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Abstract

This paper presents a hybrid 1D motion estimation al-
gorithm which combines pixel-based and region-based ap-
proaches that can give depth images from translational
video sequences with very high quality. Firstly, we combine
the motion information estimated by a variational regular-
ization approach and by the Gabor transform through his-
togram analysis to identify those regions with zero motion
(like for the sky). Then another round of region matching is
carried out to refine the motion values for the other regions.
Our algorithm can detect most of the sky regions segmented
by foreground objects with complex geometry while keeping
the boundaries of moving objects sharp and clear, which
is an very important feature to obtain accurate 3D mod-
els. The high quality motion maps/depth images obtained
by our algorithm are shown along with 3D reconstructions
from novel viewpoints.

1. Introduction

Obtaining 3D models from video sequences (without ac-
tive range-scanners) is a challenging research area that has
received a great deal of study. The estimated 3D mod-
els with good quality could be used for many applications
including photo-realistic immersive environments, image-
based rendering, virtual reality, etc.

Most existing approaches for this research topic devel-
oped in recent years, e.g. [5, 10, 1], can be approximately
divided into two steps: (1) estimation of depth images or
separate 3D models at different positions; (2) combining
these separate depth images or 3D models to constructone
3D model for the scenes contained in video sequences. For
the first step, usually the algorithm of structure from mo-
tion is used for monocular video sequences to convert the
motion information to depth images for different locations
[5]. If stereo video sequences are involved in the first step,

then disparity estimation algorithms can be used to obtain
scene depth at each location [10]. For the second step, the
camera poses and transform matrices among different loca-
tions need to be estimated. These are usually carried out by
feature matching, and then these transform matrices can be
further adjusted with respect to one reference location us-
ing some optimization techniques like bundle adjustment.
With these optimized camera poses, the separate 3D mod-
els at different locations can be transformed to the reference
location in order to form one 3D model represented by tri-
angular meshes [5, 10] or 3D point clouds [1]. The two
steps do not have to be in this order, the transform matrices
for camera movement can be estimated by feature match-
ing first, and then the dense disparity can be further esti-
mated exploiting the epipolar information associated with
those transform matrices [1].

For the two steps, the first one for depth image estima-
tion is the most difficult and important one. Because both
algorithms – structure from motion and disparity estimation
– are matching processes, and matching is an ill-posed in-
verse problem, the ambiguities contained in these matching
processes can bring many errors in the estimated depth im-
ages, such as noisy outliers and wrong depth values for an
entire large region. Such errors can greatly affect the sec-
ond step as well as the quality of the final 3D models. Some
typical difficulties in depth estimation are the matching for
the pixels in slanted surfaces, the matching for sky areas
(especially when the sky is segmented by some trees), etc.
The methods used in [5, 10, 1] for depth images are mainly
correlation-based stereo algorithms, which are not robust
under the above mentioned difficulties.

In this paper, we present a more sophisticated algorithm
dealing with the above mentioned difficulties for the first
step. Our algorithm combines pixel-based and region-based
approaches to analyse the 1-D motion information for a
translational video sequence and to estimate the depth im-
ages at separate locations. A pixel-based approach using the
Gabor transform and variational regularization is performed
first. Then the region information from the segmentation is



combined with the pixel-based motion estimation results so
that a region matching scheme using an affine transform can
be applied. A novel contribution contained in our algorithm
is a method to analyze the histograms of motion values for
the pixels in each region, so that most of the sky regions can
be identified and the true motion values for such regions can
be determined. The high quality of our results will be shown
by both motion maps and 3D reconstructions.

This paper is organized as follows: an overview of our
algorithm will be give in section 2; in section 3, the detailed
procedures for motion analysis and for obtaining depth im-
ages are presented; and in section 4, some results of 3D re-
constructions based these depth images are shown, followed
by a conclusion in section 5.

