assumed to be a

bandlimited signal that has been sampled above the critical Nyquist rate to produce

the samples f2[x]. The results in Fig. 2.7 are not satisfactory and are suffering from

undesirable artifacts. These artifacts are perceived as

• staircasing (blocking) of oblique edges;

• blurring of the object boundaries and texture;

• ringing in the smooth regions and closer to the edges.

Another candidate of this class is embedding in spline spaces. A special case of

the general splines for up-sampling by powers of 2 can be done in wavelet underlying

domain. The splines [13] are usually determined by the basis ϕ(x) =
∑

d∈Γ p[d]βn(x−
d) whose translations by d ∈ Γ form the spline Riesz basis [14]. βn is the basic

B-spline of order n and p[d] are the coefficients of the generating sequence. When

p[k] = δ[k] then we obtain the basic B-splines, where δ[·] is the Kronecker delta. The

continuous image f̂c is formed as in (2.14). The coefficients c[x] become control points

(knots) to guide the interpolation. With the proper choice of c[x], then f̂c can be

constrained to pass through (interpolate) the samples of f2[x]. This is achieved as in

[15] by the filtering c[x] =
◦
ϕ[−x] ∗ f2[x], where

◦
ϕ is the dual basis of ϕ. This can be

implemented by an IIR filter which has a number of poles dependent on the order n
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(a)

(b)

(c)
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(d)

(e)

Fig. 2.7 Up-sampling of (a) a portion of the cameraman image by a
factor of 25 (5 in each dimension) using some linear interpolators; (b)
sinc, (c) zero-order-hold, (d) bilinear, (e) bicubic.
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of the B-splines. This pre-filtering has the effect of sharpening the image f2[x] before

interpolation. The spline family tries to ensure higher-order geometrical continuity of

the data to produce homogeneous results. In the case of the basic cubic B-splines (β3)

interpolation, the second order derivatives of f̂c are ensured to be minimum, which

is equivalent to minimum curvature. However, the first order derivatives are not

constrained. Another type of splines can be formed in a least-squares approximation

sense called smoothing splines [13]. These minimize
∑

d∈Γ

(
f̂c(d)− f2[d]

)2

rather than

enforcing f̂c to pass through f2[d], ∀d ∈ Γ, while essentially minimizing the (n+1
2

)th

order derivatives of f̂c(d). This can be seen as a regularized least-squares problem

that tends to minimize the oscillations around the edges. Sample results for the same

image given in Fig. 2.7(a) using the cubic B-splines and the cubic smoothing splines

are shown in Fig. 2.8(a) and Fig. 2.8(b), respectively. Another example is shown in

Fig. 2.9 with the cubic B-splines and the smoothing splines of order 5. The results

show slight enhancement over the previous interpolators. A variant presented in [16]

that use a combination of β3 and β1 in generating ϕ was used for interpolating image

rotations. It needs to work in conjunction with an edge-detector. The experiments for

applying the approach were performed by the authors for image rotations only and was

not tested for image up-sampling. Generally, splines are known to produce oscillatory

edges with significant ringing near them. This is because splines enforce constraints

at f̂c(d), ∀d ∈ Γ, and leave the rest to the smoothing regularizer ( (n+1
2

)th order

derivatives of f̂c(d) ). Another analysis of these effects based on image isophotes

(iso-intensity contours) can be found in [17].

In the same spirit of smoothing splines (by not enforcing interpolation of the sam-

ples of f2[x]), a recent variant to bilinear interpolation is given in [1]. They elected,

based on theoretical analysis, not to interpolate the samples of f2[x] but rather sam-

ples at sub-pixel shift of Γ. This is akin to sharpening f2[x] before performing the

bilinear interpolation. Though the method might provide enhancement up to the limit
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of bicubic interpolation for smooth regions it provides worse results near edges. The

same artifacts of this class are still evident in the result shown in Fig. 2.10.

This class performs the job in a blind fashion regardless of the image features and

consequently the results have undesirable artifacts. The artifacts of this class are the

results of the contradiction in the assumption about F2(u) that it is obtained with no

aliasing and the reality that f2[x], being acquired by a physical camera, has significant

aliasing as discussed in section 2.1.2. This means that there is hidden (aliased) finer-

detail information in f2[x]. This observation stimulates research to develop methods

that can make use of these hidden finer details to reconstruct a better image f̂1[x].

There are many enhancements that can be done by careful analysis and understanding

of the problem as will be shown in some of the other classes, and the proposed approach

in this thesis.

2.3.2 Adaptive Interpolation

Motivated by the drawbacks of the linear class, research in adaptive methods has

become common. The goal of this class is to preserve the sharpness of edges in the

up-sampled image f̂1[x]. Achieving this goal leads to an HR image with a better

perceived quality than those produced by the linear methods. Indeed, the significant

difference is in mitigating the effects of the blurring of edges and their staircasing on

the visual quality. Preserving the sharpness of edges corresponds to synthesizing new

high frequency components in F̂1(u) beyond that of its counterpart in F2(u). The basic

concept of this class is to interpolate along the edges and avoid interpolating across

them. The situation is depicted in the frequency domain in Fig. 2.11. In the figure a

sample edge with a specific spatial orientation is superimposed on the profile of the

frequency spectrum. We can think of edges as step functions (sharp transitions) with

a specific orientation, let us assume it to be oriented along the vertical spatial axis. In

the frequency domain this edge can again be superimposed on the vertical frequency
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(a)

(b)

Fig. 2.8 Up-sampling of a portion of the cameraman image by a factor
of 25 (5 in each dimension) using spline bases; (a) cubic B-spline, (b) cubic
smoothing-spline.
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(a)

(b)

(c)

Fig. 2.9 Up-sampling of (a) a portion of the tripod in the cameraman
image by a factor of 25 (5 in each dimension) using spline bases; (b) cubic
B-spline, (c) smoothing-spline of order 5
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Fig. 2.10 Up-sampling of a portion of the cameraman image by a factor
of 25 (5 in each dimension) using the method in [1].
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passband of edge-directed-
interpolation filter

v

u

Γ∗

Λ∗

spectrum of a sample edge

P∗Λ

local edge direction

Zero contour of |HZOH(u)|

P∗Γ

Fig. 2.11 Sample edge-directed interpolation.
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axis; for illustration. Then the orientation of the profile of the frequency spectrum

of an edge will be orthogonal to the spatial edge orientation. If an edge rotates in

the spatial domain by an angle θ, this rotation is represented by a simple rotation

matrix A =


cos(θ) − sin(θ)

sin(θ) cos(θ)


 and the new edge image becomes fr(x) = f(Ax).

The impact of this rotation in the frequency domain is that Fr(u) = 1
|det A|F (A−Tu).

Since, in this case | det A| = 1 and A−T = A, therefore the profile of the spectrum

will be exactly rotated in the frequency domain plane by the same angle θ. Then the

orientation of the profile of the spectrum of an edge will be locally orthogonal to its

orientation. The figure shows how linear interpolators like ZOH, bilinear, or of higher

order introduce artifacts due to inclusion of undesired spectral replicas from adjacent

unit cells. The situation is severe for diagonal edges. The figure shows how a locally

edge-directed (directionally oriented) filter can compactly include all the spectrum of

the edge (no blurring) without including any portion of the adjacent spectral replicas

(staircasing and ringing). In other words, design requirements of the edge-directed

interpolation filter are:

• Flat passband across the edge to avoid loss of resolution (blur) and maintain

the edge sharpness. A directional maximally-flat filter will provide good results

here. The most straightforward candidate filter here is the ZOH because it has

a flatter passband compared to the linear and cubic filters.

• Sharp decay along the edge to avoid the inclusion of spectral replicas that intro-

duce artifacts like staircasing and ringing. The straightforward filter here is the

cubic one because it has a sharper transition region compared to ZOH and the

linear filter.

The idea can be extended to all edges at all locations, giving rise to a space-variant

filter that is dependent on the underlying data and hence this class is adaptive (and

thus nonlinear). This hypothesis, if perfectly implemented, will produce significant
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improvements. This class of methods exploits local image features and uses them to

determine the weight of the participation of each sample of f2[x] in obtaining the

samples of f̂1[x]. Two important methodologies are followed:

1. Edge-directed interpolation, where edges are identified explicitly and then are

used to guide the interpolation process.

2. Local features measure, where a metric of the matching of samples of f2[x] with

its neighbors is used to determine their weight in the interpolation process or

even the interpolation method itself.

All the approaches of this class switch to simple linear methods in the smooth

regions, so the basic difference between every method in this class is in how it deploys

its technique at the edges. Since there is no unified theory on how to interpolate at

the edges, every method has its own technique. The evaluation of the improvement

in the results produced by each method is usually assessed subjectively by visualizing

the images. There is no specific attempt by this class of methods to deal with textured

regions. Usually they are not detected as sharp edges and hence they are dealt with

as smooth regions. In this section I will identify some of the methods of this class and

briefly describe their approach.

2.3.2.1 Edge-directed interpolation

In the edge-directed interpolation group, the method to explicitly identify the edges

is the main distinguishing feature among them. In [18] edges are extracted from f2[x]

with sub-pixel accuracy using an approximation of the Laplacian-of-Gaussian filter.

The calculated edge map is then quantized to the points of Λ. Allebach and Wong [18]

were aware of the fact that the edge map can never be accurate so they pre-processed

f2[x] to obtain another slightly altered LR image that matches the edge map they

obtained. They compute local statistics from some neighboring samples that are not
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separated from the underlying sample by an edge. Those samples which do not agree

with their edge-based statistics are replaced by the mean of the underlying local statis-

tics. This alteration assures the convergence of their iterative algorithm and avoids

having undesired artifacts near the edges. They proceed with bilinear interpolation in

smooth areas. In the areas where there is an edge, the samples of f2[x] on the other

side of the edge with respect to the sample of f̂1[x] being interpolated are discarded.

They are replaced by a weighted average of the other samples of f2[x] which are not

isolated from the sample being interpolated from f̂1[x] by any edge. The obtained

HR image serves as an estimate for the next iteration. The HR image obtained is

pre-filtered by a moving average filter and then down-sampled to Γ simulating the

sensor of a CCD camera. The error between the down-sampled iterate and the modi-

fied original is used to update the (back projection) iterate. The procedure is repeated

until convergence, which is reached quickly by this method. The up-sampled images

obtained by this method is demonstrated in [18] to be better than the linear methods

in section 2.3.1 in terms of edge-preservedness and the global sharpness of the image.

Biancardi, Cinque, and Lombardi [19] followed the same route but instead they

used bicubic interpolation to identify the position of the zero-crossings to locate the

edges. In the up-sampling stage they used polynomial interpolation of a degree pro-

portional to the up-sampling factor. The polynomial is constrained to produce a

specific value for the magnitude of the gradient at the exact location of the edge

identified. This value is calculated to interpolate the values of magnitude of the gra-

dient of the neighboring samples. A different approach was followed in [20]; they used

the spatial gradient of f2[x] to determine the direction of the iso-luminance edges, if

any, that pass through the samples. Locally the iso-luminance elements are assumed

to connect samples of f2[x]. This information is used to interpolate the up-sampled

version between these connected samples along the iso-luminance lines. Across the

iso-luminance elements, averaging is used and then an ad-hoc sharpening function is
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used. However, the sharpened long edges became wavy. In the same spirit but in the

frequency domain, [21] used a subband decomposition. The high frequency band is

further decomposed into a discrete number of directional sub-bands at different orien-

tations. Then these directional subbands are interpolated in a 1-D fashion along their

orientations. Across the orientation; either pixel repeat or averaging is used based on

the strength of the transition between the lines. All the up-sampled and interpolated

sub-bands are merged to synthesize back an HR image f2[x] as in a filter-bank de-

composition/synthesis structure. In this method there is a discrete set of orientations,

and hence edges which are not aligned to these orientations, as well as textures, are

not handled properly. The method relies heavily on the directional filter properties

to avoid aliasing in the decomposition stage. A simple method was developed by [22]

where the sub-pixel edge positions were detected based on 1-D function and then this

function was used to detect edges at a discrete set of orientations. Along these di-

rections where edges exist, a weighted averaging is performed based on the position

of the interpolated samples with respect to the edge position. The results suffer from

staircasing at diagonally oriented edges. A variation is presented in [23] where the edge

positions are computed from a bilinearly interpolated version of f2[x] and the image

is segmented into regions based on the edge map and the intensity of the samples.

Interpolation is performed within each segment. Their result suffers from blotching

artifacts. The advantage of this group is that it preserves some of the edges and thus

the interpolated image looks better than with traditional linear techniques. Indeed,

preserving the major structures in the interpolated image yields better looking images.

2.3.2.2 Interpolation by exploiting local correlation

The second group does not explicitly extract the edges but rather obtains a local met-

ric that determines the local weight of each sample of f2[x] in interpolating a sample

of f̂1[x]. The problem was analyzed in [24] by the dyadic (undecimated) wavelets,
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sometimes called the scale space, and the authors observed that edges possess high

correlation among their wavelet coefficients across the different scales. Their coeffi-

cients are large in the fine scale and decay with a fast rate in the coarser scales. Hence,

edges can be identified by this observation and the logarithm of their coefficients were

extrapolated from the coarse-to-fine scales to estimate newer high-frequency subbands.

The original LR image f2[x] serves as the low frequency subband. Then the extrapo-

lated new subbands along with f2[x] are used in a wavelet synthesis process to provide

a HR image with double the size in each dimension. The idea of across-scale correla-

tion was used by [25] but in the spatial domain. They used the idea for all the data

and not only for edges. They first obtained a down-sampled version of the LR image

and measured the correlation weights of the samples across them. Then they used the

obtained correlation to compute the HR image from the LR image. This resulted in

deteriorations in the textured regions because the idea holds for edges, as analyzed in

[24]. The authors in [26] used the covariance to be the metric that determines in a

certain window how close a sample of f2[x] correlates to the others. Then a weight,

set to be proportional to this correlation, is used in the interpolation. It is simple and

does not rely on edge-detection accuracy but it fails to preserve small regions’ edges.

In [27] they used an ad-hoc weighting that is based on a non-linear combination of the

neighboring sample intensities and their differences. Their method is only applicable

for up-sampling by a factor of 2 in each spatial dimension. Based on the scale space

and the Laplacian-Gaussian pyramids, [28] used a threshold to implicitly determine

edges in the high frequency zones. They sharpened these edges in the fine scale level

of the pyramid by a sharpening factor and then reformed the HR image f̂1[x]. The

method is dependent on the selection of the threshold and sharpening factor to work

on a subset of the edges. A simple method in [29] used the interpolation weight of

a sample to be inversely proportional to the sum of the absolute values of its spatial

derivatives. This measure ignored the geometric properties of images and did not
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consider the orientation of the gradient. The magnitude of the gradient usually offers

a reasonable compromise in this issue. Their results were shown on synthetic images.

The effectiveness on natural images was not judged. Finally, switching between dif-

ferent linear techniques in different locations based on their statistics is performed by

[30]. They identify pixels to be belonging to smooth regions by linear filtering based

on Bessel’s formula, and then they interpolate them using cubic B-splines β3. They

identify how close samples are to an edge by using a gradient measure and a threshold

in a window around the sample to be identified. If the sample is at a noticeable edge

then zero-order-hold interpolation is used to avoid blurring. Otherwise extrapolation

is performed by using linear filtering.

Adaptive methods produce clearly visible edges as compared to those produced by

the linear class in section 2.3.1 which are usually blurry. This enhances the overall

perceived quality of the produced images which is depicted in the frequency domain

by extrapolation of the spectrum of F2(u) by using the edge information as illustrated

in Fig. 2.11. However this class has the following drawbacks:

1. It relies on good edge estimation and every implementation is sensitive to the ori-

entations of the edges. This means that some of the edges suffer from staircasing

effects based on their orientation.

2. Despite the fact that the sharpness of the edges is being enhanced by these

methods, the crispness of long edges is not well handled and usually we obtain

wavy edges.

3. Ringing in the smooth regions closer to edges is still a problem.

4. Most of the methods are suited for up-sampling by factors of 2i, i ∈ Z+, in each

dimension.

5. This class does not address how to deal with texture.
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6. There is no solid theoretical base that unifies the realization of the approaches

of this class and every approach stands on its own. This affects the possibility of

extending the developed methods to tackle the remaining problems listed above.

2.3.3 Regularization-based image up-sampling

In section 2.2.1 we found that we are dealing with an inverse ill-posed problem. The

observation model given by (2.13) is furthermore an ideal case of the reality. We

should also consider the following:

• Different types of noise that contaminate the measurements like:

– Shot noise, due to the sensor and the electronic elements involved;

– Quantization noise, due to discretization of the measurements;

– Random noise.

• Observation model uncertainty, due to the fact that we may not know whether

the observation model with its filter h[x] is correct and accurate or not. This

impacts the matrix H in (2.13). Nevertheless, this thesis tackles this uncertainty

and one of its major contributions is to shed light on this particular part.

Accordingly (2.13) can be written as

f2 = Hf1 + η, (2.15)

where η represents noise representing the above mentioned noise perturbations. In this

class of solution methods, the approaches formulate the problem by setting objectives.

These objectives are the mathematical description of our knowledge about the problem

in-hand. When achieved, these objectives lead to their desired optimal2 goal f̂1[x]. Our

2

This optimal is in the sense of the specific objectives set. However, globally these objectives are
not the optimal measure for the ideal HR image f1[x], and hence f1[x] is irrecoverable as discussed
before in section 2.2.
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first knowledge is represented in (2.15). Hence, a straightforward objective criterion

is formulated in the classical least-squares sense as

f̂1 = arg min
f̆1

Jd(f̆1, f2),

Jd(f1, f2) =
1

2
‖Hf1 − f2‖2.

(2.16)

This criterion is known as the data fidelity term3 and is being extensively used as

important part that constitute an objective function in most image restoration tech-

niques. An optimization problem that is solely defined in terms of the data fidelity

objective criterion will have an infinite number of solutions. It only measures data

that lie in the vector space spanned by the columns of H. Hence, any optimization

method will find the local minimizer to the initial estimate image for f̂1. It is imprac-

tical to construct the matrix H (because it contains a huge number of elements) and

to compute its singular value decomposition (SVD). Practically, iterative optimiza-

tion methods are used to arrive at the minimizer of (2.16). The implementation is

done with the basic image processing operations like convolution, up-sampling, and

down-sampling. To illustrate the idea of the infinite number of solutions for (2.16), I

used the gradient descent method to solve (2.16) with two different initial conditions.

These initial images are chosen to be:

• random Gaussian noise image with a mean and a standard deviation equal to

half of the grey scale range used4,

• a zero (black) image

3

This 1
2 is just for convenience for later evaluation of the derivatives and has no impact on the

objective criterion.
4

The values that are generated outside the grey scale range are projected to the nearest value in the

range
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for solving the same up-sampling problem for the image in Fig. 2.7(a). Thus, I per-

formed the experiment twice and obtained two up-sampled images that solve (2.16)

starting with both initial guesses. The solution obtained for up-sampling using the

Gaussian noise image as an initial condition is shown in Fig. 2.12, and the case of the

zero image converged to the ZOH interpolation as in Fig. 2.7(c). This clearly illus-

trates that we obtained two different results that are very dependent on the choice of

the initial condition (image). Hence, we are in a great need for side knowledge about

the problem to convert it to be well-posed and to obtain a useful unique solution. The

use of this side (a priori) knowledge is formally called regularization. Regularization

Fig. 2.12 Up-sampling of a portion of the cameraman image by a factor
of 25 using (2.16) only with a random noise image as an initial guess.

can be thought of as any of these equivalent interpretations:

• Incorporating additional a priori knowledge about the problem.

• Converting an ill-posed problem to a well-posed one.
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• Selecting one of the infinite number of solutions described by the data fidelity

term.

Regularization has been used in most of the image processing problems like restoration,

enhancement, motion estimation, magnification with better perceived resolution, etc.

The use of various regularizers existed in other sciences. These were inherited by

the image processing community and their use became popular due to their success.

