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Abstract

Overview of the book.

Friendly book review by the author.

What distinguishes the book from other works.

Some contributions of the book.



Key themes of the book
Processing of multidimensional (MD) signals (e.g., images, video,
volumetric, etc.)

Function of several independent variables (space, time, etc.)

Scalar or vector valued signals.

Continuous-domain and discrete-domain signals (where sampling
structures are defined by lattices)

Aperiodic and periodic signals (where periodicity is specified by a
lattice)

Color signals, where the signal range is a vector space.



Overview of the book contents

MD signals and systems: four cases, continuous-domain aperiodic
(CDA), discrete-domain aperiodic (DDA), discrete-domain periodic
(DDP), continuous-domain periodic (CDP)

Sampling and reconstruction - conversion between domains

Color representation and color signals

Random fields (wide-sense stationary case)

Filter design

Sampling structure conversion

Symmetry invariant signal processing

Separate chapter summarizing relevant facts about lattices



Continuous-Domain Signals and Systems



Continuous-domain MD signals

A multidimensional signal f is a function of D independent variables

f (x) = f (x1, x2, . . . , xD), x ∈ RD .

Although we are mainly concerned with D > 1, one-dimensional
signals with D = 1 are simply a special case of the general theory.

We assume that signal values belong to a vector space, in the
simplest case the space of real numbers. Color images correspond to
a three-dimensional vector space.

We assume that signals belong to a vector space S over the complex
numbers called the signal space. Thus signals can be added, scaled,
negated, there is a zero signal, etc.



Continuous-domain MD systems
A multidimensional system H acts on elements of a signal space S.
We consider deterministic systems where each input f results in a
well-defined output. We write H : S → S : g = Hf .

Example 1: g(x) = (f (x))2 for all x ∈ RD .

Example 2: Td : g(x) = f (x− d) for some fixed d ∈ RD . We call this
the shift or translation system.

We consider two main classes of systems:

Linear systems: H(α1f1 + α2f2) = α1Hf1 + α2Hf2.

Shift-invariant systems: HTd = TdH for all d.

A linear shift-invariant (LSI) system is both linear and shift invariant.



MD LSI systems: convolution

For an LSI system H, we can show that if the input is f , then the output
is g = h ∗ f , where h = Hδ and δ is the Dirac delta.
Specifically,

g(x) =

∫

RD

h(s)f (x− s)ds

=

∫

RD

f (s)h(x− s)ds

h ∗ f = f ∗ h



MD LSI systems: frequency response

An important class of signals are the complex exponentials φu given by

φu(x) = exp(j2πu · x) = cos(2πu · x) + j sin(2πu · x)

φu(x1, . . . , xD) = exp(j2π(u1x1 + · · ·+ uDxD))

for some fixed u ∈ RD , referred to as the frequency vector.
For an LSI system, applying the convolution formula, we find that

Hφu = H(u)φu

where for a given u, H(u) is a complex number given by

H(u) =

∫

RD

h(x) exp(−j2πu · x)dx.

Taken as a function of u, H(u) is called the frequency response of the LSI
system, and is the Fourier Transform of the impulse response.



Two-dimensional sinusoidal signal

f (x , y) = 0.5 cos(2π(1.5x + 2.5y)) + 0.5
Horizontal frequency u = 1.5 c/ph, vertical frequency v = 2.5 c/ph.



