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Chapter 1

Introduction

This manual provides the author’s solutions to the problems in Multidimensional Signal and

Color Image Processing Using Lattices, Wiley, 2019. These solutions are made freely available

on the book web site since they provide both complementary material and worked examples

that can be of benefit to all users of the book.
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Chapter 2

Continuous-Domain Signals and

Systems
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1. Consider a two-dimensional sinusoidal signal f(x, y) = A cos(2π(ux + vy) + φ) where x

and y are in ph and u and v are in c/ph. Form the one-dimensional signal g(z) by tracing

f(x, y) along the line y = cx, where c is some real constant, as a function of distance along

the line, z =
√
x2 + y2.

(a) Show that g(z) is a sinusoidal signal g(z) = A cos(2πwz + φ) and determine the spatial

frequency w in c/ph, as a function of u, v and c.

Solution: Evaluating f along the given line

f(x, cx) = A cos(2π(ux+ vy) + φ)

= A cos(2π(u+ vc)x+ φ)

Distance on the given line is z =
√
x2 + y2 =

√
x2 + c2x2 =

√
1 + c2x. Thus

g(z) = A cos

(
2π

(u+ vc)z√
1 + c2

+ φ

)
= A cos(2πwz + φ).

Thus we identify the spatial frequency as

w =
u+ vc√
1 + c2

c/ph.

(b) Explain what happens when c = 0 and when c→∞.

Solution: If c = 0, then w = u. As c→∞, then w = v.

(c) Show that the spatial frequency w is greatest along the line y = (v/u)x, if u 6= 0. What is

the value of this maximum spatial frequency? What happens if u = 0?

Solution: We want to maximize (u+ vc)/
√

1 + c2 with respect to c. Setting the derivative

with respect to c equal to 0,

v
√

1 + c2 − (u+ vc)(0.5)(1 + c2)−0.5(2c)

1 + c2
= 0.

Simplifying, v(1 + c2) − (u + vc)c = 0, or v − uc = 0. Thus, if u 6= 0, then c = v/u, and

thus w =
√
u2 + v2. If u = 0, the maximum frequency is v, along the line x = 0.



CHAPTER 2. CONTINUOUS-DOMAIN SIGNALS AND SYSTEMS 2-3

2. Show that for each of the following functions δ∆(x, y),∫ ∞
−∞

∫ ∞
−∞

δ∆(x, y) dx dy = 1

and

lim
∆→0

∫ ∞
−∞

∫ ∞
−∞

δ∆(x, y)f(x, y) dx dy = f(0, 0)

for any function f(x, y) that is continuous at (x, y) = (0, 0).

(a) δ∆(x, y) = 1
∆2 rect(x/∆, y/∆).

Solution: For the first condition

1

∆2

∫ ∞
−∞

∫ ∞
−∞

rect
( x

∆
,
y

∆

)
dx dy =

1

∆2

∫ ∆
2

−∆
2

∫ ∆
2

−∆
2

dx dy = 1.

For the second condition,

1

∆2

∫ ∞
−∞

∫ ∞
−∞

rect
( x

∆
,
y

∆

)
f(x, y) dx dy =

1

∆2

∫ ∆
2

−∆
2

∫ ∆
2

−∆
2

f(x, y)dx dy.

Since f(x, y) is continuous at (0,0), for any ε > 0 there exists a sufficiently small ∆ such

that |f(x, y)− f(0, 0)| < ε for −∆/2 < x, y < ∆/2. Then

1

∆2

∫ ∆
2

−∆
2

∫ ∆
2

−∆
2

(f(0, 0)−ε)dx dy < 1

∆2

∫ ∆
2

−∆
2

∫ ∆
2

−∆
2

f(x, y)dx dy <
1

∆2

∫ ∆
2

−∆
2

∫ ∆
2

−∆
2

(f(0, 0)+ε)dx dy,

and thus

f(0, 0)− ε < 1

∆2

∫ ∆
2

−∆
2

∫ ∆
2

−∆
2

f(x, y)dx dy < f(0, 0) + ε.

Thus, by making ∆ sufficiently small, we can make the integral of the second condition

arbitrarily close to f(0, 0), and so by definition, the limit as ∆→ 0 is f(0, 0).
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(b) δ∆(x, y) = 1
∆2 exp(−π(x2 + y2)/∆2).

Solution: For the first condition

1

∆2

∫ ∞
−∞

∫ ∞
−∞

exp(−π(x2 + y2)/∆2) dx dy =
1

∆2

∫ ∞
0

∫ π

−π
exp(−πr2/∆2)r dr dθ

=
2π

∆2
exp(−πr2/∆2)

(
−∆2

2π

)∣∣∣∣∞
0

= 1.

For the second condition to hold,we must impose additional constraints on f(x, y) besides

being continuous at the origin. For example, f(x, y) cannot increase wildly, faster than

the reciprocal of a Gaussian. For this problem, we will assume that |f(x, y)| is bounded,

with max |f(x, y)| = A < ∞. We need to show that |
∫ ∫

δ∆(x, y)f(x, y) dx dy − f(0, 0)|
can be made arbitrarily small by taking ∆ sufficiently small.

Take any ε > 0 choose δ > 0 so that |f(x, y)− f(0, 0)| < ε for x2 + y2 < δ2 (we can do this

since f(x, y) is continuous at (0,0)). Then, choose M sufficiently large that

1

2π

∫ ∞
M

∫ π

−π
exp(−r2/2)r dr dθ < ε,

i.e., exp(−M2/2) < ε. Finally, take ∆ =
√

2πδ/M .

We can bound the second condition as follows:∣∣∣∣∫ ∞
−∞

∫ ∞
−∞

δ∆(x, y)f(x, y) dx dy − f(0, 0)

∣∣∣∣ =

∣∣∣∣ 1

∆2

∫ ∞
−∞

∫ ∞
−∞

exp

(
−π(x2 + y2)

∆2

)
f(x, y) dx dy − f(0, 0)

∣∣∣∣
=

∣∣∣∣ 1

2π

∫ ∞
−∞

∫ ∞
−∞

exp

(
−s

2
1 + s2

2

2

)
f

(
∆s1√

2π
,

∆s2√
2π

)
ds1 ds2 − f(0, 0)

∣∣∣∣
=

∣∣∣∣ 1

2π

∫ ∞
−∞

∫ ∞
−∞

exp

(
−s

2
1 + s2

2

2

)(
f

(
∆s1√

2π
,

∆s2√
2π

)
− f(0, 0)

)
ds1 ds2

∣∣∣∣
<

∣∣∣∣∣ 1

2π

∫∫
s21+s22<M

2

exp

(
−s

2
1 + s2

2

2

)(
f

(
∆s1√

2π
,

∆s2√
2π

)
− f(0, 0)

)
ds1 ds2

∣∣∣∣∣+∣∣∣∣∣ 1

2π

∫∫
s21+s22≥M2

exp

(
−s

2
1 + s2

2

2

)(
f

(
∆s1√

2π
,

∆s2√
2π

)
− f(0, 0)

)
ds1 ds2

∣∣∣∣∣
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The first term of the last expression above is dominated by

1

2π

∫∫
s21+s22<M

2

exp

(
−s

2
1 + s2

2

2

) ∣∣∣∣f (∆s1√
2π
,

∆s2√
2π

)
− f(0, 0)

∣∣∣∣ ds1 ds2

< ε

∫∫
s21+s22<M

2

exp

(
−s

2
1 + s2

2

2

)
ds1 ds2 < ε

since in this region
∆2s2

1

2π
+

∆2s2
2

2π
<

∆2M2

2π
= δ2.

The second term of that expression is dominated by

1

2π

∫∫
s21+s22≥M2

exp

(
−s

2
1 + s2

2

2

)
ds1 ds2 max

(s1,s2)

∣∣∣∣f (∆s1√
2π
,

∆s2√
2π

)
− f(0, 0)

∣∣∣∣ < 2Aε.

Thus, the total error is dominated by ε(1 + 2A) which we can make arbitrarily small,

completing the proof.
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(c) δ∆(x, y) = 1
π∆2 circ(x/∆, y/∆).

Solution: For the first condition

1

π∆2

∫ ∞
−∞

∫ ∞
−∞

circ
( x

∆
,
y

∆

)
dx dy =

1

π∆2

∫ ∆

0

∫ π

−π
r dr dθ = 1.

For the second condition,

1

∆2

∫ ∞
−∞

∫ ∞
−∞

circ
( x

∆
,
y

∆

)
f(x, y) dx dy =

1

π∆2

∫ ∆

0

∫ π

−π
fR(r, θ) r dr dθ,

where fR(r, θ) = f(r cos θ, r sin θ). Since f(x, y) is continuous at (0,0), for any ε > 0 there

exists a sufficiently small ∆ such that |fR(r, θ)− f(0, 0)| < ε for r < ∆. Then

1

π∆2

∫ ∆

0

∫ π

−π
(f(0, 0)−ε) r dr dθ < 1

π∆2

∫ ∆

0

∫ π

−π
fR(r, θ) r dr dθ <

1

π∆2

∫ ∆

0

∫ π

−π
(f(0, 0)+ε) r dr dθ

and thus

f(0, 0)− ε < 1

π∆2

∫ ∆

0

∫ π

−π
fR(r, θ) r dr dθ < f(0, 0) + ε.

Thus, by making ∆ sufficiently small, we can make the integral of the second condition

arbitrarily close to f(0, 0), and so by definition, the limit as ∆→ 0 is f(0, 0).
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3. Show that

δ(ax, by) =
1

|ab|
δ(x, y)

where a, b 6= 0.

Solution: Note that since the Dirac delta is not a regular function, the meaning of this

scaling operation is not self evident. In fact, in distribution theory, this is the definition

of the scaling operation, which is meant to be consistent with scaling of regular functions

(see Richards and Youn for example). Here, we demonstrate it using the approximation

δ∆(x, y) = 1
∆2 rect(x/∆, y/∆). Since the Dirac delta and rect functions are separable, we

can show it in the one-dimensional case.

δ∆(ax) =
1

∆
rect

(ax
∆

)
=

1

∆
rect

(
x

∆/|a|

)
=

1

|a|
1

∆/|a|
rect

(
x

∆/|a|

)
=

1

|a|
δ∆/|a|(x),

where we use the fact that rect is symmetric about the origin in line 2. Thus, we see that

as ∆ → 0, then δ∆(ax) → 1
|a|δ(x), and so we conclude that δ(ax) = 1

|a|δ(x). Similarly,

δ(by) = 1
|b|δ(y), and the result follows by separability.

This can be extended to a general linear transformation of the domain.
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4. Prove that the following systems are linear systems.

(a) The shift system Td for any shift d ∈ RD.

Solution: Let S be a signal space for which Td is well defined, i.e., if f ∈ S then Tdf ∈ S.

Let f = α1f1 + α2f2 for any f1, f2 ∈ S and any scalars α1, α2. This means that f(x) =

α1f1(x) + α2f2(x) for all x ∈ RD. If g = Tdf = Td(α1f1 + α2f2), then g(x) = f(x− d) =

α1f1(x− d) + α2f2(x− d), and thus g = α1Tdf1 + α2Tdf2 and so Td is linear.

(b) The system induced by a nonsingular transformation of the domain, MA : g = MAf :

g(x) = f(Ax), where A is any nonsingular D ×D matrix.

Solution: Let S be a signal space for which MA is well defined, i.e., if f ∈ S then

MAf ∈ S. As in (a), let f = α1f1 + α2f2 for any f1, f2 ∈ S and any scalars α1, α2. This

means that f(x) = α1f1(x) + α2f2(x) for all x ∈ RD. If g =MAf =MA(α1f1 + α2f2),

then g(x) = f(Ax) = α1f1(Ax) + α2f2(Ax), and thus g = α1MAf1 + α2MAf2 and so

MA is linear.

(c) The cascade of any two linear systems H1 and H2. Thus, the system induced by an affine

transformation of the domain is a linear system.

Solution: Suppose that H1 : S1 → S2 and H2 : S2 → S3 are linear systems, and that

H = H2H1 : S1 → S3 is the cascade. This means Hf = H2(H1f). Let f = α1f1 + α2f2

for any f1, f2 ∈ S and any scalars α1, α2. Then

H(α1f1 + α2f2) = H2(H1(α1f1 + α2f2))

= H2(α1H1f1 + α2H1f2)

= α1H2(H1f1) + α2H2(H1f2)

= α1Hf1 + α2Hf2

and so H is linear. From (a) and (b), it follows that QA,d = TdMA =MATAd is linear.

(d) The parallel combination of two linear systems with the same domain and range, H1 +H2.

Solution: Let H1 : S1 → S2 and H2 : S1 → S2 be two linear systems with the same

domain and range. The parallel combination of these systems is H = H1 +H2, defined by
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Hf = H1f +H2f . If f = α1f1 + α2f2 for any f1, f2 ∈ S1, then

Hf = H1(α1f1 + α2f2) +H2(α1f1 + α2f2)

= α1H1f1 + α2H1f2 + α1H2f1 + α2H2f2

= α1(H1f1 +H2f1) + α2(H1f2 +H2f2)

= α1Hf1 + α2Hf2.

Thus, the system is linear.

(e) The partial derivative systems ∂x and ∂y defined in Section 2.5.2.

Solution: For this problem, we simply invoke the linearity of the derivative operation from

its definition in calculus. Take for example ∂x. By definition

(∂xf)(x, y) = lim
h→0

f(x, y)− f(x+ h, y)

h
.

For any given h, this can be thought of as the parallel combination of 1
hT0,0 and − 1

hT−h,0.

Then, from parts (a) and (d) of this problem, the system is linear for any h and so will be

linear in the limit.
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5. Prove that the following systems are linear shift-invariant systems.

(a) The shift system Td for any shift d ∈ RD.

Solution: From Problem 4(a), the shift system is linear. Let s be any element of RD and

f ∈ S. Then (Ts(Tdf))(x) = (Tdf)(x− s) = f(x− s− d) = (Tsf)(x− d) = (Td(Tsf)(x).

Thus TsTd = TdTs for any s ∈ RD and so Td is an LSI system.

(b) The cascade of two LSI systems H1 and H2.

Solution: Let d be any element of RD. Since H1 and H2 are LSI systems, TdH1 = H1Td
and TdH2 = H2Td. It follows that

TdH2H1 = H2TdH1 = H2H1Td

and so H2H1 is an LSI system.

(c) The parallel combination of two LSI systems with the same domain and range, H1 +H2.

Solution: Let d be any element of RD. Since H1 and H2 are LSI systems, TdH1 = H1Td
and TdH2 = H2Td. It follows that

Td(H1 +H2) = TdH1 + TdH2 = H1Td +H2Td = (H1 +H2)Td

and so H1 +H2 is an LSI system.

(d) The partial derivative systems ∂x and ∂y defined in Section 2.5.2.

Solution: As in Problem 4(e), ∂x = limh→0( 1
hT0,0 − 1

hT−h,0). This system is LSI for any

fixed h using the results of parts (a) and (c) of this problem, and so will be LSI in the

limit.
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6. Let f(x, y) = 0.5 rect(4(x− 0.5), 2(y − 0.25)) and h(x, y) = rect(10x, 10y), where x and y

are in ph.

(a) Sketch the region of support of f(x, y) and h(x, y) in the XY-plane (i.e., the area where

these two signals are nonzero).

Solution: f(x, y) has a rectangular region of support centered at (0,5, 0.25), of width 1
4

and of height 1
2 . h(x, y) has a square region of support cenetered at the origin, of width

and height 1
10 . These regions are shown in the figures below.

Figures for problem 2.6 
 
(a)-1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

x

 y

0 0.5 1.0

0.5

1.0

0.25

0.375 0.625

f (x,y)

 
 
(a)-2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

x

 y

0.1

0.1

0.5

0.5

h (x,y)

(b) Compute the two-dimensional convolution f(x, y) ∗ h(x, y) from the definition using inte-

gration in the spatial domain.

Solution: From the definition of convolution (Equation (2.46)) and the definition of f(x, y),

the convolution g = f ∗ h is given by

g(x, y) =

∫ ∞
−∞

∫ ∞
−∞

f(w, z)h(x− w, y − z) dw dz

= 0.5

∫ 0.5

0

∫ 0.625

0.375
h(x− w, y − z) dw dz

= 0.5

∫ 0.5

0

∫ 0.625

0.375
h(w − x, z − y) dw dz,
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where the last line follows from the fact that h has quadrantal symmetry. For any (x, y),

the output g(x, y) is equal to the area of overlap between the 0.1 × 0.1 square centered

at (x, y) and the nonzero portion of f , multiplied by 0.5 (the value of f in the nonzero

region). There are ten possible situations: no overlap, full overlap, overlap on one of the

four sides, overlap on one of the four corners. The following figure gives examples of these

ten cases, that applies in regions labelled A to J. We show h(w−x, z−y) for sample values

of (x, y) in each of the ten regions, and the overlap is the shaded portion.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

w

 z

0 0.5 1.0

0.5

1.0

0.25

0.375 0.625

f (x,y)

A

C
B

D

E

F

G

I
J

H

Figure P2.6b Illustration of the overlap between h(w − x, z − y) and f(w, z) for (x, y) in

each of the ten regions A-J.
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By inspecting Figure P2.6b, we can easily identify the ten regions for which the expression

for g(x, y) will have a different form. These regions are enumerated in the following table.