2 Algorithm Overview

2.1 Motion Analysis and Depth Images

As shown in Fig. 1, our system starts by filtering the two
consecutive imagesIt andIt+1 from a translational video
sequence with a set of Gabor filters. AlsoIt is put through
a segmentation process using the mean shift algorithm [3] in
which each region is formed by grouping pixels with similar
color values and is represented byonecolor value for this
region. The filtered versions ofIt andIt+1 are compared
and a coarse 1-D motion mapdG is estimated. Another
motion mapdR based on variational regularization using an
edge-preserving functional is also estimated iteratively with
motion values for each pixels initialized with zero. Then
the histograms of motion values fromdG anddR in each
region ofIt (obtained from the segmentation) is compared
in order to identify those regions without movements (zero
motion). Once such regions with zero motion are identified,
the motion values for the other regions ofIt are used to es-
timate a set of affine transform parameters by least squares,
so that the matching relation for the pixels in this region
with their corresponding pixels inIt+1 can be represented
by the resulting affine transform. The affine parameters for
each region are further adjusted using a descent-based re-
gion matching technique, and these adjusted affine parame-
ters can be used in turn to calculate a more refined motion
map. Once we get this final motion map forIt, the depth
image for the location ofIt is obtained using the reciprocal
values of the 1-D motion values for each pixel. Because we
are dealing with a translational video sequence in this pa-
per, and similar to the relations between disparity and depth
for parallel stereo, the 1-D motion value is in a reciprocal
relation with the depth value, up to a scale factor.
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Figure 1. Block architecture for motion anal-
ysis

2.2 Construction of 3D Model

After we obtain the depth images for several locations
along the 1-D camera trajectory, we will combine some
depth images through shifting into one reference location.
The shifting is controlled by depth values.

3 1-D Motion Analysis

Among the large amount of literature and algorithms
for optical flow and motion estimation, differential tech-
niques [6][8] with variational regularization form a major
class. These techniques involve a functional including the
displaced frame difference and a smoothing term, and usu-
ally descent-based methods are used to minimize the func-
tional by solving its associated Euler-Lagrange equations.
Recently, Brox et al. significantly improved this approach
by embedding a multiresolution strategy and gradient con-
stancy to a nonlinear objective functional, and obtained the
best results until now for some standard test sequences like
Yosemite[2]. Kim et al. used a similar functional with a
modified regularization term and, to handle large motion
fields, also used a coarse-to-fine scheme and solve the as-
sociated Euler-Lagrange equation using recursive iterations
[7].

On another hand, the functionals used in the variational
regularization approach usually do not take the occlusion ef-
fect into account, i.e., the objective functional that this ap-
proach tries to minimize is the displaced frame difference
betweenall the pixels ofIt and their corresponding pix-
els in It+1. Due to this reason, after iterative calculations
to minimize such objective functionals, those background
pixels (which should be occluded) along the foreground ob-
jects usually have motion values similar to the motion val-
ues of those foreground pixels, since the iteration process
also try to find a solution for such occluded background
pixels. This will bring wrong motion values for such oc-
cluded background pixels. For example, in [7], the video
sequenceFlower Gardenwas used – the scene consists of



a tree in the foreground, and several houses with other trees
and shrubs as middle objects, plus the sky as background –
and from the result of its motion maps, most of the sky areas
are merged with the middle objects and even with the twigs
of the foreground tree. Therefore, although the displaced
frame difference betweenIt andIt+1 can be minimized to a
small value which is good enough for some other purposes
like compression and coding, the motion values estimated
by variational regularization approach could not satisfy the
purpose of 3D model constructions, since part of or most
of the untextured background areas will be merged with the
foreground objects, especially when those foreground ob-
jects have complex geometries.

We will try to solve this problem by comparing the re-
sults from the variational regularization approach with the
motion estimation results from the Gabor transform and im-
age segmentation. The video sequence that we use is also
theFlower Garden, which consists of 150 frames. The se-
quence is taken along a straight line, and is approximately
equi-distant for any two consecutive images. The maximum
horizontal motion is about 6 pixels/frame. We show the5th,
22nd, 35thand65thimages in Fig. 2, in which three of them

(a) (b)

(c) (d)

Figure 2. Original images in Flower Garden: (a)
5th; (b) 22nd; (c) 35th; (d) 65th.

contain the foreground tree and therefore the motion estima-
tion for these images is more difficult than for those without
the tree. We will also show the motion estimation results for
these images.