Continuous-domain Fourier transform properties

CHAPTER 2. CONTINUOUS-DOMAIN SIGNALS AND SYSTEMS 2-25

f(x) =
∫
RD F (u) exp(j2πu · x) du F (u) =

∫
RD f(x) exp(−j2πu · x) dx

(2.1) Af(x) +Bg(x) AF (u) +BG(u)

(2.2) f(x− x0) F (u) exp(−j2πu · x0)

(2.3) f(x) exp(j2πu0 · x) F (u− u0)

(2.4) f(x) ∗ g(x) F (u)G(u)

(2.5) f(x)g(x) F (u) ∗G(u)

(2.6) f(Ax) 1
| detA|F (A−Tu)

(2.7) ∇xf(x) j2πuF (u)

(2.8) xf(x) j
2π∇uF (u)

(2.9) f∗(x) F ∗(−u)

(2.10) F (x) f(−u)

(2.11) f1(x1) · · · fD(xD) F1(u1) · · ·FD(uD)

(2.12)
∫
RD f(x)g∗(x) dx =

∫
RD F (u)G∗(u) du

Table 2.1: Multidimensional Fourier transform properties.



Discrete-Domain Signals and Systems



Discrete-domain MD signals
An MD discrete-domain signal is defined at a discrete set of points Ψ
in RD called the sampling structure.

f [x], x ∈ Ψ.

The main tool used to describe and analyze sampling structures is the
lattice (as in crystal lattice).

A lattice is a uniform discrete set of points in RD ; the neighborhood
of a lattice point looks the same at every point

x

y



Lattices
A lattice Λ in D dimensions is a discrete set of points that can be
expressed as the set of all linear combinations with integer coefficients of
D linearly independent vectors in RD (called basis vectors),

Λ = {n1v1 + · · ·+ nDvD | ni ∈ Z}
= {Vn | n ∈ ZD} = LAT(V),

V = [v1, · · · , vD ].
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y
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v
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X

V =

[
0.9X 1.4X
0.3X −0.5X

]



Some properties of a lattice Λ

The basis and sampling matrix for a given lattice Λ are not unique.

LAT(V) = LAT(VE) if E is an integer matrix with | det E| = 1.

x± y ∈ Λ if x, y ∈ Λ.

0 ∈ Λ

Λ + d = Λ if d ∈ Λ.

A unit cell of a lattice is a region P ⊂ RD such that ∪s∈ΛP + s = RD

while (P + s1) ∩ (P + s2) = ∅ for and s1, s2 ∈ Λ such that s1 6= s2. It
is not unique.

The volume of a unit cell is d(Λ) = | det V|. 1/d(Λ) is the sampling
density.



Illustration of unit cells
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Discrete-domain MD systems
For discrete-domain signals on a lattice Λ, the concepts of signal
space SΛ, system H, linear system, shift-invariant system, LSI system
are all formally the same as for continuous-domain MD systems.

The only proviso is that the shift d in a shift-system Td must be itself
an element of the lattice Λ.

The output of an LSI system is again given by a convolution formula

g [x] =
∑

s∈Λ

h[s]f [x− s]

=
∑

s∈Λ

f [s]h[x− s] x ∈ Λ

We write this as g = h ∗ f = f ∗ h.

Here, h is the unit sample response h = HδΛ, where

δΛ[x] =

{
1 x = 0

0 x = Λ\0



MD discrete-domain LSI systems: frequency response

Discrete-domain complex-exponential sinusoidal signals φu are defined
in the same way

φu[x] = exp(j2πu · x), x ∈ Λ

for some fixed frequency vector u ∈ RD .

The complex sinusoids are periodic in the frequency vector

φu = φu+r if r ∈ Λ∗

where Λ∗ = LAT(V−T ) is called the reciprocal (or dual) lattice.

The complex sinusoids are eigenfunctions of any LSI system,
Hφu = H(u)φu, where

H(u) =
∑

x∈Λ

h[x] exp(−j2πu · x)



Discrete-domain Fourier transform properties
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54 3 Discrete-Domain Signals and Systems

Table 3.1 Properties of the multidimensional Fourier transform over a lattice Λ.

f [x] = d(Λ)∫
∗F(u) exp(j2𝜋u ⋅ x) du F(u) =

∑
x∈Λf [x] exp(−j2𝜋u ⋅ x)