In region A (no overlap), clearly g(x, y) = 0. In region B (full overlap), g(x, y) = 1
2(0.1)2 =

0.005. In the side regions (C, D, E, F), the overlap area is 0.1 times the overlap length.

For example, in region C, this would be

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.375 x+0.05

area = 0.1(x + 0.05 – 0.375) = 0.1 x – 0.0325

For the corner regions (G, H, I, J) the area is the product of the two overlap lengths, as

in the following illustration for region J.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.375 x+0.05

area = 0.1(x + 0.05 – 0.375) = 0.1 x – 0.0325

0.5
y - 0.05

0.625

x - 0.05

area = (0.625-(x-0.05))  (0.5-(y-0.05))  
        = (0.675-x)(0.55-y)

A no overlap x < 0.325 OR x > 0.675 OR y < −0.05 OR y > 0.55

B full overlap 0.425 < x < 0.575 AND 0.05 < y < 0.45

C left side 0.325 ≤ x ≤ 0.425 AND 0.05 < y < 0.45

D right side 0.575 ≤ x ≤ 0.675 AND 0.05 ≤ y ≤ 0.45

E top side 0.425 ≤ x ≤ 0.575 AND −0.05 ≤ y ≤ 0.05

F bottom side 0.425 < x < 0.575 AND 0.45 ≤ y ≤ 0.55

G top left 0.325 ≤ x ≤ 0.425 AND −0.05 ≤ y ≤ 0.05

H top right 0.575 ≤ x ≤ 0.675 AND 0.05 ≤ y ≤ 0.05

I bottom left 0.325 ≤ x ≤ 0.425 AND 0.45 ≤ y ≤ 0.55

J bottom right 0.575 ≤ x ≤ 0.675 AND 0.45 ≤ y ≤ 0.55
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Carrying out this approach for all the regions, and multiplying by 0.5, (the value of f),

the overall output is

g(x, y) =



0 (x, y) ∈ A

0.005 (x, y) ∈ B

0.05− 0.01625 (x, y) ∈ C

0.03375− 0.05x (x, y) ∈ D

0.05y + 0.0025 (x, y) ∈ E

0.0275− 0.05y (x, y) ∈ F

0.5xy + 0.025x− 0.1625y − 0.008125 (x, y) ∈ G

−0.5xy − 0.025x+ 0.3375y + 0.016875 (x, y) ∈ H

−0.5xy + 0.275x+ 0.1625y − 0.089375 (x, y) ∈ I

0.5xy − 0.275x− 0.3375y + 0.185625 (x, y) ∈ J

Note that since both f and h are separable, a simpler solution could be obtained using

this separability.

(c) Suppose that f(x, y) is the input to a two-dimensional system, and the output of this

system is computed as in (b). What can we say about this system?

Solution: Since the output is given by the convolution of the input and h, we can conclude

that the system is a linear, shift-invariant system and that its impulse response is h.

(d) Determine the continuous-space Fourier transforms F (u, v), H(u, v) and G(u, v) of the

above three signals. Make liberal use of Fourier transform properties. What are the units

of u and v?

Solution: H(u, v) is the Fourier transform of h(x, y) which is a simple scaling of the

standard rect function, as already done in Example 2.3, with a = b = 10 and c = 1. Thus,

from that solution

H(u, v) =
sin(πu/10) sin(πv/10)

π2uv
.
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Let f1(x, y) = 0.5 rect(4x, 2y). Then f(x, y) = f1(x−0.5, y−0.25). Again, using the result

of Example 2.3 with a = 4, b = 2, c = 0.5, we obtain

F1(u, v) = 0.5
sin(πu/4) sin(πv/2)

π2uv
.

Then, applying Property 2.2 with x0 = (0.5, 0.25)

F (u, v) = F1(u, v) exp(−j2π(0.5u+ 0.25v))

= 0.5
sin(πu/4) sin(πv/2)

π2uv
exp(−j2π(0.5u+ 0.25v)).

Finally, since g = f ∗h, G(u, v) = F (u, v)H(u, v) with F (u, v) and H(u, v) given as above.

Since x and y are in units of ph, u and v are in units of c/ph.

(e) Continuing with question (c), what is the interpretation of H(u, v)?

Solution: Since H(u, v) is the Fourier transform of the impulse response h(x, y), it is the

frequency response of the linear shift-invariant system.
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7. Determine the response of an LSI system H with impulse response h(x) to a real sinusoidal

signal f(x) = A+B cos(2πu · x + φ) where A > 0 and 0 < B < A.

Solution: Note that this signal is positive everywhere and so it can be displayed as an

image.

We express the given signal as a sum of complex exponentials, and use the result from

Equation (2.48) along with linearity of the system.

f(x) = A exp(j2π0 · x) +
B

2
exp(j(2πu · x + φ)) +

B

2
exp(−j(2πu · x + φ))

= A exp(j2π0 · x) +
B

2
exp(jφ) exp(j2πu · x) +

B

2
exp(−jφ) exp(−j2πu · x).

Now applying linearity and the result from Section 2.5.5, we obtain

(Hf)(x) = AH(0) +
B

2
exp(jφ)H(u) exp(j2πu · x) +

B

2
exp(−jφ)H(−u) exp(−j2πu · x),

where H(u) is the continuous-domain Fourier transform of h(x).

The solution can be simplified if the impulse response h(x) is real. In this case, from

Property 2.9, H(u) = H∗(−u). If we express H(u) = |H(u)| exp(j∠H(u)), then H(−u) =

H∗(u) = |H(u)| exp(−j∠H(u)). Then,

(Hf)(x) = AH(0) +B|H(u)| cos(2πu · x + φ+ ∠H(u)).
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8. A two-dimensional continuous-space linear shift-invariant system has impulse response

h(x, y) =


1

2πR1R2
,

(
x
R1

)2
+
(
y
R2

)2
≤ 1

0, otherwise,

where R1 = 1/1000 ph and R2 = 1/500 ph.

(a) Sketch the region of support of the impulse response in the XY-plane, following the con-

ventions used in the course for the labelling of axes. Express h(x, y) in terms of the circ

function.

Solution: The region of support is an elliptical region.

Figure for solution of problem 2.8(a) 

 

 

x (ph) 

y (ph) 

1
1000

 

1
500

 

Written in terms of the circ function,

h(x, y) =
1

2πR1R2
circ

(
x
R1
, y
R2

)
=

250, 000

π
circ(1000x, 500y).

(b) Find the frequency response H(u, v) of this system, where u and v are in c/ph.

Solution: The frequency response is given by the Fourier transform of the impulse re-

sponse. We use the Fourier transform of the circ function given in Table 2.2, along with
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Fourier transform properties 2.1 and 2.6 from Table 2.1. For Property 2.6, we use the

transformation matrix with detminant and inverse transform

A =

[
1000 0

0 500

]
, detA = 500, 000, A−T =

[
1

1000 0

0 1
500

]
.

Applying the properties and simplifying, we obtain

H(u, v) =
250, 000

π

1

500, 000

1√
(u/1000)2 + (v/500)2

J1

(
2π

√( u

1000

)2
+
( v

500

)2
)

=
1

2π

1√
(u/1000)2 + (v/500)2

J1

(
2π

√( u

1000

)2
+
( v

500

)2
)
.

(c) The image f(x, y) = rect(5(x − .5), 2(y − .5)) is filtered with this system to produce the

output g(x, y) = f(x, y) ∗h(x, y). Determine the Fourier transform of the output, G(u, v).

Solution: From Property 2.4, G(u, v) = F (u, v)H(u, v) where H(u, v) was found in part

(b). To find F (u, v), we use the Fourier transform of the rect function from Table 2.2 along

with Fourier transform Property 2.2 with x0 = [0.5, 0.5]T and Property 2.6 with

A =

[
5 0

0 2

]
, detA = 10, A−T =

[
1
5 0

0 1
2

]
.

It follows that

F (u, v) = exp(−j2π(0.5u+ 0.5v)) · 1

10

sin
(
πu
5

)
sin
(
πv
2

)
πu
5 ·

πv
2

= exp(−jπ(u+ v))
sin
(
πu
5

)
sin
(
πv
2

)
π2uv

.
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9. Compute the two-dimensional continuous-space Fourier transform of the following signals:

(a) The separable signal f(x, y) = h
(1)
X (x)h

(1)
Y (y) where

h
(1)
T (t) =

1− |t|T |t| ≤ T,

0 otherwise.

Solution: Using Property 2.11 in Table 2.1, H(u, v) = H
(1)
X (u)H

(1)
Y (v). Thus, we need to

find the one-dimensional Fourier transform of h
(1)
T (t). This is straightforward if we note

that

h
(1)
T (t) =

1

T
rect(t/T ) ∗ rect(t/T ).

The Fourier transform of rect(t/T ) is easily seen to be sin(πfT )/πf (see Examples 2.2 and

2.3). Thus, using Property 2.4,

H
(1)
T (f) =

1

T

(
sin(πfT )

πf

)2

=
sin2(πfT )

π2f2T
.

It follows directly that

H(u, v) =
sin2(πuX) sin2(πvY )

π4u2v2XY
.
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9. Compute the two-dimensional continuous-space Fourier transform of the following signals:

(b) A Gaussian function

f(x, y) =
1

2πr2
0

exp−(x2 + y2)/2r2
0.

(i) Obtain the result from the entry in Table 2.2 (with r0 = 1). (ii) Prove the result in

Table 2.2. Extra question: For what value of r0 is F (u, v) = f(u, v)?

Solution: (i) To use the result in Table 2.2, we use properties 2.1 and 2.6. As in Table 2.2,

let

f0(x, y) = exp(−(x2 + y2)/2), F0(u, v) = 2π exp(−2π2(u2 + v2)).

Then

f(x, y) =
1

2πr2
0

f0(x/r0, y/r0).

We use Property 2.6 with A = diag(1/r0, 1/r0), detA = 1/r2
0, and A−T = diag(r0, r0).

This gives

F (u, v) =
1

2πr2
0

r2
0F0(r0u, r0v) = exp(−2π2r2

0(u2 + v2)).

(ii) Since f(x, y) is separable, we know F (u, v) will also be separable. Thus, we can find the

one-dimensional Fourier transform of f0(x) = exp(−x2) and then apply Fourier transform

properties to get the desired result.

F0(u) =

∫ ∞
−∞

exp(−x2) exp(−j2πux) dx

=

∫ ∞
−∞

exp(−x2 − j2πux) dx

=

∫ ∞
−∞

exp(−(x+ jπu)2) exp(−π2u2) dx completing the square

= exp(−π2u2)

∫ ∞
−∞

exp(−(x+ jπu)2) dx

The integral on the right is a contour integral of the complex function exp(−z2) on the

horizontal contour z = x+ jπu. Since exp(−z2) is an analytic function, its integral along

any closed contour is zero (Cauchy’s integral theorem). Take a contour from −R to R to

R+ jπu to −R+ jπu to −R. For R sufficiently large, integrals along the vertical segments
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at x = ±R can be made arbitrarily small and thus the integral on the contour z = x+ jπu

is equal to the integral on the contour z = x. Thus,

I =

∫ ∞
−∞

exp(−(x+ jπu)2) dx =

∫ ∞
−∞

exp(−x2) dx.

This integral cannot be directly evaluated, so we use a trick. (This result is well-known to

anyone who uses the Gaussian distribution.

I2 =

∫ ∞
−∞

exp(−x2) dx

∫ ∞
−∞

exp(−y2) dy

=

∫ ∞
−∞

∫ ∞
−∞

exp(−(x2 + y2)) dxdy

=

∫ ∞
0

∫ 2π

0
exp(−r2)r dθdr

= 2π

∫ ∞
0

exp(−r2)r dr

= −π exp(−r2)
∣∣∞
0

= π

and thus I =
√
π and

F0(u) =
√
π exp(−π2u2).

If we define f1(x, y) = f0(x)f0(y) = exp(−(x2 +y2)), then F1(u, v) = π exp(−π2(u2 +v2)).

The desired function is

f(x, y) =
1

2πr2
0

f1(
x√
2r0

,
y√
2r0

).

Applying the linearity and scaling properties

F (u, v) =
1

2πr2
0

2r2
0F1(
√

2r0u,
√

2r0v)

= exp(−2π2r2
0(u2 + v2))

Note that if r0 = 1/
√

2π, then F (u, v) = f(u, v) = exp(−π(u2 + v2)). Also, the entry in

Table 2.2 corresponds to r0 = 1, with f scaled by 2π.
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9. Compute the two-dimensional continuous-space Fourier transform of the following signals:

(c) A real zone plate, f(x, y) = cos(π(x2 + y2)/r2
0). ( Hint: Find the Fourier transform of

the complex zone plate exp(jπ(x2 + y2)/r2
0) and use linearity. You can use

∫∞
−∞ e

jy2
dy =

√
πejπ/4.)

Solution: As suggested, we express the real zone plate in terms of complex zone plates,

cos(π(x2 + y2)/r2
0) = 1

2(exp(jπ(x2 + y2)/r2
0) + exp(−jπ(x2 + y2)/r2

0)).

Thus, we will compute the Fourier transform of a complex zone plate fC(x, y) = exp(jπα(x2+

y2)) and use linearity. Furthermore, the complex zone plate is separable, so we can find the

one-dimensional Fourier transform of the function f1(x) = exp(jπαx2) and use Property

2.11.

Computing this one-dimensional Fourier transform

F1(u) =

∫ ∞
−∞

exp(jπαx2) exp(−j2πux) dx

=

∫ ∞
−∞

exp(j2π(α2x
2 − ux)) dx

= exp(−jπu2/α)

∫ ∞
−∞

exp(jπα(x− u
α)2) dx

= exp(−jπu2/α)
1√
πα

∫ ∞
−∞

exp(jy2) dy [y =
√
πα(x− u

α)]

=
1√
α

exp(−jπu2/α) exp(jπ/4) [applying the given hint].

Using separability, we find the Fourier transform of the complex zone plate

FC(u, v) =
1

α
j exp(−jπ(u2 + v2)/α).

Finally, using linearity with α = 1/r2
0 and α = −1/r2

0 respectively, we find

F (u, v) =
j

2
(r2

0 exp(−jπ(u2 + v2)r2
0)− r2

0 exp(jπ(u2 + v2)r2
0))

= r2
0 sin(π(u2 + v2)r2

0).

These results are given in Table 2.2 for the real and complex case with r0 = 1 and α = 1

respectively.
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To compute the integral given in the hint,∫ ∞
−∞

exp(jy2) dy = 2

∫ ∞
0

exp(jy2) dy

=

∫ ∞
0

1√
x

exp(jx) dx [x = y2; dy =
1

2
√
x
dx]

=
Γ(1

2)

(−j)1/2

=
√
π exp(jπ/4) [Γ(1

2) =
√
π].

In this expression, Γ(x) is the gamma function which satisfies∫ ∞
0

tβ exp(−pt) dt =
Γ(β + 1)

pβ+1
, p = σ + jω, σ ≥ 0.

We have used p = −j and β = −1/2.
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9. Compute the two-dimensional continuous-space Fourier transform of the following signals:

(d) Diamond-shaped pulse

f(x, y) =

1 |x|+ |y| ≤ a,

0 |x|+ |y| > a.

(Hint: obtain this function from a rect function using a rotation transformation.)

Solution: The diamond-shaped pulse can be obtained by a rotating a rect function by 45◦

and scaling (in either order). The given diamond region is in fact a square of side
√

2a

rotated 45◦ from the horizontal. Such a square oriented horizontally is given by

f1(x, y) = rect

(
x√
2a
,
y√
2a

)
.

Thus, f(x) = f1(Ax) where

A =

[
cos 45◦ sin 45◦

− sin 45◦ cos 45◦

]
=

 1√
2

1√
2

− 1√
2

1√
2


From Example 2.3,

F1(u, v) =
sin(πu

√
2a) sin(πv

√
2a)

π2uv
.

Using Property 2.6 from Table 2.1,

F (u, v) =
1

| detA|
F1(A−Tu)

where here detA = 1 and A−T = A. Thus

F (u, v) = F1

(
u√
2

+
v√
2
,− u√

2
+

v√
2

)
=

sin(π(u+ v)a) sin(π(−u+ v)a)

π2 (u+v)√
2

(−u+v)√
2

=
2 sin(π(u+ v)a) sin(π(u− v)a)

π2(u2 − v2)
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9. Compute the two-dimensional continuous-space Fourier transform of the following signals:

(e) Gabor function

f(x, y) = cos(2π(u0x+ v0y)) exp

(
−(x− x0)2 + (y − y0)2

2r2
0

)
Solution: This is a sinusoidal signal of frequency (u0, v0) multiplied by a Gaussian of

spread r0 centered at (x0, y0),

Let f1(x, y) = exp

(
−x

2 + y2

2r2
0

)
, with Fourier transform

F1(u, v) = 2πr2
0 exp(−2π2(u2 + v2)r2

0) [Table 2.2 and Property 2.6]

Let f2(x, y) = f1(x− x0, y − y0), with

F2(u, v) = F1(u, v) exp(−j2π(ux0 + vy0)) [Property 2.2)]

Then f(x, y) =
1

2
(exp(j2π(u0x+ v0y)) + exp(−j2π(u0x+ v0y)))f2(x, y)

and so F (u, v) =
1

2
(F2(u− u0, v − v0) + F2(u+ u0, v + v0)) [Property 2.3]

= πr2
0 exp(−2π2((u− u0)2 + (v − v0)2)r2

0) exp(−j2π(u− u0)x0 + (v − v0)y0)

+ πr2
0 exp(−2π2((u+ u0)2 + (v + v0)2)r2

0) exp(−j2π(u+ u0)x0 + (v + v0)y0)
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9. Compute the two-dimensional continuous-space Fourier transform of the following signals:

(f) The two-dimensional zero-one function pA(x, y) where A is an elliptical region, with semi-

minor axis X and semi-major axis 2X, oriented at 45◦ as shown in the figure

 

x 

y 

45° 

1 

0 
X 

ellipse 

2X 

 
Elliptical region of support of two-dimensional zero-one function.

Solution: Letf(x, y) = circ(x, y), f1(x, y) = circ(x/2X, y/X). f1 has an elliptical region of

support with semi-minor axis X in the vertical direction and semi-major axis 2X in the

horizontal direction. We can write f1(x) = f(A1x), where

A1 =

[
1

2X 0

0 1
X

]
.

Then pA(x) = f1(A2x), where A2 causes a 45◦ counterclockwise rotation (or equivalently,

a −45◦ clockwise rotation. From page 17 in the notes, we can achieve this with

A2 =

[
cos(−45◦) sin(−45◦)

− sin(−45◦) cos(−45◦)

]
=

 1√
2
− 1√

2
1√
2

1√
2


Combining the two, we obtain that pA(x) = f1(A2x) = f(A1A2x) = f(Ax), where

A = A1A2 =

 1
2
√

2X
− 1

2
√

2X
1√
2X

1√
2X

 .
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Applying property 2.6 from Table 2.1, PA(u) = F (A−Tu)/|det(A)|, where

A−T =

[√
2X −

√
2X

X√
2

X√
2

]
, det(A) =

1

2X2
, A−Tu =

[√
2X(u− v)
X(u+v)√

2

]
.