3.1 Motion Estimation by Variational
Regularization Approach

Similar to the general variational regularization ap-
proach, our objective functional for 1-D motion estimation

also contains a data fidelity term and a regularization term
for smoothing control:

E(dR) =
∫∫

[It(x, y)− It+1(x− dR, y)]2 dxdy

+ λ

∫∫ { 1
(1 + I2

t,x)2
d2
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1
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d2
R,y

}
dxdy

(1)

whereλ is a regularization parameter,dR,x and dR,y are
derivatives ofdR(x, y) in x andy directions respectively,
and similarly forIt,x and It,y. The minimization of (1)
to estimatedR is carried out by applying a gradient de-
scent method to solve its associated Euler-Lagrange equa-
tion with respect todR:

∂dR

∂t
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− λ

{
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+

∂
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[
dR,y

(1 + I2
t,y)2

]}
. (2)

Unlike the coarse-to-fine scheme as in [2] and [7] to pre-
vent the solution to fall into local minima, we just use the
original images anddR are initialized with zero for all pix-
els. As shown in Fig. 3 in which brighter intensities rep-
resent larger motion values (and less depth) and darker in-
tensities represent smaller motion values (and more depth),
we can see that with the increase of iteration numbers,dR

(a) (b)

Figure 3. dR for 22nd image after different
numbers of iterations: (a) 2500; (b) 4000.

could reach their true values for those pixels with small
movements (like those houses and shrubs), and could not
completely reach their true values for the pixels with large
movements (like the foreground tree) since they fell into lo-
cal minima. Most important for 3D reconstruction purpose
is that the motion values for those background pixels (sky)
leave their true values (zero) and approach the motion val-
ues of their foreground objects with the increase of iteration
numbers. Therefore, as we stated in the beginning of this
section, the objective functional can be further minimized
with the increase of iteration numbers, but this does not fit
our purpose of 3D model construction. Our solution for this
dilema is to use fewer iterations, such that most of the pixels



with small movements can reach their true motion values,
and most of the background pixels with zero motion stay
where they are; the finding of large motion values for those
foreground objects can be left to some other techniques (as
we show later).

For the images in Fig. 2, we used 800 iterations for their
motion estimation, and the results are shown in Fig. 4. We
can see that the values ofdR for most of the background
pixels are correct, and the majority part of pixels with small
motions also have correct motions values.

(a) (b)

(c) (d)

Figure 4. dR maps after 800 iterations: (a) 5th;
(b) 22nd; (c) 35th; (d) 65th.

3.2 Motion Estimation by Gabor Trans-
form

The method that we used for 1-D motion estimation
through the Gabor transform is mainly based on the algo-
rithm in [4], in which a set of quadrature-pair Gabor filters
are used. The Gabor functions are Gaussian functions mod-
ulated by complex sinusoids. Each quadrature-pair Gabor
filter is a set of discretized samples of a Gabor function with
different tuning frequencies, and is used for the filtering of
the stereo images to obtain the approximate Gabor trans-
form coefficients at those frequencies. Assume that the out-
puts ofkth filter pair areGk

It
(x, y) andGk

It+1
(x, y) for It

andIt+1 respectively. Then the 1-D motion̂dG ∈ [0, dmax]
for a position(x, y) in It is determined as:

d̂G =arg min
dG

∑

k

[|Re{Gk
It

(x, y)} −Re{Gk
It+1

(x− dG, y)}|

+ |Im{Gk
It

(x, y)} − Im{Gk
It+1

(x− dG, y)}|] (3)

whereRe{Gk
It

(x, y)} andIm{Gk
It

(x, y)} are the real and
imaginary parts ofGk

It
(x, y), and similarly forGk

It+1
(x, y).