(3.1) Af [x] + Bg[x] AF(u) + BG(u)
(3.2) f [x − x0] F(u) exp(−j2𝜋u ⋅ x0)
(3.3) f [x] exp(j2𝜋u0 ⋅ x) F(u − u0)
(3.4) f [x] ∗ g[x] F(u)G(u)
(3.5) f [x]g[x] d(Λ)∫

∗F(r)G(u − r) dr
(3.6) f [Ax] F(A−T u)
(3.7) xf [x] j

2𝜋
∇uF(u)

(3.8) f ∗[x] F∗(−u)
(3.9) ̃F[x] d(Γ)̃f (−u)

(3.10)
∑

x∈Λf [x]g∗[x] = d(Λ)∫
∗F(u)G∗(u) du

Property 3.1 Linearity: Af [x] + Bg[x]
DDFT
←−→ AF(u) + BG(u).

Proof : Let q[x] = Af [x] + Bg[x]. Then

Q(u) =
∑
x∈Λ

(Af [x] + Bg[x]) exp(−j2𝜋u ⋅ x)

= A
∑
x∈Λ

f [x] exp(−j2𝜋u ⋅ x) + B
∑
x∈Λ

g[x] exp(−j2𝜋u ⋅ x)

= AF(u) + BG(u). (3.35)
◽

Property 3.2 Shift: f [x − x0]
DDFT
←−→ F(u) exp(−j2𝜋u ⋅ x0).

Proof : Let g[x] = f [x − x0] for some x0 ∈ Λ. Then

G(u) =
∑
x∈Λ

f [x − x0] exp(−j2𝜋u ⋅ x)

=
∑
s∈Λ

f [s] exp(−j2𝜋u ⋅ (s + x0)) (s = x − x0)

=

(∑
s∈Λ

f [s] exp(−j2𝜋u ⋅ s)

)
exp(−j2𝜋u ⋅ x0)

= F(u) exp(−j2𝜋u ⋅ x0). (3.36)
◽

Property 3.3 Modulation: f [x] exp(j2𝜋u0 ⋅ x)
DDFT
←−→ F(u − u0).

Proof : Let g[x] = f [x] exp(j2𝜋u0 ⋅ x) for some u0 ∈ ℝD. Then

G(u) =
∑
x∈Λ

f [x] exp(j2𝜋u0 ⋅ x) exp(−j2𝜋u ⋅ x)



Example: Fourier transform of an exponential function on
a hexagonal lattice
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Comparison of approach in this book with the conventional
approach in the literature

The book presents discrete-domain signal processing on lattices, with
rectangular sampling structures as a special case.

This book presents a development of multidimensional
discrete-domain signal processing that does not depend on arbitrarily
chosen entities, particularly bases for lattices.

In conventional presentations, a discrete-domain signal is defined on
ZD ,

f [n] = f [n1, n2, . . . , nD ]

Sampling is relative to an underlying continuous-domain signal

fd [n] = fc(Vn), n ∈ ZD .

This definition is dependent on the non-unique sampling matrix V.



Multidimensional periodic signals
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Multidimensional periodic signals

Multidimensional periodic signals are covered in Chapter 4 (discrete
domain) and Chapter 5 (continuous domain).

For a periodic signal, periodicity is determined by a lattice, that we
call the periodicity lattice.

f̃ [x + t] = f̃ [x], for all t ∈ Γ, where Γ is the periodicity lattice.

For continuous-domain signals, x ∈ RD and Γ is any lattice.

For discrete-domain signals, Γ must be a sublattice of the sampling
lattice Λ.

One period of the signal consists of the signal restricted to any unit
cell of the periodicity lattice Γ.



Discrete-domain MD periodic signals

The periodicity lattice is a sublattice of the sampling lattice, Γ ⊂ Λ.

The number of sample points in any unit cell of Γ is the integer
K = d(Γ)/d(Λ).

The set b + Γ = {b + x | x ∈ Γ} for any b ∈ Λ is called a coset of Γ in
Λ.

There are K distinct cosets that partition Λ.