From Table 2.2, F (u, v) = 1√
u2+v2

J1(2π
√
u2 + v2). Thus,

PA(u, v) = 2X2F (
√

2X(u− v), X(u+ v)/
√

2)

=
2X√

2(u− v)2 + (u+ v)2/2
J1(2πX

√
2(u− v)2 + (u+ v)2/2)
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10. Derive the expression for the Fourier transform of a zero-one function on a polygon sym-

metric about the origin, as given in Equation (2.80).

Solution: For a polygon symmetric about the origin, the number of vertices K must be

even, and ak+K/2 = −ak for k = 1, . . . ,K/2. Furthermore, we see from the definitions

that nk+K
2

= −nk, ck+K
2

= −ck and dk+K
2

= dk. Then, for 1 ≤ k ≤ K
2 , the (k + K

2 )th

term of PA(u) given by Equation (2.79) is

dk+K
2

(u·nk+K
2

)e
−j2πu·c

k+K
2 sinc(u·(ak+K

2
+1−ak+K

2
)) = d(−u·nk)ej2πu·ck sinc(u·(ak+1−ak)).

Adding terms for k and k + K
2 gives

d(u · nk)(−2j sin(2πu · ck)) sinc(u · (ak+1 − a)).

Inserting this in Equation (2.79), combining the terms for k and k + K
2 and substituting

ck = (ak+1 + ak)/2, we obtain Equation (2.80).

PA(u) =
1

π‖u‖2

K/2∑
k=1

dk(u · nk) sin(πu · (ak+1 + ak)) sinc(u · (ak+1 − ak)).
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11. Use the expression in Equation (2.80) to compute the Fourier transform of the rect function.

Solution: The rect function corresponds to a region A that is a square of unit side centered

at the origin, with K = 4. It is symmetric about the origin, so we can use Equation (2.80).

Referring to the figure below, d1 = d2 = 1 and

n1 =

[
1

0

]
n2 =

[
0

1

]
a1 =

[
1
2

−1
2

]
a2 =

[
1
2
1
2

]
a3 =

[
−1

2
1
2

]
Substituting into Equation (2.80), we obtain

PA(u, v) =
1

π(u2 + v2)
(u sin(πu) sinc(v) + v sin(πv) sinc(−u))

=
1

π(u2 + v2)

(
u sinπu

sinπv

πv
+ v sinπv

sinπu

πu

)
=

1

π2(u2 + v2)
sinπu sinπv

(u
v

+
v

u

)
=

sinπu sinπv

π2uv
.

in agreement with the standard result in Table 2.2.

Illustration of rect function for problem 2.11 
 
 
 
 
 
 

a1 

a2 a3 

a4 

x 

y 

½ 

½ 

-½ 

-½ 

Region of support of the rect function with vertices a1 to a4.
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12. Use the expression in Equation (2.80) to compute the Fourier transform of a zero-one

function with a region A that is a regular hexagon of unit area, with vertices on the y axis.

Solution: Let the length of each size of the regular hexagon be d. Then the area is six

times the area of an equilateral triangle of side d, i.e., 6 ×
√

3
4 d

2 = 3
√

3
2 d2. Thus, for unit

area, d =
√

2
3
√

3
. The desired regular hexagon with vertices on the y axis is shown in the

figure below. The vertices a1 to a6 are indicated, where we arbitrarily select a1 to be in

the first quadrant.

Illustration of the hexagonal function for problem 2.12. 
 
 
 
 
 
 
 
  

x 

y 

a5 -d 

a1 

a2 

a3 

a4 
a6 

√ଷ

ଶ
d െ√ଷ

ଶ
d 

d 

ଵ

ଶ
d 

െଵ

ଶ
d 

d 

Region of support of the regular hexagon of unit area with vertices a1 to a6.

Since this hexagon is symmetric about the origin, we can use Equation (2.80) to compute

the Fourier transform. The quantities needed to compute PA(u, v) are enumerated below.

a1 = d

[√
3

2
1
2

]
a2 = d

[
0

1

]
a3 = d

[
−
√

3
2

1
2

]
a4 = d

[
−
√

3
2

−1
2

]
= −a1.

For the required normals, n1 is a unit vector perpendicular to (a2 − a1)/d = [−
√

3
2 ,

1
2 ]T
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which is easily seen to be [1
2 ,
√

3
2 ]T . Similarly we can find n2, and n3 is obvious. In summary

n1 =

[
1
2√
3

2

]
n2 =

[
−1

2√
3

2

]
n3 =

[
−1

0

]
.

The other derived quantities needed for the formula are

a1 + a2 = d

[√
3

2
3
2

]
a2 + a3 = d

[
−
√

3
2

3
2

]
a3 + a4 = d

[
−
√

3

0

]
.

a2 − a1 = d

[
−
√

3
2
1
2

]
a3 − a2 = d

[
−
√

3
2

−1
2

]
a4 − a3 = d

[
0

−1

]
.

Substituting these quantities into Equation (2.80), we obtain

PA(u, v) =
d

π(u2 + v2)

(
u+
√

3v

2
sinπd(

√
3

2 u+ 3
2v) sinc d(−

√
3

2 u+ 1
2v)

+
−u+

√
3v

2
sinπd(−

√
3

2 u+ 3
2v) sinc d(−

√
3

2 u−
1
2v)

+ (−u) sinπu(−
√

3d) sinc(−dv)

)
.

This formula could be simplified in various ways. Note the similarity with the result on

page 2-31. The result of this problem could be obtained from that expression by scaling

by d and rotating by π/6. Verify this.
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13. Use the expression in Equation (2.80) to compute the Fourier transform of a zero-one

function with a region A that is a regular octagon of unit area, with two sides parallel to

the x axis.

Solution: Let the length of each side of the regular octagon be d. From the figure below, we

see that the coordinate b is given by d
2b = tanπ/8 = 1/(1+

√
2), so that b = d(1+

√
2)/2 ≈

1.207d. Then the area of the octagon is seen to be 16bd/4 = 2(1 +
√

2)d2. Thus, for unit

area, we need d2 = 1/(2 + 2
√

2), or d = 1/
√

2 + 2
√

2 ≈ 0.455. The solution is presented

in terms of the side length d which is assumed to have this value.illustration of the octagonal function of problem 2.13. 
 
 
 
 
 

a1 

a2 a3 

a4 

a6 

x 

y 

a5 

a7 

a8 

d 

b 

Region of support of the regular octagon of unit area with vertices a1 to a8.

Since this octagon is symmetric about the origin, we can use Equation (2.80) to compute

the Fourier transform. The quantities needed to compute PA(u, v) are enumerated below.

a1 = d

[
1+
√

2
2
1
2

]
a2 = d

[
1
2

1+
√

2
2

]
a3 = d

[
−1

2
1+
√

2
2

]
a4 = d

[
−1+

√
2

2
1
2

]
a5 = −a1.
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The unit normals are either horizontal, vertical or at 45 degrees, and are easily seen to be

n1 =

 1√
2

1√
2

 n2 =

[
0

1

]
n3 =

− 1√
2

1√
2

 n4 =

[
−1

0

]
.

Substituting these into Equation (2.80), we obtain

PA(u, v) =
d

π(u2 + v2)

(
u+ v√

2
sin(π 2+

√
2

2 (u+ v)d) sinc(
√

2
2 (−u+ v)d)

+ v sin(π(1 +
√

2)vd) sinc(−ud)

+
−u+ v√

2
sin(π 2+

√
2

2 (−u+ v)d) sinc(−
√

2
2 (u+ v)d)

+(−u) sin(π(1 +
√

2)(−u)d) sinc(−vd)

)
.

This formula can be simplified in various ways, using for example the fact that sine is odd

and sinc is even, using trigonometric identities, etc.
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14. Consider a continuous-domain Laplacian of Gaussian (LoG) filter with impulse response

h(x, y) = c
x2 + y2 − 2r2

0

2πr6
0

exp

(
−x

2 + y2

2r2
0

)
.

(a) Show that the magnitude frequency response has a peak at radial frequency√
u2 + v2 =

1√
2πr0

.

Solution: From Equation (2.90)

H(u, v) = −c(2π)2(u2 + v2) exp(−2π2r2
0(u2 + v2))

which is circularly symmetric. Thus, we can find the peak magnitude frequency response

by searching along the u axis:

|H(u, 0)| = |c|(2π)2u2 exp(−2π2r2
0u

2).

This function is continuous, has value 0 at the origin, is positive elsewhere and tends to 0

as u→∞. Thus we can find the maximum by setting the derivative to zero.

d

du
|H(u, 0)| = |c|(2π2)(2u exp(−2π2r2

0u
2)− 4π2r2

0u
3 exp(−2π2r2

0u
2)) = 0

which has a solution at u = 0. For u 6= 0 we can cancel non-zero terms to obtain

1 − 2π2r2
0u

2 = 0, or u2 = 1/(2π2r2
0). Thus, the peak magnitude response lies on the

circle

u2 + v2 =
1

2π2r2
0

.

(b) What is the value of c such that the peak magnitude frequency response is 1.0, i.e.,

|H(u, v)| = 1 when u2 + v2 =
1

2π2r2
0

?

Solution: At the radial frequency given in (a)

|H(u, v)| = |c|(2π)2

2π2r2
0

exp(−1) =
2|c|
r2

0e

so c = ±r2
0e/2.
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(c) Compute the values found in (a) and (b) when r0 = 0.0025 ph.

Solution: If r0 = 0.0025 ph, the peak radial frequency is 1/(
√

2π(0.0025)) = 90.03 c/ph.

Then, c = ±(0.0025)2e/2 = ±0.849 × 10−6. These are the values used in the example in

Section 2.7.3. We can take c = −0.849× 10−6 to have H(u, v) ≥ 0.
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15. Find the D-dimensional Fourier transform of the following function:

(a) A D-dimensional Gaussian f(x) = 1
(2π)D/2 exp(−‖x‖2/2).

Solution: Written out explicitly, we see that this function is separable

f(x1, . . . , xD) =
1

(2π)D/2
exp(−(x2

1 + · · ·+ x2
D)/2)

= f0(x1) · · · f0(xD),

where

f0(x) =
1√
2π

exp(−x2/2)

is a one-dimensional Gaussian. Thus, by property 2.11, F (u1, . . . , uD) = F0(u1) · · ·F0(uD),

where F0(u) is the one-dimensional Fourier transform of f0(x). We showed in the solution

to Problem 9(b) that the one-dimensional Fourier transform of exp(−x2) is
√
π exp(−π2u2).

Applying Properties 2.1 and 2.6 (with A = 1/
√

2), we find

F0(u) =
1√
2π

√
2
√
π exp(−2π2u2).

Thus,

F (u) = exp(−2π2|u|2).

This is the result given in Equation (2.87) with r0 = 1.
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15. Find the D-dimensional Fourier transform of the following function:

(b) A D-dimensional circularly symmetric exponential f(x) = exp(−2π‖x‖).
Answer:

F (u) = cD
1

(1 + ‖u‖2)(D+1)/2

where cD = Γ((D+1)/2)/π(D+1)/2. Γ(·) is the Gamma function, which satifies the following

properties: Γ(n) = n! for n = 1, 2, . . ., Γ(x+ 1) = xΓ(x), Γ(0.5) =
√
π. Hint: The solution

can be found on pages 6 and 7 in Stein and Weiss (1971).

Solution: This solution is adapted from the proof of Theorem 1.14 in Stein and Weiss

(1971). The Fourier transform we seek is given by

F (u) =

∫
RD

exp(−2π‖x‖) exp(−j2πu · x) dx.

We start with an alternate expression for exp(−2π‖x‖). For β > 0

e−β =
2

π

∫ ∞
0

cosβt

1 + t2
dt.

This is a standard result given in integral tables, obtained using residues:∫ ∞
−∞

ejβt

1 + t2
dt = 2πjres

[
ejβz

1 + z2
, j

]
= 2πj

e−β

2j
= πe−β.

Thus

e−β =
1

π

∫ ∞
−∞

cosβt+ j sinβt

1 + t2
dt =

2

π

∫ ∞
0

cosβt

1 + t2
dt

since cos is even and sin is odd. Next, we use the expression 1
1+t2

=
∫∞

0 e−(1+t2)s ds to

write this as

e−β =
2

π

∫ ∞
0

cosβt

(∫ ∞
0

e−se−st
2
ds

)
dt

=
2

π

∫ ∞
0

e−s
(∫ ∞

0
e−st

2
cosβt dt

)
ds

=
2

π

∫ ∞
0

e−s
(

1

2

∫ ∞
−∞

e−st
2
ejβt dt

)
ds

=
2

π

∫ ∞
0

e−s
(
π

∫ ∞
−∞

e−4π2sw2
e−j2πβw dw

)
ds (t = −2πw).
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The integral in parentheses is seen to be the one-dimensional Fourier transform of a Gaus-

sian function g(w) = exp(−4π2sw2). We showed in the solution to Problem 9(b) that the

one-dimensional Fourier transform of exp(−x2) is
√
π exp(−π2u2). Thus, applying Prop-

erty 2.6 with A = 2π
√
s, this Fourier transform is 1

2
√
πs

exp(−β2/4s). Inserting it in the

expression for e−β, we obtain

e−β =
1√
π

∫ ∞
0

e−s√
s

exp(−β2/4s) ds.

We use this with β = 2π‖x‖ in the definition of F (u) to obtain

F (u) =

∫
RD

(
1√
π

∫ ∞
0

e−s√
s

exp

(
−4π2‖x‖2

4s

)
ds

)
exp(−j2πu · x) dx

=
1√
π

∫ ∞
0

e−s√
s

(∫
RD

exp

(
−π

2‖x‖2

s

)
exp(−j2πu · x) dx

)
ds.

The inner parenthesis is the Fourier transform of a D-dimensional Gaussian, which is

given in Equation (2.87) and evaluated in Problem 2.15(a). Using r0 = s/2π2, this Fourier

transform is (s/pi)D/2 exp(−s‖u‖2), and inserting it in the expression for F (u),

F (u) =
1√
π

∫ ∞
0

e−s√
s

( s
π

)D/2
e−‖u‖

2s ds.

This has the form of a Gamma function

Γ(w) =

∫ ∞
0

tw−1e−t dt, w > 0.

Let t = s(1 + ‖u‖2). Then

F (u) =
1

π(D+1)/2

∫ ∞
0

e−tt(D−1)/2 1

(1 + ‖u‖2)(D+1)/2
dt =

Γ((D + 1)/2)

π(D+1)/2

1

(1 + ‖u‖2)(D+1)/2
.
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1. Prove the properties of lattices given in Section 3.2.2.

Solution: These properties are further addressed in Section 13.3. Here we give simple

proofs from first principles.

Let Λ be any lattice.

(i) 0 ∈ Λ: the origin belongs to any lattice.

Proof: For any sampling matrix V, referring to the definition in Equation (3.3), V0 ∈ Λ

since 0 = [0, 0, . . . , 0]T ∈ ZD.

(ii) If x ∈ Λ and y ∈ Λ then x + y ∈ Λ.

Proof: Let V be any sampling matrix for Λ. Then there exist integer vectors n1,n2 ∈ ZD

such that x = Vn1 and y = Vn2. It follows that x + y = Vn1 + Vn2 = V(n1 + n2) ∈ Λ

since n1 + n2 ∈ ZD.

(iii) If d ∈ Λ then Λ + d = Λ where Λ + d = {x + d | x ∈ Λ}.

Proof: Let s be any element of Λ +d. Then by definition s = x+d for some x ∈ Λ. Since

d ∈ Λ, from (ii), s = x + d ∈ Λ and thus Λ + d ⊂ Λ. Conversely, let x be any element

of Λ and let s = x + (−d). Suppose d = Vn for some n ∈ ZD. Then −d = V(−n) ∈ Λ

since −n ∈ Zd. (This is an additional property given in Section 13.3.) Thus s ∈ Λ and

x = s + d ∈ Λ + d so Λ ⊂ Λ + d. From these two inclusions, we can conclude that

Λ + d = Λ.
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2. Prove that convolution on a lattice is commutative, f ∗ h = h ∗ f .

Solution: Let g = f ∗ h. Then by definition (Equation (3.25))

g[x] =
∑
y∈Λ

f [y]h[x− y] for all x ∈ Λ.

For any given x ∈ Λ, let z = x − y, and so y = x − z. Now {−y | y ∈ Λ} = Λ since

y ∈ Λ =⇒ −y ∈ Λ (see Problem 3.1), and so {x − y | y ∈ Λ} = Λ (Property (iii) in

Section 3.2.2). In other words, as y ranges over all of Λ, z = x− y also ranges over all of

Λ for any x ∈ Λ. Thus

g[x] =
∑
z∈Λ

f [x− z]h[z]

=
∑
z∈Λ

h[z]f [x− z]

i.e., g = h ∗ f .
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3. A linear shift-invariant filter defined on the hexagonal lattice

Λ = LAT

([
2X X

0 1.5X

])

has unit-sample response given by

h[x] =



1
4 x = (0, 0)

1
8 x = (X, 1.5X) or (−X,−1.5X) or (0, 3X) or (0,−3X)

1
16 x = (2X, 0) or (−2X, 0) or (X,−1.5X) or (−X, 1.5X)

0 otherwise

Determine the frequency response H(u, v) of this filter. Express it in real form. What is

the DC gain of this filter?

Solution: Applying the definition of the frequency response and combining terms for x

and −x,

H(u, v) = 1
4 + 1

4 cos(2π(u+ 1.5v)X) + 1
4 cos(6πvX) + 1

8 cos(4πuX) + 1
8 cos(2π(u− 1.5v)X).

The DC gain is H(0, 0) = 1.0. The reciprocal lattice is

Λ∗ = LAT

[2X X

0 1.5X

]−T = LAT

([
1

2X 0

− 1
3X

2
3X

])
.

Thus,

H(u, v) = H(u+ k1
2X , v −

k1
3X + 2k2

3X ) for all k1, k2 ∈ Z.
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4. For each of the following two-dimensional lattices Λ given by their sampling matrix, sketch

the lattice to scale in the space domain, determine and sketch the reciprocal lattice and a

Voronoi unit cell of the reciprocal lattice.