Indeed, many desirable properties and knowledge about the problem can be defined

in terms of mathematical terms that interact together in an optimization problem. A

survey of the most widely used regularizers in image processing problems can be found

in [31]. Here we will provide a brief survey of the following regularization methods:

1. Generalized inverse known as the minimum energy estimate.

2. C-Generalized inverse known as the Tikhonov regularization.

3. Statistical approaches known as the maximum a posteriori (MAP) estimation.

4. Variational approaches that includes

• Anisotropic diffusion.

• Bounded-total-variation.

• Mean-curvature evolution.

2.3.3.1 Generalized inverse

The theory of the generalized inverse incorporates the most straightforward regularizer

which is the unique solution with minimum energy ‖f̂1‖. Thus the problem can be

formulated as

f̂ †1 = arg min
g

{
Js(g) s.t Jd(g, f2) = 0

}
,

where Jd(f1, f2) = ‖Hf1 − f2‖2, Js(f1) = ‖f1‖2.

(2.17)
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The generalized inverse solution f̂ †1 is known as the pseudo-inverse or the Moore–

Penrose solution. The result f̂ †1 for image up-sampling can be obtained using the

SVD. In restoration problems where both f̂1 and f2 belongs to the same sampling

structure the generalized inverse is not useful due to the introduction and amplification

of noise by the very small singular values of H. A regularization method is to use only

the singular values with sufficiently large values. This is called truncated SVD [32].

However in our problem of image up-sampling, the matrix H is full row rank [7]!

This means that the generalized inverse can be used directly for the reconstruction

of the HR image without having the introduction and amplification of spurious noise.

The result of up-sampling using the pseudo-inverse is shown in Fig. 2.13, where h[x]

is chosen to be a moving average filter. The original LR image, a portion of the

cameraman, given in Fig. 2.13(a) is up-sampled by a factor of 25 and the result is

shown in Fig. 2.13(b). The reason that the LR image used here is small is due to the

memory requirement to store the matrix H which is huge in size and computing its

SVD. In this specific example f2[x] is of size 25× 25 pixels, the associated H matrix

for up-sampling by a factor of 25 is of size 625× 15625 = 9765625! It is obvious that

the result in this case is exactly the ZOH up-sampling. This result can be explained

in terms of the generalized inverse as f̂ †1 = (HTH)−1HTf2. The matrix H represents a

linear-shift-variant system as opposed to the restoration problems where H represents

an LSI system. In the case of up-sampling, H is a block Toeplitz matrix with circulant

blocks. For the special case of the moving-average prefilter, the structure of H can

be exploited using the Kronecker product [7] and then it becomes straightforward to

show that HTH = I/(Λ : Γ)2, where I denotes an identity matrix. The solution is

then f̂ †1 = (Λ : Γ)2HTf2 which is the ZOH up-sampling. If we inspect Js we find

that it tries to find the estimate with the minimum energy. Although this is a very

general objective criterion, it is not suitable for images. Generally, the spectrum of

images bears a decaying exponential shape as shown in the sample of Fig. 2.6. Hence,
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it is not wise to impose a minimum energy criterion with the same weight all-over

the spectrum as the one specified by Js in 2.17. In fact, the data fidelity criterion

provides a good knowledge about F̂1(u) in the band PΓ∗ so we want a regularizer that

provides suitable knowledge that is focused on PΛ∗ \ PΓ∗ without greatly affecting Jd

in its band of operation. This can be achieved by a smoothness cost function Js that

has different weights within the spectrum of f1.

(a)

(b)

Fig. 2.13 Up-sampling of (a) portion of the cameraman image by a
factor of 25 using (b) the pseudo-inverse.

2.3.3.2 C-Generalized inverse

A well-known and widely-used regularizer is the Tikhonov regularizer, also called C-

Generalized inverse. It defines the smoothness criterion as Js(f1) = ‖Cf1‖2
W , where C

can be a linear operator. W is a weighing matrix which usually incorporates knowledge

about the noise statistics in the image. The common choice of W is then a diagonal

matrix which can also be the identity matrix in the general sense of absence of any

knowledge. According to the discussion about the drawbacks of the generalized inverse,

a preferable choice of C is a high-pass operator. Hence, Js will measure the energy

of the high-frequency components in the spectrum. Imposing minimization of Js here

will provide a control on noise amplification and avoid the development of outlier
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high-frequency patterns. Then the Tikhonov regularized image up-sampling becomes

f̂
(Tik)
1 = arg min

g

{
Jd(g, f2) + λJs(g)

}
,

where Jd(f1, f2) =
1

2
‖Hf1 − f2‖2, Js(f1) =

1

2
‖Cf1‖2

W ,

(2.18)

λ is a regularization parameter which establishes the trade-off between Jd (data fi-

delity) and Js (smoothness of the solution). This optimization problem can be solved

iteratively using a gradient descent method [33] as follows:

f̂
(k+1)
1 =

[
f̂1 + ∆t̃

(
−λCTWTWC f̂1 −HT

(
H f̂1 − f2

))](k)

. (2.19)

The superscript (k) denotes the iteration number and ∆t̃ is the artificial time step

which is also known as the relaxation parameter. The convergence of iteration (2.19)

is sensitive to the choice of ∆t̃ which depends on the largest eigenvalue of H. An

analysis for the choice of ∆t̃ that ensures convergence for some basic regularizers can

be found in [32]. A common choice of the high-pass filter represented by C that

is used in image restoration and in super-resolution is the Laplacian filter (second-

order derivative). The magnitude of the frequency response of the Laplacian filter is

shown in Fig. 2.14. However, better high-pass filters can be designed which can offer

a better match to the up-sampling factor (Λ : Γ) and be well adapted to the nature

of the volume PΛ∗ \ PΓ∗ . The result f̂
(Tik)
1 for the same up-sampling experiment of

the image in Fig. 2.7(a) using (2.19) and λ = 0.3 is shown in Fig. 2.15. The result

shown is not satisfactory and looks blurry everywhere. It is of comparable quality

to that of the spline interpolation. This is natural because a high pass filter does

not differentiate between noise and edges, they both are high frequency components.

In this regularization Js is a blind measure of the high frequency components. This

results in blurred edges while minimizing the introduction of noise into f̂
(Tik)
1 .
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Fig. 2.14 Magnitude of the frequency response of a Laplacian filter over
a unit-cell.

Fig. 2.15 Up-sampling of a portion of the cameraman image by a factor
of 25 using the C-generalized inverse.
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2.3.3.3 Statistical regularization

In an elegant paper, Geman and Geman [34] first used the Markov random field (MRF)

in image restoration and thereafter it has been continuously used until now. The basic

idea is that the conditional probability of the MRF is suitable to describe the local

nature of the image objects and a pixel can be described in terms of a neighborhood

around it. The Hammersley-Clifford theorem proved the equivalence of the MRF

and the Gibbs (Boltzman) distribution. Hence, the Gibbs distribution is used as a

practical generating distribution for MRF. Images are also characterized by sharp

discontinuities, and these can be modelled in the Gibbs-MRF using line fields that

describe edge crossings. In statistical regularized image up-sampling, the approach of

Schultz and Stevenson is an important and successful one. They modelled the image

as a realization of a random process, specifically MRF. They used the Huber function

in modelling the clique potentials of the Gibbs-MRF, for the following reasons:

• The quadratic form in calculating the clique potentials is computationally desir-

able because it leads to a convex objective function that can be minimized with

gradient descent methods. On the contrary, the edge-preserving potential using

the line fields leads to non-convex objective that will require a costly stochastic

optimization technique like graduated-non-convexity or simulated annealing. It

should be noted that there are other MRF approaches that try to preserve edges

while maintaining a convex objective function as in [35].

• To account for the quadratic penalty for edges, the Huber function switches from

quadratic to linear when its argument reaches a certain threshold. Hence, the

objective function will still be convex, all the while allowing edges to be part of

the admissible solution.

The authors in [6] called the model as Huber-MRF (HMRF). They assumed that the

image estimate f̂1 is a realization of a HMRF. They formulated a MAP estimation
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problem that maximizes the conditional density, f̂1 = arg maxg log P (g | f2). Using

Bayes’ rule, this MAP criterion was converted to a minimization problem as

f̂1 = arg min
g

{
Jd(g, f2) +

1

λ
Js(g)

}
,

where Jd(f1, f2) =
1

2σ2
‖Hf1 − f2‖2, Js(f1) =

∑

c∈CΛ

Vc(f1).
(2.20)

The regularization parameter λ was chosen to be the temperature parameter of the

Gibbs distribution. Vc denotes the clique potential for a clique c in the clique system

CΛ defined over Λ, and η in (2.15) is assumed to an identically distributed independent

Gaussian noise with variance σ2. They used a second-order neighborhood system and

defined the potential in terms of the sum of all the Huber functions on its second-order

derivative argument, calculated by the numerical central difference. Thus the clique

potential at a specific clique c of CΛ is given by Vc(f1) =
∑3

m=0 ρT (dm(f1, c)), where ρ

is the Huber function with its threshold ξ. The second-order derivative operator dm is

calculated at the four main orientations indexed by m using the central difference. All

the terms are differentiable and this optimization problem is solved iteratively using

a gradient descent method as follows:

f̂
(k+1)
1 =

[
f̂1 + ∆t̃

(
−∇f̂1

Js(f̂1, ξ)− λ

σ2
HT

(
H f̂1 − f2

))](k)

, (2.21)

where ∇f̂1
denotes the gradient of the associated criterion (Js). The results demon-

strated by the authors in [6] provided enhancement over linear methods and Tikhonov

regularization method and the Gaussian MRF. The edges produced in the resulting

images are clear. This method was also extended by the same authors for super-

resolution from image sequences which showed further success too. However, the

drawbacks of the method are

1. It has three tuning parameters; λ, σ, and ξ that have to be adjusted to provide

enhanced results for different images, which is considered to be an associated
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difficulty with the method.

2. The choice of the Huber function for preserving edges proved to provide enhanced

results but again the line fields are considered to be the best for edge-preservation

with MRF. It is analogous to how edge-directed interpolation compares to linear

interpolation. It should be noted that line-fields were used by [36] in the super-

resolution up-sampling from a LR sequence.

3. The use of HMRF reduced the strength of MRF in modelling texture. Texture

can be successfully modelled in MRF using the Ising model [34].

4. Steep edges with sharp transitions are still not fully modelled by HMRF.

Another approach using the MRF image model for image restoration was proposed

by Bouman and Sauer in [35]. Their design goal was to define an edge-preserving MRF

that yields a convex optimization problem. They proposed raising the clique potential

to the power 1 < p < 2 instead of setting p = 2 in most of the MRF approaches or

using the Huber function that needs an ad-hoc choice of the Huber parameter ξ as in

[6]. The advantages of their approach (1 < p < 2) are as follows:

1. The associated objective function is convex and can be minimized with gradient

methods without the need of costly stochastic optimization methods;

2. It provides some ability to preserve edges as long as the value of p is close to 1.

The authors demonstrated the ability to preserve edges in the images restored by their

approach. Their results were presented for synthetic images only, and we do not know

the effectiveness of their approach for natural images. In section 3.2 I will analyze

and discuss a claim that full edge-preservedness is achievable for the case when p = 1.

However, the associated objective function becomes non-differentiable at the origin

and more complicated mathematical tools like calculus of variations are needed to

minimize this objective function.
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MRF is a successful image model; this is due to the relevance of the conditional

probability in modelling the local independence of pixels belonging to a region from

other regions in natural images. The associated implementation difficulties are the

need for a stochastic optimization method like simulated annealing to arrive at the

global minimum and the need of training images to completely utilize the model, espe-

cially in modelling the normalization quantity of the energy of the Gibbs distribution.

2.3.3.4 Variational regularization

Perhaps the most interesting regularizer is the variational one. The variational reg-

ularizer has its roots in thermodynamics, diffusion and studies of the heat equation.

Its application to image processing is witnessed by the following landmark papers:

1. Perona and Malik [37] used anisotropic diffusion in scale-space for edge detection;

2. Rudin, Osher, and Fatemi (ROF) [38] defined the total-variation regularizer for

image denoising;

3. Alvarez, Lions, and Morel [39] who introduced evolution by mean curvature for

image restoration.

Since then it has been a hot topic in image denoising, restoration, segmentation,

motion estimation, computer vision, and up-sampling for the past decade. All of

these formulations with different names are different forms of a unified functional

variational regularizer which is given by

Js(
˜̂
f1) =

∫

WT

L
(‖∇x

˜̂
f1(x)‖)dx. (2.22)

If we assume that we have a continuous version of the estimate f̂1 and we will denote

it by
˜̂
f1, then the regularizer for this continuous image

˜̂
f1 is defined over the open
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set WT as given by (2.22), where ∇x denotes the gradient. The functional L is non-

negative, monotonically increasing, and its derivative L8(·) > 0 except for L8(0) = 0

[40]. The minimization of (2.22) is a problem of calculus of variations [41]. Using

Euler’s equation, the minimizer is the steady-state solution of the nonlinear parabolic

[42] partial differential equation (PDE) given by:

∂
˜̂
f1

∂t̃
= div

(
L8

(‖∇x
˜̂
f1(x, t̃)‖)

‖∇x
˜̂
f1(x, t̃)‖

∇x
˜̂
f1(x, t̃)

)
. (2.23)

Here, t̃ is an artificial time parameter for the evolution process of this initial value

problem, and div denotes the divergence operator.

One of the variational forms is the anisotropic diffusion for image processing. The

anisotropic diffusion was not introduced as a variational objective but rather from a

different formulation. This formulation was inherited from the diffusion process of

materials in physical medium, then it was successful in the field of image processing

too. We will first survey the anisotropic diffusion process and its dynamics then show

its relation to the general variational formulation given in (2.22). The anisotropic

diffusion process was introduced by Perona and Malik [37] for edge detection and is

given by

∂
˜̂
f1

∂t̃
= div

(
c(‖∇x

˜̂
f1(x, t̃)‖)∇x

˜̂
f1(x, t̃)

)
, (2.24)

where c(·) is called the conductance of the diffusion process. The proper choice of a

monotonically decreasing function c(·) leads to [37]:

• Maximum principle, which means that no new spurious transitions will be in-

troduced, after performing the diffusion process, that were not in the original

image. This will avoid introduction of noise outlier patterns;

• Sharpening of edges, because the conductance coefficients will prevent smoothing

across the edges and will only smooth along the edges.
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Different choices of the function c(·) lead to different behaviors of the diffusion process.

This has been extensively studied in the literature and the approaches of anisotropic

diffusion are seen to continuously produce new designs for c(·). It should be noted

that if c(·) = constant, then by the divergence theorem [43] (2.24) will reduce to the

isotropic diffusion equation

∂
˜̂
f1

∂t̃
= 4 ˜̂

f1(x, t̃), (2.25)

where4 denotes the linear second-order elliptic partial differential Laplacian operator.

By Green’s theorem [43] the solution of (2.25) is the successive filtering of an initial

image by a Gaussian filter with increasing value of its standard deviation (spread).

This gives an insight on the dynamics of the anisotropic diffusion. The conductance

c(·) produces low weights for large values of the magnitude of the gradient, thus

slowing down the smoothing process and preserving edges. In smooth regions it is

almost isotropically symmetric and reduces the diffusion process to the isotropic one

(2.25) mimicking Gaussian filtering. The most interesting issue in anisotropic diffusion

is its analogy with the MRF regularizer as deduced in [37]. It gains the advantage

of using the MRF in the regularization without the need for a complex stochastic

optimization method to arrive at a minimum; rather the optimization is achieved at low

computational cost. However, the achieved minimum is not guaranteed to be the global

minimum that can be obtained from a stochastic optimization method. The results

of using anisotropic diffusion in different image processing problems showed success

in preserving edge and contours defining objects while maintaining the smoothness in

smooth regions. It is accompanied with the following difficulties:

1. The choice of the stopping criterion for the diffusion iterative process is chal-

lenging.

2. The choice of the properties of the conductance function c(·) is a governing factor,

and an improper choice might lead to an unstable diffusion process. Analysis of
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different choices of c(·) applied for image denoising can be found in [44, 45, 40].

3. Other than the maximum principle and edge preservations given in [37], there

is no theoretical basis that describes what is the best way to choose c(·) and to

extend the method to deal with texture.

Comparing (2.23) and (2.24), it is easy to deduce that c(‖∇x
˜̂
f1(x)‖) =

L8
(
‖∇x

˜̂
f1(x)‖

)
‖∇x

˜̂
f1(x)‖

which indicates that the anisotropic (nonlinear) diffusion proposed by [37] can be

obtained by setting L(s) =
∫
WT

sc(s)dx.

If we set L(‖∇x
˜̂
f1(x)‖) = ‖∇x

˜̂
f1(x)‖ in (2.22) we arrive at Js that defines the

so-called total-variation norm. It is the L1-norm of the magnitude of the spatial

gradient. This was the regularizer introduced by Rudin, Osher, and Fatemi in [38]

and sometimes called the ROF model. The evolution equation (2.23) becomes

∂
˜̂
f1

∂t̃
= div

(
∇x

˜̂
f1(x, t̃)

‖∇x
˜̂
f1(x, t̃)‖

)
= κ, (2.26)

where κ is the mean curvature of
˜̂
f1(x, t̃). The results of minimizing the total-variation

norm showed remarkable enhancement in all its applications in the different fields of

use for image processing. The space of all signals that have bounded total-variation

norm (BTV) has been described in [38] as the “proper” space for image processing and

as the “right” regularizer in [31]. Indeed, BTV is the only known space until now that

permits discontinuities as part of its admissible solutions. This means that contours

of boundaries are not penalized. The total-variation norm is a measure of the sum

of the lengths of all the level lines in the image defined for discrete finite number

of levels. Thus the minimization of the total-variation norm leads to an image whose

iso-intensity contours are the least oscillatory. In this thesis, I will pursue the research

using the total-variation regularizer due to its success. Since this regularizer is our

chosen one here and the most interesting, the next chapter is dedicated to provide

details of its dynamics and discuss the mathematical tools needed for it. It should
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be noted that the solution of (2.26) leads to parabolic PDEs optimization problem.

Perhaps this is the reason that makes some researchers reluctant to use the total-

variation norm to avoid the need to enter another field in mathematics. Fortunately,

the total-variation norm has been studied for a long time in other sciences and there is

a rich literature and numerical methods that are developed and made available. In this

thesis, we will see also contributions to the numerics of minimizing the total-variation

norm, which are:

• Producing new approximations to the partial derivatives that are deduced from

the properties of the device used to display (reconstruct) f̂1[x];

• New choice of the evolution process properties for minimizing Jd and Js that

allows the process to be initiated by any initial value condition (image), including

constant intensity images, and to proceed without being trapped in any local

minima. This leads to a stable solution with a unique minimizer.

Similarly the evolution by mean curvature in [39] is just the ROF model but the

Euler equation is multiplied by the magnitude of the gradient. This leads to the

evolution equation

∂
˜̂
f1

∂t̃
= div

(
∇x

˜̂
f1(x, t̃)

‖∇x
˜̂
f1(x, t̃)‖

)
‖∇x

˜̂
f1(x, t̃)‖ = κ‖∇x

˜̂
f1(x, t̃)‖. (2.27)

This model is very similar in its properties to the ROF model when the magnitude

of the gradient is non-zero. Osher, one of the authors of the ROF model, along with

Sethian, have already developed (2.27) earlier in [46] which was not dedicated for

image processing.

Before closing the regularization section, it should be noted that the choice of

the regularization parameter is one of the associated difficulties. However, there are

many methods for choosing the regularization parameter. A collection of some of the

commonly used methods can be found in [31]. A recent paper for the choice of the
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regularization parameter for image up-sampling based on cross-validation is reported

in [47].
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Chapter 3

Variational Formulation for Image

Up-sampling

Variational regularizers that were briefly discussed in section 2.3.3 have been widely

used in various image processing applications. However, their usage in the image up-

sampling problem is limited. In this chapter we shall discuss a variational formulation

for the grey-scale image up-sampling problem. This formulation might be applicable

for the color image up-sampling case if each color channel is treated separately. Also,

the vectorial variational formulation for color images will be surveyed and discussed

separately in this thesis.