Let b0, b1, . . . , bK−1 be arbitrary elements chosen from each coset.
Then

Λ =
K−1⋃

k=0

(bk + Γ).

A periodic signal is constant on cosets of Γ in Λ.



Lattice and sublattice
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Cosets of a sublattice in a lattice
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MD discrete-domain periodic signals and systems

The concepts of signal, signal space, system, linear systems, LSI
systems have essentially the same definitions as in MD
discrete-domain case.

The output of an LSI system is given by a periodic convolution

g̃ [x] =
K−1∑

k=0

f̃ [bk ]h̃[x− bk ]

which has K distinct values.

The eigenfunctions of an LSI systems are complex exponential
sinusoids

φu[x] = exp(j2πu · x) x ∈ Λ

To be periodic, we must have u ∈ Γ∗. There are only K distinct φu,
for u = d0, d1, . . . , dK−1.



MD discrete-domain periodic Fourier transform

The eigenvalues of the MD discrete-domain periodic LSI system are

H̃[di ] =
K−1∑

k=0

h̃[bk ] exp(−j2πdi · bk), i = 0, . . . ,K − 1

This is the multidimensional extension of the one-dimensional discrete
Fourier transform (DFT), also referred to as the discrete-time Fourier
series coefficients.

We adopt the name discrete-domain Fourier series.

We note that if Γ ⊂ Λ, then Λ∗ ⊂ Γ∗.

The di are (arbitrarily chosen) coset representatives of Λ∗ in Γ∗.



Summary of multidimensional Fourier transforms

Signal domain Frequency domain

continuous, aperiodic
CDFT←→ continuous, aperiodic

Λ discrete, aperiodic
DDFT←→ continuous, Λ∗ periodic

Λ discrete, Γ periodic
DDFS←→ Γ∗ discrete, Λ∗ periodic

continuous, Γ periodic
CDFS←→ Γ∗ discrete, aperiodic



Fourier transform properties

Properties of Multidimensional Fourier Transforms

Domain Continuous-domain, non-periodic Discrete-domain (Λ), non-periodic Continuous-domain, periodic (Γ) Discrete-domain (Λ), periodic (Γ ⊂ Λ)

Name of the transform Continuous-domain Fourier transform (CDFT) Discrete-domain Fourier transform (DDFT) Continuous-domain Fourier series (CDFS) Discrete-domain Fourier series (DDFS)

Signals and domains
fc(x)

CDFT←→ Fc(u) x,x0 ∈ RD

gc(x)
CDFT←→ Gc(u) u,u0 ∈ RD

f [x]
DDFT←→ F (u) x,x0 ∈ Λ

g[x]
DDFT←→ G(u) u,u0 ∈ RD

f̃c(x)
CDFS←→ F̃c[u] x,x0 ∈ RD

g̃c(x)
CDFS←→ G̃c[u] u,u0 ∈ Γ∗

f̃ [x]
DDFS←→ F̃ [u] x,x0 ∈ Λ

g̃[x]
DDFS←→ G̃[u] u,u0 ∈ Γ∗

Periodicity none F (u + r) = F (u), r ∈ Λ∗ f̃c(x + s) = f̃c(x), s ∈ Γ
f̃ [x + s] = f̃ [x], s ∈ Γ
F̃ [u + r] = F̃ [u], r ∈ Λ∗

Period none u : PΛ∗ , |PΛ∗ | = 1/d(Λ) x : PΓ, |PΓ| = d(Γ) x : B, u : D, |B| = |D| = K

Analysis Fc(u) =
∫
RD

fc(x) exp(−j2πu · x) dx F (u) =
∑
x∈Λ

f [x] exp(−j2πu · x) F̃c[u] =
∫
PΓ

f̃c(x) exp(−j2πu · x) dx F̃ [u] =
∑
x∈B

f̃ [x] exp(−j2πu · x)