(a) VΛ =

[
2X 0

0 2X

]

Solution: The reciprocal lattice is given by VΛ∗ =

[
1

2X 0

0 1
2X

]
. The lattice in the space

domain and the reciprocal lattice with Voronoi cell are as follows:

x

y

v
1

v
2

X

X

u

v

1/X

1/X
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4 For each of the following two-dimensional lattices Λ given by their sampling matrix, sketch

the lattice to scale in the space domain, determine and sketch the reciprocal lattice and a

Voronoi unit cell of the reciprocal lattice.

(b) VΛ =

[
3X X

0 X

]

Solution: The reciprocal lattice is given by VΛ∗ = V −TΛ =

[
1

3X 0

− 1
3X

1
X

]
. The lattice in the

space domain and the reciprocal lattice with Voronoi cell are as follows:

x

y

v
1

v
2

X

X

u

v

1/X

1/X
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4 For each of the following two-dimensional lattices Λ given by their sampling matrix, sketch

the lattice to scale in the space domain, determine and sketch the reciprocal lattice and a

Voronoi unit cell of the reciprocal lattice.

(c) VΛ =

[
X X

X −X

]

Solution: The reciprocal lattice is given by VΛ∗ = V −TΛ =

[
1

2X
1

2X
1

2X − 1
2X

]
. The lattice in the

space domain and the reciprocal lattice with Voronoi cell are as follows:

x

y

v
1

v
2

X

X

u

v

1/X

1/X
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5. A two-dimensional FIR filter defined on the rectangular lattice Λ = LAT(diag(X,X)) has

unit-sample response shown in Figure P3.5.

Figure P3.5 Unit-sample response h[x, y]. Non-zero values are shown; all others are zero.

(a) Compute the frequency response H(u, v). Express it in real form.

(b) What is the output g[x, y] of this filter if the input is

f [x, y] = δ[x−X, y +X]− δ[x+X, y −X]?

Carefully sketch the output signal g[x, y] to scale in the same manner as in Fig-

ure P3.5.
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Solution:

(a)

H(u, v) =
∑

(x,y)∈Λ

h[x, y] exp(−j2π(ux+ vy))

=
1

4
exp(0) +

1

8
exp(−j2π(uX)) +

1

8
exp(−j2π(−uX))

+
1

8
exp(−j2π(vX)) +

1

8
exp(−j2π(−vX))

+
1

16
exp(−j2π(uX − vX)) +

1

16
exp(−j2π(−uX + vX))

+
1

16
exp(−j2π(u2X − v2X)) +

1

16
exp(−j2π(−u2X + v2X))

=
1

4
+

1

4
cos(2πuX) +

1

4
cos(2πvX)

+
1

8
cos(2π(u− v)X) +

1

8
cos(4π(u− v)X)

(b) By linearity and shift invariance, g[x, y] = h[x−X, y+X]−h[x+X, y−X]. This can

be done graphically (see the following page).

The solution can also be obtained by writing out an explicit expression for h[x, y] similar

to the one given for f [x, y].

h[x, y] = 1
4δ[x, y] + 1

8δ[x, y −X] + 1
8δ[x, y +X] + 1

8δ[x−X, y] + 1
8δ[x+X, y]

+ 1
16δ[x−X, y +X] + 1

16δ[x+X, y −X] + 1
16δ[x− 2X, y + 2X]

+ 1
16δ[x+ 2X, y − 2X]

Then, simply applying the previous result and simplifying,

g[x, y] = h[x−X, y +X]− h[x+X, y −X]

= 1
8δ[x−X, y]− 1

8δ[x+X, y] + 1
8δ[x, y +X]− 1

8δ[x, y −X]

+ 3
16δ[x−X, y +X]− 3

16δ[x+X, y −X] + 1
8δ[x− 2X, y +X]

− 1
8δ[x+ 2X, y −X] + 1

8δ[x−X, y + 2X]− 1
8δ[x+X, y − 2X]

+ 1
16δ[x− 2X, y + 2X]− 1

16δ[x+ 2X, y − 2X] + 1
16δ[x− 3X, y + 3X]

− 1
16δ[x+ 3X, y − 3X]
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x

y

x

y

h[x−X, y +X] − h[x+X, y −X]

x

y

= g[x, y]
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6. Consider an ideal discrete-space circularly symmetric lowpass filter defined on the rect-

angular lattice with horizontal and vertical sample spacing X and Y . The passband is

CW = {(u, v) | u2 + v2 ≤ W 2} and the unit cell of the reciprocal lattice is P∗ = {(u, v) |
−1/2X ≤ u < 1/2X,−1/2Y ≤ v < 1/2Y }. Assume that W < min(1/2X, 1/2Y ).

H(u, v) =

1 (u, v) ∈ CW

0 (u, v) ∈ P∗\CW

where of course H(u + k/X, v + l/Y ) = H(u, v) for all integers k, l. Show that the unit

sample response of this filter is given by

h[mX,nY ] =
WXY√

X2m2 + Y 2n2
J1(2πW

√
X2m2 + Y 2n2)

where J1(s) is the Bessel function of the first kind and first order. You may use the

following identities:

J0(s) =
1

2π

∫ 2π

0
exp [js cos(θ + φ)] dθ, for any φ

∫
sJ0(s) ds = sJ1(s)

Simplify the expression in the case X = Y .

Solution: The solution to this problem is similar to the steps in Example 2.4. This problem

could be solved directly and simply using the result of Example 2.4 along with duality and

sampling results to be seen later. However, here we present the full direct solution. The

desired unit sample response is given by the inverse Fourier transform of the frequency

response

h[mX,nY ] = XY

∫∫
CW

exp(j2π(uXm+ vY n)) du dv.

Change to polar coordinates with u = r cos θ, v = r sin θ, with Jacobian r. Thus

h[mX,nY ] = XY

∫ W

0

∫ 2π

0
exp(j2πr(Xm cos θ + Y n sin θ))r dr dθ.

Now

Xm cos θ + Y n sin θ =
√
X2m2 + Y 2n2 cos(θ + φmn), where φmn = tan−1(− Y n

Xm).
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Substituting,

h[mX,nY ] = XY

∫ W

0

∫ 2π

0
exp(j2πr

√
X2m2 + Y 2n2 cos(θ + φmn))r dr dθ.

Using the given formula for J0(s) with s = 2πr
√
X2m2 + Y 2n2, we obtain

h[mX,nY ] = XY

∫ W

0
2πJ0(2πr

√
X2m2 + Y 2n2)r dr.

Making the change of variables s = 2πr
√
X2m2 + Y 2n2, we find

h[mX,nY ] =
XY

2π(X2m2 + Y 2n2)

∫ 2π
√
X2m2+Y 2n2W

0
sJ0(s) ds

=
XY

2π(X2m2 + Y 2n2)
sJ1(s)

∣∣∣∣2π
√
X2m2+Y 2n2W

0

=
WXY√

X2m2 + Y 2n2
J1(2π

√
X2m2 + Y 2n2W ).

as required. If X = Y , then

h[mX,nX] =
WX√
m2 + n2

J1(2πX
√
m2 + n2W ).
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1. For each of the following pairs of lattice Λ and sublattice Γ given by their sampling matrices

VΛ and VΓ respectively: (i) verify that Γ is indeed a sublattice of Λ; (ii) compute the

index K of Γ in Λ; (iii) enumerate a set of K coset representatives for Γ in Λ; (iv) find

sampling matrices for the reciprocal lattices Λ∗ and Γ∗; (v) enumerate a set of K coset

representatives for Λ∗ in Γ∗.

(a) VΛ =

[
1 0

0 1

]
, VΓ =

[
4 0

0 2

]
.

Solution: (i) To verify that Γ is a sublattice of Λ we compute

V−1
Λ VΓ =

[
4 0

0 2

]
which is an integer matrix as required.

(ii) The index of Γ in Λ is K = d(Γ)/d(Λ) = 8/1 = 8.

(iii) We can choose as coset representatives, the points of Λ in the fundamental paral-

lelepiped unit cell of Γ. These are given by the columns of the matrix

B =

[
0 1 2 3 0 1 2 3

0 0 0 0 1 1 1 1

]
The following figure shows the points of Λ ( ) and of Γ (×) over a portion of R2. The

selected coset representatives are shown as red circles.

x

y
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(iv) Sampling matrices for Λ∗ and Γ∗ are given by

VΛ∗ = V−TΛ =

[
1 0

0 1

]
VΓ∗ = V−TΓ =

[
1
4 0

0 1
2

]
.

(v) We can choose as coset representatives the points of Γ∗ within the fundamental paral-

lelepiped unit cell of Λ∗. These are given by the columns of the matrix

D =

[
0 1

4
1
2

3
4 0 1

4
1
2

3
4

0 0 0 0 1
2

1
2

1
2

1
2

]
.

The following figure shows the points of Λ∗ ( ) and of Γ∗ (×) over a portion of R2. The

selected coset representatives are shown as red circles.

u

v
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1. For each of the following pairs of lattice Λ and sublattice Γ given by their sampling matrices

VΛ and VΓ respectively: (i) verify that Γ is indeed a sublattice of Λ; (ii) compute the

index K of Γ in Λ; (iii) enumerate a set of K coset representatives for Γ in Λ; (iv) find

sampling matrices for the reciprocal lattices Λ∗ and Γ∗; (v) enumerate a set of K coset

representatives for Λ∗ in Γ∗.

(b) VΛ =

[
1 0

0 1

]
, VΓ =

[
4 2

0 1

]
.

Solution: (i) To verify that Γ is a sublattice of Λ we compute

V−1
Λ VΓ =

[
4 2

0 1

]
which is an integer matrix as required.

(ii) The index of Γ in Λ is K = d(Γ)/d(Λ) = 4/1 = 4.

(iii) We can choose as coset representatives, the points of Λ in the fundamental paral-

lelepiped unit cell of Γ. These are given by the columns of the matrix

B =

[
0 1 2 3

0 0 0 0

]
.

The following figure shows the points of Λ ( ) and of Γ (×) over a portion of R2. The

selected coset representatives are shown as red circles.

x

y



CHAPTER 4. DISCRETE-DOMAIN PERIODIC SIGNALS 4-5

(iv) Sampling matrices for Λ∗ and Γ∗ are given by

VΛ∗ = V−TΛ =

[
1 0

0 1

]
VΓ∗ = V−TΓ =

[
1
4 0

−1
2 1

]
.

We can see by inspection that an alternate and more convenient sampling matrix for Γ∗ is[
1
2

1
4

0 1
2

]
=

[
1
4 0

−1
2 1

][
2 1

1 1

]
,

where as required [ 2 1
1 1 ] is an integer unimodular matrix with determinant 1.

(v) We can choose as coset representatives the points of Γ∗ within the fundamental paral-

lelepiped unit cell of Λ∗. These are given by the columns of the matrix

D =

[
0 1

2
1
4

3
4

0 0 1
2

1
2

]
or D =

{
k1

[
1
2

0

]
+ k2

[
1
4
1
2

]
| k1 = 0, 1; k2 = 0, 1

}
.

Note that we are using the basis vectors from the alternate sampling matrix for Γ∗ to

enumerate these coset representatives.

The following figure shows the points of Λ∗ ( ) and of Γ∗ (×) over a portion of R2. The

selected coset representatives are shown as red circles.

u

v
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1. For each of the following pairs of lattice Λ and sublattice Γ given by their sampling matrices

VΛ and VΓ respectively: (i) verify that Γ is indeed a sublattice of Λ; (ii) compute the

index K of Γ in Λ; (iii) enumerate a set of K coset representatives for Γ in Λ; (iv) find

sampling matrices for the reciprocal lattices Λ∗ and Γ∗; (v) enumerate a set of K coset

representatives for Λ∗ in Γ∗.

(c) VΛ =

[
2 1

0 1

]
, VΓ =

[
4 0

0 2

]
.

Solution: (i) To verify that Γ is a sublattice of Λ we compute

V−1
Λ VΓ =

[
2 −1

0 2

]
which is an integer matrix as required.

(ii) The index of Γ in Λ is K = d(Γ)/d(Λ) = 8/2 = 4.

(iii) We can choose as coset representatives, the points of Λ in the fundamental paral-

lelepiped unit cell of Γ. These are given by the columns of the matrix

B =

[
0 2 1 3

0 0 1 1

]
or B =

{
n1

[
2

0

]
+ n2

[
1

1

]
| n1 = 0, 1;n2 = 0, 1

}
.

The following figure shows the points of Λ ( ) and of Γ (×) over a portion of R2. The

selected coset representatives are shown as red circles.

x

y
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(iv) Sampling matrices for Λ∗ and Γ∗ are given by

VΛ∗ = V−TΛ =

[
1
2 0

−1
2 1

]
VΓ∗ = V−TΓ =

[
1
4 0

0 1
2

]
.

(v) We can choose as coset representatives the points of Γ∗ within the fundamental paral-

lelepiped unit cell of Λ∗. These are given by the columns of the matrix

D =

[
0 1

4
1
2

3
4

0 0 0 0

]
.

The following figure shows the points of Λ∗ ( ) and of Γ∗ (×) over a portion of R2. The

selected coset representatives are shown as red circles.

u

v
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1. For each of the following pairs of lattice Λ and sublattice Γ given by their sampling matrices

VΛ and VΓ respectively: (i) verify that Γ is indeed a sublattice of Λ; (ii) compute the

index K of Γ in Λ; (iii) enumerate a set of K coset representatives for Γ in Λ; (iv) find

sampling matrices for the reciprocal lattices Λ∗ and Γ∗; (v) enumerate a set of K coset

representatives for Λ∗ in Γ∗.

(d) VΛ =

[
4 2

0 1

]
, VΓ =

[
4 2

0 3

]
.

Solution: (i) To verify that Γ is a sublattice of Λ we compute

V−1
Λ VΓ =

[
1 −1

0 3

]
which is an integer matrix as required.

(ii) The index of Γ in Λ is K = d(Γ)/d(Λ) = 12/4 = 3.

(iii) We can choose as coset representatives, the points of Λ in the fundamental paral-

lelepiped unit cell of Γ. These are given by the columns of the matrix

B =

[
0 2 4

0 1 2

]
or B =

{
n

[
2

1

]
| n = 0, 1, 2

}
.

The following figure shows the points of Λ ( ) and of Γ (×) over a portion of R2. The

selected coset representatives are shown as red circles.

x

y
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(iv) Sampling matrices for Λ∗ and Γ∗ are given by

VΛ∗ = V−TΛ =

[
1
4 0

−1
2 1

]
VΓ∗ = V−TΓ =

[
1
4 0

−1
6

1
3

]
.

We can see by inspection that more convenient but equivalent sampling matrices for Λ∗

and Γ∗ are given by

V′Λ∗ =

[
1
2

1
4

0 1
2

]
V′Γ∗ =

[
1
2

1
4

0 1
6

]
.

We can verify that V′Λ∗ = VΛ∗ [ 2 1
1 1 ] and that V′Γ∗ = VΓ∗ [ 2 1

1 1 ] where [ 2 1
1 1 ] is an integer

unimodular matrix.

(v) We can choose as coset representatives the points of Γ∗ within the fundamental paral-

lelepiped unit cell of Λ∗. These are given by the columns of the matrix

D =

[
0 1

4
1
2

0 1
6

1
3

]
or D =

{
k

[
1
4
1
6

]
| k = 0, 1, 2

}
.

The following figure shows the points of Λ∗ ( ) and of Γ∗ (×) over a portion of R2. The

selected coset representatives are shown as red circles.

u

v
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2. Find the analysis and synthesis equations for the discrete-domain Fourier series represen-

tation of the following signals, using the signal lattices and periodicity lattices of corre-

sponding problems 1(a)-(d) respectively.

(a) f̃ [x] =

1 x ∈ Γ

0 x ∈ Λ\Γ
. Note that here, f̃ = δ̃Λ/Γ.

Solution: Referring to Problem 1(a) and its solution,

Λ = LAT ([ 1 0
0 1 ]) , Γ = LAT ([ 4 0

0 2 ]) , K = 8.

Sets of coset representatives in the signal domain and in the frequency domain are

B =

{
n1

[
1

0

]
+ n2

[
0

1

]
| n1 = 0, . . . , 3;n2 = 0, 1

}
,

D =

{
k1

[
1
4

0

]
+ k2

[
0
1
2

]
| k1 = 0, . . . , 3; k2 = 0, 1

}
.

The analysis equation is

F̃ [u] =
∑
x∈B

f̃ [x] exp(−j2πu · x), u ∈ D.

Substituting explicit expressions for f̃ , B and D, we obtain

F̃ [k1
4 ,

k2
2 ] =

3∑
n1=0

1∑
n2=0

f̃ [n1, n2] exp(−j2π(k1n1
4 + k2n2

2 ))

= 1 k1 = 0, . . . , 3; k2 = 0, 1,

since f̃ [0, 0] = 1, f̃ [n1, n2] = 0 for (n1, n2) ∈ B\(0, 0), and exp(0) = 1.

The synthesis equation is

f̃ [x] =
1

K

∑
u∈D

F̃ [u] exp(j2πu · x), x ∈ B.
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Substituting explicit expressions for F̃ , B and D, we obtain

f̃ [n1, n2] =
1

8

3∑
k1=0

1∑
k2=0

exp(j2π(k1n1
4 + k2n2

2 ))

=
1

8

3∑
k1=0

1∑
k2=0

(j)k1n1(−1)k2n2 , n1 = 0, . . . , 3;n2 = 0, 1.
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2. Find the analysis and synthesis equations for the discrete-domain Fourier series represen-

tation of the following signals, using the signal lattices and periodicity lattices of corre-

sponding problems 1(a)-(d) respectively.

(b) f̃ [x] =

1 x ∈ Γ

0 x ∈ Λ\Γ
. Note that here again, f̃ = δ̃Λ/Γ.

Solution: Referring to Problem 1(b) and its solution,

Λ = LAT ([ 1 0
0 1 ]) , Γ = LAT ([ 4 2

0 1 ]) , K = 4.

Sets of coset representatives in the signal domain and in the frequency domain are

B =

{
n

[
1

0

]
| n = 0, . . . , 3

}
,

D =

{
k1

[
1
2

0

]
+ k2

[
1
4
1
2

]
| k1 = 0, 1; k2 = 0, 1

}
.

The analysis equation is

F̃ [u] =
∑
x∈B

f̃ [x] exp(−j2πu · x), u ∈ D.