As discussed in section 2.3.3, the problem is formulated by two objective criteria

that are set on the metrics Js and Jd that interact together. When Js has a varia-

tional form then this interaction represents a constrained variational problem which

is usually formulated in a Lagrangian framework [41], and its solution is achieved by

the numerical implementation of the Euler–Lagrange equation. This will be the main

focus of this chapter. Sections 3.2–3.5 will provide in-sight details of the previous

variational schemes that were used for image denoising and restoration. The draw-

backs and numerical challenges for these approaches will be discussed in section 3.5.
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My proposed variational formulation for the problem of grey-scale image up-sampling

will be given in section 3.6. The use of this formulation is new for the image up-

sampling problem, and furthermore it treats many of the drawbacks of the previous

formulations that are discussed in section 3.5. Before going into the details and the

dynamics of this formulation, in section 3.1 we will first give a brief survey of the

previous approaches that used the variational formulation in solving the grey-scale

image up-sampling problem.

3.1 Previous variational formulations of image up-sampling

Most of the reported scalar variational formulation approaches made use of the ROF

model in defining Js, but the data fidelity Jd has been oversimplified. It was assumed

that the samples of the LR images should have the same grey-value level in the HR

image. This is equivalent to setting the observation model to be a unit sample impulse.

This route was taken by [48, 49, 50, 51, 52] with which I disagree. In fact, the

observation model relates an area of the HR image to a sample in the LR image

simulating the sensor process in integrating light. This has been suggested by many

researchers in the field [6, 18] and even as part of the conclusions by the authors of

one of these papers themselves [49]. This will also be shown and proved in chapter 4.

The impact of the choice of the unit sample impulse function as an observation model

is reducing the number of constraints on the samples of the HR image. The set

of all samples {f̂1[x] | x ∈ {Λ \ Γ}} in the HR image which are not related by

equality to samples in the LR image, are synthesized under the discretion of the

smoothness criterion Js. This has a negative impact on the stability of the solution

near the edges, the textured regions, and the heavy dependency of the results on the

choice of the initial estimate. This simplification of the observation model came as

a straightforward extension of the variational formulation in the denoising problem

without going into the details of dealing with the constraints as I shall do in this
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chapter. To mitigate the problem of dependency on the initial guess, every approach

added extra constraints on the solution space. This lacks a theoretical basis. It is

preferable to have a well-formulated problem from the beginning than trying to come

up with ad-hoc constraints.

The authors in [51, 52] followed the anisotropic diffusion idea for the regularization

part. They ran the diffusion process backward in the artificial time. This was done by

choosing the conductance function c(·) in (2.24) to have some negative-valued regions.

This has the effect of sharpening many patterns including the edges. The choice of

the negative values for some regions of c(·) is proven to violate the stability of the

diffusion process by a theorem in [40]. Indeed, the diffusion process is irreversible,

hence the backward diffusion in artificial time is an ill-posed problem. The authors

were aware of this ill-posedness and mentioned that the stability is achievable for just

very limited circumstances. They declared the inadequacy of the method for textured

regions. The results also show the development of spurious patterns in some smooth

regions like clouds in the sky.

The exception from the above methods in solving the variational formulation that

is associated with data constraint in image up-sampling was done in [53]. However they

avoided dealing with the derivative of the down-sampling operation in the Jd criterion

by reverting the problem to a restoration framework that was previously handled by

others. They obtained an HR image estimate from the observed LR image by using

the discrete sinc interpolator. This estimate served as their observation data instead

of the LR image given. They assumed that the observation model is a moving average

blurring filter. The rationale behind this approach is to bring the observation model as

a measure between two images at the same sampling structure Λ, avoiding the need to

have the down-sampling operation as part of the observation model. This formulation

is solved in a similar way to the previous variational formulations for image restoration

problems. It is known that the sinc interpolator produce Gibbs’ phenomena as shown
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before in Fig. 2.7(b). The authors resorted to over-regularization to get rid of these

ringing artifacts, which finally resulted in a blurred image especially in the textured

regions.

3.2 Unconstrained variational formulation

In order to proceed with the whole problem formulation we will first analyze the

general variational regularizer. Recall the general functional formulation given in

(2.22) which is minimized using Euler’s equation as the steady-state solution of the

evolution process given in (2.23). Factoring the divergence operator, or using the

eigenvalue decomposition of the Hessian of L(‖∇x
˜̂
f1)‖) as done in [40] we obtain

∂
˜̂
f1

∂t̃
=

L8
(‖∇x

˜̂
f1(x, t̃)‖)

‖∇x
˜̂
f1(x, t̃)‖

κ‖∇x
˜̂
f1(x, t̃)‖+ L88

(‖∇x
˜̂
f1(x, t̃)‖)κ⊥‖∇x

˜̂
f1(x, t̃)‖. (3.1)

At a specific artificial time instant, κ is the mean curvature of
˜̂
f1(x) and κ⊥ can be

thought as the dual mean curvature [40]. In other words, κ‖∇x
˜̂
f1(x)‖ is the second-

order directional derivative in the direction that is orthogonal to the gradient ∇x
˜̂
f1(x),

and κ⊥‖∇x
˜̂
f1(x)‖ is the second-order directional derivative in the direction of the

gradient ∇x
˜̂
f1(x). The geometric interpretation of (3.1) is very interesting and sheds

light on the dynamics of variational regularizers. The evolution process is seen as

an energy dissipation process in two orthogonal directions. This dissipation process

diffuses
˜̂
f1(x, t̃) along the direction of the gradient and along the orthogonal direction

to the gradient. The diffusion process of the grey-values of
˜̂
f1(x, t̃) along the direction

of the spatial gradient (orthogonal to the image contours) is seen as a kind of averaging

across both sides of the image contours. This has the effect of blurring contours and

smoothing the image as in the case of linear interpolators, which is an undesirable

action and is required to be suppressed. The diffusion process of
˜̂
f1(x, t̃) along the

orthogonal direction to the gradient (along the image contours) is seen as edge-directed
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filtering as shown before in Fig. 2.11. This will preserve the location and the intensity

strength of the contours, all the while smoothing along them and maintaining their

crispness, which represent a desirable requirement. Both requirements can be satisfied

in this geometrical sense if we let L88(·) vanish while maintaining a non-zero L8(·).
Intuitively, it seems that choosing L(·) as a non-zero linear function will do the job.

This means that a possible desirable function is L(‖∇x
˜̂
f1(x)‖) = ‖∇x

˜̂
f1(x)‖. This

choice leads to the evolution process given by

∂
˜̂
f1

∂t̃
= κ = div

(
∇x

˜̂
f1(x, t̃)

‖∇x
˜̂
f1(x, t̃)‖

)
. (3.2)

This is exactly the evolution process of the ROF model given in (2.26). This anal-

ysis provides sufficient evidence about the success one would expect using the ROF

variational scheme.

The ROF regularizer, Js(
˜̂
f1) =

∫
WT
‖∇x

˜̂
f1(x)‖dx, that we have chosen in this

thesis has also unique mathematical interpretations:

• It defines a space of BTV signals with possible discontinuities. This is a suitable

space for natural images because they usually contains sharp discontinuities at

the borders separating different objects;

• Its minimizer is an image which has the least oscillatory iso-intensity contours.

This means that the solution with crisp contours is preferable to the oscillatory

and jagged ones. This will be desirable for maintaining crisp edges if the observed

data in the LR image agrees.

From a signal processing perspective, the evolution process given by (3.2) is fully an

implicit local edge-directed interpolation process that is performed without the need

for any explicit edge detection technique. To understand this statement let us consider

the family of variational regularizers of the form L(‖∇x
˜̂
f1(x)‖) = ‖∇x

˜̂
f1(x)‖p, where
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1 ≤ p ≤ 2 is a real number. The Euler equation for this family of regularizers is simply

given by

p‖∇x
˜̂
f1(x)‖p−2κ‖∇x

˜̂
f1(x)‖+ p(p− 1)‖∇x

˜̂
f1(x)‖p−2κ⊥‖∇x

˜̂
f1(x)‖ = 0. (3.3)

The case when p = 2 will lead to having the L.H.S. of (3.3), after simple manipulation,

become a symmetric Laplacian operator 4 ˜̂
f1(x). This means that we arrive at the

PDE of isotropic diffusion given by (2.25)! More interesting than the analogy to

isotropic diffusion is that this process will dissipate energy from
˜̂
f1(x) in all directions

by the same weight. This is due to the fact that the Laplacian operator is symmetric as

shown in Fig. 2.14. According to Green’s theorem, the solution to this PDE is simply

the successive convolution with a Gaussian filter. This means that our interpolation

filter has a frequency response which is also a Gaussian. Since the Gaussian filter is

isotropic and recalling the concept presented in Fig. 2.11, then it acts as a simple linear

interpolator. The case when p = 1 (total-variation norm) as given above describes

dissipation of energy from
˜̂
f1(x) that is locally along the orthogonal direction to the

gradient ∇x
˜̂
f1 and is suppressed along the direction of the gradient because (p−1) = 0

in this and only this case. Hence, we can build for it the following mental model: a

1-D approximation of the Laplacian operator (filter) has been oriented along the local

edge (contour) direction. In the spatial domain the local impulse response of this filter

become very localized along the direction of the gradient and with a non-negligible

spread along the orthogonal direction. Recalling Fig. 2.11, then the profile of the

frequency response of this filter will be spread along the profile of the spectrum of the

underlying edge. This is exactly an ideal edge-directed interpolation filter. It is obvious

that in smooth regions, where the gradient vanishes (‖∇xf̂1(x)‖ ≈ 0), the regularizer

will have no impact and the process will be purely dependent on some associated

data fidelity term. When p varies from 1 (maximum edge-directed preservedness) to

2 (isotropic smoothness), we will have a mix of effects. The interesting cases might
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be for values of p closer to 1 (p = 1 + ε). This might open up interesting areas like

how to choose an optimal value of p that enhances some aspects of the results over

that obtained from minimizing the total-variation norm. We did not consider the case

of (p < 1) because this leads to non convex functional [54]. In this thesis we are

interested in the case of p = 1 because of the following:

• its uniqueness as a pure edge-directed operation with no blurring;

• it is well analyzed mathematically and geometrically;

• the availability of stability analysis and numerical techniques for it.

The evolution process by mean curvature (3.2) has been extensively studied and we

will give a brief discussion about it. The best framework to understand it is through

the concept of level sets and propagation of fronts. These will be handled in the next

section

3.3 The level set method and propagation of fronts

The level set method (LSM) is concerned with the evolution (propagation) of fronts at

a certain spatially-variant speed along the normal direction to the front. This evolution

changes the position and the topology of the front as it propagates in artificial time.

The set of all positions in artificial time that a front occupies during its evolution is

called its level set.

Several questions arise here: why do we care about LSM? and what has this got to

do with images? The answer is that images can be fully described by their iso-intensity

contours—contours that have equal grey-scale value. These iso-intensity contours are

sometimes named in the literature as fronts or isophotes . To illustrate the concept,

I plotted the isophotes of the sample image that was given in Fig. 2.7(a) with two

different plots as shown in Fig. 3.1. The first plot is in dense isophotes where the grey-

values of the image were grouped into 50 quantization levels producing 50 isophotes,
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and the second is just a sketchy one with only 5 isophotes. This is just for illustration,

but when it comes to implementation the isophotes can be thought of being quantized

with a huge number of levels, specifically related to the resolution of the word length

of the machine used. It can be seen from Fig. 3.1 that even with few isophotes the

image contents are visible, and more interesting is the identification of some features.

For instance, the effect of aliasing along the border of the camera handle looks like

wavy isophotes; this is barely noticeable in the original image but becomes severe

when this image is up-sampled. Then the fronts of the LSM, in the case of images,

are the iso-intensity contours of the image. If we let the image isophotes propagate

with different types of motion with special characteristics, then we can obtain results

like straightening out oscillatory contours, shrinking an isolated noise within a smooth

region so that it vanishes as in morphological operations, preserving the boundaries

of small objects,. . . etc.

The level-set equation is a modern form of the G-equation that describes the evo-

lution of the front of a flame in the field of combustion [54]. It was brought to many

other fields, including image processing, by Osher and Sethian [46]. They derived its

general form as

∂
˜̂
f1(x, t̃)

∂t̃
+ ν(x, t̃)‖∇x

˜̂
f1(x, t̃)‖ = 0, (3.4)

where t̃ is again an artificial time parameter for the evolution process and ν(·) is

the speed of the evolution along the normal direction. There are several types of

evolutions (motions) which are described by the properties of the speed ν [55]. In the

problem of regularized image up-sampling of a grey-scale still image we are interested

in preserving edges and controlling the introduction of spurious noise, all the while

essentially maintaining the data constraints. These interests can be interpreted in my

proposed scheme by a hybrid motion, dependent on the local properties of the fronts

and their position as will be discussed in the subsequent sections.



3 Variational Formulation for Image Up-sampling 64

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a)

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b)

Fig. 3.1 Isophotes of a portion of the cameraman image (a) dense 50
quantization levels (b) sketchy: 5 quantization levels.
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3.3.1 Motion under curvature

Motion under curvature means that the LSM evolves the fronts with speed

ν(x, t̃) = νs(x, t̃) = −κ, (3.5)

where κ is the curvature of the front at artificial time t̃. In case of scalar grey-scale

images the curvature is given by

κ = div

(
∇x

˜̂
f1(x, t̃)

‖∇xf̃1(x, t̃)‖

)
=

˜̂
f1xx

˜̂
f 2

1y
− 2

˜̂
f1x

˜̂
f1y

˜̂
f1xy +

˜̂
f1yy

˜̂
f 2

1x( ˜̂
f 2

1x
+

˜̂
f 2

1y

)3/2
, (3.6)

where the suffix denotes the spatial partial derivative. The evolution given by the

speed (3.5) is known as phase field reaction process, and it can be approximated nu-

merically as given in [54] by central differences. However, in this thesis we will develop

new approximations of the partial derivatives based on the properties of the display

(reconstruction) device. A nice geometric study of this type of evolution can be found

in [55]. Variants of this type of evolution like volume preserving curvature and the

second-order derivative of the curvature are also given in [55]. Another variant based

on min/max curvature is given in [56]. These ideas might be powerful with the pos-

sibility of providing good results, but their geometrical features and applications in

image processing are still immature. The evolution by mean curvature with its con-

nection to anisotropic diffusion has well-established geometrical features. It has been

demonstrated in [55] that the evolution of fronts by this kind of motion is characterized

by the following:

1. Any arbitrarily shaped closed front with arbitrary concavities and convexities

(wrinkles) will evolve to form a convex hull by means of the following motions:

(a) Concavities will be pushed outwards.

(b) Convexities will be pulled inwards
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2. This convex hull will shrink in artificial time until it becomes a point that van-

ishes.

If we assume that an arbitrary initial image
˜̂
f1 is processed by equations (3.4,3.5),

then its iso-intensity contours will undergo an evolution process under mean curva-

ture. The extent of this evolution process is governed by the artificial time t̃ of the

evolution; in practice this is interpreted as iterations as will be shown later. This

means that extended time evolution process under mean curvature will shrink all the

image isophotes until the image becomes a constant one. It should be noted that there

will be another type of motion that enforces the data fidelity Jd such that the collapse

of the image isophotes is not reached at convergence of the evolution process. The

discussed geometrical properties of the evolution under mean curvature will have the

following impacts on images that undergo this process:

• It will straighten out the fronts, removing the oscillations along the edges re-

gardless of their orientation;

• It will shrink down isolated noise patterns that exist in smooth regions;

• Textures will undergo a mix of smoothing and sharpening that is not easy to

analyze because textures have different patterns. However, overall textures will

not be deteriorated like in all the previously discussed classes in section 2.3.

3.3.2 Position dependent motion

This type of motion is independent of the front geometrical features but is governed by

external constraints. These external constraints are position dependent. If the data

fidelity criterion Jd given in (2.16) is used here, then it will enforce spatial constraints

on the HR image fronts. These constraints are given mainly in terms of the samples

of the LR image and the properties of H, η. The motion that is dependent on the

position of the front acts as a projection on the data constraints. It was developed
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for image restoration problem [57]. Its form for image up-sampling problem is very

similar and I write it as

νd(x, t̃) , λ
HT(Hf̂1 − f2)

‖∇x
˜̂
f1(x, t̃)‖

. (3.7)

The LSM evolution described by a speed ν(x, t̃) = νd(x, t̃) is called convection dif-

fusion. Its evolution is similar to an iterative back projection of the residual error

to the estimate f̂1. The properties of this evolution are similar to those that have

been explained before in section 2.3.3. The parameter λ is a weighting parameter that

controls the strength of the interaction of this motion on the evolution process.

3.3.3 Time derivative

The LSM evolution equations given until now involve a continuum time derivative.

This artificial time derivative is usually implemented numerically using the forward

Euler method so that the LSM general equation becomes

˜̂
f

(n+1)
1 (x) =

[
˜̂
f1(x)−∆T

(
ν(x)‖∇x

˜̂
f1(x)‖

)](n)

, (3.8)

where ∆T is an artificial time step that should satisfy numerical stability conditions

as given in [54]. The superscript (n) denotes the iteration number. Thus, starting

with an initial estimate
˜̂
f

(0)
1 this initial value PDE problem is solved iteratively by

(3.8). Higher order numerical schemes for implementing the time derivative based

on Runge–Kutta method is given in [54]. With forward Euler time discretization a

Courant–Friedreichs–Lewy (CFL) condition for stability is given by

∆T
( 2

(∆x)2
+

2

(∆y)2

)
< 1, (3.9)

where ∆x and ∆y are the spatial-domain discretization steps which could be simply

that of the underlying sampling structure.
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3.4 Constrained variational formulation

The constrained variational formulation has been used in image denoising, as in the

ROF model given in [38] and in image restoration as in [57]. Their formulation is

given using our notation as follows

f̂1 = arg

{
min

g

∫

WT

‖∇xg̃(x)‖dx, s.t.
1

2
‖Hg − f0‖2 = σ2

}
,

g[d] =g̃(d), ∀d ∈ Λ,

g̃(x) =
∑

d∈Λ

g[d]ψ(x− d), ∀x ∈ WT

g ∈ `2(Λ), f0 ∈ `2(Λ),

(3.10)

where σ2 is the variance of the distribution of the identically-independent zero-mean

noise η and f0 is the measured noisy and/or blurred image. Both f1 and f0 are defined

over the same sampling structure Λ. Such equality constraints are called holonomic

constraints [41]. For the denoising problem, the matrix H is an identity matrix. For

the deblurring problem, the blur point spread function (PSF) is represented by the

impulse response of the filter h[x]. The matrix H, in this case, is the convolution

matrix for this filter h[x] and it has a Toeplitz structure. Then the transposed matrix

HT is the convolution matrix for the spatial-reversal filter h[−x]. In the noise free

case, we set σ2 = 0. In a general sense, ψ is a continuous operator that generates the

continuous image f̃1 from the samples f1[x] and formally the definition of a spatial

gradient for this continuous image is valid. In the literature, ψ was not discussed

or dealt with or it was implicitly assumed to be a piece-wise smooth function. The

gradients ∇xf̃1(x) were estimated by finite differences from the discrete samples of

f1[x]. In all the implementations for the variational formulation in the literature, it

is assumed that the samples f̂1 are exactly those values of a continuous signal
˜̂
f1 at

the corresponding grid locations. The problem given by (3.10) is converted to an
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unconstrained minimization problem using the Lagrangian formulation

f̂1 = arg min
g

{∫

WT

‖∇xg̃(x)‖dx + µ(g̃)
(1

2
‖Hg − f0‖2 − σ2

)}
, (3.11)

where µ is a Lagrange multiplier. In this case of holonomic constraint, µ is mathemat-

ically a function of the iterate g̃ which ensures that the constraint is satisfied at any

artificial time instant of the implementation. The minimization of this unconstrained

problem is the steady-state solution of the PDEs that arise from the Euler–Lagrange

equations, and is given as follows.