The reason that we choose the Gabor transform for motion
estimation is its robustness in the sense that we do not need
to determine any block size as in the cases of block-based
stereo algorithms (like correlation-based stereo); the esti-
mation process is done pixel-by-pixel independently of the
scene.

We used three central frequencies{π/16, π/8, π/4} as
the tuning frequencies of the Gabor filters, and each filter
is tuned to four directions0◦, 45◦, 90◦ and135◦. The 1-
D motion mapsdG estimated by (3) for the four images in
Fig. 2 are shown in Fig. 5. We can see that these results are
good for pixels with apparent motions. However, for part
of the pixels with zero motions but near some middle and
foreground objects, their motion results tend to be confused
with the motion values for those objects.

(a) (b)

(c) (d)

Figure 5. dG maps from Gabor transform: (a)
5th; (b) 22nd; (c) 35th; (d) 65th.

3.3 Region-Based Motion Analysis

Comparing Fig. 4 and Fig. 5, we can find that the re-
sults from the two methods are inter-complementary, in
which the results from variational regularization approach
are good for zero and small motions and the results from
the Gabor transform are good for large as well as for small
motions. Therefore, we need to complement the two kinds
of results from each other and obtain one good motion map
for the whole motion range. In order to do that, we need
to consider them in groups of connected pixels that fall in
the same kind of regions that should have similar motion
values. Thus, we need to have region information from seg-
mentation applied to imagesIt.

We applied the mean shift segmentation algorithm [3]
to the imagesIt, and the segmentation results for the four



images in Fig. 2 are shown in Fig. 6. Each region is in-
dicated by one color value. Comparing Fig. 6 with their
original images in Fig. 2, we can find that the mean shift
algorithm could not identify some tiny features, which are
missing after segmentation (e.g., some twigs on the tree,
and part of the shrubs). To alleviate such a problem, we
have performed an edge-detection by Canny detector onIt

and on Fig. 2, and then compare the detected edges between
the two images to pick out the missing tiny contours. The
new segmentation result for the22nd image by applying
this method is shown in Fig. 7. Although we get most of
the missing tiny contours back, this method also introduces
some extra contours on some existing regions.

(a) (b)

(c) (d)

Figure 6. Segmentation by Mean Shifts[3]: (a)
5th; (b) 22nd; (c) 35th; (d) 65th.

Once we have the region information, we can compare
and analyse the histograms of motion values fromdR and
dG for each region. For example, as shown in Fig. 8 for
a sky region in the5th image which is between the up-
per twigs and the foreground tree, the histogram fromdR

is mainly located around zero which is the correct motion
value for this region, while the histogram fromdG is spread

Figure 7. New segmentation of image 22 with
tiny contours recovered.

across the whole range. As another example shown in Fig. 9
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Figure 8. Histograms for a sky region in 5th
image : (a) from dR; (b) from dG.

for a region of the foreground tree in the22nd image, we
can see that the histogram fromdR is mainly located around
zero while the histogram fromdG is mainly located around
the highest motion values (which are correct). From our
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Figure 9. Histograms for a foreground tree re-
gion in 22nd image : (a) from dR; (b) from dG.

previous analysis, we already conclude that the motion val-
ues fromdR are good for zero and small motions, while
the motion values fromdG are good for large motion and
the small motion values. Therefore, for the two cases like
in Fig. 8 and Fig. 9, we can restore their motion values for
that region fromdR (zero motion) anddG (large motion)
respectively according to the above criteria.

The adjusted motion mapsd after analysis of the his-
tograms of motion values for each region are shown in
Fig. 10. Although we identified most of the sky regions
now, most of the other regions with large motions values
are still in a coarse stage since the motion values from the
Gabor transform are integers (e.g., those slope regions with
quantization effects). We still need to further refine those
regions by region matching techniques.

We assume that the coordinates(x, y)T of each pixel
in a region in It is related to its corresponding pixel
(xt+1, yt+1)T in It+1 by an affine transform. In the 1-D
case, we have:

xt+1 = a11x + a12y + a13. (4)
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Figure 10. Motion maps after histogram anal-
ysis: (a) 5th; (b) 22nd; (c) 35th; (d) 65th.