Substituting explicit expressions for f̃ , B and D, we obtain

F̃ [k1
2 + k2

4 ,
k2
2 ] =

3∑
n=0

f̃ [n, 0] exp(−j2π(k1n
2 + k2n

4 ))

= 1 k1 = 0, 1; k2 = 0, 1,

since f̃ [0, 0] = 1, f̃ [n1, n2] = 0 for (n1, n2) ∈ B\(0, 0), and exp(0) = 1.

The synthesis equation is

f̃ [x] =
1

K

∑
u∈D

F̃ [u] exp(j2πu · x), x ∈ B.
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Substituting explicit expressions for F̃ , B and D, we obtain

f̃ [n, 0] =
1

4

1∑
k1=0

1∑
k2=0

exp(j2π(k1n
2 + k2n

4 ))

=
1

4

1∑
k1=0

1∑
k2=0

(−1)k1n(j)k2n, n = 0, . . . , 3.
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2. Find the analysis and synthesis equations for the discrete-domain Fourier series represen-

tation of the following signals, using the signal lattices and periodicity lattices of corre-

sponding problems 1(a)-(d) respectively.

(c) f̃ [x] =

1 x ∈ Γ or x ∈ [2, 0]T + Γ

0 otherwise
.

Solution: Referring to Problem 1(c) and its solution,

Λ = LAT ([ 2 1
0 1 ]) , Γ = LAT ([ 4 0

0 2 ]) , K = 4.

Sets of coset representatives in the signal domain and in the frequency domain are

B =

{
n1

[
2

0

]
+ n2

[
1

1

]
| n1 = 0, 1;n2 = 0, 1

}
,

D =

{
k

[
1
4

0

]
| k = 0, . . . , 3

}
.

The analysis equation is

F̃ [u] =
∑
x∈B

f̃ [x] exp(−j2πu · x), u ∈ D.

Substituting explicit expressions for f̃ , B and D, noting that there are two nonzero values

of f̃ for (n1, n2) = (0, 0) and (1, 0), we obtain

F̃ [k4 , 0] =

1∑
n1=0

1∑
n2=0

f̃ [2n1 + n2, n2] exp(−j2π(kn1
2 + kn2

4 ))

= 1 + exp(−j2π k2 )

= 1 + (−1)k, k = 0, . . . , 3.

The synthesis equation is

f̃ [x] =
1

K

∑
u∈D

F̃ [u] exp(j2πu · x), x ∈ B.
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Substituting explicit expressions for F̃ , B and D, we obtain

f̃ [2n1 + n2, n2] =
1

4

3∑
k=0

F̃ [k4 , 0] exp(j2π(kn1
2 + kn2

4 ))

=
1

4

3∑
k=0

(1 + (−1)k)(−1)kn1(j)kn2

= 1
2(1 + (−1)n2), n1 = 0, 1;n2 = 0, 1.

In the end, the synthesis equation says that f̃ [2n1 + n2, n2] is 1 when n2 = 0 and 0 when

n2 = 1 in agreement with the definition of f̃ in this question.
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2. Find the analysis and synthesis equations for the discrete-domain Fourier series represen-

tation of the following signals, using the signal lattices and periodicity lattices of corre-

sponding problems 1(a)-(d) respectively.

(d) f̃ [x] =


1 x ∈ Γ

2 x ∈ [2, 1]T + Γ

3 x ∈ [0, 2]T + Γ

.

Solution: Referring to Problem 1(d) and its solution,

Λ = LAT ([ 4 2
0 1 ]) , Γ = LAT ([ 4 2

0 3 ]) , K = 3.

Sets of coset representatives in the signal domain and in the frequency domain are

B =

{
n

[
2

1

]
| n = 0, 1, 2

}
,

D =

{
k

[
1
4
1
6

]
| k = 0, 1, 2

}
.

The analysis equation is

F̃ [u] =
∑
x∈B

f̃ [x] exp(−j2πu · x), u ∈ D.

Substituting explicit expressions for f̃ , B and D, we obtain

F̃ [k4 ,
k
6 ] =

2∑
n=0

f̃ [2n, n] exp(−j2π(kn2 + kn
6 ))

= 1 + 2 exp(−j2π 2k
3 ) + 3 exp(−j2π 4k

3 ), k = 0, 1, 2.

Here we note that f̃ [4, 2] = f̃ [0, 2] = 3 since (4,2) and (0,2) both belong to the same coset.

The synthesis equation is

f̃ [x] =
1

K

∑
u∈D

F̃ [u] exp(j2πu · x), x ∈ B.
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Substituting explicit expressions for F̃ , B and D, we obtain

f̃ [2n, n] =
1

3

2∑
k=0

F̃ [k4 ,
k
6 ] exp(j2π(kn2 + kn

6 ))

=
1

3
(F̃ [0, 0] + F̃ [1

4 ,
1
6 ] exp(j2π 2n

3 ) + F̃ [1
2 ,

1
3 ] exp(j2π 4n

3 )), n = 0, 1, 2.
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3. Let Λ be a lattice and Γ a sublattice. Let B be any set of coset representatives for Γ in Λ.

(a) Let x0 be any element of Λ. Show that B − x0 = {b − x0 | b ∈ B} is also a set of coset

representatives for Γ in Λ. This is used in the proof of Property 4.2.

Solution: Let B = {b0, . . . ,bK−1} where K = d(Γ)/d(Λ). Then B − x0 = {b0 −
x0, . . . ,bK−1 − x0}, which has the correct number of elements. It is sufficient to show

that no two elements of this set belong to the same coset. Suppose that bi − x0 and

bj−x0 do belong to the same coset for some different values of i and j in [0,K−1]. Then

(bi − x0)− (bj − x0) ∈ Γ, i.e., bi − bj ∈ Γ. But this is not possible since by assumption

bi and bj belong to different cosets. Thus, no two elements of B − x0 can belong to the

same coset, and so they must form a set of coset representatives.

(b) Let A be a transformation of RD such that AΛ = Λ and AΓ = Γ. Show that AB =

{Ab | b ∈ B} is also a set of coset representatives for Γ in Λ. This is used in the proof of

Property 4.6.

Solution: Let B = {b0, . . . ,bK−1} whereK = d(Γ)/d(Λ). Then AB = {Ab0, . . . ,AbK−1},
which has K elements that belong to Λ since AΛ = Λ. It is sufficient to show that no

two elements of this set belong to the same coset. Suppose thatAbi and Abj do belong

to the same coset for some different values of i and j in [0,K − 1]. Then Abi −Abj ∈ Γ,

i.e., A(bi − bj) ∈ Γ. Now, since AΓ = Γ, for any x ∈ Γ there exists some y ∈ Γ such

that Ay = x, and thus A−1x = y ∈ Γ. Thus from above, A(bi − bj) ∈ Γ implies that

bi − bj ∈ Γ. But this is not possible since by assumption bi and bj belong to different

cosets. Thus, no two elements of AB can belong to the same coset, and so they must form

a set of coset representatives.
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1. Find the continuous-domain Fourier series representation of the following periodic signals.

(a) A circ function with rectangular periodicity

f̃(x, y) =
∞∑

k1=−∞

∞∑
k2=−∞

circ

(
x− k1Z

A
,
y − k2Z

A

)
where A,Z > 0 and A < Z.

Solution: Assume in fact that A < Z/2. Then, the shifted versions of the circ function do

not overlap. The signal f̃ has periodicity lattice Γ = LAT(
[
Z 0
0 Z

]
) since

f̃(x+ `1Z, y + `2Z) =
∞∑

k1=−∞

∞∑
k2=−∞

circ

(
x+ `1Z − k1Z

A
,
y + `2Z − k2Z

A

)

=
∞∑

m1=−∞

∞∑
m2=−∞

circ

(
x−m1Z

A
,
y −m2Z

A

)
(m1 = k1 − `1,m2 = k2 − `2)

= f̃(x, y).

A unit cell of the periodicity lattice is PΓ = {(x, y) | −Z/2 < x ≤ Z/2,−Z/2 < y ≤ Z/2}.

x

y

Z-Z

Z

-Z

Figure P5.1a Periodic circ signal with periodicity lattice diag(Z,Z) and A < Z/2. PΓ is a

unit cell of Γ. The periodic signal value is 1.0 inside the circles and 0.0 elsewhere.

The reciprocal lattice is Γ∗ = LAT(
[

1/Z 0
0 1/Z

]
).
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The Fourier transform is given by

F̃ [k1
Z ,

k2
Z ] =

∫∫
PΓ

f̃(x, y) exp(−j2π(k1x
Z + k2y

Z )) dxdy

=

∫∫
x2+y2≤A2

exp(−j2π(k1x
Z + k2y

Z )) dxdy

=
A√

(k1
Z )2 + (k2

Z )2
J1

(
2πA

√
(k1
Z )2 + (k2

Z )2

)
, (k1, k2) ∈ Z2,

where we refer to Example 2.4 for the evaluation of this integral.

The continuous-domain Fourier series representation of f̃ is then

f̃(x, y) =
1

Z2

∞∑
k1=−∞

∞∑
k2=−∞

A√
(k1
Z )2 + (k2

Z )2
J1

(
2πA

√
(k1
Z )2 + (k2

Z )2

)
exp(j2π(k1x

Z + k2y
Z ))

=
1

Z

∞∑
k1=−∞

∞∑
k2=−∞

A

k2
1 + k2

2

J1(2πAZ

√
k2

1 + k2
2) exp(j 2π

Z (k1x+ k2y)).

If Z/2 < A < Z, this solution method does not apply. However, as will be seen in Chapter

6, the solution will be the same as above and can be obtained with little effort. Thus, we

will not present a direct solution here.
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(b) A hexagonal function with rectangular periodicity

f̃(x, y) =
∞∑

k1=−∞

∞∑
k2=−∞

hex

(
x− k1Z

A
,
y − k2Z

A

)
where A,Z > 0, A < Z/2 and hex(x, y) is the the zero-one function with hexagonal region

of support of unit side as defined in Example 2.7.

Solution: Since A < Z/2, the shifted versions of the hex function do not overlap. The

signal f̃ has periodicity lattice Γ = LAT(
[
Z 0
0 Z

]
) since

f̃(x+ `1Z, y + `2Z) =
∞∑

k1=−∞

∞∑
k2=−∞

hex

(
x+ `1Z − k1Z

A
,
y + `2Z − k2Z

A

)

=
∞∑

m1=−∞

∞∑
m2=−∞

hex

(
x−m1Z

A
,
y −m2Z

A

)
(m1 = k1 − `1,m2 = k2 − `2)

= f̃(x, y).

A unit cell of the periodicity lattice is PΓ = {(x, y) | −Z/2 < x ≤ Z/2,−Z/2 < y ≤ Z/2}.

x

y

Z-Z

Z

-Z

Figure P5.1b Periodic hex signal with periodicity lattice diag(Z,Z) and A < Z/2. PΓ is

a unit cell of Γ. The periodic signal value is 1.0 inside the hexagons and 0.0 elsewhere.

The reciprocal lattice is Γ∗ = LAT(
[

1/Z 0
0 1/Z

]
).
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The Fourier transform is given by

F̃ [k1
Z ,

k2
Z ] =

∫∫
PΓ

f̃(x, y) exp(−j2π(k1x
Z + k2y

Z )) dxdy

=

∫∫
(x,y)∈AH

exp(−j2π(k1x
Z + k2y

Z )) dxdy

where AH is the region of support of the basic hex function hex( xA ,
y
A), shown within PΓ in

Figure P5.1b. This is the same as the Fourier transform of the unit hex function evaluated

in Example 2.7, but scaled by A and only evaluated at the points of Γ∗. Using Property 2.6

with A = diag(1/A, 1/A), and evaluating on Γ∗,

F̃ [k1
Z ,

k2
Z ] =

A2Z2

π(k2
1 + k2

2)

(
A(
√

3k1 + k2)

2Z
sin

(
πA(3u+

√
3v)

2Z

)
sinc

(
A(−k1 +

√
3k2)

2Z

)

+A
k2

Z
sin(πA

√
3
k2

Z
) sinc(A

k1

Z
) +

A(−
√

3k1 + k2)

2Z
sin

(
πA(−3k1 +

√
3k2)

2Z

)

× sinc

(
A(k1 +

√
3k)

2Z

))
.

The continuous-domain Fourier series is then given by

f̃(x, y) =
1

Z2

∞∑
k1=−∞

∞∑
k2=−∞

F̃ [k1
Z ,

k2
Z ] exp(j2π(k1x

Z + k2y
Z )),

where F̃ [k1
Z ,

k2
Z ] is as given above.
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1. A two-dimensional continuous-domain signal fc(x, y) has Fourier transform

Fc(u, v) =

ce−α(|u|+|v|) u2 + v2 < W 2

0 u2 + v2 ≥W 2

for some real number W . The signal is sampled on a hexagonal lattice Λ with sampling

matrix

V =

[
X X/2

0
√

3X/2

]
to give the sampled signal f [x, y], (x, y) ∈ Λ, with Fourier transform F (u, v).

(a) What is the expression for F (u, v) in terms of Fc(u, v)?

Solution:

Λ∗ = LAT(V−T )

= LAT

([
1
X 0

− 1√
3X

2√
3X

])

Also, d(Λ) =
√

3X2

2 .

F (u, v) =
2√
3X2

∑
(r1,r2)∈Λ∗

Fc(u+ r1, v + r2)

=
2√
3X2

∞∑
k1=−∞

∞∑
k2=−∞

Fc

(
u+

k1

X
, v − k1√

3X
+

2k2√
3X

)

(b) Find the largest possible value of X such that there is no aliasing? Sketch the region of

support of the Fourier transform of the sampled signal in this case (including all replicas),

and also indicate a unit cell of the reciprocal lattice Λ∗.

Solution: There will be no aliasing if all the nearest neighbors to 0 in Λ∗ are at least

distance 2W from the origin. Looking at the Figure P6.1.1 below, we see that the distance

z to the nearest neighbors at (± 1
X ,±

1√
3X

) is given by

z2 =

(
1

X

)2

+

(
1√
3X

)2

=
4

3X2
, ⇒ z =

2√
3X

.
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The nearest neighbors on the v-axis are also at distance 2√
3X

from the origin. Thus, for

no aliasing, we require

W <
z

2
=

1√
3X

i.e., X <
1√
3W

u

v

z

Figure P6.1.1

Figure P6.1.2 illustrates a few replicas of the region of support of the Fourier transform of

the sampled signal, for X slightly less than 1√
3W

. The Voronoi unit cell of the reciprocal

lattice is also shown.
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u

v

Figure P6.1.2
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2. The face-centered cubic lattice is the most efficient lattice for the packing of spheres in

three dimensions. A sampling matrix for this lattice is given by

V = K


2 1 1

0 1 0

0 0 1


where K is some real constant. Suppose that a bandlimited three-dimensional signal f(x)

satisfying F (u) = 0 for |u| > W is sampled on a lattice whose reciprocal lattice is face-

centered cubic. Find the least dense lattice such that there is no aliasing. Compare the

resulting sampling density with the best orthogonal sampling for which there is no aliasing.

Solution: Figure P6.2.1 shows a perspective view of several replicas of the spherical support

of F (u1, u2, u3) when the reciprocal lattice is face-center cubic and the sampling density

is well above the critical value. The cube edges are drawn just to help visualization. From

the figure, we see that the replicas at cube corners and center of cube face will be the first

to touch as the sampling density decreases.

Figure P6.2.1 Illustration of spheres on points of a face-center cubic lattice. Cube edges

and different colors for spheres at corners and face edges are to help visualize.
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At critical sampling, the replicated spherical support of the baseband Fourier transform

will touch on the u1−u2 plane, as well as on the u1−u3 plane and the u2−u3 plane. The

situation on the u1 − u2 plane is shown in Figure P6.6.2.

u
1

u
2

K

K

W

Figure P6.6.2 Slice of frequency domain on u1 − u2 plane, showing situation for critical

sampling.

From the geometry, we see that K2 +K2 = (2W )2 so that K =
√

2W . Thus the reciprocal

lattice at critical sampling is

Λ∗ = LAT

√2W


2 1 1

0 1 0

0 0 1


 .

To obtain the sampling density, d(Λ∗) = |detV| = (
√

2W )3 · 2 = 4
√

2W 3. It follows that

the sampling density is
1

d(Λ)
= d(Λ∗) = 4

√
2W 3.

The corresponding sampling lattice is the body-centered cubic lattice with sampling matrix
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V−T , i.e.,

Λ = LAT

 1√
2W


1
2 0 0

−1
2 1 0

−1
2 0 1


 = LAT

 1√
2W


1 0 1

2

0 1 1
2

0 0 1
2


 ,

where the latter matrix is an equivalent but more convenient sampling matrix.

For orthogonal sampling, the reciprocal lattice is

VO = KO


1 0 0

0 1 0

0 0 1

 .
In this case, it is clear KO = 2W , so that the sampling density for critical sampling is

d(Λ∗O) = 8W 3. The ratio of sampling densities is 8W 3

4
√

2W 3 =
√

2 ≈ 1.414. Thus orthogonal

sampling requires about 41.4% more samples per unit volume for alias-free sampling.

Figure P6.2.3 shows a similar view of the frequency domain to Figure P6.2.1 at critical

sampling.

Figure P6.2.3 Illustration of spheres on points of a face-center cubic lattice at critical

sampling.
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3. Fig. 6.5 illustrates the sensor in a hypothetical digital camera using a sensor element which

is hexagonal in shape. There are M = 740 sensor elements in each horizontal row and

there are N = 480 rows of sensor elements, for a total of 480× 740 sensor elements. The

centers of the sensor elements lie on a hexagonal lattice Λ, and each sensor element is a

unit cell of this lattice. The output of each sensor element is the integral of light irradiance

over the sensor element for some arbitrary exposure time, and it is associated with the

lattice point at the center of the sensor element. Assume that the picture width is MX

and the picture height (ph) is NY . We use the picture height as the unit of length. The

sensor element is a regular hexagon with Y =
√

3X/2. (Note that Fig. 6.5 is just a sketch

and is not drawn to scale.)

x

y

X

Y

Figure 6.5 An image sensor with hexagonal sensor elements.

(a) Give a sampling matrix for the lattice shown in Fig. 6.5 in units of ph.