∂
˜̂
f1

∂t̃
= κ− µ(

˜̂
f1)H

T(H f̂1 − f0). (3.12)

Using the Euler forward method these PDEs are converted to the solution of the

following iterative process

f̂
(n+1)
1 =

[
f̂1 + ∆T

(
κ− µHT(H f̂1 − f0)

)](n)

. (3.13)

The holonomic constraint is not explicitly enforced in (3.13). It is implicitly imple-

mented in the Lagrange multiplier. Following the method in [38] for the computation

of µ that satisfies the constraints in (3.10), it has to be calculated at each iteration.

It can be given for the noise free case (σ = 0) [57] by

µ(n) =

[∫
WT

κh[−x] ∗ (h[x] ∗ f̂1[x]− f0[x])dx

‖HT(H f̂1 − f0)‖2

](n)

. (3.14)

At this point what is left is the numerical implementations of the partial derivatives

in the mean curvature term κ. This is the most critical and tricky part, that should

be done with care. Generally, the numerical implementation of PDEs should take

into account the domain of dependence of the underlying data [54]. In the case of the
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parabolic term κ, the domain of dependence is all the surrounding spatial data with no

bias towards a specific direction [42]. Hence, the most suitable discretization advised

in [54, 55] for the curvature term is the second-order central differences. According to

the assumption in (3.10) that f̂1[x] =
˜̂
f1(x), ∀x ∈ Λ, then the continuum formulation

is reduced in the implementation to be executed on the points of Λ using the samples

of f̂1. In all of these implementations in the literature it is assumed that Λ is a

rectangular lattice. If we assume this special case, where Λ is rectangular, then we have

VΛ = [v1 | v2] and v1 = [X, 0]T, v2 = [0, Y ]T, and ∆x = X and ∆y = Y . Recalling

(3.6), we have five partial derivatives to implement. These five partial derivatives are

given in terms of our lattice notation as follows:

˜̂
f1x(d) =

f̂1[d + v1]− f̂1[d− v1]

2X
+ O[X2],

˜̂
f1y(d) =

f̂1[d + v2]− f̂1[d− v2]

2Y
+ O[Y 2],

˜̂
f1xx(d) =

f̂1[d + v1]− 2f̂1[d] + f̂1[d− v1]

X2
+ O[X2],

˜̂
f1yy(d) =

f̂1[d + v2]− 2f̂1[d] + f̂1[d− v2]

Y 2
+ O[Y 2],

˜̂
f1xy(d) =

f̂1[d + v1 + v2] + f̂1[d− v1 − v2]− f̂1[d + v1 − v2]− f̂1[d− v1 + v2]

4XY
+ O[XY ],

∀d ∈ Λ.

(3.15)

The asymptote for the truncation error is denoted by the order O[·]. These partial

derivatives can be efficiently implemented by a simple convolution process. Thus, the

second-order approximation of the partial derivatives becomes

˜̂
f1(·)(d) = f̂1[d] ∗ h(·)[d], ∀d ∈ Λ.

The impulse responses of the filters h(·)[d] for the implementation of each of the partial
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derivatives are given as follows:

hx = [ 0.5 0 −0.5 ],

hy = [ 0.5 0 −0.5 ]T,

hxx = [ 1 −2 1 ],

hyy = [ 1 −2 1 ]T,

hxy =




1 0 −1

0 0 0

−1 0 1


 /4.

(3.16)

The bold number indicates the central position x = 0. It should be noted that we are

using a top-to-bottom orientation, i.e, the positive vertical direction points downwards.

The problem given in (3.10) is fully solved by the set of equations (3.13), (3.14), and

(3.15).

3.5 Numerical challenges for the total variation formulation

The numerical implementation for the formulation of the denoising/deblurring prob-

lem using the total variation, given in section 3.4, has some numerical difficulties.

These difficulties have been addressed by some techniques in the literature. In this

section we will discuss these difficulties and their remedies and the side effects of some

of these remedies. In our formulation in this thesis we will make use of some of these

remedies and develop ours that would eliminate the side effects of those methods de-

veloped in the literature. The four challenges for the implementation are given as

follows:

1. At the formulation level, the L1-norm objective criterion Js is non-differentiable

at ‖∇x
˜̂
f1‖ = 0 which occurs in the smooth regions of the image;
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2. The curvature term appearing in the evolution equation (3.13) is stiff and desta-

bilizes the solution;

3. The initialization and the calculation of (3.14) is problematic;

4. The second-order approximation (3.15) which is numerically reliable, relies on

the assumptions that f̂1[x] =
˜̂
f1(x), ∀x ∈ Λ, and that Λ is rectangular. These

two assumptions are not representing the reality.

The first major problem is that the L1-norm associated with the total variation

regularizer is by nature non-differentiable at a zero-valued argument (‖∇x
˜̂
f1‖ = 0).

Although the L1-norm is continuous at the origin, its left derivative (L8(0− ε)) is not

equal to its right derivative (L8(0 − ε)) and thus the derivative does not exist at the

origin. This means that the convex objective function that we are dealing with is non-

differentiable at the origin. It was this challenge that made most researchers reluctant

to use the L1-norm and instead use the `2-norm in most regularized image processing

problems. The `2-norm is continuously differentiable and is minimized by traditional

linear optimization techniques, but it sacrifices the quality of the resulting image. This

is due to the fact that it leads to non-directional regularizer that smooths the images

blindly regardless of the existing edges, as discussed in section 3.2. A common prac-

tice for getting around the aforementioned problem is to replace the magnitude of the

gradient ‖∇x
˜̂
f1‖ =

√
˜̂
f 2

1(x)
+

˜̂
f 2

1(y)
by an approximation ‖∇x

˜̂
f1‖ =

√
˜̂
f 2

1(x)
+

˜̂
f 2

1(y)
+ ε2,

where ε is a small real number chosen according to the machine precision. This alter-

ation totally changes the total variation regularizer to another differentiable objective

criterion. Although it seems that the change is minor, in fact it is severe because given

L(‖∇x
˜̂
f1‖) =

√
˜̂
f 2

1(x)
+

˜̂
f 2

1(y)
+ ε2 and recalling the generalized analysis (3.1) we realize

that L8(‖∇x
˜̂
f1‖) = ‖∇x

˜̂
f1‖/

√
‖∇x

˜̂
f1‖2 + ε2 and L88(‖∇x

˜̂
f1‖) = ε2/

(‖∇x
˜̂
f1‖2 + ε2

)3/2
.

It is clear that L88 does not vanish for small values of ‖∇x
˜̂
f1‖ which is severe and is

against all the formulations and analysis that has been done. Additionally, we have
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L8(·) < 1 for small values of ‖∇x
˜̂
f1‖. The authors of [58] provided a mathematical

analysis of the problem. They criticized the above mentioned alteration and devel-

oped a general adaptive LSM algorithm to deal with this problem. The conclusion of

their result, applied to our problem here, is that one would resort to the sub-gradient

of the objective function at these locations of non-differentiability. The sub-gradient

means the gradient of the other differentiable terms in the objective function. In

the implementation, this means that we simply set the value of the mean curvature

κ = 0, ∀‖∇x
˜̂
f1‖ = 0. In fact this is exactly what has been done in [57] as an ad-hoc

remedy but turned out to be correct as provided in [58]. This is what we will follow

in this thesis.

The evolution process by mean curvature in (3.13) is equivalent to a LSM evolution

with speed νs = − κ

‖∇x
˜̂
f1‖

. Comparing this speed to that given by (3.5), it is apparent

that the evolution is not fully under the mean curvature. The evolution becomes

dependent on the curvature of the level sets and the magnitude of the derivatives [54]

and is not acting anymore like morphological operators for noise removal [39]. Another

mathematical aspect is that the curvature term κ is stiff, which means that it changes

continuously and in an inconsistent way with changes in ‖∇x
˜̂
f1‖. The authors in

[57] have chosen to multiply the Euler–Lagrange equation by ‖∇x
˜̂
f1‖ and thus (3.13)

becomes

f̂
(n+1)
1 =

[
f̂1 + ∆T

(
κ‖∇x

˜̂
f1‖ − µHT(H f̂1 − f0)‖∇x

˜̂
f1‖

)](n)

. (3.17)

This newer model provides a stable (non-stiff) system which is analytically the same

as (3.13) except for the smooth regions where ‖∇x
˜̂
f1‖ = 0. In their argument in [54],

the authors found this modification to have another numerical advantage which is to

have a larger time step ∆T that makes the process converge quickly. However, when

‖∇x
˜̂
f1‖ = 0 we cannot multiply both sides of the Euler–Lagrange equation by a zero

quantity as they mentioned. This leads to the fact that all constant images become

stationary points for the evolution process in (3.17). This means that the process will
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be deemed convergent for the constant images because it cannot move in any gradient

direction. The authors dealt with this problem by starting the evolution process with

an initial estimate that is the output of other restoration techniques like the Wiener

method. However the objective function is now multi-modal and the solution depends

on the choice of the initial estimate. In this thesis we will have a different treatment

that solves this problem.

The third problem is the calculation of µ given by (3.14). There are two associated

problems which are the initialization of f̂
(0)
1 and the computation of µ. One should

start with an initial estimate that satisfies the data fidelity criterion and this might

be a problem for some applications. However the real problem is the intimidating

computational cost of (3.14) at every iteration. The common practice to deal with

this problem is to rely on a fixed value for µ based on the user’s experience with

the problem. In general the choice of the regularization parameter for regularized

techniques is always a problem. In our treatment we do not require exact equality

to zero but rather minimization of the data fidelity criterion and hence we will use a

fixed value for µ.

The last problem is the numerical methods of calculating the partial derivatives.

It is assumed that the samples f̂1[x] =
˜̂
f1(x), ∀x ∈ Λ, and that Λ is rectangular.

The case of rectangular grid is not applicable for applications that deal with non-

rectangular grids, like demosaicking of color-filter-array and other similar applications.

When we are dealing with a rectangular grid and we cannot find a model to relate

˜̂
f1(x) to f̂1[x] then perhaps the assumption f̂1[x] =

˜̂
f1(x), ∀x ∈ Λ, combined with

(3.15) would be the way to do. However, the powerful part in the total variation

regularizer is that it is formulated in the continuous domain and the images that we

perceive are continuous and so it makes a lot of sense to seek a reasonable realistic

formulation other than f̂1[x] =
˜̂
f1(x), ∀x ∈ Λ, combined with (3.15). The proposed

method here will show a new formulation for dealing with a realistic solution for this
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problem.

3.6 Proposed variational formulation for grey-scale image

up-sampling

In the last few sections, we dealt with the variational formulation for problems related

to ours and discussed the associated numerical difficulties and approaches to solve

them. We surveyed the previous variational formulations for image up-sampling and

we found that their formulation is incomplete for the data fidelity criterion. In this

section, we will provide a completely new treatment for the problem and provide new

numerical approaches to improve some of the previous numerical treatments. As far

as I know, my joint paper [59] provides the only complete variational formulation

for the image up-sampling problem that involves two different sampling structures

(Λ, Γ) simultaneously in the formulation and the solution. I propose the following

formulation for regularized grey-scale image up-sampling:

f̂1 = arg min
g

{
λ

∫

WT

‖∇x(gϕ)(x)‖dx +
1

2
‖Hg − f2‖2

}
,

(gϕ)(x) ,
∑

d∈Λ

g[d]φdis(x− d), ∀x ∈ WT ,

g ∈ `2(Λ), f2 ∈ `2(Γ), (gϕ) ∈ L2(WT ).

(3.18)

The matrix H performs both the filtering by a digital filter h[x] defined on Λ and

down-sampling from Λ to Γ. In this section we will assume that the impulse response

of the filter h[x] is known. Finding h[x] is one of the topics of the next chapter.

In this proposed formulation we define the continuous image that the total variation

regularizer is dealing with to be the image that is displayed to the viewer. This

displayed continuous image is reconstructed from the samples of the discrete image

f̂1[x] by a display device. This display device is characterized by a modelling function
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φ.

The minimization of (3.18) is obtained as the steady state solution of the PDE

that is developed from the Euler–Lagrange equation similar to the treatment given by

(3.12). This resulting PDE is solved using the LSM equation given by (3.4). I used

two types of motions with different spatially-variant speeds are used that interact

simultaneously to provide the solution for (3.18). These two motions are proposed to

have speeds

νs = −λκ,

νd =
HT(H f̂1 − f2)

‖∇x
˜̂
f1(x)‖

,
(3.19)

where HT performs both the up-sampling operation from Γ to Λ followed by filtering

with the time-reversal filter h[−x]1. The parameter λ serves as a regularization pa-

rameter and will be set to a constant value according to the discussion in section 3.5.

The numerical implementation of the artificial time derivative in the LSM is given

by the forward Euler method. Hence these hybrid motions and the time derivative

discretization provide my iterative up-sampling method as

f̂
(n+1)
1 =

[
f̂1 + ∆T

(
λ‖∇x(f̂1ϕ)‖κ−HT(H f̂1 − f2)

)](n)

, (3.20)

The spatial partial derivatives are analytically derived in the spatial domain pro-

1

HT does not involve any DC gain (Λ : Γ). It is involved in an iterative filtering process an not a
single stage interpolation.
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viding the following:

(f̂1ϕ)x(x) =
∑

d∈Λ

f̂1[d]φx(x− d),

(f̂1ϕ)y(x) =
∑

d∈Λ

f̂1[d]φy(x− d),

(f̂1ϕ)xx(x) =
∑

d∈Λ

f̂1[d]φxx(x− d),

(f̂1ϕ)yy(x) =
∑

d∈Λ

f̂1[d]φyy(x− d),

(f̂1ϕ)xy(x) =
∑

d∈Λ

f̂1[d]φxy(x− d),

∀x ∈ WT .

(3.21)

It is clear that if we have an analytic continuous model φ for the display device that

we are using, then we can compute the partial derivatives for all x ∈ WT and not

only on Λ. If we inspect (3.21) we find that the value of the partial derivative at any

position x ∈ WT is theoretically dependent on all the samples of f̂1[d]. However, when

φ(x−d), ∀d ∈ Λ forms a Riesz basis, then practically it decays quickly providing a

compact support function, which is the case with practical display devices. Hence, one

need only perform the summation in (3.21) for a small number of samples depending

on the order of the accuracy required. This leads to the fact that we can numerically

approximate (3.21) at points of Λ using a simple convolution process as follows:

(ϕf̂1
)(·)(d) = f̂1[d] ∗ h(·)[d],

h(·)[d] = φ(·)(d), d ∈ Λ.
(3.22)

The order of accuracy can be increased by letting h(·) have more coefficients, but

this will increase the computational cost. However, φ(·) decays fast and usually a few

coefficients are sufficient.

We derive h(·) for a typical CRT display device which is usually modelled by a
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Gaussian function φ(x) = 1
2πr2 exp

(
−‖x‖2

2r2

)
.

I proposed a new formulation for the grey-scale image up-sampling problem and

derived its numerical solution scheme. This numerical scheme treats drawbacks in

the similar formulation for other close problems like denoising and deblurring in the

literature. The new formulation here assumes knowledge of the observation model and

a given display device aperture. The design of the observation model and adaptation

to the properties of the display device aperture for the grey-scale image up-sampling

problem will be dealt with in the next chapter.
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Chapter 4

Observation Model for Regularized

Image Up-sampling

A moving average filter is often used as an observation model for regularized image up-

sampling. This chapter investigates whether this is a correct and accurate model for

most circumstances, and investigates the feasibility of other options. In this chapter

I present a novel theoretical analysis of the regularized image up-sampling problem

focusing on the data fidelity term. I start with the formulation of the physical ac-

quisition processes the image has undergone and develop a generalized design for the

correct and accurate data fidelity term for regularized image up-sampling.

4.1 Introduction

According to the problem formulation in section 2.2, a continuous image is acquired by

a physical camera to produce a lower-resolution (LR) image(s). The physical camera

is modelled as a continuous-space(-time) filter followed by sampling on a lower-density

sampling lattice. It is desired to obtain a higher-resolution (HR) version of that image

sampled on a denser sampling lattice. The HR image is obtained, in principle, from

the continuous image through a theoretical, and not necessarily a physically realizable,
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camera specifying desired properties of the image. The scenario is shown in Fig. 4.1.

The theoretical camera is also modelled as a continuous-space(-time) filter followed

by sampling on a denser sampling lattice. Our focus, in this chapter, is to find and

design an observation model that can best produce the LR image from the HR image.

This observation model is used in the data fidelity term Jd for the regularized up-

sampling process. We study the possibility of obtaining such observation models for

any scenario for both cameras. The results presented in this chapter are for some

existing physical cameras and arbitrary theoretical cameras. As far as I know, our

paper [60] is the first to perform this study and offer a generalized design of this

observation filter for arbitrary scenarios. Image up-sampling and super-resolution is

an ill-posed problem that can be solved by combining a data fidelity term Jd with

a regularization term Js. Much research has focused on the regularization term,

which might involve different a priori constraints, to pick one solution with desirable

properties from the infinite number of possible solutions. A data fidelity metric Jd

used for most image interpolation and super-resolution research [61, 36, 62, 63] is the

special case proposed in [6]. Their model supposed that the LR image was obtained

from the continuous image by a CCD camera whose aperture is modelled by a rect

function [11]. If the HR image is also obtained by a rect aperture, then the modelling

observation filter is the discrete moving average.

The motivation in pursuing this study is that an accurate data observation model

leads to a better definition of the solution space which is indeed a critical factor for a

better quality up-sampling [64]. Our analysis involves continuous and discrete signals

at different rates and sampling aliasing; thus we chose the frequency domain analysis.

Tsai and Huang [65] provided a frequency domain analysis relating the HR image

and a group of translated LR images. However, they did not consider the aperture

physical degradation and assumed it to be a unit sample impulse. We have performed

the design in an optimization framework and also used a power spectral density model
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Fig. 4.1 Scenario for image up-sampling.

(PSD) for the continuous image.

4.2 Problem statement

Let fc(x) be a continuous-space(-time) image that is sampled on two different lattices

Λ and Γ. We assume that Γ ⊂ Λ, and so Λ∗ ⊂ Γ∗. The superscript ∗ denotes the

reciprocal lattice. In cases where neither Λ nor Γ is a subset of the other, then an

intermediate lattice is introduced as in rate conversion by a rational factor, as discussed

in section 2.1.6. The sampling aperture impulse responses for sampling on Λ and Γ

are h1(x) and h2(x) respectively, yielding the sampled images f1[x] and f2[x]. We seek

a model to relate f2[x] to f1[x]. The situation is illustrated in Fig. 4.1 where g[x] is

the model of f2[x] and e[x] = f2[x]−g[x] is the modelling error. Here, g[x] is assumed

to be obtained by LSI filtering of f1[x] on Λ, followed by down-sampling to Γ.
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4.3 Design of the observation model

Assume that fc(x) has a continuous-space Fourier transform Fc(u). According to

(2.7), then f1[x] and f2[x] are related to fc(x) in the frequency domain by

F1(u) =
1

d(Λ)

∑
r∈Λ∗

Fc(u + r)H1(u + r)

F2(u) =
1

d(Γ)

∑
s∈Γ∗

Fc(u + s)H2(u + s)
(4.1)

where d(·) is the unit-cell volume of its argument lattice. If we denote d(Γ)
d(Λ)

= d(Λ∗)
d(Γ∗) =

by (Λ : Γ), then Γ∗ =
⋃(Λ:Γ)

k=1 (Λ∗ + dk) where dk ∈ Γ∗, k = 1, . . . , (Λ : Γ) are the coset

representatives of Λ∗ in Γ∗ as discussed in section 2.1.1. From (2.12), it follows that

G(u) =
1

(Λ : Γ)

(Λ:Γ)∑

k=1

F1(u + dk)H(u + dk). (4.2)

Since H(u + r) = H(u) for any r ∈ Λ∗ and if we substitute from (4.1) into (4.2), then

it follows that (4.2) can be written as

G(u) =
1

d(Γ)

∑
s∈Γ∗

Fc(u + s)H1(u + s)H(u + s). (4.3)

Thus, g[x] can be obtained in one step by filtering fc(x) with the LSI continuous-

space(-time) filter whose frequency response is H1(u)H(u) and sampling on Γ. It

should be noted that H1(u) is aperiodic while H(u) is periodic, because h1 is a con-

tinuous filter while h is a digital one. We can also write the Fourier transform of the

error e[x] as

E(u) =
1

d(Γ)

∑
s∈Γ∗

Fc(u + s)
(
H2(u + s)−H1(u + s)H(u + s)

)
. (4.4)
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Thus, e[x] can be obtained by filtering fc(x) with the LSI continuous-space(-time)

filter whose frequency response is H2(u)−H1(u)H(u) followed by sampling on Γ.