Synthesis fc(x) =
∫
RD

Fc(u) exp(j2πu · x) du f [x] = d(Λ)
∫
PΛ∗

F (u) exp(j2πu · x) du f̃c(x) = 1
d(Γ)

∑
u∈Γ∗

F̃c[u] exp(j2πu · x) f̃ [x] = 1
K

∑
u∈D

F̃ [u] exp(j2πu · x)

Linearity Afc(x) +Bgc(x)
CDFT←→ AFc(u) +BGc(u) Af [x] +Bg[x]

DDFT←→ AF (u) +BG(u) Af̃c(x) +Bg̃c(x)
CDFS←→ AF̃c[u] +BG̃c[u] Af̃ [x] +Bg̃[x]

DDFS←→ AF̃ [u] +BG̃[u]

Shift fc(x− x0)
CDFT←→ Fc(u) exp(−j2πu · x0) f [x− x0]

DDFT←→ F (u) exp(−j2πu · x0) f̃c(x− x0)
CDFS←→ F̃c[u] exp(−j2πu · x0) f̃ [x− x0]

DDFS←→ F̃ [u] exp(−j2πu · x0)

Modulation fc(x) exp(j2πu0 · x)
CDFT←→ Fc(u− u0) f [x] exp(j2πu0 · x)

DDFT←→ F (u− u0) f̃c(x) exp(j2πu0 · x)
CDFS←→ F̃c[u− u0] f̃ [x] exp(j2πu0 · x)

DDFS←→ F̃ [u− u0]

Convolution
∫
RD

fc(s)gc(x− s) ds
CDFT←→ Fc(u)Gc(u)

∑
s∈Λ

f [s]g[x− s]
DDFT←→ F (u)G(u)

∫
PΓ

f̃c(s)g̃c(x− s) ds
CDFS←→ F̃c[u]G̃c[u]

∑
s∈B

f̃ [s]g̃[x− s]
DDFS←→ F̃ [u]G̃[u]

Multiplication fc(x)gc(x)
CDFT←→

∫
RD

Fc(w)Gc(u−w) dw f [x]g[x]
DDFT←→ d(Λ)

∫
PΛ∗

F (w)G(u−w) dw f̃c(x)g̃c(x)
CDFS←→ 1

d(Γ)

∑
w∈Γ∗

F̃c[w]G̃c[u−w] f̃ [x]g̃[x]
DDFS←→ 1

K

∑
w∈D

F̃ [w]G̃[u−w]

Automorphism of domain fc(Ax)
CDFT←→ 1

|detA|Fc(A
−Tu) f [Ax]

DDFT←→ F (A−Tu) f̃c(Ax)
CDFS←→ F̃c[A

−Tu] f̃ [Ax]
DDFS←→ F̃ [A−Tu]

Differentiation ∇xfc(x)
CDFT←→ j2πuFc(u) N/A ∇xf̃c(x)

CDFS←→ j2πuF̃c[u] N/A

Differentiation in fre-
quency

xfc(x)
CDFT←→ j

2π∇uFc(u) xf [x]
DDFT←→ j

2π∇uF (u) N/A N/A

Complex conjugation f∗c (x)
CDFT←→ F ∗c (−u) f∗[x]

DDFT←→ F ∗(−u) f̃∗c (x)
CDFS←→ F̃ ∗c [−u] f̃∗[x]

DDFS←→ F̃ ∗[−u]

Parseval
∫
RD

fc(x)g∗c (x) dx =
∫
RD

Fc(u)G∗c(u) du
∑
x∈Λ

f [x]g∗[x] = d(Λ)
∫
PΛ∗

F (u)G∗(u) du
∫
PΓ

f̃c(x)g̃∗c (x) dx = 1
d(Γ)

∑
u∈Γ∗

F̃c[u]G̃∗c [u]
∑
x∈B

f̃ [x]g̃∗[x] = 1
K

∑
w∈D

F̃ [u]G̃∗[u]