Solution: By inspection of Figure 6.5, a suitable sampling matrix for Λ is

VΛ =

[
X X

2

0 Y

]
=

[
X X

2

0
√

3X
2

]
.

Since there are 480 rows, each of height Y , 480Y = 1 ph, so that Y = 1
480 ph ≈ 0.0021 ph.
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Thus X = 2Y√
3

= 1
240
√

3
ph ≈ 0.0012 ph. Thus, using numerical values

VΛ =

[
1

240
√

3
1

480
√

3

0 1
480

]
ph ≈

[
0.0024 0.0012

0 0.0021

]
ph.

(b) What is the area of a sensor element, with correct units? What is the sampling density,

with correct units?

Solution: The area of a sensor element is

d(Λ) = | detVΛ| =
√

3X2

2
=

√
3

2

(
1

240
√

3

)2

ph2 ≈ 5.01× 10−6 ph2.

The sampling density is

1

d(Λ)
=

2√
3X2

≈ 2.00× 105 samples per ph2.

(c) What is the aspect ratio of the sensor? Is it approximately 4/3 or approximately 16/9?

Solution: The picture width is 740X and the picture height is 480Y = 240
√

3X. Thus,

the aspect ratio is

ar =
picture width

picture height
=

740X

240
√

3X
=

37

12
√

3
≈ 1.78.

Since 4/3 = 1.3 and 16/9 = 1.7, the aspect ratio is approximately 16/9.

(d) The sampling process carried out by this sensor can be modeled by a linear shift-invariant

(LSI) continuous-space filter followed by ideal sampling on Λ. Give an expression for the

impulse response ha(x, y) of this LSI filter with the correct gain. Assume that if the image

irradiance is a constant value over a sensor element (in arbitrary normalized units), the

sampled value is that same value, i.e., the DC gain of ha(x, y) is 1.0.

Solution: The sampling aperture is a(x, y) = chexa(x, y) where hexa(x, y) is a zero-one

function with regular hexagonal region of support AH shown centered at the origin in

Figure 6.5 and c is selected to get a DC gain of 1. Since a(x, y) is symmetric about the

origin, ha(x, y) = a(x, y). To have a DC gain of 1, we require
∫∫

R2 ha(x, y) dxdy = 1, or∫∫
AH

c dxdy = 1. Thus,

c =
1

area(AH)
=

1

d(Λ)
=

2√
3X2

≈ 2.00× 105
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(see (b) above).

We can relate this function to the hexagonal zero-one function with unit side given in

Example 2.7 (which has been denoted hex(x, y)) by scaling and rotating by π/6. The

length S of one side of the regular hexagon AH is given by S2 = (X/2)2 + (S/2)2, or

S = X/
√

3 = 1/720 ph. Let

Aπ/6 =

[
cosπ/6 sinπ/6

− sinπ/6 cosπ/6

]
=

[√
3

2
1
2

−1
2

√
3

2

]
, AS =

[
1
S 0

0 1
S

]
=

[
720 0

0 720

]
.

Then ha(x) = chex(Aπ/6ASx) or explicitly

ha(x, y) = 2× 10−5hex(360(
√

3x+ y), 360(−x+
√

3)).

(e) Give an expression for the frequency response Ha(u, v) corresponding to the camera aper-

ture impulse response ha(x, y).

Solution: The requested frequency response Ha(u, v) is the continuous-domain Fourier

transform of ha(x, y) given in part (d) of this problem. Since ha(x) = chex(Ax) where

A = Aπ/6AS , we can obtain Ha(u, v) using Fourier transform properties and the Fourier

transform of hex(x) found in Example 2.7, which we denote HEX(u). Then, using Prop-

erties (2.1) and (2.6),

Ha(u) =
c

| detA|
HEX(A−Tu),

where

A =

[
360
√

3 360

−360 360
√

3

]
A−T =

[ √
3

1440
1

1440

− 1
1440

√
3

1440

]

and detA = 4(360)2, so that c
|detA| = 2

√
3

9 . Explicitly,

Ha(u, v) =
2
√

3

9
HEX

(√
3u+ v

1440
,
−u+

√
3v

1440

)
.

Substituting into the expression for HEX(u, v) given in Example 2.7 and simplifying, we
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obtain

Ha(u, v) =
80
√

3

π(u2 + v2)

(
(u+

√
3v) sin

(
π

√
3u+ 3v

1440

)
sinc

(
−
√

3u+ v

1440

)

+ (−u+
√

3v) sin

(
π
−
√

3u+ 3v

1440

)
sinc

(√
3u+ v

1440

)

+2u sin

(
π

2
√

3u

1440

)
sinc

(
2v

1440

))
.

We can verify that Ha(0, 0) = 1 as required. A perspective view of the frequency response

Ha(u, v) is shown below in the range −1200 ≤ u, v ≤ 1200 c/ph. The hexagonal symmetry

is apparent in this plot.

0
1000

-1000
500

0.2

-500

u (c/ph)

0

v (c/ph)

0

0.4

-500500

-1000

0.6

1000

0.8

1



CHAPTER 6. SAMPLING AND RECONSTRUCTION 6-12

(f) Assume that the continuous-space input light irradiance fc(x, y) has a Fourier transform

Fc(u, v). Give an expression for the Fourier transform of the sampled image f [x, y], (x, y) ∈
Λ in terms of in terms of Fc(u, v) and Ha(u, v); you should explicitly evaluate the reciprocal

lattice Λ∗.

Solution: From Equation (6.16),

F (u) =
1

d(Λ)

∑
r∈Λ∗

Ha(u− r)Fc(u− r),

where Ha(u) was found in part (d) and d(Λ) =
√

3X2

2 = 1
2
√

3(240)2 was found in part (b).

A sampling matrix for Λ∗ is

VΛ∗ = V−TΛ =

[
1
X 0

− 1√
3X

2√
3X

]
=

[
240
√

3 0

−240 480

]
.

An equivalent sampling matrix in upper triangular form is

VΛ∗ =

[
2
X

1
X

0 1√
3X

]
=

[
480
√

3 240
√

3

0 240

]
.

Thus, explicitly

F (u, v) = 2
√

3(240)2
∞∑

k1=−∞

∞∑
k2=−∞

Ha(u− 480
√

3k1 − 240
√

3k2, v − 240k2)

× Fc(u− 480
√

3k1 − 240
√

3k2, v − 240k2).
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1. The web color goldenrod that we will denote [Q] is specified by the RGB values 218, 165,

32, on a scale from 0 to 255. Thus they can be assumed to be Q′R = 0.8549, Q′G = 0.6471,

Q′B = 0.1255 on a scale from 0 to 1. We assume that these are gamma-corrected values,

according to the sRGB gamma law (Section 7.5.5), and that the primaries are the Rec.

709/sRGB primaries, normalized with respect to reference white D65 (Section 7.5.3). The

goal of this problem is to determine representations of this color in other color coordinate

representations. Determine the following (show your work):

(a) The tristimulus values QR, QG, QB in the Rec. 709/sRGB color representation (Sec-

tion 7.5.3);

Solution: We use the sRGB gamma law given in Equation (7.70). Since all gamma-

corrected values on the scale from 0 to 1 are greater than 0.04045, the tristimulus values

are obtained by the formula

Qi =

(
Q′i + 0.055

1.055

)2.4

, i = R,G,B,

giving the result QR = 0.7011, QG = 0.3763, QB = 0.0144.

(b) The luminance QL and the chromaticities qR, qG, qB in the Rec. 709/sRGB representation;

Solution: From Equation (7.55), the luminance QL = QY = QRRY + QGGY + QBBY ,

where RY , GY and BY are the relative luminance of the sRGB primaries, given in Equa-

tion (7.63) as [RY , GY , BY ] = [0.2126, 0.7152, 0.0722]. Substituting these values gives

QL = 0.4192. The chromaticities are given by Equation (7.56) qi = Qi/(QR + QG +

QB), i = R,G,B, giving qR = 0.6421, qG = 0.3446, qB = 0.0132.

(c) The XYZ tristimulus values QX , QY , QZ and the corresponding chromaticities qX , qY , qZ

(Section 7.4.7);

Solution: The XYZ tristimulus values are obtained from the sRGB tristimulus values

using Equation (7.65), giving the result QX = 0.4263, QY = 0.4192, QZ = 0.0721. The

corresponding chromaticities are obtained by qi = Qi/(QX +QY +QZ), i = X,Y, Z, giving

qX = 0.4646, qY = 0.4568, qZ = 0.0786.
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(d) The 1976 U ′V ′W ′ tristimulus values QU ′ , QV ′ , QW ′ and the corresponding chromaticities

qU ′ , qV ′ , qW ′ (Section 7.4.8);

Solution: The 1976 U ′V ′W ′ tristimulus values are obtained from the XYZ tristimulus

values using Equation (7.49), giving the result QU ′ = 0.1895, QV ′ = 0.4192, QW ′ = 0.1614.

The chromaticities are obtained by qi = Qi/(QU ′ +QV ′ +QW ′), i = U ′, V ′,W ′, giving the

result qU ′ = 0.2460, qV ′ = 0.5444, qW ′ = 0.2096.

(e) The CIELAB coordinates QL∗ , Qa∗ , Qb∗ (Section 7.5.4);

Solution: The CIELAB coordinates are obtained using Equation (7.68), with the function

f given by Equation (7.67) with [W] = [D65], i.e. WXYZ = [0.9505, 1.0, 1.0891]′. In this

case, the values Qi/Wi, i = X,Y, Z, are all greater than ( 6
29)3 so f takes the cube root

form in all expressions. Thus

QL∗ = 116Q
1/3
Y − 16 = 70.8157

Qa∗ = 500((QX/0.9505)1/3 −Q1/3
Y ) = 8.5209

Qb∗ = 200(Q
1/3
Y − (QZ/1.0891)1/3) = 68.7714.

(f) The Luma and color differences QY ′ , QPB
, QPR

(Section 7.5.6).

Solution:The luma and color differences are obtained from the gamma-corrected RGB

values using the equation in Section 7.5.6, giving the result QY ′ = 0.6497, QPB
= −0.2959,

QPR
= 0.1462.

* You can visualize this color in any Windows program that lets you specify the RGB values

of a color. For example, in Microsoft Word, draw a shape like a rectangle and set the fill

color using “More Colors – Custom” and enter the gamma-corrected red, green and blue

values in the boxes.

The following pages give MATLAB code and output for this problem.









CHAPTER 7. LIGHT AND COLOR 7-7

2. As stated at the end of Section 7.4.8, the spectral absorption curves of the three types

of cone photoreceptors in the human retina should be a linear combination of any set of

three color-matching functions. The outputs of these receptors can be considered to be

tristimulus values with respect to some set of primaries that we will call [L], [M], [S]

(which stands for long, medium and short). It has been found that the tristimulus values

with respect to these primaries for a color [C], denoted Cl, Cm, Cs, can be obtained from

the XYZ tristimulus values by
Cl

Cm

Cs

 =


0.4002 0.7076 −0.0808

−0.2263 1.1653 0.0457

0.0 0.0 0.9182



CX

CY

CZ


(a) Determine and plot the color matching functions for the LMS primaries, denoted l̄(λ),

m̄(λ), s̄(λ). The data for the xyz color-matching functions are given on the CVRL website

(www.cvrl.org).

Solution: Using the notation from Chapter 7, the above equation can also be written as

CLMS = AXYZ→LMSCXYZ . Referring to Table 7.1, we see that the LMS color matching

functions can be obtained using a similar equation
l̄(λ)

m̄(λ)

s̄(λ)

 =


0.4002 0.7076 −0.0808

−0.2263 1.1653 0.0457

0.0 0.0 0.9182



x̄(λ)

ȳ(λ)

z̄(λ)

 .
Using the xyz color-matching function data available from the CVRL web site and also the

book web site in the data section, we obtain LMS color matching functions shown below.
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350 400 450 500 550 600 650 700 750 800 850
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1.8
LMS color matching functions

(b) Express the primaries [L], [M], [S] in terms of the primaries [X], [Y], [Z]. What color is

[L] + [M] + [S]?

Solution: Referring to Table 7.1, the primaries [L], [M], [S] can be obtaind from the

primaries [X], [Y], [Z] by multiplying by the matrix A−TXYZ→LMS . Thus, evaluating the

inverse transpose, we obtain
[L]

[M]

[S]

 =


1.8601 0.3612 0

−1.1295 0.6388 0

0.2199 0 1.0891




[X]

[Y]

[Z]

 .
Using this equation, [L] + [M] + [S] = 0.9505[X] + [Y] + 1.0891[Z] = [D65].

(c) Why are these primaries called [L], [M] and [S]?

Solution: The primaries are called [L], [M] and [S]b because the color matching func-

tions associated with them are sensitive to the longest wavelengths, the middle range of
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wavelengths and the shortest wavelengths respectively, as can be seen from the graph of

the color matching functions. These color matching functions are essentially the spectral

sensitivities of the corresponding types of cones in the retina.

(d) Determine the LMS tristimulus values of the color goldenrod of Problem 1. Can you give

a physical interpretation (in terms of your eye) of these tristimulus values?

Solution: The XYZ tristimulus values of [GR] (goldenrod) were found in question 1, giving

[GR] = 0.4263[X] + 0.4192[Y] + 0.0721[Z]. From (b), we can find the LMS tristimulus

values. Converting with AXYZ→LMS given above, we obtain

[GR] = 0.4614[L] + 0.3953[M] + 0.0662[S].

These would roughly represent the relative strength of the response of the L, M and S

cones in the eye when observing the goldenrod color.
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3. The Bayer color sampling strategy induces a new set of color signals from the original

RGB values (assume Rec. 709) as follows:
fL

fC1

fC2

 =


0.25 0.5 0.25

−0.25 0.5 −0.25

−0.25 0.0 0.25



fR

fG

fB


These can be considered to be tristimulus values with respect to a new set of primaries

denoted [L], [C1], [C2].

(a) Determine and plot the color matching functions for the LC1C2 primaries, denoted l̄(λ),

c̄1(λ), c̄2(λ). The data for the XYZ color-matching functions are given on the CVRL

website (www.cvrl.org). Note that this data is also available on the book web site in the

data section.

Solution: The matrix given above is ARGB→LC1C2. To convert known XYZ color-matching

functions, we first convert them to RGB using AXYZ→RGB given in Equation (7.66), and

then to LC1C2 using ARGB→LC1C2. This can be done in one step using the matrix

AXYZ→LC1C2 = ARGB→LC1C2AXYZ→RGB =


0.3396 0.5026 0.1604

−1.3085 1.3732 −0.1189

−0.7962 0.3333 0.3889

 .
Thus we have explicitly that

l̄(λ)

c̄1(λ)

c̄2(λ)

 =


0.3396 0.5026 0.1604

−1.3085 1.3732 −0.1189

−0.7962 0.3333 0.3889



x̄(λ)

ȳ(λ)

z̄(λ)

 .
These color matching functions are graphed in the following figure.
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(b) Express the primaries [L], [C1], [C2] in terms of the primaries [R], [G], [B] and in terms

of the primaries [X], [Y], [Z].

Solution: Referring to Table 7.1,
[L]

[C1]

[C2]

 = A−TRGB→LC1C2


[R]

[G]

[B]

 =


1 1 1

−1 1 −1

−2 0 2




[R]

[G]

[B]

 .


[L]

[C1]

[C2]

 = A−TXYZ→LC1C2


[X]

[Y]

[Z]

 =


0.9505 1.0000 1.0890

−0.2353 0.4304 −0.8506

−0.4638 −0.2808 1.8624




[X]

[Y]

[Z]

 .
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(c) Determine the LC1C2 tristimulus values of the color goldenrod of problem 1 and of the

reference white D65.

Solution: The RGB tristimulus values of Goldenrod were found in Problem 1 to be QR =

0.7011, QG = 0.3763, QB = 0.0144. Applying the transformation matrix ARGB→LC1C2, we

find QL = 0.3670, QC1 = 0.0092, QC2 = −0.1717.

[D65] = [R] + [G] + [B] = [L], so that D65L = 1, D65C1 = 0, D65C2 = 0.
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4. The recommendation 709 RGB primaries can be expressed in terms of the CIE XYZ

primaries by 
[R]

[G]

[B]

 =


0.4125 0.2127 0.0193

0.3576 0.7152 0.1192

0.1804 0.0722 0.9502




[X]

[Y]

[Z]

 .
Consider the cyan, magenta and yellow (CMY) primaries used in printing. These are given

by [C] = [B] + [G], [M] = [R] + [B] and [YE] = [R] + [G].

(a) Determine the tristimulus values of [C], [M] and [YE] with respect to the XYZ primaries.

Compute the XYZ chromaticities of [C], [M] and [YE] and plot them on an xy chromatic-

ity diagram. Comment on the suitability of cyan, magenta and yellow as primaries for an

additive color display device like a cathode ray tube (CRT).

Solution: From the given equation, we find that

[C] = [B] + [G] = 0.5380[X] + 0.7874[Y] + 1.0694[Z]

[M] = [R] + [B] = 0.5929[X] + 0.2849[Y] + 0.9695[Z]

[YE] = [R] + [G] = 0.7701[X] + 0.9279[Y] + 0.1385[Z]

from which the tristimulus values of [C], [M] and [YE] with respect to the XYZ primaries

are evident, e.g. CX = 0.5380, etc. The chromaticities are found using Equation (7.56),

e.g., cX = 0.5380/(0.5380 + 0.7874 + 1.0694) = 0.2247, etc. Doing this for the three colors,

we find

cX = 0.2247 cY = 0.3288 cZ = 0.4466

mX = 0.3210 mY = 0.1542 mZ = 0.5248

yeX = 0.4193 yeY = 0.5052 yeZ = 0.0752

These are plotted on the following xy chromaticity diagram, along with the rec709/sRGB

primaries. The chromaticities that can be reproduced by a linear combination of [C], [M]

and [YE] with positive coefficients lie in the interior of the small triangle with vertices

identified C, M , Y E. This is clearly a much smaller gamut than what can be reproduced

with R, G and B, so cyan, magenta and yellow are not good display primaries for an

additive display.



CHAPTER 7. LIGHT AND COLOR 7-14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
y

Colors that can be reproduced by CMY and Rec. 709 RGB primaries

M

C

YE

R

G

B

solid: CMY
dashed: Rec. 709

(b) Suppose that [C], [M] and [YE] as in part (a) are taken as primaries in a color system.