If we assume that fc(x) is a realization of a continuous-space(-time) stationary

random field with power spectral density (PSD) Sf (u), then the error e[x] is a real-

ization of a discrete-space stationary random field with PSD that can be written as

given in [3] by

Se(u) =
1

d(Γ)

∑
s∈Γ∗

Sf (u + s)

× |H2(u + s)−H1(u + s)H(u + s)|2.
(4.5)

The corresponding mean square error (MSE) is

σ2
e =

∫

PΓ∗
Se(u)du

=
1

d(Γ)

∑
s∈Γ∗

∫

PΓ∗
Sf (u + s)

× |H2(u + s)−H1(u + s)H(u + s)|2du.

(4.6)

Thus the best modelling filter H0(u) in the MSE sense satisfies

h0 = arg min
h

σ2
e (4.7)

where H(u) = Σx∈Λh[x] exp(−j2πu · x) which is a finite sum for FIR filters, and real

for zero-phase filters. We can assume that the integrals in (4.6) are non-negligible

for only a few s ∈ Γ∗ in the vicinity of u = 0. This is reasonable because the

aperiodic frequency response of the continuous filters H1(u) and H2(u) will decay

rapidly in the neighborhood of PΛ∗ , P
∗
Γ, respectively. This is dictated by the physical

aperture prefilter characteristics in cutting down aliasing. Fixing some number N of

independent coefficients for H(u), σ2
e is just a real function of the N unknowns, and
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our objective function (4.6) can be minimized with a general optimization routine, or

optimized analytically since it can be written as a quadratic form in h[n].

4.4 Analytic optimization

While the provided general formulation is applicable to 2 or 3 dimensions, we now

consider the specific case of spatial (2-D) image up-sampling. Assume that Λ is a

lattice that admits quadrantal symmetry [66]. Suppose h[x] has quadrantal symmetry,

and the independent coefficients1 (h′[x]) are in the quadrant Q, so that H(u) =
∑

x∈Q h′[x] cos(2πux) cos(2πvy). If H1(u) and H2(u) are real, then expanding the

terms of (4.6) yields

σ2
e =

1

d(Γ)

∑
s∈Γ∗

∫

PΓ∗
Sf (u + s)H2

2 (u + s)du

− 2

d(Γ)

∑
x∈Q

h′[x]
∑
s∈Γ∗

∫

PΓ∗

[
Sf (u + s)H1(u + s)

×H2(u + s) cos(2π(u + sx)x) cos(2π(v + sy)y)

]
du

+
1

d(Γ)

∑
x∈Q

∑

x̆∈Q
h′[x]h′[x̆]

∑
s∈Γ∗

∫

PΓ∗

[
Sf (u + s)

×H2
1 (u + s) cos(2π(u + sx)x) cos(2π(v + sy)y)

× cos(2π(u + sx)x̆) cos(2π(v + sy)y̆)

]
du

(4.8)

where, s = [sx, sy]
T. If we stack h′[x] into a lexicographic vector h′[x], then (4.8) can

be simply written as

σ2
e = h′TDh′ + bTh′ + c (4.9)

1

Recall from section 2.1 that for D = 2, x = [x y]T
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where the elements of the vector b and the matrix D can be determined by numerical

integration. Then, σ2
e is easily minimized with

h′0 = −1

2
D−1b. (4.10)

4.5 Power spectral density model of the image

Several models for the PSD of the continuous image Sf (u) exist. In the estimation of

Sf (u) I used parametric and non-parametric methods.

4.5.1 Parametric model for PSD estimation

Since Sf (u) , F.T{Rf (x)}, I used the basic model for the autocorrelation of contin-

uous images defined by Rf (x, y) , σ2 exp (−α1|x|) exp (−α2|y|), where σ2 = Rf (0, 0)

is the autocorrelation with zero lag and α1, α2 are parameters. Calculating the 2-D

Fourier transform of Rf (x, y) and extending one of the 1-D Fourier transform formulas

in [67], I derived the PSD to be

Sf (u, v) = 4σ2 α2

4π2v2 + α2
2

α1

4π2u2 + α2
1

. (4.11)

A plot for the estimated PSD for α1 = α2 = 0.98 is given in Fig. 4.2(a).

4.5.2 Non-parametric PSD estimation

In our simulations we used the Welch-modified periodogram method [9], using a

Blackman-Harris window, to estimate the PSD from a very high resolution image

of size 3390×2436. The window size was 64 with 8 samples of overlap. The estimated

PSD Sf (u) is given in Fig. 4.2(b).
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Fig. 4.2 Image power spectral density estimates Sf (u) by two differ-
ent methods. (a) parametric estimate from an auto-correlation model
(b)Welch-modified periodogram.

4.6 Simulations and experiments

The impulse responses of most physical camera apertures are modelled by a 2-D

Gaussian, rect, or circ function. Hence, I designed the basic experiment scenarios

with the Gaussian and rect functions for H2. I will name each scenario according

to the aperture used for H1 and H2 respectively and the value of (Λ : Γ); in other

words if H1 is a Gaussian, H2 is a rect function, and (Λ : Γ) = 25, then we call it

Gauss-Rect(↓ 25). The sample scenarios in this section are Gauss-Gauss(↓ 25), Rect-

Rect(↓ 25), Rect-Gauss(↓ 25), and Gauss-Rect(↓ 25). The sampling lattices are given

by VΛ = diag(X,X) and VΓ = diag(5X, 5X). For each scenario I obtained an FIR

modelling filter h[x] described in the first row in Table 4.1. Inspecting the magnitude

of the frequency response of the modelling filters obtained for different scenarios, we

can observe the following:

1. We only obtained the moving average filter as a modelling filter for the scenario

Rect-Rect(↓ 25).
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2. For the Rect-Gauss(↓ 25) and Gauss-Gauss(↓ 25) scenarios we obtained mod-

elling filters which are far from being a moving average filter.

3. The magnitude of the frequency response of the modelling filters obtained for

scenarios having the same filter H2 tends to have close characteristics in their

passband, while the stopband shape is different. This is clear by comparing

Fig. 4.4(a) and Fig. 4.4(b).

4. The major difference among modelling filters obtained for different scenarios is

mainly in the stopband. This is due to the aliasing components introduced by

the down-sampling process involved.

A general conclusion is that using an incorrect modelling filter in the observation model

for image up-sampling problem will have its greatest impact in measuring the high

frequency components but it will not deviate much in measuring the low frequency

components.
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Fig. 4.3 Magnitude of the frequency response for the observation model
H(u) for two scenarios. (a) Gauss-Rect (↓ 25), (b) Rect-Gauss (↓ 25).
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Fig. 4.4 Magnitude of the frequency response for the observation model
H(u) for two scenarios in (dB). (a) Rect-Gauss (↓ 25), (b) Gauss-Gauss
(↓ 25).

In order to verify the results obtained I ran a simulation of each scenario and used

the modelling filter obtained to measure the actual modelling error e[x] on the images

as follows:

1. Start with a very high resolution image simulating the continuous signal fc(x).

2. Select two large sub-sampling factors to simulate the ratio between Λ and Γ.

3. Simulate h1(x) and h2(x) by the appropriate digitally designed Gaussian or

moving average filter. For Gaussian filters we can choose the appropriate cut-off

angular frequency as given in [4], in accordance with the chosen sub-sampling

factor(s).

4. The very-high-resolution image is filtered by h1(x) and h2(x) providing 2 filtered

versions of fc(x).

5. Down-sample the filtered images by the chosen sub-sampling factors. The images

obtained are used to simulate f1[x] and f2[x]. The large down-sampling factors



4 Observation Model for Regularized Image Up-sampling 89

are used to minimize the error between the digital simulation and the reality of

the continuous spectrum analysis, simulating the sampling on both lattices Λ and

Γ, respectively. We chose Λ and Γ to be rectangular for the basic experiments,

where Λ = LAT(diag(X, Y )).

6. Obtain g[x] by filtering f1[x] with h[x], obtained in different ways, followed by

down-sampling from Λ to Γ.

7. Measure the actual modelling error e[x] = f2[x]− g[x].

8. Compute the peak-signal-to-noise ratio (PSNR) using e[x].

The computed PSNR value for each scenario is given in Table 4.1. For comparison’s

sake I also chose some reasonable filters to be the modelling filter h[x], and measured

the actual modelling error. The simulations are repeated for each of these different

choices of h[x] for the four basic scenarios. The chosen filters are as follows:

1. The moving average and the Gaussian filters because intuitively they seem to be

suitable for some scenarios like the Rect-Rect and the Gauss-Gauss respectively.

2. A filter with maximally flat passband and monotonically decreasing transition

and stopband. This filter was chosen because it produces images with no ringing

artifacts while not compromising resolution as much as many other filters, like

the Gaussian ones. I chose two filters with two different angular cut-off frequen-

cies of π/4 and π/8 which are around the critical cut-off angular frequency π/5

for these case-study scenarios.

For all the Gaussian filters used as modelling filters, I optimized the variance that

maximizes the PSNR of the result because I found that the results change drastically

with the choice of the variance of this Gaussian function! The choice of the optimal

variance of the Gaussian function was obtained by running a 1-D search that provides

the maximum PSNR result for each scenario. The values of these optimal variances
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for each scenario are given in the footnotes of Table 4.1. All the PSNR measures for

all scenarios with all filters are shown in Table 4.1.
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Fig. 4.5 Magnitude of the frequency response for the observation model
H(u) for Gauss-Gauss (↓ 25).

I wanted to obtain the upper bound on the PSNR value that can be obtained for

this simulation for each scenario. I achieved this by obtaining a modelling filter using

the images f1[x] and f2[x] themselves, and solving a numerical optimization problem,

directly from the images. Here I used the least squares method because the problem

is overdetermined. The problem is simply formulated as

h = arg min
h̆
‖H̆f1 − f2‖2, (4.12)

where the matrix H̆ performs both the filtering by the argument filter h̆ and down-

sampling from Λ to Γ. Thus, H̆ is a block diagonal matrix formed from the coefficients

of h̆. The simulated modelling filter obtained was also used to compute the modelling

error which appears in the first row of results in Table 4.1 and is named simulated

optimization. This helped in obtaining an upper bound on the PSNR that can be

obtained from the simulation experiment. However, it can’t be practically used since
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in real applications f1[x] is not available, and it results in a modelling filter that is

biased towards the specific features of the underlying image.

Comparing the results in Table 4.1 we observe the following:

1. In the Rect-Rect scenario, the result is almost a moving average filter to some

numerical approximation which agrees with the result in [6]. The reason that we

did not obtain exactly the moving average filter as a modelling filter is accounted

for the following:

(a) Numerical approximations that are involved in the numerical integration.

(b) Simulation approximations as using H1 and H2 as discrete approximation

of continuous-space filters and simulating the sampling process by sub-

sampling with large factors.

However, a PSNR of 58.39 as compared to 63.22 of the moving average is still a

very good result and the difference in results cannot be distinguished by human

eyes.

2. For the Gauss-Gauss scenario the method designed a Gaussian-like modelling

filter with the optimized variance of the Gaussian function. The result is almost

similar to the manually optimized Gaussian filter, which is a good indication

on the performance of the method in this scenario. It should be noted that in

practice we cannot manually optimize the variance of the Gaussian filter because

the HR image f1 is not available.

3. For the Rect-Gauss and the Gauss-Rect scenarios we obtained new modelling

filters that are neither a simple moving average nor a Gaussian filter. Both of

them failed to provide a reasonable performance in these scenarios.

We were able to formulate a generalized design for the observation model and

succeeded in obtaining the optimal observation model for important scenarios in im-
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age up-sampling and super-resolution. Furthermore, our method allows us to solve

for any desired scenarios, e.g., standards conversion posing known physical specifica-

tions or up-sampling to images acquired with nice a theoretical aperture specifying

desired properties of the image. With our optimal modelling filter tightening the

relation between the HR and LR, we can cut down noise amplification during the reg-

ularized up-sampling process. This leads to relaxing the smoothness (regularization)

constraint(s) and helps in obtaining less blurred (over smoothed) results, if a suitable

regularizer is selected.

4.7 Design of the theoretical camera

We have been able to design the observation model, specifically h[x] for a given h2(x)

and a chosen h1(x). The question is: what should we choose for h1(x)? Recalling our

main problem of image up-sampling in Fig. 2.5, we have not described or (constrained)

the continuous image that will be further reconstructed (displayed) from f1[x]. In fact,

the display device is an important factor in the overall perceived quality of the image.

In this section we design the optimal prefilter for the theoretical camera (h1(x)) for

any given display reconstruction aperture. The design goal is to minimize the error in

the least-squares sense between the original continuous signal fc(x) and the displayed

continuous signal f̃1(x). The continuous signal f̃1(x) is reconstructed by the display

device from the samples f1[x]. The scenario is depicted in Fig. 4.6. In [68] I extended

Unser’s formulation for finding this prefilter [14] to arbitrary lattice structures, not

necessarily rectangular. The optimization problem that is to be addressed in this

hdis(x)

Desired Theoretical camera

↓ Λh1(x)
fc(x)

(HR)

f1[x]
Display

f̃1(x)

Fig. 4.6 Design of the theoretical camera.
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section is given by

h1 = arg min
h̆
‖f̃1 − fc‖2,

where f̃1(x) =
∑

d∈Λ

f1[d]φ(x− d), ∀x ∈ RD,

and f1[x] =
(
h̆ ∗ fc

)
(x), x ∈ Λ.

(4.13)

In order to proceed with the optimization problem (4.13), we need first to introduce

some definitions and then proceed with the solution.

4.7.1 Riesz basis on arbitrary lattice

In this section we will focus on the properties of the Riesz basis for arbitrary sampling

structures. Unser [14] discussed these properties of the Riesz basis for integer translates

of a given function on Z. The extension for orthogonal lattice (cartesian grid) with

separability is straightforward. The authors in [69] followed the same discussion for

the properties of the Riesz basis for hexagonal lattices. A further safeguard condition

was introduced in [14] and was also used in [69] that will be discussed in the next

section.

From (4.13), we see that the displayed image is a linear combination of shifted

versions of the display’s unit-sample response, where all the shifts lie in the sampling

lattice Λ. Assume that the input image has finite energy, fc ∈ L2(RD). Let Td be the

shift operator on L2(RD), such that Tdfc(x) = fc(x − d), and define φd , Tdφ. We

define the display subspace to be

V(φ, Λ) ,
{∑

d∈Λ

c[d]φd : c ∈ `2(Λ)

}
, (4.14)

where the sampling structure of the theoretical camera is Λ as shown before in Fig. 4.1.

Thus f̃1 ∈ V(φ, Λ) for all f1 ∈ `2(Λ). Under mild conditions that hold for practical
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display devices, the set {φd : d ∈ Λ} forms a Riesz basis for V(φ, Λ). In the space(-

time) domain, the condition is

α‖f1‖2 ≤
∥∥∥
∑

d∈Λ

f1[d]φd

∥∥∥
2

≤ β‖f1‖2, ∀f1 ∈ `2(Λ), (4.15)

where α and β are real numbers such that 0 < α ≤ β < ∞ [70]. The corresponding

frequency domain condition can be derived as follows:

α

∫

PΛ∗
|F1(u)|2du ≤

∫

RD

|F1(u)|2|Φ(u)|2du ≤ β

∫

PΛ∗
|F1(u)|2du

α

∫

PΛ∗
|F1(u)|2du ≤

∑
r∈Λ∗

∫

PΛ∗
|F1(u + r)|2|Φ(u + r)|2du ≤ β

∫

PΛ∗
|F1(u)|2du

α

∫

PΛ∗
|F1(u)|2du ≤

∫

PΛ∗
|F1(u)|2

∣∣∣
∑
r∈Λ∗

Φ(u + r)
∣∣∣
2

du ≤ β

∫

PΛ∗
|F1(u)|2du

∀u ∈ RD.

(4.16)

It should be noted that F1(u) is periodic with periodicity of PΛ∗ , while Φ(u) is aperi-

odic. Hence a sufficient condition is to have

α ≤
∑
r∈Λ∗

|Φ(u + r)|2 ≤ β, ∀u ∈ RD, (4.17)

as given in [14]. However, it can be shown that a necessary condition is

ὰ ≤
∑
r∈Λ∗

|Φ(u + r)|2 ≤ β̀, ∀u ∈ RD, (4.18)

for some 0 < ὰ ≤ β̀ < ∞. Thus {φd : d ∈ Λ} forms a Riesz basis if and only if
∑

r∈Λ∗ |Φ(u+r)|2 is positive and finite ∀u ∈ PΛ∗ . This condition can easily be verified

for any given display response φ. In other words, {φd : d ∈ Λ} forms a Riesz basis for

V(φ, Λ) if and only if
∑

r∈Λ∗ |Φ(u + r)|2 is positive and bounded on any unit cell of

Λ∗. The Riesz basis condition (4.15) ensures that the display transformation is stable
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and that f̃1 ∈ L2(RD) for all f1 ∈ `2(Λ).

With this setup, our problem is to find, for each fc ∈ L2(RD), the element f̃1 ∈
V(φ, Λ) such that ‖fc − f̃1‖2 is minimized; this is simply the projection of fc onto

V(φ, Λ). In order to find the optimal f̃1, we need the reciprocal basis (sometimes

called the dual basis) for V(φ, Λ) [71].

4.7.2 Minimum error sampling

The solution for the problem (4.13) is given through the framework of the theorems

that will be developed in this section. These theorems generalize the result that was

given in [14] to arbitrary sampling structure Λ. In addition I will prove that the

solution also forms a Riesz basis for the generalized case; this part was given without

proof for the 1-D case by [14].

Theorem 1 (Riesz bases on arbitrary lattices). For any space V(φ, Λ) on ar-

bitrary lattice Λ with Riesz basis {φd : d ∈ Λ} there exists a reciprocal basis 2

{
◦
φe : e ∈ Λ} that form a Riesz basis that spans this space.

Proof. Assume ∃
◦
φ ∈ V(φ, Λ) such that 〈

◦
φ, φd〉 = δ[d],∀d ∈ Λ.

Since
◦
φ ∈ V(φ, Λ), then it can be written as a linear combination of φd, d ∈ Λ, as

◦
φ(x) =

∑
g∈Λ

p[g]φ(x− g)
F.T.↔

◦
Φ(u) = P (u)Φ(u), (4.19)

where P (u) is periodic and Φ(u) is aperiodic. From the above condition on
◦
φ we get

〈∑g∈Λ p[g]φg, φd〉 = δ[d], which can be written as

∑
g∈Λ

p[g]〈φg, φd〉 = δ[d].

2

Reciprocal basis means that 〈
◦
φe, φd〉 = δ[d− e] ∀d, e ∈ Λ [71].
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The inner product in the above expression is simply the autocorrelation of φ at d− g

which will be denoted as Rφ[d − g]. Then it follows that what we have is just a

convolution (p ∗ Rφ)[d] = δ[d]. Taking the Fourier transform on Λ for both sides we

get

P (u)
1

d(Λ)

∑
r∈Λ∗

|Φ(u + r)|2 = 1

=⇒ P (u) =
1

1
d(Λ)

∑
r∈Λ∗ |Φ(u + r)|2 .

Since the denominator is finite and non-zero (by definition of the Riesz basis (4.18)),

then P (u) exists and 0 < P (u) < ∞, ∀u ∈ PΛ∗ . This proves that the assumption

that there exists
◦
φ ∈ V(φ, Λ) holds and further more

◦
φ is unique. By the translation-

invariant nature of V(φ, Λ), then we have
◦
φe ∈ V(φ, Λ), ∀e ∈ Λ. From the orthogo-

nality above it follows easily that 〈
◦
φe, φd〉 = δ[d− e].