Duality Fc(x)
CDFT←→ fc(−u) F̃c[x]

DDFT←→ d(Γ)f̃c(−u) F (x)
CDFS←→ 1

d(Λ)f [−u] F̃ [Cx]
DDFS←→ Kf̃ [−C−1u]



Sampling and reconstruction



Sampling of an MD continuous-domain signal

f [x] = fc(x), x ∈ Λ
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Sampling of an MD continuous-domain signal

If a continuous-domain signal fc with Fourier transform Fc is sampled on
the lattice Λ

f [x] = fc(x), x ∈ Λ

the Fourier transform of the sampled signal is given by

F (u) =
1

d(Λ)

∑

r∈Λ∗
Fc(u− r)

If the support of Fc is limited to one unit cell of Λ∗, the replicated versions
do not overlap and the continuous-domain signal can be reconstructed
from the samples.
We call the sum on the right above the Λ∗-periodization of Fc , denoted
�Λ∗ Fc .

fc(x)
CDFT←→ Fc(u) =⇒ (↓Λ fc)(x)

DDFT←→ 1

d(Λ)
(�Λ∗ Fc)(u)



Fourier-Poisson cube
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Color signal processing



Color spaces

The phenomenon of color perception is caused by visual light falling
on the retina of the human eye.

Colors perceived by a human viewer with normal trichromatic vision
belong to the three-dimensional vector space C.

Three linearly independent colors form a basis B = {[P1], [P2], [P3]}
for the color space.

Any color can be represented with three real numbers C1,C2,C3

called tristimulus values

[C] = C1[P1] + C2[P2] + C3[P3]

A color space is associated with a specific viewer or device. Different
bases just provide for different representations, or coordinates, for
elements of this vector space.

The Commission international de l’éclairage (CIE) has established
various standard observers to represent typical human viewers.



Cone of realizable colors
The set of physically realizable colors lie in a convex cone with a
curved boundary formed by the spectral (monochromatic) colors and
closed by the plane of purples.

C
Z

C
X

C
Y

A subset of these colors with triangular cross-section can be
synthesized with a positive linear combination of three display
primaries.



Color coordinate systems

A color coordinate system identifies colors within a given color space.

The coefficients with respect to a given basis or set of primaries is the
basic representation.

There are many different bases for a given color space, such as RGB,
XYZ, etc. These provide different coordinate systems.

The change of representation between different sets of primaries is
simply a change of basis operation from linear algebra.

The chapter provides several bases and the transformation method
between them.

The color space is perceptually non-uniform. Equal Euclidean
distance between color coordinates can correspond to widely different
perceptual differences at different positions in the color space.

Numerous perceptually-uniform color coordinate systems have been
proposed and adopted, such as CIELAB.

Many authors refer to different color coordinate systems as different
color spaces, but I have avoided this practice.



Color signal processing



Color signal processing

A color signal has the form [C](x), where typically x = (x , y) or
x = (x , y , t), i.e., D = 2 or D = 3.

In terms of a basis B

[C](x) = C1(x)[P1] + C2(x)[P2] + C3(x)[P3]

A color image is represented by three scalar images with respect to a
specific basis B.

A linear system for color signals is formed of nine scalar systems Hki

H([C](x)) =
3∑

k=1

(
3∑

i=1

(Hki ∗ Ci )(x)

)
[Pk ].

Frequency response using Fourier transform can be defined for color
signals.

It is very common for different color components to be sampled on
different sampling structures.



Bayer color filter array (CFA)



Random field models



Random field models
Many image sources can be usefully modelled as wide-sense-
stationary (WSS) random fields

These WSS processes can be characterized by the autocorrelation
function, or its Fourier transform, the power density spectrum. For
discrete domain WSS random fields

Rf [x] = E [f (w + x)f (w)]

Sf (u) =
∑

s∈Λ

Rf [x] exp(−j2πu · x)

The power density spectrum can be helpful in filter design.