Determine the tristimulus values of a monochromatic light δ(λ − 510nm) with respect to

these primaries. You will need to use the XYZ color matching functions. Carefully explain

all steps. Can the given light be physically synthesized as a sum of a positive quantity of

the [C], [M] and [YE] primaries?

Solution: Denote [Q] = [δ(λ− 510nm)]. From the XYZ color-matching functions, we find

[Q] = [δ(λ− 510nm)] = 0.0093[X] + 0.5030[Y] + 0.1582[X],

i.e., QX = 0.0093, QY = 0.5030, QZ = 0.1582. We are asked to find QC , QM and QY E .
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To do this, we need the matrix AXYZ→CMY . From part (a), we indentify
[C]

[M]

[YE]

 =


0.5380 0.7874 1.0694

0.5929 0.2849 0.9695

0.7701 0.9279 0.1385




[X]

[Y]

[Z]



= AT
CMY→XYZ


[X]

[Y]

[Z]

 .
Thus, taking the inverse transpose,

AXYZ→CMY =


−2.0766 1.6043 0.7986

2.1324 −1.8084 0.2588

1.1076 0.2715 −0.7571

 .
Thus finally

QCMY =


−2.0766 1.6043 0.7986

2.1324 −1.8084 0.2588

1.1076 0.2715 −0.7571




0.0093

0.5030

0.1582

 =


0.9140

−0.8489

0.0271

 .
One tristimulus value is negative, so this light cannot be physically synthesized as a positive

linear combination of the CMY primaries.

(c) Determine the tristimulus values of the color goldenrod of question 1 with respect to the

[C], [M] and [YE] primaries. Can this color be physically synthesized as a sum of a

positive quantity of the [C], [M] and [YE] primaries?

Solution: For the color goldenrod [GR], it was found in Problem 1 that GRXYZ =

[0.4623, 0.4192, 0.0721]′. Then, GRCMY = AXYZ→CMYGRXYZ = [−0.2299, 0.2464, 0.5713]′.

This color has a negative CMY tristimulus value and so cannot be physically synthesized

as a positive linear combination of the CMY primaries.
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5. The EBU (European Broadcasting Union) primaries, have the following specification

Red Green Blue White D65

x 0.640 0.290 0.150 0.3127

y 0.330 0.600 0.060 0.3290

z 0.030 0.110 0.790 0.3582

Assume that the reference white has unit luminance DL = 1.0 and that [R] + [G] + [B] =

[D65].

(a) Find the XYZ tristimulus values of the reference white [D65], i.e., DX , DY and DZ .

Solution: This simply reproduces what was done in Section 7.5.3, using Equation (7.58)-

(7.60). Repeating that with the values in the above table, referring to reference white as

simply [D] for this problem: dX = 0.3127, dY = 0.3290, dZ = 0.3582. Thus

DX =
dX
dY

= 0.9505 DY = 1.0 DZ =
dZ
dY

= 1.0888.

(b) Using [R] + [G] + [B] = [D65], determine the luminances of the three primaries, RL, GL

and BL.

Solution: This follows the same procedure used in Section 7.5.3 for the Rec709/sRGB

primaries. Use Equations (7.58)-(7.60) to express the tristimulus values of [R], [G] and

[B] in terms of RL, GL and BL, e.g. RX = RLrX
rY

, etc, substitute these into [R]+[G]+[B] =

[D65] and write in matrix form to obtain
1.93 0.483 2.5

1.0 1.0 1.0

0.09 0.183 13.16



RL

GL

BL

 =


0.9505

1.0

1.0888

 .
Solving the matrix equation, we obtain RL = 0.2220, GL = 0.7066, BL = 0.0713.
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(c) Now find the XY Z tristimulus values of the three primaries, i.e. if [R] = RX [X]+RY [Y]+

RZ [Z], find RX , RY , RZ , and similarly for [G] and [B].

Solution: Insert the values of RL, GL and BL found in (b) into the expressions RX = RLrX
rY

,

etc, to find the requested tristimulus values. Expressed in matrix form
[R]

[G]

[B]

 =


RX RY RZ

GX GY GZ

BX BY BZ




[X]

[Y]

[Z]

 =


0.4306 0.2220 0.0202

0.3415 0.7066 0.1296

0.1783 0.0713 0.9390




[X]

[Y]

[Z]

 .
(d) If an arbitrary color [Q] is written

[Q] = QX [X] +QY [Y] +QZ [Z] = QR[R] +QG[G] +QB[B]

determine the matrix relations to find QX , QY , QZ from QR, QG, QB and vice-versa.

Solution: Referring to Table 7.1, entry 6, the matrix found in (c) can be named AT
RGB→XYZ .

This problem asks us to find ARGB→XYZ and AXYZ→RGB respectively, where the latter

is given by AXYZ→RGB = A−1
RGB→XYZ . Thus, performing the transpose and the inverse,

we obtain in matrix form
QX

QY

QZ

 =


0.4306 0.3415 0.1783

0.2220 0.7066 0.0713

0.0202 0.1296 0.9390



QR

QG

QB



QR

QG

QB

 =


3.0629 −1.3932 −0.4758

−0.9693 1.8760 0.0416

0.0679 −0.2289 1.0694



QX

QY

QZ


(e) Plot an xy chromaticity diagram showing the triangles of chromaticities reproducible with

the EBU RGB primaries.

Solution: The xy chromaticities of [R], [G] and [B] are given in the problem statement.

The set of all xy chromaticities reproducible with an additive linear combination (with

positive coefficients) of the EBU RGB primaries is the triangle whose vertices are the xy

chromaticities of [R], [G] and [B]. This triangle is shown on the chromaticity diagram

that follows. For comparison, the colors reproducible by the Rec709/sRGB primaries as

given in Section 7.5.3 are shown as well.
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(f) Compute and plot the color matching functions for the EBU RGB primaries by transform-

ing the XYZ color matching functions using the results of (d).

Solution: The EBU color matching functions are obtained by transforming the XYZ color

matching functions using AXYZ→RGB as found in part (d), i.e.,
r̄(λ)

ḡ(λ)

b̄(λ)

 =


3.0629 −1.3932 −0.4758

−0.9693 1.8760 0.0416

0.0679 −0.2289 1.0694



x̄(λ)

ȳ(λ)

z̄(λ)

 .
The result is shown in the following plot.



CHAPTER 7. LIGHT AND COLOR 7-19

400 450 500 550 600 650 700

Wavelength (nm)

-1

-0.5

0

0.5

1

1.5

2

2.5

3
Color matching functions of the EBU RGB primary system

(g) For the three spectral densities Q1(λ), Q2(λ) and Q3(λ) in the following table, compute

their chromaticities and plot them on an xy chromaticity diagram. Would they make good

primaries for a physical color image synthesis system such as a CRT? Explain.

Solution: To estimate the chromaticities of the colors [Q1], [Q2], [Q3], we have interpolated

the given spectral densities Q1(λ), Q2(λ) and Q3(λ) to a wavelength spacing of 2 nm and

also the XYZ color matching functions. We compute unnormalized tristimulus values by

expressions such as KQi,X =
∑

j Qi(λj)x̄(λj) to approximate the integral up to a constant

factor K. The constant factor K will cancel when calculating chromaticities. The resulting

chromaticities of [Q1], [Q2], [Q3] are shown on the following diagram. Chromaticities of

the RGB primaries are shown for comparison. Thus, [Q1], [Q2], [Q3] can reproduce a

significantly smaller gamut of chromaticities than [R], [G] and [B].
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Q1 Q2 Q3 λ

.19 .00 .60 400 nm

.20 .00 .63

.20 .00 .64

.20 .00 .63

.20 .00 .62

.20 .02 .59 450 nm

.20 .06 .53

.19 .19 .43

.18 .31 .31

.16 .43 .20

.13 .52 .10 500 nm

.08 .61 .05

.06 .67 .02

.04 .69 .01

.03 .69 .00

.04 .67 .00 550 nm

.08 .64 .00

.14 .60 .00

.22 .55 .00

.32 .49 .00

.41 .43 .00 600 nm

.50 .38 .00

.56 .33 .00

.63 .28 .00

.67 .25 .00

.71 .23 .00 650 nm

.75 .21 .00

.77 .20 .00

.79 .19 .00

.80 .19 .00

.81 .18 .00 700 nm
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1. Continuous-domain separable exponential autocorrelation. Show that if

Rf (x, y) = σ2
f exp(−γ1|x|) exp(−γ2|y|),

then power-density spectrum is given by

Sf (u, v) = σ2
f

2γ1

γ2
1 + 4π2u2

2γ2

γ2
2 + 4π2v2

.

Solution: Note that we must have γ1 > 0, γ2 > 0. Then, by the definition

Sf (u, v) =

∫ ∞
−∞

∫ ∞
−∞

σ2
f exp(−γ1|x|) exp(−γ2|y|) exp(−j2π(ux+ vy)) dxdy

= σ2
f

∫ ∞
−∞

exp(−γ1|x| − j2πux) dx

∫ ∞
−∞

exp(−γ2|y| − j2πvy) dy.

Both integrals have the same form. Denote the integral over x as I. Then

I =

∫ 0

−∞
exp(γ1x− j2πux) dx+

∫ ∞
0

exp(−γ1x− j2πux) dx

=
exp(γ1x− j2πux)

γ1 − j2πu

∣∣∣∣0
−∞

+
exp(−γ1x− j2πux)

−γ1 − j2πu

∣∣∣∣∞
0

=
1

γ1 − j2πu
+

−1

−γ1 − j2πu

=
γ1 + j2πu+ γ1 − j2πu
(γ1 − j2πu)(γ1 + j2πu)

=
2γ1

γ2
1 + 4π2u2

.

With a simiar method for the integral over y, we obtain

Sf (u, v) = σ2
f

2γ1

γ2
1 + 4π2u2

2γ2

γ2
2 + 4π2v2

.
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2. Discrete-domain separable exponential autocorrelation. Show that if

Rf [mX,nX] = σ2
fρ
|m|
1 ρ

|n|
2 ,

then the power density spectrum is separable and is given by

Sf (u, v) = σ2
f

1− ρ2
1

(1 + ρ2
1)− 2ρ1 cos(2πuX)

1− ρ2
2

(1 + ρ2
2)− 2ρ2 cos(2πvX)

.

Each term is the sum of two geometric series for positive and negative values of the

independent variable.

Solution: Note that we need |ρi| < 1 for i = 1, 2. Then

Sf (u, v) =

∞∑
m=−∞

∞∑
n=−∞

σ2
fρ
|m|
1 ρ

|n|
2 exp(−j2π(umX + vnX))

= σ2
f

∞∑
m=−∞

ρ
|m|
1 exp(−j2πumX)

∞∑
n=−∞

ρ
|n|
2 exp(−j2πvnX)

Both sums have the same form. Denote the sum over m as Σ. Then

Σ =
∞∑
m=0

ρm1 exp(−j2πumX) +
0∑

m=−∞
ρ−m1 exp(−j2πumX)− 1

=
∞∑
m=0

(ρ1 exp(−j2πuX))m +
∞∑
k=0

(ρ1 exp(j2πuX))k − 1

=
1

1− ρ1 exp(−j2πuX)
+

1

1− ρ1 exp(j2πuX)
− 1

=
1− ρ1 exp(j2πuX) + 1− ρ1 exp(−j2πuX)− (1 + ρ2

1 − 2ρ1 cos(2πuX))

(1− ρ1 exp(−j2πuX))(1− ρ1 exp(j2πuX))

=
2− 2ρ1 cos(2πuX)− 1− ρ2

1 + 2ρ1 cos(2πuX)

1 + ρ2 − 2ρ1 cos(2πuX)

=
1− ρ2

1

1 + ρ2
1 − 2ρ1 cos(2πuX)

Thus, applying the same result to the second sum and combining,

Sf (u, v) = σ2
f

1− ρ2
1

(1 + ρ2
1)− 2ρ1 cos(2πuX)

1− ρ2
2

(1 + ρ2
2)− 2ρ2 cos(2πvX)

.
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3. Prove that the spectral density matrix estimate Q̂(u) of Eq. (9.46) is equal to the discrete-

domain Fourier transform of the windowed sample autocorrelation Q[x] given in Eq. (9.47).

Solution: From Equation (9.46), Q̂(u) = 1
K V̂(u)V̂H(u), where

V̂(u) =
∑
x∈B

w[x]C[x] exp(−j2πu · x),

and B is the region of support of w. We recall that C is real. From Equation (9.47),

Q[x] =
1

K

∑
z∈B

w[z + x]C[z + x]CT [z]w[z].

We want to show that Qij [x]
DDFT←→ Q̂ij(u).

Written out explicitly

Qij [x] =
1

K

∑
z∈Λ

w[z + x]Ci[z + x]Cj [z]w[z]

and

Q̂ij(u) =
1

K
V̂i(u)V̂ ∗j (u) where V̂i(u) =

∑
x∈Λ

w[x]Ci[x] exp(−j2πu · x)

since w[x] = 0 for x ∈ Λ\B. To simplify notation, let fi[x] = w[x]Ci[x] and let

g[x] =
∑
z∈Λ

fi[z + x]fj [z] = KQij [x].

Taking the discrete-domain Fourier transform, G(u) = Fi(u)F ∗j (u) = V̂i(u)V̂ ∗j (u). (See

Section 9.5.1 where we show that the Fourier transform of
∑

z∈Λ h[z]q[x+z] is H∗(u)Q(u)

when h is real.) Thus, reverting to the original notation

KQij [x]
DDFT←→ KQ̂ij(u).
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1. Derive in detail the expression for the frequency response of a moving average filter on a

rectangular lattice, with a rectangular region of support, as given in Eq. (10.9).

Solution:

hMA[x] =


1
|B| if x ∈ B,

0 otherwise.

where Λ = LAT
([

X 0
0 Y

])
, B = {(n1X,n2Y ) | −L ≤ n1 ≤ L,−L ≤ n2 ≤ L}, and |B| =

(2L+ 1)2.

H(u, v) =
1

(2L+ 1)2

L∑
n1=−L

L∑
n2=−L

exp(−j2π(un1X + vn2Y ))

=
1

2L+ 1

L∑
n1=−L

exp(−j2πun1X)
1

2L+ 1

L∑
n2=−L

exp(−j2πvn2Y ),

which is separable as expected. Both terms have the same form. Let

S =

L∑
n=−L

exp(−j2πwnZ),

which is seen to be a geometric series of the form

a+ ar + ar2 + · · ·+ arn−1 =
a(1− rn)

1− r
=
a− rl
1− r

.

Here, a = exp(j2πwLZ), r = exp(−j2πwZ) and l = arn−1 = exp(−j2πwLZ). Thus

S =
exp(j2πwLZ)− exp(−j2πwZ) exp(−j2πwLZ)

1− exp(−j2πwZ)

=
exp(−jπwZ)(exp(jπw(2L+ 1)Z)− exp(−jπw(2L+ 1)Z)

exp(−jπwZ)(exp(jπwZ)− exp(−jπwZ))

=
2j sin(πw(2L+ 1)Z)

2j sin(πwZ)
.

Substituting in the two terms

H(u, v) =
1

(2L+ 1)2

sin(πu(2L+ 1)X) sin(πv(2L+ 1)Y )

sin(πuX) sin(πvY )
.
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2. Determine the frequency response of a moving average filter for a hexagonal lattice with

a diamond-shaped region of support.

Solution: A sampling matrix for a hexagonal lattice as given in Equation (3.5) is

VH =

[
X X/2

0 Y

]
.

The points of such a lattice are shown in the figure below, along with an example of a

diamond-shaped region of support shown as larger dots.

x

y

X 2X-X-2X

Y

2Y

3Y

4Y

-Y

-2Y

-3Y

-4Y

v
1

v
2

To specify the diamond-shaped region of support, it is more convenient to use the equiv-

alent sampling matrix

V =

[
X/2 X/2

Y −Y

]
.

(To check these are equivalent, note that V−1VH = [ 1 1
1 0 ] which is an integer matrix with

absolute value of determinant equal to 1.) The corresponding basis vectors v1 and v2 are

shown in the figure. With these basis vectors, we can specify the diamond-shaped region
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of support as

A = {n1v1 + n2v2 | −L ≤ n1 ≤ L,−L ≤ n2 ≤ L}

=
{

(n1 + n2)X2 , (n1 − n2)Y | −L ≤ n1 ≤ L,−L ≤ n2 ≤ L
}

where L is a positive integer. It is evident that |A| = (2L+ 1)2.

The frequency response of the moving average filter is then given by

H(u, v) =
1

(2L+ 1)2

L∑
n1=−L

L∑
n2=−L

exp(−j2π(u(n1 + n2)X2 + v(n1 − n2)Y ))

=
1

(2L+ 1)2

L∑
n1=−L

exp(−j2π(uX2 + vY )n1)
L∑

n2=−L
exp(−j2π(uX2 − vY )n2).

Referring to the solution to Problem 1, we have the result

S =
L∑

n=−L
exp(−j2πwZn) =

sin(π(2L+ 1)wZ)

sin(πwZ)
.

Replacing wZ by uX2 + vY and uX2 − vY respectively in the two sums defining H(u, v),

we obtain

H(u, v) =
1

(2L+ 1)2

sin(π(2L+ 1)(uX2 + vY )) sin(π(2L+ 1)(uX2 − vY ))

sin(π(uX2 + vY )) sin(π(uX2 − vY ))
.

We note that h[x] is separable along the directions v1 and v2,

h[n1v1 + n2v2] = h1[n1v1]h2[n2v2]

= rect( n1
2L) rect( n2

2L).

We also note thatH(u) is separable along the directions w1 and w2, where W = [w1,w2] =

V−T is this specific reciprocal sampling matrix for Λ∗. This follows since using these

directions as basis for R2 [
u

v

]
=

[
1
X

1
X

1
2Y − 1

2Y

]
︸ ︷︷ ︸

W

[
uX2 + vY

uX2 − vY

]

= (uX2 + vY )w1 + (uX2 − vY )w2.
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3. A square image (pw = ph) is sampled on the hexagonal lattice Λ generated by the sampling

matrix

V =

[
X X/2

0
√

3X/2

]
where X = 1/512 ph. Design a Gaussian FIR filter with unit sample response h[x] =

c exp(−‖x‖2/2r2) for x ∈ A having a 3dB bandwidth of 0.2/X c/ph. The region of support

of the FIR filter is A = {x ∈ Λ | ‖x‖ ≤ 3X}. Having determined the correct values of c

and r, give the coefficients of the filter. Give an analytical approximation for the frequency

response of the filter. Make a contour plot and a perspective plot of the frequency response

of the filter over the frequency range −2/X ≤ u ≤ 2/X, −4/(
√

3X) ≤ v ≤ 4/(
√

3X).