Substituting for P (u) in (4.19) we get

◦
Φ(u) =

Φ(u)
1

d(Λ)

∑
r∈Λ∗ |Φ(u + r)|2 . (4.20)

To prove that {
◦
φe : e ∈ Λ} forms a Riesz basis we can evaluate the summation

∑
s∈Λ∗ |

◦
Φ(u + s)|2 and verify that it satisfies (4.18). Since the denominator of the

R.H.S. in (4.20) is finite and positive then it follows that

∑
s∈Λ∗

|
◦
Φ(u + s)|2 =

1(
1

d(Λ)

∑
r∈Λ∗ |Φ(u + r)|2

)2

∑
s∈Λ∗

|Φ(u + s)|2

=
(d(Λ))2

∑
r∈Λ∗ |Φ(u + r)|2 .

It is clear that the result is finite and positive. This implies that {
◦
φe} is a Riesz basis.

Finally, we need to prove that span(
◦
φe) = V(φ, Λ). Any function f̃ ∈ V(φ, Λ) can
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be written as f̃ =
∑

d∈Λ c[d]φd, where c[d] = 〈f̃ ,
◦
φd〉 [71].

Hence, ∑

d∈Λ

〈f̃ , φd〉
◦
φd =

∑

d∈Λ

(c ∗ Rφ)[d]
◦
φd.

The R.H.S. can be shown to be equal to f̃ in the frequency domain by taking the

Fourier transform of the R.H.S. and substituting for
◦
Φ(u) from (4.20). Therefore,

we can write f̃ =
∑

d∈Λ〈f̃ , φd〉
◦
φd. This means that any function in V(φ, Λ) can be

uniquely written as a linear combination of {
◦
φe}. This completes the proof.

We arrived at a result that the reciprocal basis for V (φ, Λ) has the same form

{
◦
φ(x− d) : d ∈ Λ} and

◦
φ is given by (4.20). Now we are ready to find the solution of

(4.13). This will be done in the framework of the following theorem.

Theorem 2 (Minimum error sampling on arbitrary lattice). If a continuous-

space(-time) signal fc ∈ L2(RD) is sampled on a lattice Λ with a prefilter h1(x) and

the result is displayed with aperture φ(x) as shown in Fig. 4.6, then the prefilter h1(x)

that minimizes ‖fc − f̃1‖2 has frequency response

H1(u) =
Φ∗(u)

1
d(Λ)

∑
r∈Λ∗ |Φ(u + r)|2 (4.21)

Proof. The minimization of the error ‖fc− f̃1‖2 is determined by the projection theo-

rem [71] using an orthogonal projection PV(φ,Λ) : L2(RD) → V(φ, Λ). This projection

of fc onto V(φ, Λ) is given by PV(φ,Λ)fc = f̃1 =
∑

d∈Λ〈fc,
◦
φd〉φd. This projection can

be conceptually implemented by three operations:

1. computation of 〈fc,
◦
φg〉, ∀g ∈ RD which is equivalent to LSI filtering of fc with

h1(x) =
◦
φ(−x). For a given display aperture φ this filter is given in terms of the

reciprocal basis by Theorem 1 as H1(u) = Φ∗(u)
1

d(Λ)

P
r∈Λ∗ |Φ(u+r)|2 ;
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2. sampling of

(
〈fc,

◦
φg〉

)
, ∀g ∈ RD on Λ. This corresponds to f1[d] =

(
〈fc,

◦
φd〉

)
, ∀d ∈

Λ;

3. synthesis of the displayed image
∑

d∈Λ f1[d]φd.

Because h1(x) =
◦
φ(−x) is our theoretical camera prefilter that minimizes the

reconstruction MSE for a given reconstruction display device with filter Hdis(u) =

Φ(u) it serves as the solution of (4.13). This solution is accompanied by the condition

that hdis(x) = φ(x) should generate a Riesz basis for the space of continuous signals

that can be produced by the display device V(φ, Λ).

There are interesting discussions on the results of both theorems and I will discuss

few of them.

• Generalization of Unser’s result [14]: If D = 1, Λ = LAT([X]) then Λ∗ =

{k/X : k ∈ Z}. The normalized frequency is also given by U = u/X. This

reduces (4.21) to H∗
1 (U/X) = Hdis(U/X)

1
X

P
k∈Z |Hdis((U+k)/X)|2 , which is exactly Unser’s

formula for 1-D or higher dimensional rectangular lattice [14].

• Generalization for orthonormal bases: Orthonormal bases are a special

case of the generalized Riesz bases. If {φd : d ∈ Λ} are orthonormal then

〈φd, φg〉 = δ[d − g]. This inner product represents autocorrelation Rφ with

lags (d − g). This means that Rφ[d] = δ[d]. Taking the Fourier transform on

Λ and substituting in (4.20) then the reciprocal basis satisfies
◦
Φ(u) = Φ(u).

This is true for any orthonormal basis (orthogonal bases can be normalized).

If φ(x) = sinc(x) then
◦
φ(x) = sinc(x) which is the classical Shannon sampling

theory. The same applies for a rect function. The rect function is of interest to

us here because it models the characteristics of the TFT display devices. Hence,
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for displaying images on a TFT display the best theoretical camera, in the MSE

sense, is to have h1(x) = rect(x) 3.

• Relaxing the safeguard in [14]: On top of the Riesz basis requirement for

φ, a safeguard condition, called partitioning of the unity, was given in [14] as
∑

d∈Λ φ(x + d) = 1, ∀x ∈ RD. In fact this is a very strong condition that is

satisfied by few basis functions like spline family. This led the results in [14, 69]

to be pivoted around splines. The rationale behind this safeguard condition is

the ability to represent signals as closely as possible from their samples. However,

this safeguard condition is not satisfied by practical CRT monitors. Indeed, for

a constant sampled input image the output displayed image is not a constant

signal but rather is fluctuating. If we try a simple experiment to generate a

constant full intensity image using a CRT, then we will obtain a fluctuating image

intensity. Indeed, we show the plot of the L.H.S. of this condition using a model

of a practical Gaussian beam response hdis of a typical CRT in Fig. 4.7. The

fluctuation is clear. Theorem 1 applies to general Riesz bases so we do not require

this safeguard here. Hence, practically we require
∑

d∈Λ φ(x + d) 6= 0,∀x ∈ RD.

Without the requirement of Unser’s safeguard condition we can now extend the

minimum error sampling theory for arbitrary non-separable lattices for more

general class of functions φ. An admissible choice for φ is now a Gaussian

function simulating typical CRT monitors.

We assume separability of the Gaussian beam, hence the results are presented

for 1-D. The optimal filter was designed using (4.21) and the results for designing

the optimal pre-filter of the theoretical camera for some display devices are shown

in Fig. 4.10. The selection of the optimal standard deviation is device dependent.

I ran a simulation for the whole process for different standard deviation values for

3

rect(x) = rect(−x), so H∗
1 (u) = H1(u)
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the Gaussian beam. I started by a super-high-resolution image and performed the

following four steps:-

1. Pre-filter the image simulating fc using a digitally designed approximation for

H1(u), that is the corresponding solution for a selected standard deviation for

the Gaussian display Hdis. I used a FIR filter designed using the windowing

technique using the Blackman-Harris window.

2. Down-sample it to Λ.

3. Up-sample to the original lattice of the super-high-resolution again

4. Interpolate the up-sampled image by reconstruction with the display aperture.

5. Compute the MSE between the interpolated image and the original one.

I ran this procedure several times for different assumptions on the value of the standard

deviation of the Gaussian function modelling the display aperture. I measured the

MSE expressed as PSNR for each run, and the plot is shown in Fig. 4.8. The result

for the maximum PSNR was found to occur when setting the standard deviation σdis of

the Gaussian function to the value 0.36 of a pixel. The interpolated image obtained for

running the experiment for this value of σdis also looked visually the best based on my

personal preference as a human viewer in terms of edge sharpness, contour crispness,

no ringing in smooth regions, and no ringing near edges. Also the optimal standard

deviation obtained agrees with the technical characteristics obtained in [72]. The

magnitude of the frequency response for the overall designed Anti-aliasing-Sampling-

Reconstruction system H1(u)Hdis(u) for one case is shown in Fig. 4.9. This shows

the response of the system that minimizes the error ‖f̃1 − fc‖2 in the MSE sense.

A 2-D plot of the magnitude of the frequency response of a theoretical camera that

is optimally designed for a CRT whose Gaussian aperture has standard deviation of

0.36 pixel is shown in Fig. 4.11(a). A plot in dB is shown in Fig. 4.11(b), of size 11
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unit-cells of PΛ∗ , indicates that the designed filter has a frequency response that is

monotonically decreasing.
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Fig. 4.7 Partitioning of unity is not satisfied by typical CRT display;
Gaussian with σdis = 0.53 pixel.
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Fig. 4.8 PSNR in (dB) for reconstruction by displays with different
Gaussian standard deviations.

4.7.3 More on CRT modelling

The model for CRT display device aperture is a Gaussian function [72]. The standard

deviation for this Gaussian function model was found in [72] to be around 0.375 of

a pixel. This value complies with the subjective visual tests that I have performed

and still to be further investigated. However, there is a very important factor that is
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Fig. 4.9 Magnitude of the frequency response for the overall designed
Anti-aliasing-Sampling-Reconstruction system for σdis = 0.4 pixel.

usually ignored in the literature for modelling the CRT display aperture. It is the effect

of the digital-to-analog converter cascaded with the CRT aperture in the horizontal

direction. The way a CRT operates is that it sweeps the horizontal scan lines in a

continuous mode while it operates in a discrete fashion vertically from one scan line to

the other. In the horizontal direction the digital data of the image f1[x] are converted

by a digital-to-analog device to form a continuous signal that is filtered by the Gaussian

aperture of the CRT. Then in the horizontal direction the cascade effect to these two

processes has to be considered. In a preliminary investigation, I assumed that the

digital-to-analog device is the commonly-used sample-and-hold and I also tried others

like linear and cubic ones. I convolved both the model of digital-to-analog converter

with the Gaussian function modelling the CRT aperture. Then I performed a 1-D

optimization search for the standard deviation of another Gaussian function that can

closely model the cascade effect of these two processes. A 1-D plot of the magnitude

of the frequency response of the display Gaussian aperture, cascaded process, and the

approximating Gaussian are shown in Fig. 4.12. The digital-to-analog converter used

is sample-and-hold and the Gaussian function used is of standard deviation 0.36 of a

pixel. The resulting approximating Gaussian is found to have a standard deviation

which is 4/3 × 0.36 of a pixel in this case. It is clear that the effect of this cascade
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Fig. 4.10 Magnitude of the frequency responses for different display
reconstruction Gaussian filters Hdis(u) with different standard deviations
σdis (a)0.24, (c) 0.47, (e) 0.53, (g) 0.71 of a pixel, and the magnitude of
the frequency response of the corresponding optimal theoretical camera
pre-filter (b, d, f, h) H1(u) for (a, c, e, g) respectively.



4 Observation Model for Regularized Image Up-sampling 104

−2/X

−1/2X
0

1/2X

2/X

−2/X

−1/2X
0

1/2X

2/X

0

0.2

0.4

0.6

0.8

1

1.2

u (c/ph)v (c/ph)

(a)

−5/X

−1/X
0

1/X

5/X

−5/X

−1/X
0

1/X

5/X

−200

−150

−100

−50

0

u (c/ph)v (c/ph)

dB

(b)

Fig. 4.11 Magnitude of the frequency responses for the theoretical cam-
era’s filter H1(u) for a Gaussian model CRT with standard deviation 0.36
of a pixel (a) magnitude, (b) dB plot.

process is changing in the Gaussian aperture function in the horizontal direction. For

this given example I obtained the optimal 2-D theoretical camera. The contour plot of

the magnitude of its frequency response is shown in Fig. 4.13. It is clear that the profile

of the frequency response is more stretched in the horizontal direction than that of the

vertical direction. This means that more resolution will be allowed in the horizontal

direction and perhaps more aliasing. The subjective quality of a down-sampled version

of a very-high resolution image in effect to this correction in the modelling showed

some enhancement. It should be noted that I compared the down-sampled image from

the very-high resolution one obtained by the optimal theoretical camera and by using

the best methods in Matlab and Photoshop. The subjective quality of the down-

sampled image by the optimal theoretical camera was much better in many aspects.

There was less aliasing and better perceived resolution in the image down-sampled by

the optimal theoretical camera. These results need to be further investigated on a

larger set of images.
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Fig. 4.12 Cascade effect of a sample-and-hold digital-to-analog con-
verter and a Gaussian function with standard deviation σdis = 0.36 pixel.
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Fig. 4.13 Optimal theoretical camera for the cascade effect of a sample-
and-hold digital-to-analog converter and a Gaussian function with stan-
dard deviation σdis = 0.36 pixel.
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4.7.4 Case Study for hexagonal lattice.

In this section I will describe an experiment for designing the optimal aperture of

the theoretical camera using (4.21) for images defined on a hexagonal lattice Λ with

sampling matrix VΛ =


2X X

0 X


, where X is measured in units of picture height

(ph). This sampling structure is the one used for sampling the green channel in typical

color-filter-array CCD cameras. The associated display system φ(x) using a CRT is

shown in Fig. 4.14. The display system consists of three stages: first, up-converting the

sampling structure to a rectangular one with VΞ = diag(X, X) using a digital process.

Second, converting the image in the horizontal direction to an analog signal using a 1-D

digital-to-analog converter (DAC). This DAC is implemented in the graphics card and

I assumed the sample-and-hold type. Third, displaying the 1-D analog signal on the

CRT which is modelled by a convolution with a Gaussian function [72]. The selection

of the standard deviation of the Gaussian function modelling the CRT was found

based on our empirical experiments, as given in the previous section, to be 0.36 of the

scan line spacing which also agrees with the technical characteristics obtained in [72].

Cascading these processes, which involves digital and analog components, results in a

display aperture φ defined on the hexagonal structure Λ whose unit-sample response

is plotted in Fig. 4.15. The corresponding 2-D plot of the magnitude of the frequency

response of the designed optimal theoretical camera in the MSE sense is shown in

Fig. 4.16.

hDAC(x)

sampling structure conversion DAC CRT

f̃1(x)
hdis(x)hI [x]↑ Λ → Ξ

f1[x]

Fig. 4.14 Sample display system φ.
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Fig. 4.15 Unit-sample response of the display system φ defined on
hexagonal lattice.
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Fig. 4.16 Magnitude of the frequency response for the designed theo-
retical camera filter H1(u) for the display aperture of Fig. 4.15.
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Modelling Filter Gauss-
Gauss (↓ 25)

Rect-Rect
(↓ 25)

Gauss-Rect
(↓ 25)

Rect-
Gauss
(↓ 25)

Resulting Optimal Mod-
elling filter

See Fig. 4.5,
4.4(b)

Moving Av-
erage

see Fig. 4.3(a) see
Fig. 4.3(b),
4.4(a)

Comments Optimized
Gaussian-like:
variance is
critical

Phase cor-
rection is
critical

Moving Aver-
age can work
but not opti-
mal

Neither
Gaussian
nor moving
average

Simulated Optimization
(Upper bound)

61.96 63.22 53.48 58.35

Our Model with PSD
model: (4.11)

53.51 58.39 52.20 55.15

Moving Average 32.31 63.22 50.42 31.77
Maximally flat ω−3dB =
π

4X

34.45 37.22 38.03 29.00

Maximally flat ω−3dB =
π

8X

38.07 33.03 32.76 38.97

Optimized Gaussiana 53.69b 40.90c 40.43d 38.42 e

a

Standard deviation of optimized Gaussian
b

2.1772 pixels
c

1.5635 pixels
d

1.497 pixels
e

1.874 pixels

Table 4.1 Performance of modelling filters for different scenarios:
‖e(x)‖2, MSE expressed as PSNR (dB)
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Chapter 5

Results of Image Up-sampling

5.1 Results of regularized grey-scale image up-sampling

5.1.1 Perceptual uniformity versus linearity

The output light of CRTs are related to the input image by the power law [72]; images

are raised to the power of a constant (γ) by the CRT. Hence, in order to display images

correctly on CRTs they need to be compensated for this effect by preprocessing them.

This compensation process is known as gamma correction. The gamma correction is

performed automatically by physical cameras so that the digital image obtained is

ready to be fed directly to the CRT. A commonly-used gamma correction for CRTs is

the ITU-R Rec. 709 given by

f (γ) =





4.5f f ≤ 0.018;

1.099f 0.45 − 0.99 0.018 < f ≤ 1,

which is plotted in Fig. 5.1. An advantage associated with the gamma correction

process is that it produces images that are considered to be approximately perceptually

uniform. The gamma correction process is a non-linear process and our observation
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model designed in section 4.3 is applicable to LSI systems. This means that we need

to perform our processing on the non-gamma-corrected image. Now we have two

contradictory requirements:

1. We need the processing to be performed in the linear non-gamma-corrected grey

scale space, to be compliant with the LSI nature of the designed observation

model.

2. The processing should be done in an approximately perceptually-uniform space

in accordance with the properties of the HVS.

In order to solve this problem I developed a methodology that performs all the process-

ing in the linear grey-scale space while correcting for the perceptual uniformity using

the gamma-correction. This is done by obtaining a correction weight that depends

on the grey-scale value of the sample to be processed. Let us denote the gamma-

corrected image by f (γ) and the distance between 2 grey-scale values as ∆E and ∆Eγ

in the grey-scale and the gamma-corrected space respectively. The correction weight

that maps the measure ∆E to its corresponding ∆Eγ, for small values of ∆E, can be

obtained simply by computing ∂f (γ)

∂f
. The plot for this correction weight computed on

a grey-scale range [0, 1] is shown in Fig. 5.2 and is given by

∂f (γ)

∂f
=





4.5 f ≤ 0.018;

0.49/f 0.55 0.018 < f ≤ 1.

The constant part of the weight is due to the corresponding linearity of the gamma-

correction curve shown in Fig. 5.1. Hence we can write the corrected distance ∆Ecor

as

∆Ecor =
∂f(γ)

∂f
∆E (5.1)

These weights are computed for a reasonable step to quantize the grey-scale range

[0, 1] and then stored in a look-up table (LUT). This LUT is then used by any im-
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Fig. 5.1 ITU R Rec. 709 for gamma correction.

age processing algorithm to correct the sample updates during the processing. If we

want to update f [x] by a value of ∆E then we quantize the value of f [x] using the

same quantization step used in creating the LUT yielding a quantized value q. Then

the value of q is used as an index entry in the LUT to access the correction weight

needed. I used these correction weights in image up-sampling and it resulted in subtle

enhancements near the edges. It should be noted that the procedure described here

can be applied on the L channel used in the CIELAB color space which is more per-

ceptually uniform than the gamma-corrected grey scale. The reason that I used the

gamma-corrected is just for convenience because generally digital images are provided

in the gamma-corrected space.

5.1.2 Implementation algorithms

The implementation of the grey-scale regularized image up-sampling is described by

the following algorithms.

Algorithm 1. Image up-sampling (f2, λ, ∆T, ε)
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Fig. 5.2 Correction weights ∂f (γ)

∂f .

1. Undo the gamma-correction to f2

2. Initialize f
(0)
1 by any arbitrary image

3. set n = −1

4. Do until termination criterion is satisfied

(a) n = n + 1

(b) Estimate the preconditioned mean curvature ‖∇xf
(n)
1 ‖κ(n)

by Algorithm 2 or 3

(c) Compute the error e(n) = Hf
(n)
1 − f2 as in Fig. 5.3

(d) Compute the residue r(n) = HTe(n) as shown in Fig. 5.3

(e) ζ =
∂f

(γ)
1

∂f1
|f1

(f) f
(n+1)
1 = f

(n)
1 + ζ∆T (λ‖∇xf

(n)
1 ‖κ(n) − r(n))
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(g) If MSE(f
(n+1)
1 ,f

(n)
1 ) < ε then terminate

5. Store f
(n)
1

Algorithm 2. Preconditioned mean curvature (f).