Therefore, the motion valued(x, y) is related to these affine
parameters by

d(x, y) = x− a11x− a12y − a13. (5)

Thus, the estimatedd(x, y) for each pixel in one region
from the results shown in Fig. 10 can be grouped and used
as known variables so that the affine parameters can be es-
timated from (5). Since each pixel in the region gives a set
of equations as in (5), and for most of the cases, the num-
ber of pixels in a region is larger than the number of affine
parameters (three for 1-D affine transform), the estimation
of the three parameters (a11 ∼ a13) can be done by least
squares, implemented using singular value decomposition
(SVD). Then, once the affine parameters are estimated, a
new motion mapd(x, y) for each pixel in the region can be
in turn calculated by (5).

Then we can go further to achieve a region matching
scheme by updating those affine paremeters. The error
function that we need to minimize for each region is:

EA =
∑

(x,y)∈Wi

[It+1(a11x+a12y+a13, y)−It(x, y)]2 (6)

whereWi represents a region. We need to minimize (6) by
updating affine parametersa = [a11, a12, a13]T iteratively
using least squares with Taylor expansion. AssumeX =
[x, y, 1]T . Let â be the current estimate of affine parameters,
anda = â + ∆â. Then expandIt+1 around the current
estimate

It+1(aT X, y) ≈ It+1(âT X, y) + ∆âT XIt+1,x(âT X, y),
(7)

where this first order expansion is valid only whenâ is close
to a. This is the reason that we start region matching with

the result from pixel-based approach, rather than doing it
from the very beginning without pixel-based results. Sub-
stituting the above first order expansion into (6), the error
function becomes:

EA(∆â) =
∑

(x,y)∈Wi

[ψT ∆â−D]2 (8)

where ψ = It+1,x(âT X, y)X and D = It(x, y) −
It+1(âT X, y). The iterative solution of (8) by least squares
is:

∆â = [
∑

(x,y)∈Wi

ψψT ]−1
∑

(x,y)∈Wi

Dψ. (9)

After this region matching, the final results for the motion
maps of Fig. 2 are shown in Fig. 11.

(a) (b)

(c) (d)

Figure 11. Final Motion maps after region
matching: (a) 5th; (b) 22nd; (c) 35th; (d) 65th.

Then, for each location, the depth valuez(x, y) for a
pixel at(x, y) can be obtained as:

z(x, y) =
Bf

d(x, y)
(10)

whereB is the baseline distance betweenIt andIt+1, and
f is the focal length.

4 3D Reconstruction Using the Estimated
Motion Maps

We show in this section some 3D reconstructions based
on the motion or depth images we obtained. We set up
the 3D models in OpenGL using 3D point arrays, and us-
ing orthographicprojection mode for the rendering of novel



views. The most suitable way in doing this is to use triangu-
lar mesh arrays. However, for a scene with complex geom-
etry likeFlower Garden, object separation or 3D segmenta-
tion has to be done first so that only 3D points on the same
object surfaces are connected by triangular meshes, other-
wise different objects like the foreground tree and middle
objects (houses) would be connected when the sideviews
are rendered. Since this topic belongs to another important
issue which deals with the combining of different depth im-
ages together, we only use point arrays for our 3D models
because the main focus of this paper is on how to obtain
depth images with high quality.

We first show in Fig. 12 some separate reconstructions
based on each depth image on the four locations of Fig. 11
respectively. Fig. 12(a) is rendered by rotating about10◦

aroundy-axis (vertical axis) from the original viewpoint
to the right. Fig. 12(b) is rendered by rotating about20◦

aroundy-axis to the left, then rotating up15◦ aroundx-
axis (horizontal axis). Fig. 12(c)(d) are rendered by rotat-
ing about10◦ aroundy-axis to the right, then rotating up
10◦ and5◦ aroundx-axis respectively. From these recon-
structions, we can see that the sky has more shifting than
the foreground scenes since it has the largest depth, and the
occlusion from the foreground trees and shrubs on the sky
can be clearly seen (black areas). Also, the linear variation
of the depth values for the slanted slope surface can also be
seen, especially from Fig. 12(d). All these facts indicate that
the complex geometric structures detected by our algorithm
are largely correct.