Sketch (by hand if you wish) on the contour plot the points of the reciprocal lattice Λ∗

and a Voronoi unit cell of Λ∗, and comment on the periodicity of the frequency response.

Recall that the Voronoi unit cell consists of all points in Λ∗ closer to the origin than to

any other point of Λ∗.

Solution: Note that this filter is used as an example in Section 12.1.2. There are 37 points

in Λ such x2 + y2 ≤ 9. These are illustrated as larger dots in the following figure. Thus

we need to determine 37 filter coefficients.

x

y

X 2X 3X-X-2X-3X

X

2X

3X

-X

-2X

-3X
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Given a 3 dB bandwidth of uc = 0.2
X c/ph, according to Equation (10.13), we should choose

r = 0.1325
0.2/X = 0.6625X. Thus,

h[x, y] = c exp(−(x2 + y2)/0.8778X2), (x, y) ∈ A.

Using Equation (10.11) to set the DC gain to 1, we find c = 0.31402. Note that using the

approximation for c, we obtain c ≈ d(Λ)/2πr2 = 0.31404, so the approximation is quite

accurate. We may now calculate the 37 non-zero coefficients of the Gaussian filter. Due

to the circular symmetry, there are only six distinct values corresponding to six distinct

values of x2 + y2 within A. These filter coefficients are enumerated as follows:

h[0, 0] = 0.3140

h[X, 0] = h[−X, 0] = h[X2 ,
√

3X
2 ] = h[−X

2 ,
√

3X
2 ] = h[X2 ,−

√
3X
2 ] = h[−X

2 ,−
√

3X
2 ]

= 0.3140 exp(−1/0.8778) = 0.1005

h[3X
2 ,
√

3X
2 ] = h[−3X

2 ,
√

3X
2 ] = h[3X

2 ,−
√

3X
2 ] = h[−3X

2 ,−
√

3X
2 ] = h[0,

√
3X]

= h[0,−
√

3X] = 0.3140 exp(−3/0.8778) = 0.0103

h[2X, 0] = h[−2X, 0] = h[X,
√

3X] = h[−X,
√

3X] = h[X,−
√

3X] = h[−X,−
√

3X]

= 0.3140 exp(−4/0.8778) = 0.00330

h[5X
2 ,
√

3X
2 ] = h[−5X

2 ,
√

3X
2 ] = h[5X

2 ,−
√

3X
2 ] = h[−5X

2 ,−
√

3X
2 ]

= h[2X,
√

3X] = h[−2X,
√

3X] = h[2X,−
√

3X] = h[−2X,−
√

3X]

= h[X2 ,
3
√

3X
2 ] = h[−X

2 ,
3
√

3X
2 ] = h[X2 ,−

3
√

3X
2 ] = h[−X

2 ,−
3
√

3X
2 ]

= 0.3140 exp(−7/0.8778) = 1.0808× 10−4

h[3X, 0] = h[−3X, 0] = h[3X
2 ,

3
√

3
2 ] = h[−3X

2 ,
3
√

3
2 ] = h[3X

2 ,−
3
√

3
2 ]

= h[−3X
2 ,−

3
√

3
2 ] = 0.3140 exp(−9/0.8778) = 1.1072× 10−5

The analytical approximation for the frequency response within a unit cell P∗ of Λ∗ is

given by Equation (10.12)

H(u, v) = exp(−2π2(u2 + v2)(0.4389)X2), (u, v) ∈ P∗.

This frequency response is periodic with periodicity lattice Λ∗. A sampling matrix for the



CHAPTER 10. ANALYSIS AND DESIGN 10-7

reciprocal lattice is

VΛ∗ = V−T =

[
1
X 0

− 1√
3X

2√
3X

]
.

A contour plot of the frequency response of the filter over the frequency range −2/X ≤
u ≤ 2/X, −4/(

√
3X) ≤ v ≤ 4/(

√
3X) is shown in the following figure. Points of Λ∗ are

indicated as filled circles and the Voronoi unit cell of Λ∗ is shown.
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A perspective view of this frequency response over the same region is as follows. The view

angle is chosen to highlight the Λ∗ periodicity of the frequency response.
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1. For each of the following pairs of lattices Λ1 and Λ2, state whether Λ1 ⊂ Λ2, Λ2 ⊂ Λ1 or

neither. If neither, find (by inspection) the least dense lattice Λ3 such that Λ1 ⊂ Λ3 and

Λ2 ⊂ Λ3. For each lattice Λ1, Λ2 and Λ3 (if required), determine and sketch the reciprocal

lattice and a unit cell of the reciprocal lattice. Specify a sampling structure conversion

system to transform a signal f [x] sampled on Λ1 to a signal g[x] sampled on Λ2. Assume

that ideal low-pass filters are used where filters are required, sketch their passband in the

frequency domain and indicate the gain.

(a)

VΛ1 =

[
X 0

0 X

]
VΛ2 =

[
2X 0

0 2X

]

Solution: Λ2 is a sublattice of Λ1, with VΛ2 = [ 2 0
0 2 ]VΛ1 .

Λ∗1 = LAT

([
1
X 0

0 1
X

])
Λ∗2 = LAT

([
1

2X 0

0 1
2X

])

u

v

Points of reciprocal lattices Λ∗1 (•) and Λ∗2 ( ), with unit cells P∗1 and P∗2 .
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The sampling structure conversion system is a downsampling system.

Block diagram of the sample structure conversion system

The filter H is an antialiasing filter with frequency response in one unit cell of Λ∗1 given by

H(u, v) =

1 (u, v) ∈ P∗2
0 (u, v) ∈ P∗1\P∗2

Its frequency response is Λ∗1 periodic.

u

v

1

0

Frequency response of the antialiasing prefilter.
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1. For each of the following pairs of lattices Λ1 and Λ2, state whether Λ1 ⊂ Λ2, Λ2 ⊂ Λ1 or

neither. If neither, find (by inspection) the least dense lattice Λ3 such that Λ1 ⊂ Λ3 and

Λ2 ⊂ Λ3. For each lattice Λ1, Λ2 and Λ3 (if required), determine and sketch the reciprocal

lattice and a unit cell of the reciprocal lattice. Specify a sampling structure conversion

system to transform a signal f [x] sampled on Λ1 to a signal g[x] sampled on Λ2. Assume

that ideal low-pass filters are used where filters are required, sketch their passband in the

frequency domain and indicate the gain.

(b)

VΛ1 =

[
X 0

0 X

]
VΛ2 =

[
3X X

0 X

]

Solution: d(Λ1) = X2 and d(Λ2) = 3X2 = 3d(Λ1), so it is possible that Λ2 is a sublattice

of Λ1. Checking the condition,

V−1
Λ1

VΛ2 =

[
1
X 0

0 1
X

][
3X X

0 X

]
=

[
3 0

0 1

]

which is an integer matrix, so indeed Λ2 ⊂ Λ1. The reciprocal lattices are

Λ∗1 = LAT(V−TΛ1
) = LAT

([
1
X 0

0 1
X

])
,

Λ∗2 = LAT(V−TΛ2
) = LAT

([
1

3X 0

− 1
3X

1
X

])
.

These are plotted on the following figure, along with the Voronoi unit cells. The Voronoi

unit cell of Λ∗1 is a square, and the Voronoi unit cell of Λ∗2 is a hexagon. The exact

specification of the Voronoi unit cell of Λ∗2 can be found by finding the equations of the

perpendicular bisectors of the lines from the origin to the six nearest lattice points, and

finding the points of intersection of these lines. For example, the perpendicular bisector

of the line from the origin to ( 2
3X ,

1
3X ) is y = −2x+ 5

6 . The perpendicular bisector of the

line from the origin to ( 1
3X ,−

1
3X ) is y = x− 1

3 . The point of intersection is ( 7
18 ,

1
18).
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u

v

Points of reciprocal lattices Λ∗1 (•) and Λ∗2 ( ), with unit cells P∗1 and P∗2 .

The sampling structure conversion system is a downsampling system.

Block diagram of the sample structure conversion system

The filter H is an antialiasing filter with frequency response in one unit cell of Λ∗1 given by

H(u, v) =

1 (u, v) ∈ P∗2
0 (u, v) ∈ P∗1\P∗2

Its frequency response is Λ∗1 periodic.
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u

v

1

0

Frequency response of the antialiasing prefilter.
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1. For each of the following pairs of lattices Λ1 and Λ2, state whether Λ1 ⊂ Λ2, Λ2 ⊂ Λ1 or

neither. If neither, find (by inspection) the least dense lattice Λ3 such that Λ1 ⊂ Λ3 and

Λ2 ⊂ Λ3. For each lattice Λ1, Λ2 and Λ3 (if required), determine and sketch the reciprocal

lattice and a unit cell of the reciprocal lattice. Specify a sampling structure conversion

system to transform a signal f [x] sampled on Λ1 to a signal g[x] sampled on Λ2. Assume

that ideal low-pass filters are used where filters are required, sketch their passband in the

frequency domain and indicate the gain.

(c)

VΛ1 =

[
2X 0

0 2X

]
VΛ2 =

[
X X

X −X

]

Solution: d(Λ1) = | detVΛ1 | = 4X2 and d(Λ2) = |detVΛ2 | = 2X2. Thus d(Λ1) = 2d(Λ2).

From Corollary 11.1, we see that Λ2 ⊂ Λ1 is impossible, but Λ1 ⊂ Λ2 is possible. Performing

the test of Theorem 11.1,

V−1
Λ2

VΛ1 =

[
1

2X
1

2X
1

2X − 1
2X

][
2X 0

0 2X

]
=

[
1 1

1 −1

]

which is an integer matrix, so indeed Λ1 ⊂ Λ2. The reciprocal lattices are

Λ∗1 = LAT(V−TΛ1
) = LAT

([
1

2X 0

0 1
2X

])
,

Λ∗2 = LAT(V−TΛ2
) = LAT

([
1

2X
1

2X
1

2X − 1
2X

])
.

These are plotted on the following figure, along with the Voronoi unit cells. The Voronoi

unit cell of Λ1 is a square of side 1
2X while the Voronoi unit cell of Λ2 is a diamond, which

is in fact a square of side 1√
2X

rotated by 45◦.
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u

v

Points of reciprocal lattices Λ∗1 (•) and Λ∗2 ( ), with unit cells P∗1 and P∗2 .

Since Λ2 is denser than Λ1, this is an upsampling problem with an upsampling factor of

2. The system block diagram is

Block diagram of the sample structure conversion system.

The filter H is an interpolation filter with frequency response in one unit cell of Λ∗2 given

by

H(u, v) =

2 (u, v) ∈ P∗1
0 (u, v) ∈ P∗2\P∗1

Its frequency response is Λ∗2 periodic.
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u

v

2

0

Frequency response of the interpolation filter. Periodicity lattice is Λ∗2 ( ). Filter

response is 2 in the shaded area and 0 in the unshaded area.
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1. For each of the following pairs of lattices Λ1 and Λ2, state whether Λ1 ⊂ Λ2, Λ2 ⊂ Λ1 or

neither. If neither, find (by inspection) the least dense lattice Λ3 such that Λ1 ⊂ Λ3 and

Λ2 ⊂ Λ3. For each lattice Λ1, Λ2 and Λ3 (if required), determine and sketch the reciprocal

lattice and a unit cell of the reciprocal lattice. Specify a sampling structure conversion

system to transform a signal f [x] sampled on Λ1 to a signal g[x] sampled on Λ2. Assume

that ideal low-pass filters are used where filters are required, sketch their passband in the

frequency domain and indicate the gain.

(d)

VΛ1 =

[
1.5X 0

0 1.5X

]
VΛ2 =

[
X 0

0 X

]

Solution: d(Λ1) = | detVΛ1 | = 9
4X

2, d(Λ2) = |detVΛ2 | = X2. Since neither is an integer

multiple of the other, neither Λ1 ⊂ Λ2 nor Λ2 ⊂ Λ1. The least common superlattice is

seen by inspection to be

Λ3 = LAT

([
X
2 0

0 X
2

])
, d(Λ3) =

X2

4
.

This can be verified as follows. As shown in Section 13.9, the least common superlattice

is Λ3 = Λ1 + Λ2. Let Γ = LAT
([

X/2 0
0 X/2

])
. We can see that[

3X
2

0

]
−

[
X

0

]
=

[
X
2

0

]
and

[
0

3X
2

]
−

[
0

X

]
=

[
0
X
2

]
must belong to Λ3. Thus, all integer linear combinations of these vectors must belong to

Λ3, so Γ ⊂ Λ3. But Λ1 ⊂ Γ and Λ2 ⊂ Γ and thus Λ3 = Λ1 + Λ2 ⊂ Γ. Thus Λ3 = Γ as

claimed.

All lattices are square lattices, more simply expressed as Λ1 = 3
2XZ2, Λ2 = XZ2, Λ3 =

1
2XZ2. The reciprocal lattices are thus

Λ∗1 = 2
3XZ2 Λ∗2 = 1

XZ2 Λ3 = 2
XZ2.

These are plotted in the following figure, along with the Voronoi cells, which are all squares.
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u

v

Points of reciprocal lattices Λ∗1 (•), Λ∗2 ( ) and Λ∗3 (×) with unit cells P∗1 , P∗2 and P∗3 .

The sampling structure conversion can be implemented by upsampling to Λ3 followed by

downsampling to Λ2 as follows.

Block diagram of the sample structure conversion system.

The combined filter defined on Λ3 has frequency response in one unit cell of Λ∗3 given by

H(u, v) =


d(Λ1)
d(Λ3) = 9 (u, v) ∈ P∗1 ∩ P∗2 ,

0 (u, v) ∈ P∗3\(P∗1 ∩ P∗2 ).
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Since in this example P∗1 ⊂ P∗2 , this can be simplified to

H(u, v) =

9 (u, v) ∈ P∗1 ,

0 (u, v) ∈ P∗3\P∗1 .

The frequency response is Λ∗3 periodic.

u

v

9

0

Frequency response of the conversion filter. Periodicity lattice is Λ∗3 (×). Filter response

is 9 in the shaded area and 0 in the unshaded area.
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1. For each of the following pairs of lattices Λ1 and Λ2, state whether Λ1 ⊂ Λ2, Λ2 ⊂ Λ1 or

neither. If neither, find (by inspection) the least dense lattice Λ3 such that Λ1 ⊂ Λ3 and

Λ2 ⊂ Λ3. For each lattice Λ1, Λ2 and Λ3 (if required), determine and sketch the reciprocal

lattice and a unit cell of the reciprocal lattice. Specify a sampling structure conversion

system to transform a signal f [x] sampled on Λ1 to a signal g[x] sampled on Λ2. Assume

that ideal low-pass filters are used where filters are required, sketch their passband in the

frequency domain and indicate the gain.

(e)

VΛ1 =

[
X X

X −X

]
VΛ2 =

[
1.5X 1.5X

1.5X −1.5X

]

Solution: d(Λ1) = | detVΛ1 | = 2X2, d(Λ2) = |detVΛ2 | = 4.5X2. Since neither is an

integer multiple of the other, neither Λ1 ⊂ Λ2 nor Λ2 ⊂ Λ1. It can be seen by inspection

of lattices Λ1 and Λ2 that the least dense superlattice is

Λ3 = LAT

([
X
2

X
2

X
2 −X

2

])
with d(Λ3) =

X2

2
.

This can be verified as follows. As shown in Section 13.9, the least common superlattice is

Λ3 = Λ1 + Λ2. Let Γ = LAT
([

X/2 X/2
X/2 −X/2

])
. We can see that the following elements of Γ,

[
3X
2

3X
2

]
−
[
X
]

=

[
X
2
X
2

]
and

[
3X
2

−3X
2

]
−

[
X

−X

]
=

[
X
2

−X
2

]

must belong to Λ3 = Λ1 + Λ2. Thus, all integer linear combinations of these vectors must

belong to Λ3, so Γ ⊂ Λ3. But Λ1 ⊂ Γ (V−1
Γ VΛ1 = [ 2 0

0 2 ]) and Λ2 ⊂ Γ (V−1
Γ VΛ2 = [ 3 0

0 3 ])

and so Λ3 = Λ1 + Λ2 ⊂ Γ. Thus Λ3 = Γ as claimed.
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The reciprocal lattices are

Λ∗1 = LAT(V−TΛ1
) = LAT

([
1

2X
1

2X
1

2X − 1
2X

])

Λ∗2 = LAT(V−TΛ2
) = LAT

([
1

3X
1

3X
1

3X − 1
3X

])

Λ∗3 = LAT(V−TΛ3
) = LAT

([
1
X

1
X

1
X − 1

X

])

These are plotted in the following figure, along with the Voronoi cells which are all dia-

monds that are squares rotated by 45◦.

u

v

Points of reciprocal lattices Λ∗1 (•), Λ∗2 (×) and Λ∗3 ( ) with unit cells P∗1 , P∗2 and P∗3 .
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The sampling structure can be implemented by upsampling to Λ3 followed by downsam-

pling to Λ2 as follows.

Block diagram of the sample structure conversion system.

The combined filter defined on Λ3 has frequency response in one unit cell of Λ∗3 given by

H(u, v) =


d(Λ1)
d(Λ3) = 4 (u, v) ∈ P∗1 ∩ P∗2 ,

0 (u, v) ∈ P∗3\(P∗1 ∩ P∗2 ).

Since in this example P∗2 ⊂ P∗1 , this can be simplified to

H(u, v) =

4 (u, v) ∈ P∗2 ,

0 (u, v) ∈ P∗3\P∗2 .

The frequency response is Λ∗3 periodic.
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u

v

4

0

Frequency response of the conversion filter. Periodicity lattice is Λ∗3 ( ). Filter response

is 4 in the shaded area and 0 in the unshaded area.
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