1. Estimate the partial derivatives: fx, fy, fxx, fyy, fxy by (3.15)

2. Estimate ‖∇xf‖ =
√

f 2
x + f 2

y

3. If ‖∇xf‖ = 0 then set ‖∇xf‖κ = 0

4. Else using (3.6) set ‖∇xf‖κ =
fxxf2

y−2fxfyfxy+fyyf2
x

f2
x+f2

y

5. Return ‖∇xf‖κ

The preconditioned mean curvature can also be computed analytically in terms of

a specific prototype basis function φ. This function serves as the basis of an embedding

space V(φ, Λ). This gives the freedom to use many different prototype functions φ

like splines or any other that combines the cascade effect of the display device used

and an approximated LSI response of the HVS.

Algorithm 3. Advanced preconditioned mean curvature (f, φ).

1. Estimate the partial derivatives: fx, fy, fxx, fyy, fxy by (3.21)

2. Estimate ‖∇xf‖ =
√

f 2
x + f 2

y

3. If ‖∇xf‖ = 0 then set ‖∇xf‖κ = 0

4. Else using (3.6) set ‖∇xf‖κ =
fxxf2

y−2fxfyfxy+fyyf2
x

f2
x+f2

y

5. Return ‖∇xf‖κ
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−
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Preconditioned mean curvature
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1 ‖κ(n)

Observation Model (H)

Fig. 5.3 An iteration in the up-sampling algorithm.

5.1.3 Experiments and results

In this section I will present some sample results for grey-scale image up-sampling

using the proposed approach in (3.18). The solution scheme is implemented using an

LSM with hybrid motions interacting simultaneously that are given by (3.19). The

iterative numerical implementation of the LSM given by (3.20) is implemented using

algorithms 1 and 2. The choice of the value of the regularization parameter here was

based on the subjective quality of the results by running the experiments for several

values of λ. The subjective quality of the results are measured informally by my

personal preference as a human viewer in terms of edge sharpness, contour crispness,

no ringing in smooth regions, and no ringing near edges. Different choices for the

regularization parameter yield visually different results as shown later in the results.

All these results for different λ produce visually acceptable results and are all visually

better than other techniques like cubic B-spline. The results presented include various

choices of λ. The sampling structures Λ ⊃ Γ used here are both rectangular. The

scenario used to design the observation model for up-sampling is assumed to be Gauss-
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Rect(↓ 25). Hence, the up-sampling is by a factor of 5 in each dimension. The iterative

process is run until convergence. Normally convergence is achieved in a few hundred

iterations. However, the convergence for sharp step edges and ramp edges is slower and

may take up to a few thousand iterations. The LR image f2[x] shown in Fig. 5.4(a)

was used and the resulting HR image f1[x] for λ = 0.15, ∆T = 1, and 200 iterations

is shown in Fig. 5.4(b). The result is also obtained using the Tikhonov regularization

with λ = 0.3 and is shown in Fig. 5.4(c). The choice of the regularization parameter

for the Tikhonov regularization method was based on my personal visual preference

as described before. The results by the proposed method show enhancement over

the Tikhonov regularization in many aspects. Regions that contain detailed objects

like the camera are greatly enhanced and details are clear; these fine objects are

treated as separate structures and did not undergo topological changes like merging.

Edges with different orientations are sharp and continuous with no staircase effects;

this is clear in the camera handle, the coat’s edge, and the edge between hair and

face. No ringing appears in smooth regions like the sky behind. Another example

for up-sampling the tripod of the camera in the cameraman image by a factor of 25

using the proposed approach is shown in Fig. 5.5. The corresponding up-sampling

using cubic B-spline is shown in Fig. 5.6. The proposed approach shows significant

enhancement at the sharp edges as can be seen along all the rods of the tripod. An

interesting enhancement can be seen at the white bottom part of the tripod main rod.

In the spline up-sampling this part shows a roping effect. In the proposed approach

this part is neatly up-sampled and its geometrical structure is preserved. I compared

my results to Tikhonov regularization and cubic B-spline because both methods are

currently used in various image processing applications. Tikhonov regularization is the

most widely used regularization method used in most image processing applications

because its numerical implementation is traceable and well studied. Cubic B-spline is

receiving a lot of researchers attention in applying it in solving many image processing
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(a)

(b)

(c)

Fig. 5.4 Up-sampling of (a) a portion of the cameraman image by a
factor of 25 using (b) the proposed approach λ = 0.15 (c) Tikhonov reg-
ularization λ = 0.3.
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problems, especially with its implementation for the minimum-error sampling. The

false edges that are generated in Fig. 5.5 in the central part of the tripod is due to

an early termination of the process (200 iterations) before this ramp edge was allowed

to converge. Ramp edges usually need more iterations until they are represented by

sufficient number of grey scale levels. Furthermore, over-regularization can be used

to get rid of this effect by setting a slightly larger values of λ. I will show results for

up-sampling the tripod of the camera in the cameraman image for different values of

λ, ∆T = 1, and after 5000 iterations. The results are shown in Fig. 5.7, 5.8, 5.9 for

λ = 0.06, 0.1, 0.4 respectively. I recommend using λ ∈ [0.02, 0.2] as a tuning parameter

left to the user preference. Based on the experience gained from applying this approach

to various images, values of λ closer to 0.1 usually provides the best results based on

my visual preference. Another example is up-sampling a portion of the Barbara image

shown in Fig. 5.10(a) by a factor of 5 in each dimension using the proposed approach

(Fig. 5.10(b)) and cubic B-spline (Fig. 5.10(c)). The parameters used in the result

in Fig. 5.10(b) are λ = 0.15, ∆ = 1, and 1000 iterations for a Gauss-Gauss (↓ 25)

observation model scenario. It is clear from the figures that the result by the proposed

approach is superior to the result by the cubic B-spline. The stripes are sharp without

any ringing as in the cubic B-spline result in Fig. 5.10(c). The hand on the left side

of the image is smooth in Fig. 5.10(b) while it suffers from ringing in Fig. 5.10(c).

The main drawback of the proposed approach as being an iterative approach is the

computation time. Specifically, the main burden in the computation is the estimation

of the mean curvature κ. Its computation requires the following:

• Estimation of 5 partial derivatives which are implemented by convolutions with

different kernel sizes.

• Computation of the squares of both fx and fy.

• Performing an additional 4 multiplications, 3 additions, and 1 division.
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Fig. 5.5 Up-sampling of the tripod of the cameraman image by a factor
of 25 using the proposed approach for 300 iterations and with λ = 0.15 .
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Fig. 5.6 Up-sampling of the tripod of the cameraman image by a factor
of 25 using cubic B-spline.
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Fig. 5.7 Up-sampling of the tripod of the cameraman image by a factor
of 25 using the proposed approach for λ = 0.06.
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Fig. 5.8 Up-sampling of the tripod of the cameraman image by a factor
of 25 using the proposed approach for λ = 0.1.
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Fig. 5.9 Up-sampling of the tripod of the cameraman image by a factor
of 25 using the proposed approach for λ = 0.4.
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(a)

(b)
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(c)

Fig. 5.10 Up-sampling of (a) a portion of Barbara image by a factor of
25 using (b) the proposed approach for 300 iterations and with λ = 0.15
and (c) cubic B-spline .
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The details of the computations of κ for a single pixel of the HR image in each iteration

is given in Table 5.1. This is in addition to the need for many memory accesses to re-

trieve the intermediate results. However, this drawback can be mitigated by hardware

implementation since the computation is localized in a small neighborhood around

the target pixel. Another way to enhance the speed is by mathematical inspection

of the problem and coming with a better optimization technique. Fortunately, there

is a recent work by Combettes [73, 74] to solve these kinds of optimization problems

numerically in the dual space. He implemented this dual space numerical optimization

for quadratic-type objective functions for signal restoration [73]. This seems to be a

promising mathematical result to overcome the current computation load. Implemen-

tation of this new optimization method is still needed for the total-variation norm like

the one we are using in this thesis.

Item Multiplications Additions
fx 2 2
fy 2 2
fxx 3 3
fyy 3 3
fxx 3 3
fxy 4 4
f 2

x 1 0
f 2

y 1 0

fxxf
2
y 1 0

fyyf
2
x 1 0

fxfyfxy 2 0
Numerator sum 0 3
Denominator sum 0 1
Division 1 0
Total 23 21

Table 5.1 Computational complexity of estimating the mean curvature.
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5.2 Extension to color image magnification

After the success of the proposed approach in solving the regularized grey-scale image

up-sampling, the natural step is to extend the approach to color images. Many re-

searchers in the field have advised exploiting the correlation among the color channels

during the processing. This advice is based on results from biological vision system

studies that humans synthesize information from all channels to convey the visible

information [75]. Since we are concerned with producing high-quality HR images that

will be viewed by the human vision system (HVS), then the processing should be op-

timized for this HVS. There are many color spaces to represent the color information.

These spaces are optimized for a variety of purposes or physical devices as follows:

• Acquisition devices such as camera, scanner, etc.

• Display device color spaces such as ITU-R Rec. 709 for the red, green, and blue

phosphors used in CRTs and the ITU-R Rec. 709 gamma-corrected RGB used

for CRT monitors;

• Broadcasting, which requires compression due to the limited transmission media

bandwidth. The luma-color-difference (ITU-R Rec. 601) color space is commonly

used for this purpose;

• Finally, HVS oriented color spaces like the CIE 1976 LUV and CIE 1976 LAB

color spaces.

One can always convert from one color space to the other. A collection of these

transformation formulas from one color space to the other can be found in [76]. One

should ask an important question before performing any processing involving color

images: what is the suitable color space? The answer depends on what one wants to

do. In our case we are interested in a color space that is oriented towards the HVS.

One of the most successful and simple to compute is the CIELAB [77]. The main
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advantage of this space is that it is a perceptually uniform space. This means that

the Euclidean distance between the representations of any two color stimuli in the

LAB space corresponds to a uniform measure of the ability of the human sensation

to distinguish these two colors. Indeed this is crucial for the up-sampling problem

because we seek perceptual uniformity of color transitions in the newly added samples

by the up-sampling process. However, there are two associated difficulties in using the

LAB color space in our case:

1. The LAB color space is not a linear space and the mapping from the camera

RGB space or the display ITU-R Rec. 709 RGB space to LAB space requires a

non-linear transformation. This is problematic to be involved as a stage in the

observation model which is linear by nature.

2. In some applications like the demosaicking of a color filter array, the three RGB

values are not available at each sample location and hence we cannot perform

the transformation to LAB space.

We would like to perform the up-sampling process in the LAB space but we are faced

with the two above-mentioned difficulties. Fortunately, I solved this problem as given

in the next section

5.2.1 Implicit processing in perceptually-uniform color spaces

First we need to understand the idea of perceptual-uniformity and why the RGB or the

gamma-corrected RGB spaces would not offer a good solution when we are interested

in presenting the results to a HVS. I produced both the CRT gamma-corrected RGB

gamut1 and the RGB gamut in the LAB space. When a perceptually uniform space is

mapped to the LAB space, its plot should resemble a cubic structure with equidistant

planes along the three axes L, a, and b. This means that the distance between two

1

Gamut: the set of colors that can be produced by a device [76].
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colors in this perceptually uniform space can be measured by the Euclidean distance

in the LAB space. The farther the gamut or the plot of a color space in the LAB

space from the cubic structure with equidistant planes, the farther it is from being

perceptually uniform. The gamuts of the gamma-corrected RGB and the RGB color

spaces are plotted in Fig. 5.11 and Fig. 5.12 respectively. I generated these plots by

designing and running algorithm 4. These plots were generated for a step size of 0.2

between the planes and 256 points to plot each line. Each line is plotted by fixing 2

values of the RGB representation while changing the third color along the full range

of values. In the plot, the color of each line corresponds to the single color value that

is changing. In other words, a green line represents a plot for fixed values of both R

and B while G is changing.

Algorithm 4. Gamut generation (pstep, lstep).

1. For R = 0:pstep: 1

• For G = 0:pstep: 1

– For B = 0:lstep: 1

∗ plot gamut point(R,G,B)

2. For B = 0:pstep: 1

• For R = 0:pstep: 1

– For G = 0:lstep: 1

∗ plot gamut point(R,G,B)

3. For G = 0:pstep: 1

• For B = 0:pstep: 1

– For R = 0:lstep: 1
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∗ plot gamut point(R,G,B)

Algorithm 5. plot gamut point (R,G, B)

1. Convert the (R,G,B) point to (L,a,b) point

2. Plot the point whose coordinates are (L,a,b)

It is clear that the RGB color space is far from being perceptually uniform. The

gamma-corrected RGB is better than RGB in terms of perceptual uniformity and is

sometimes claimed to be approximately perceptually uniform. Ironically, this is far

from the truth; the gamma-corrected RGB can only locally be considered as percep-

tually uniform because of the local orthogonality of its representation in LAB space.

If we inspect the plotted planes orthogonal to any of the LAB axes, we find that they

are not equidistant although they were generated from equidistant values in the CRT

gamut!

To keep our designed observation model intact and to be able to handle problems

like demosaicking of the color-filter-array, then we ought perform the analysis and

the explicit processing in RGB or YCbCr color space. In order to perform all the

processing in LAB space I developed the following analysis and results as follows

1. Analytically calculate the Jacobian of the transformation from RGB to LAB

space as

J =




∂L
∂R

∂a
∂R

∂b
∂R

∂L
∂G

∂a
∂G

∂b
∂G

∂L
∂B

∂a
∂B

∂b
∂B




2. Calculate the rate of change of the Euclidean distance between two colors in the

LAB space with respect to each of R, G, and B. The Euclidean distance in LAB

space between two colors is denoted by ∆E∗
ab. Then this above rate of change



5 Results of Image Up-sampling 131

0
20

40
60

80
100

−100

−50

0

50

100
−100

−50

0

50

100

L*a*

b*

Fig. 5.11 CRT gamut: perceptual non-uniformity of Gamma-corrected
RGB (ITU-R Rec. 709) plotted in CIELAB color space.
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Fig. 5.12 Perceptual non-uniformity of RGB (ITU-R Rec. 709) plotted
in CIELAB color space.
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is evaluated as:




∂∆E∗ab
∂R

∂∆E∗ab
∂G

∂∆E∗ab
∂B


 =




√
( ∂L

∂R
)2 + ( ∂a

∂R
)2 + ( ∂b

∂R
)2

√
( ∂L

∂G
)2 + ( ∂a

∂G
)2 + ( ∂b

∂G
)2

√
( ∂L

∂B
)2 + ( ∂a

∂B
)2 + ( ∂b

∂B
)2




This is admissible because of the local orthogonality of the RGB and the Gamma-

corrected RGB in the LAB space.

3. Compute the quantities derived in step 2 for a reasonable quantization step for

both the RGB and gamma-corrected RGB space. I used a step of 8 intensity

levels so that we have 256/8 = 32 values for each color. This will yield a total

of 323 = 32768 values.

4. Normalize the obtained values by dividing them by the ratio between the maxi-

mum distance that can be measured CIELAB space and the maximum distance

that can be measured in the corresponding RGB or gamma-corrected RGB space.

This means dividing by a value of 300. This is just for convenience to obtain

reasonable values of the magnitudes for the rate of change.

5. Store the numerical values of the derivatives obtained in step 3 in a look-up table

(LUT) for fast use by any color image processing technique.

The plots for
∂∆E∗ab

∂R
,

∂∆E∗ab
∂G

,
∂∆E∗ab

∂B
are shown in Fig. 5.13. Similarly, the plots for

performing the same process for gamma-corrected RGB are shown in Fig. 5.14. It is

obvious from the plots that the values of the Euclidean distances are not constant and

depend on the values of the color represented by its three values in RGB or gamma-

corrected RGB space. The spike that appears in all the plots near the blue color

(G = R ≈ 0) is due to a limitation in the CIELAB space in the vicinity of the CRT

blue primary [76]. There are other CIE formulas to correct for this defect; an example

is the CIE-DE 2000. However, its computational complexity is very high and it needs
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external tuning parameters which does not justify this small correction that might not

be critical in our case here.

We can use the obtained weights by this procedure to correct the computations

during our up-sampling algorithm. This is done by weighting the iterative changes to

the RGB values by these obtained weights. Without any corrections for perceptual

uniformity a distance between two colors in the RGB or the Gamma-corrected RGB

space is measured by
√

(∆R)2 + (∆G)2 + (∆B)2. This measure does not reflect any of

the properties of the HVS. Thus I propose measuring the corrected distance between

two colors in the RGB or the gamma-corrected RGB by the following formula

∆ERGB =

√(∂∆E∗
ab

∂R
∆R

)2

+
(∂∆E∗

ab

∂G
∆G

)2

+
(∂∆E∗

ab

∂B
∆B

)2

. (5.2)

5.2.2 Background on vectorial total variation norm for color images

The transitions in the color channels are correlated because they reflect the transition

from one object to another or texture in the real scene. Hence, there is a unique

definition for an edge or contour for all three color channels. They should all reflect

a unique identification of the spatial location of the edge but might possibly have

different magnitude and sign of change across the color channels. Then the important

factor in designing a vectorial total variation regularizer is to have a unified definition

for the measure of the transitions for all color channels. In this case the gradient of

the HR image f̃1 represented in RGB color space is actually a Jacobian matrix given

by

Df̃1 =




∂R
∂x

∂G
∂x

∂B
∂x

∂R
∂y

∂G
∂y

∂B
∂y


 .
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(a) (b)

(c)

Fig. 5.13 Rate of change of perceptual-uniformity per change in (a)
Red, (b) Green, and (c) Blue measured in CIELAB distance.
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(a) (b)

(c)

Fig. 5.14 Rate of change of perceptual-uniformity per Gamma-corrected
(a) Red, (b) Green, and (c) Blue measured in CIELAB distance.
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The idea of vector edges and contours for color images was analyzed in the framework

of differential geometry by Di Zenzo [78]. He described the first fundamental form for

a RGB color image to be given in what is sometimes called the G matrix as follows:

G =


R2

xx + G2
xx + B2

xx Rxy + Gxy + Bxy

Rxy + Gxy + Bxy R2
yy + G2

yy + B2
yy


 , (5.3)

where R, G, and B denotes the color channels and the subscript denotes the directional

spatial derivative. The matrix G has two eigenvalues λ+ and λ− which correspond to

the magnitude (strength) of the transition along two orthogonal directions. It should

be noted that for grey-scale images λ− is zero and thus we have only one direction for

the transition (gradient) that is in the plane of the image itself. Sapiro [79] proposed

that the color image transitions should account for both eigenvalues and proposed a

variational scheme L(f1(x)) = F(λ+, λ−). However, he did not specify a particular

choice for F. Some choices have been proposed in the literature which are surveyed

in a recent paper [80]. Perhaps the most common choice in the literature is setting

F(λ+, λ−) =
√

λ2
+ + λ2− which is sometimes denoted by N+. Interestingly, this choice

is just the `2 norm of the magnitude of the gradients of the color channels. This choice

leads to a variational form that is denoted as L1 ¦ `2 ¦ `2(Df̃1)-norm by Blomgren and

Chan [81]. In their analysis they criticized this choice as being biased towards equal

transitions in all three color channels. Indeed, this is true and usually the magnitude of

the gradient for each channel will be different, especially in purely-chromatic transition

regions. They proposed the `2 ¦L1 ¦ `2(Df̃1)-norm which is basically the second norm

of the scalar total variation norm of the three channels.

I performed many comparisons for up-sampling color images using the N+ and

other 3 vectorial variational formulations that I proposed and implemented for inves-

tigation. I only got a subtle enhancement over the independent channel by channel

processing in the RGB color space. This led my research in a different direction as
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given in the following section.

5.2.3 Unified perception of geometrical structures in color images

The main influential properties of the HVS on the color image up-sampling approach

that I have taken are based on the analyses by Zhang and Wandell [82]. Their analyses

demonstrated that a spatial-CIELAB color space is closer to the properties of the HVS

than the CIELAB. They found that the CIELAB does not account for the spatial fre-

quency and was only based on the ability of humans to distinguish two constant areas

of different color stimulus. Based on their analysis it is straightforward to conclude

the following:

1. Humans perceive most of the geometric-structure outlines and deep fine details

from a luminance channel.