Then we try to combine the two depth images (5th and
65th) and their textures together with5th image as refer-
ence location. Since we assume that there is only trans-
lational shifting for the whole video sequence, the homo-
geneous transformation between the two locations is repre-
sented by only one parameterK for the horizontal transla-
tion. Therefore, to shift the pixels(x, y) of 65th image with
depth valuez(x, y) to their corresponding image coordi-
nates(x0, y0) in the5th image location, thex0-components
can be calculate as

x0 = x +
K

z
(11)

andy0 = y, whereK is a constant determined by the base-
line distance and the focal length (we usedK = 60 for
the 5th and65th images). We show in Fig. 13 the novel
views after combining those two depth images without the
foreground tree (disregard those pixels with lowestz(x, y)
values) in order to clearly show the fusion of the two images
for those middle objects. From Fig. 13(a), we can see that
the occluded areas in the5th image (the areas behind the
foreground tree) is recovered after combining the65th im-
age, and the missing parts on the right side of the5th image
and on the left side of the65th image are also filled into one
image. A little amount of discrepancy on the right side of

(a) (b)

(c) (d)

Figure 12. Separate reconstruction for differ-
ent locations: (a) 5th; (b) 22nd; (c) 35th; (d)
65th.

Fig. 13(a) can be seen for the right-most house. The reason
for this discrepancy is due to the fact that the motion of the
Flower Gardensequence is not strictly horizontal. There
are small vertical displacements between any two consecu-
tive images, and from the5th to the65th image, these ver-
tical displacements accumulate to a visible amount. There-
fore, to construct the 3D model for the whole scene, we
need to extend our motion estimation algorithm to 2D if we
want to accurately combine the depth images for the whole
sequence, rather than assuming pure translational motion
and using (11) only. Also, in Fig. 13(b) we can see those
occlusion areas on the background sky after a small rota-
tion from the original viewpoint.

Finally we show in Fig. 14 the full fusion of the5th and
65th images through their depth images with the5th im-
age as reference location. We can see that the tree branches
on the middle top portion of the65th image have moved
to the very top-right part of the fused images without back-
ground, since these tree branches have lowest depth values
in the65th image (or largest motion values) and, while see-
ing from the location of the5th image, the background for
these tree branches should come from those images after
the 65th image which we did not put into the fusion pro-
cess. Also, from Fig. 14(b), we can see that there are no
occlusion effects from the foreground tree after a small ro-
tation from the original viewpoint, because those occluded
areas in the5th image are fused by the65th image.



(a) (b)

Figure 13. The fusion of 5th and 65th images
without the foreground tree (with 5th image
as reference location): (a) direct reconstruc-
tion; (b) with rotation.

5 Conclusion and Future Work

We developed a hybrid 1D motion estimation algorithm
which combines pixel-based and region-based approaches
that can give depth images from translational video se-
quences with very high quality. The novelty of our algo-
rithm lies in the fact that it provides a robust method to solve
some long standing problems in structure-from-motion, like
the identification of untextured areas (like sky) as back-
ground to some foreground objects with complex geom-
etry, and keeping the boundaries of moving objects sharp
and clear. These problems cannot be solved by either pixel-
based or region-based approaches separately. Also, our al-
gorithm can be extended to both 2D motion estimation and
to disparity estimation problems.

The next step of our work will be to extend our algo-
rithm to 2D cases, so that one 3D model with high quality
can be obtained for the whole scene by combining accu-
rate local 3D models through tracking the feature points or
contours in the sequence to estimate the necessary homoge-
neous transformations. Also, for the combining of different
depth images, we plan to use some more complex optimiza-
tion algorithm like the bundle adjustment algorithm [11] to
fuse all local 3D models with more accuracy, and use trian-
gular meshes to represent the final 3D model efficiently and
to eliminate outliers [9].
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