The chapter also covers WSS color random fields, which are
characterized by a 3× 3 spectral density matrix with respect to a
given basis for the color space.

The chapter presents the effect of sampling and filtering on the
spectral density, and presents basic methods for spectral density
estimation.



A halftone image



Power density spectrum of a halftone image
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Multidimensional filter design



Multidimensional filter design

Analysis of commonly used ad-hoc filter types: moving average and
Gaussian filters.

Design of band-pass and band-stop filters.

Frequency-domain design using the window method.

Frequency-domain design using least-pth optimization, including
equality constraints.

Software is provided on the book website.



Multidimensional digital filter design
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Spectral density before and after filtering
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Halftone image before and after filtering

Original Filtered



Changing the sampling structure



Sampling structure conversion

The problem addressed is to convert a MD signal defined on one
lattice to be defined on a different lattice.

This can involve an increase or a decrease in the sampling density, or
even no change.

A general approach is presented based on upsampling and
downsampling operations.

This general approach involves upsampling to a common superlattice,
followed by downsampling to the output lattice.

Suitable filter design methodologies are presented.



Changing the sampling structure
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Changing the sampling structure using a common
superlattice



Symmetry invariant signals and systems



Symmetry invariant signals and systems

A symmetry is a transformation that leaves a certain entity
unchanged.

For example, a shift leaves a lattice unchanged.

Other symmetries of a lattice include rotations and reflections.

Chapter 12 extends the notion of shift invariant systems to more
general symmetry invariant systems.

Finding the eigenfunctions and eigenvalues of such systems leads to a
general class of Fourier-type transforms.

An example is the multidimensional discrete cosine transform (DCT)
defined on general lattices.



Symmetries of a lattice

The basic concept in this chapter is the notion of a group of
symmetries of a lattice, denoted G(Λ).

The chapter depends to a large extent on the mathematical subject of
group theory. Some basic concepts are summarized in Appendix B.

These symmetry groups have been studied for a long time in fields
such as crystallography.

Different lattices allow different sets of symmetries.

The following slide shows a classification of two-dimensional lattices
according to how much symmetry they have.



Symmetries of a lattice

parallelogram
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Symmetry-invariant systems
The notion of systems invariant to a group of symmetries is developed
for both aperiodic and periodic signal spaces.

For aperiodic signal spaces, the symmetries leave the lattice
unchanged.

For periodic signal spaces, related symmetries must also leave the
periodicity lattice unchanged.

We are interested in the eigenfunctions of symmetry-invariant systems
to perform Fourier-type analysis.

These eigenfunctions are obtained by applying all the symmetries of
the symmetry group to complex exponentials and adding.

φGu =
1

L

L∑

k=1

Hgkφu

Then, any symmetry invariant signal can expanded as a linear
combination of these eigenfunctions, giving a generalized Fourier
analysis.



Periodic extension of image blocks

no symmetry inversion symmetry

quadrantal symmetry eight-fold symmetry



Summary



Summary
In this book, I have presented the main elements of MD signal
processing, mainly emphasizing image and video processing as
examples.

The theory of continuous-domain and discrete-domain signals and
systems, both aperiodic and periodic, are presented in a common
framework.

Lattices are the basic tool to represent discrete-domain sampling
structures and signal periodicities

I emphasize the use of basis-independent, non-normalized
representations.

I use a vector-space representation for color and present color image
processing in this context.

I conclude the book with several special topics: random fields, filter
design, sampling structure conversion and symmetry-invariant signal
processing.

A final chapter gathers all the relevant material on lattices needed for
the book.



Other resources

Book web site:

http://www.site.uottawa.ca/˜edubois/mdsp/

There are complementary resources available on the book web site, in
ongoing development, including:

Matlab software to reproduce all the figures in the book, as well as
spectral estimation and filter design routines;

solutions manual for all the problems in the book;

errata;

additional material such as the printable table of Fourier transform
properties and links to presentations such as this one.



The End
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