2. The chromatic channels act as complementary information and are perceived

with lower bandwidth by the HVS than the luminance channel.

Hence, they developed the S-CIELAB space which filters the chromatic channels in

an opponent color space more than the luminance representative in this space. Then

the filtered channels are converted to the CIELAB color space. I concluded that one

can hope to have better color image magnification by applying these concept to the

up-sampling scheme. In other words there are two important conceptual observations

1. the spatial processing of the color channels can be decorrelated in an appropriate

color space;

2. better results can be obtained by up-sampling the luminance representative com-

ponent with higher quality than that of the chromatic components. This can

be done by redistributing the computational power with higher share to the

luminance than the shares of both chromatic channels.
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Now, the idea of variational vectorial processing may seem to be a less effective

choice for two reasons:

1. In the general sense, it is not adapted to the spatial response of the HVS to

the color information which is of different bandwidth for each color channel in a

general luminance-chrominance color-space;

2. It tends to obtain nearly equal magnitude of the gradient (transitions) among

all color channels as described in the previous section. This makes it suitable for

implementation in color spaces like RGB where no single channel contains the

luminance information exclusively.

Color spaces characterized by general luminance-chrominance components such as

YCbCr and opponent color spaces, have drastically different values for the magnitude

of the gradient in each color channel for the same spatial location. The luminance

channel containing more spatial frequency contents is expected to have higher mag-

nitude of the spatial gradient than that in the chromatic channels. Generally, a vari-

ational vectorial formulation in this kind of color spaces will prefer distributing the

spatial transitions equally among the color channels. This will result in blurring the

luminance channel which blurs the perceived image while sharpening the chromatic

channels unnecessarily as they will be refiltered by the HVS. That is why I think that

the variational vectorial formulation will give its best results in RGB color space.

Hypothesis 1. For any natural color image f1[x] there exists a scalar image f1[x]

that contains the maximum perceived contents in f1[x] and can be described by

f1 = min
g
Jc(f1, g),

Jc(f1, f1) , Q(Mx(f1)−Mx(G(f1)).

G is a process that maps the color image f1 to a scalar image. Then for f1 ∈ R3 as

in RGB color space we have G : R3 → R. The preferred properties in the HVS can be
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roughly quantified in Mx, and Q is a mathematical metric that penalizes deviations.

This proposition is in accordance with the ideas in [83, 84]. Caselles et al. [83]

suggested a linear combination of the color components of f1, specifically they chose

the luminance in the HSV color space. An implemented example of this proposition

was given in [84] if we set Q = `2, Mx = ∇x, and MxG = F(λ−, λ+) as described in

the previous section. The authors in [84] were able to obtain f1 from a given f1 by

solving the optimization problem given by proposition 1. The idea is to find the best

scalar image that matches the vectorial gradient of f1 based on the first fundamental

form using the Riemannian geometry as developed in [78].

In the simplest form we can set Q to be an `p-norm, Mx be an identity operator,

and G be a mapping to the luminance. By this setup, the scalar image f1 described by

proposition 1 will be the luminance of f1. Hence, I will simply up-sample the luminance

of f with high-quality and independently from the chromatic channels up-sampling,

as shown in the next section.

5.2.4 Color image up-sampling implementation

The extension of the scalar variational up-sampling method to color image up-sampling

is given in algorithm 6.

Algorithm 6. Color image up-sampling (f2, λ, ∆T, ε)

1. Convert f2 from gamma-corrected RGB to YCbCr

2. set εY to be very small compared to ε

3. Up-sample Y using algorithm 7 as Ỳ = channel up-sampling(Y, λ, ∆T, εY )

4. Up-sample Cb using algorithm 7 as C̀b = channel up-sampling(Cb, λ, ∆T, ε)

5. Up-sample Cr using algorithm 7 as C̀r = channel up-sampling(Cr, λ, ∆T, ε)
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6. Obtain f1 by converting ỲC̀bC̀r back to gamma-corrected RGB

7. Store f1

Algorithm 7. Channel up-sampling (f2, λ, ∆T, ε)

1. Initialize f
(0)
1 by any arbitrary image

2. set n = −1

3. Do until termination criterion is satisfied

(a) n = n + 1

(b) Estimate the preconditioned mean curvature ‖∇xf
(n)
1 ‖κ(n)

by Algorithm 2 or 3.

(c) Compute the error e(n) = Hf
(n)
1 − f2 as in Fig. 5.3

(d) Compute the residue r(n) = HTe(n) as shown in Fig. 5.3

(e) f
(n+1)
1 = f

(n)
1 + ∆T (λ‖∇xf

(n)
1 ‖κ(n) − r(n))

(f) If MSE(f
(n+1)
1 ,f

(n)
1 ) < ε then terminate

4. Return f
(n)
1

The first experiment that I have run was for up-sampling a portion of the famous

bike image, used in the JPEG2000 evaluation, shown in Fig. 5.2.4(b). The up-sampling

factor was 5 in each dimension, for λ = 0.05, ∆T = 1, and assuming a Gauss-

Gauss(↓ 25) observation model scenario. The chromatic channels were up-sampled

using 300 iterations while the luminance channel was up-sampled using 5000 iterations.

The result is shown in Fig. 5.2.4(a) and for comparison the cubic B-spline was used

for each channel independently and its result is shown in 5.2.4(c)
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(a)

(b)

(c)

Fig. 5.15 Up-sampling of a portion of the bike image by a factor of 25
using (a) proposed approach λ = 0.05 (b) Cubic B-splines.
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It is apparent that the result of the proposed approach is better than cubic B-

spline. In the proposed approach the spokes of the bike are up-sampled as straight

objects with no wavy effect as in Cubic B-spline method. There are no oscillations

around the spokes in the background as those in the result using the Cubic B-spline.

Overall the image looks more clear using the proposed approach compared to using

the cubic B-spline.

The second comparison is done to compare the proposed approach to a state-of-

the-art variational vectorial method described in the framework of the Riemannian

geometry by the regularizer Js =
√

λ− + λ+ which is the `2-norm of the magnitude

of the spatial gradients of the RGB color channels and denoted by N+ in [80]. For

visual comparison the result obtained using the proposed approach in (b) is reprinted

again in Fig. 5.16(a), while that of the vectorial norm is shown in Fig. 5.16(b).

The results are very close, and the proposed approach is slightly better in some

regions. The areas labelled (a) near the spokes has some color artifact appearing

like white shadow in the vectorial approach. The central region labelled (b) where

the spokes are converging is a region of higher frequency; the proposed approach

reconstructed these frequency contents slightly better that is why it looks more distin-

guishable than that in the vectorial method. Two more examples for up-sampling a

portion of the flowers image shown in Fig. 5.17(a) and Fig. 5.18(a) by a factor of 5 in

each dimension using the proposed approach (Fig. 5.17(b), Fig. 5.18(b)) and cubic B-

spline (Fig. 5.17(c), Fig. 5.18(c)). The parameters used for the result in Fig. 5.17(b)

are λ = 0.05, ∆ = 0.25, and 300 iterations and for the result in Fig. 5.18(b) are

λ = 0.15, ∆ = 0.25, and 300 iterations. It clear from the figures that the results by

the proposed approach is superior to the results by the cubic B-spline. The results

of the proposed approach does not suffer from color artifacts at the edges that are

present in the results of cubic B-spline.
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(a)

a 
a 

b 

(b)

Fig. 5.16 Up-sampling of a portion of the bike image by a factor of 25
using (a) proposed approach λ = 0.05 (b) vectorial approach N+.
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(a)

(b) (c)

Fig. 5.17 Up-sampling of (a) a portion of the flowers image by a factor
of 25 using (b) proposed approach λ = 0.05 (c) Cubic B-splines.
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(a)

(b)

(c)

Fig. 5.18 Up-sampling of (a) a portion of the flowers image by a factor
of 25 using (b) proposed approach λ = 0.12 (c) Cubic B-splines.
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Chapter 6

Conclusions and Future Work

This chapter provides a summary of the work presented and the conclusions drawn

from this research. It lists the contributions to knowledge already achieved in this

work and provides directions for future work.

6.1 Summary and conclusions

In this thesis I have presented a regularization approach to the up-sampling of high-

quality images from lower resolution (LR) grey-scale and color images. The regularized

image up-sampling problem has been formulated using two ingredients: a newly de-

signed observation model and the total-variation regularizer. The observation model,

relating the up-sampled higher resolution (HR) image to the given LR image, leads to

the design of the data fidelity criterion. The observation model has been an outcome

of analyses of the image up-sampling problem from a new perspective. These analyses

have led to the introduction of a new concept which is the theoretical (virtual) camera.

Furthermore, the theoretical camera has been optimally designed to be adapted to the

properties of the display device used. The need for an optimal design process directed

me to generalize the minimum-error-sampling theorem, which was developed by Unser

[14] for 1-D and Cartesian grids, to arbitrary sampling lattices. The total-variation
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regularizer caused the objective criteria to be of the variational type. Hence, this for-

mulation has led to a variational optimization problem. The variational optimization

problem has been analyzed using the Euler–Lagrange formulation which has yielded

a set of partial differential equations (PDEs). The numerical solution of these PDEs

has been implemented using the level set method (LSM). The LSM is characterized in

general by a space-varying evolution speed. I have introduced two hybrid interacting

speeds for the LSM used that led to a homogenous unimodal solution method which

is not trapped in the constant-image solution as in other implementations of the LSM.

First, the image up-sampling problem has been analyzed from a new perspective.

It has been assumed that there exists an ideal HR image that can be obtained from the

original continuous-space(-time) scene by a theoretical (virtual) high-quality camera.

This is analogous to the process of acquiring the given LR image. The LR image was

obtained from the original continuous-space(-time) scene by a real physical camera.

This real physical camera is governed by the physical realization constraints. On

the contrary, the virtual camera used to obtain the ideal HR image is not restricted

by any physical realization constraints. Hence, obtaining a high-quality up-sampled

image from the given LR image has become a problem of obtaining the best estimate of

this ideal HR image. This estimation problem has been formulated in a regularization

framework, specifically a data fidelity criterion and a total-variation regularizer.

The data fidelity criterion has been designed in accordance with a novel design

of the observation model. Generally the observation model is described by a digital

prefilter followed by down-sampling from the HR image sampling lattice to the LR

image sampling lattice. An exploratory research whose outcome has been one of the

major contributions of this thesis, a generalized design of the observation model. The

theoretical analysis has been performed in the frequency domain deriving a closed

form for the observation model. This generalization is in the sense of the underlying

scenario setup. A scenario is described by any combination of LSI prefilter model for
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both the physical camera used to acquire the LR image and the theoretical camera

used to acquire the ideal HR image, the sampling lattice of the ideal HR image, and

that of the LR image. A necessity for the analysis is the power spectral density (PSD)

estimation of the continuous-space(-time) original image. I have estimated this PSD by

two methods: the Welch-modified periodogram method from a very-high resolution

image and the commonly-used parametric exponential model for images. In both

cases the observation models obtained for a specific scenario were the same. The main

conclusion drawn from designing the observation model for many scenarios is that the

commonly-used moving average as a prefilter is not suitable for many scenarios and

is inferior in performance compared to the prefilter designed by the theory developed

here.

The observation model design depends on the choice of the theoretical camera used

in the scenario setup. Since the HR image will be eventually presented to a human

viewer by using a display device, then the theoretical camera ought be optimally

designed to serve this purpose. I have designed the theoretical camera to be adapted

to the properties of the display device. Its design has been optimized to minimize the

MSE between the continuous-space-time original scene and the reconstructed one by

the display device. This optimal design problem was introduced by Aldroubi and Unser

[85] for 1-D and Cartesian grids. I have extended the theorem to arbitrary sampling

lattices which is necessary for a variety of practical image acquisition devices. By

completion of the optimal design of the theoretical camera, the observation model has

become available and hence the data fidelity criterion is specified.

The total-variation regularizer has shown success in various applications in image

processing like restoration, segmentation, and motion estimation. Its successful results

emerge from its preference to the image with the least oscillatory iso-intensity contours

while not penalizing occurrences of discontinuities (edges) in the image. Being a norm

of the spatial partial derivatives, the total-variation norm is generally defined for
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continuous functions. Hence, its criterion is analyzed using Euler’s equation resulting

in a PDE whose steady state solution is characterized by the so-called evolution by

mean curvature. The numerical implementation of this evolution by mean curvature

has been performed using the LSM which provides stable numerical schemes. The

general implementation of the LSM developed for the image up-sampling problem has

been described by two interacting speeds. The choice of the first speed has given rise

to a descent algorithm whose gradient is the preconditioned mean curvature, while

the second speed has acted as projection onto the data fidelity constraints.

The processing has been performed in a linear grey-scale space in accordance with

the linear nature of the observation model design theory. Implicitly a correction of

the processing to account for perceptual uniformity to the HVS has been measured

in the ITU Rec. R709 gamma-corrected space. This correction has been obtained by

computing the rate of change of the distance between two grey-levels in the gamma-

corrected space with respect to the grey-level value in the linear non-gamma-corrected

space. The result using this correction has provided a subtle enhancement over that

performed directly in the gamma-corrected space ignoring the linear nature of the

observation model design. The results of the proposed up-sampling approach have

manifested significant enhancements over many methods including cubic B-splines and

the Tikhonov regularization method. The edges are sharper and clear; the contours

of long edges are crisp with no oscillatory patterns or waves along them. The smooth

regions closer to the edges does not suffer from any ringing artifacts unlike most of

the adaptive techniques.

The approach has been extended to color image up-sampling. First, many vari-

ational vectorial formulations that incorporate the three color channels have been

proposed and used. One state-of-the-art variational vectorial formulation from the lit-

erature which is the norm of the vector gradients has been implemented and tested. All

these methods have been implemented in the RGB device space and have been com-
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pared to the scalar variational approach applied to every color channel independently.

Comparing the results visually, I have concluded that the improvement obtained by

these vectorial formulations over the scalar formulation applied independently to the

color channels is very subtle and does not pay for their computational complexity.

This conclusion was also drawn by the authors in [83] based on a different kind of

analysis and personal communications with the authors of some of the variational

vectorial formulations. Finally, I have tried choosing an appropriate color space that

decorrelates the spatial processing across the color channels. Several color spaces have

been tried like the legacy YCbCr and some of the latest opponent color spaces. I per-

formed the scalar variational scheme independently to every color channel and I found

the results are better than the vectorial formulations implemented in the RGB device

space. The results obtained in the YCbCr and the opponent color spaces were greatly

alike. I concluded that the implementation should be done in the YCrCb color space

independently for every color channel. Furthermore, I found that one should put more

computational cost (more iterations) to up-sample the luminance Y channel with high

quality at the expense of less quality up-sampling for both chromatic channels Cb and

Cr. This is due to the classical fact that humans perceive most of the geometrical

information, especially the fine details, from the Y channel.

6.2 Thesis contributions

In this thesis research I proposed, and successfully implemented a solution to the grey-

scale image magnification problem with higher perceived resolution. I also proposed

approaches to provide a solution for the color-image up-sampling problems. By the

completion of this thesis I have solved two main problem in the field of image process-

ing, with a corresponding list of contributions to the field. These contributions are

listed as follows:

1. New formulation of the problem of image up-sampling with the introduction
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of the new concept of a theoretical camera that acquires an ideal HR image

(Fig. 2.5).

2. This new formulation of the problem led to a generalized design of the obser-

vation model for the regularized image up-sampling problem (Fig. 4.1). This

observation model is derived and designed for

(a) Any dimension 2-D, 3-D or even higher;

(b) Any scenario modelling the properties of the physical and the virtual cam-

era;

(c) Any up-sampling factor;

(d) General lattices Λ, Γ that are not necessarily rectangular to rectangular.

3. New design for the theoretical camera that is optimized for a specific modelled

display device (Fig. 4.6). This design problem led to the development of a gener-

alization of the minimum-error sampling theory which was developed by Unser

in [14] to non-orthogonal bases. This generalization is for arbitrary sampling

structures (Theorem 1, 2).

4. Development of a new methodology for color space processing. This method

allows the implementation to be implicitly executed in a perceptually-uniform

space (section 5.2.1).

5. Development of a variational scheme for image up-sampling that involves two

sampling structures Λ and Γ as part of the formulation and dealing with the

Euler–Lagrange equation for the involved down-sampling operator (3.18).

6. Selecting two interacting speeds for the level set method that provides a stable

numerical solution that can be started from any initial value image including the

constant images and not being trapped in local minima as with other approaches.
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All the above mentioned contributions, except for the contribution numbered four,

appear in my publications as follows:

1. Contributions numbered one and two have been published in [60].

2. Contributions numbered five and six have been published in [59].

3. Contribution numbered three has been accepted and is currently in press [68].

6.3 Future directions

6.3.1 Observation model adapted to shadow-mask color displays

The design of the observation model in this thesis was adapted to in-depth analysis

of the properties of the typical grey-scale display device. An immediate extension

is to extend the analysis and the design of the observation model for shadow mask-

type color display devices. In the shadow mask CRT and TFT monitors the color

phosphor dots are arranged in a hexagonal pattern while the scan line driving the

three electron beams sweeps the monitor in the same typical horizontal fashion. It

is the shape of the shadow mask which determines where each electron beam falls

on the different color phosphor dots. Furthermore there is a spatial offset for these

beams that is always adjusted by the user of the display device. The combination of

these characteristics in a model for the reconstruction function of the display device is

interesting, and more interesting is to find the optimal theoretical camera adapted to

this display function. Finally, this fuses inside the design of the optimal observation

model used in the up-sampling problem for color images.

6.3.2 Color-filter-array image up-sampling

The completion of the grey-scale and color image up-sampling problem in this thesis

motivates pursuing the research towards solving the color-filter array image mosaic
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up-sampling. Most commercial CCD cameras uses a color-filter-array because it is

more economical than the beam-splitter technology. Thus we have only one value of

the three color channels at each spatial location. A commonly-used sampling lattice

in this case is the Bayer structure as shown in Fig. 6.1 [86]. The Green channel is

sampled at twice the sampling density of both the red and blue channels. The Green

channel is sampled on a hexagonal lattice while the red and blue channels are sampled

on a rectangular one. Thus we can write their sampling matrices as

VΞG
=


2X X

0 X


 , VΞR

= VΞB
=


2X 0

0 2X


 (6.1)

where the subscript indicates the color channel. Demosaicking of the color filter

GG

G

G

G

R R

R

B

BB
G Green

R

B

B Blue
R Red

G

G

G

Fig. 6.1 Bayer-type color filter array.

array is the problem of finding the missing samples of all color channels. This

is seen as up-sampling the three channels to a rectangular lattice Γ which is de-

fined by the sampling matrix VΓ = diag(X,X) for a sampling period X, where

d(Γ) = 1
2
d(ΞG) = 1

4
d(ΞR) = 1

4
d(ΞB). It should be noted that the commercial CCD

cameras perform a post-processing to solve the demosaicking problem and provide the

consumer with three color channels which are defined on Γ. This technique is usually
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not optimized and researchers are still pursuing better approaches. Gunturk et al.

[87] have recently proposed a successful approach for this problem that outperformed

many other approaches. Messing and Sezan [88] proposed a scheme for this problem

that integrates a sequence of color-filter array images to obtain the result defined on

Γ. This is based on the idea of super-resolution for a sequence of images.

6.3.3 Image sequence super-resolution and video up-sampling

The solutions to the set of problems in this thesis actually constitute a rigorous foun-

dation for many other interesting applications and problems. The most interesting one

is the super-resolution problem to reconstruct an HR image from a set of LR images.

With the deployment of a reliable motion estimation technique, the super-resolution

problem will benefit a lot from the theories that were developed in this thesis. For

instance, the observation model developed in chapter 4 is directly applicable to the

super-resolution problem when the temporal aperture is to be involved. This will de-

sign a 3-D observation model that when coupled with motion estimation will provide

a good foundation for accounting for motion blur and warping due to the temporal

aperture. Another application is the conversion of an LR video sequence to an HR

cinematic sequence.
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