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Least-Squares Luma-Chroma Demultiplexing
Algorithm for Bayer Demosaicking
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Abstract— This paper addresses the problem of interpolating
missing color components at the output of a Bayer color filter
array (CFA), a process known as demosaicking. A luma-chroma
demultiplexing algorithm is presented in detail, using a least-
squares design methodology for the required bandpass filters.
A systematic study of objective demosaicking performance and
system complexity is carried out, and several system configu-
rations are recommended. The method is compared with other
benchmark algorithms in terms of CPSNR and S-CIELAB ∆E∗

objective quality measures, and demosaicking speed. It was found
to provide excellent performance, and the best quality-speed
tradeoff among the methods studied.

Index Terms— color demosaicking, color filter array, Bayer
sampling

I. INTRODUCTION

THE single charge-coupled device (CCD) sensor with
color filter array (CFA) combination remains the predom-

inant implementation inside digital cameras for capturing color
images [1]. Because of the CFA, only one color component
is measured at each CCD sensor element. CFAs vary by
the color classes they admit and the arrangement of these
color samples. The Bayer array [2], the most commonly used
CFA in digital cameras, is a spatially periodic mosaic of
red, green, and blue samples where the green samples have
twice the sampling density over the red or blue samples. The
problem of estimating the missing color components at each
spatial location by using only the measured samples is called
demosaicking.

The direct approach to demosaicking involves spatial inter-
polation of the undersampled red, green, and blue components
to the full CFA grid. Because each of these components
is severely undersampled, this approach yields very visible
artifacts, especially false colors and “zippering”. Many ap-
proaches have been proposed to reduce the level of such
artifacts, generally based on exploiting correlation between
the three components and using edge-directed interpolation,
with varying levels of success. Comprehensive reviews of
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demosaicking algorithms can be found in [3] and [4] and so
will not be repeated here.

Alleysson et al. [5] showed that the spatial multiplexing of
red, green, and blue color components in a Bayer CFA signal
is equivalent to the frequency multiplexing of an achromatic
“luma” component and two modulated “chroma” components.
Moreover, the luma and chroma components are sufficiently
well isolated in the frequency domain to consider constructing
demosaicking algorithms from a frequency analysis approach.
Such an algorithm involves extracting estimates of the luma
and modulated chroma components separately by filtering
the Bayer CFA signal using two-dimensional filters with the
appropriate passbands, and then converting the estimated luma
and two demodulated chroma values at each spatial location
into RGB values. However, the algorithm along these lines
proposed in [5] did not give state-of-the-art performance.

In [6], Dubois introduced a locally-adaptive luma-chroma
demultiplexing algorithm which did give state-of-the-art per-
formance at the time. This algorithm exploits the redundancy
of one chroma component in the Bayer CFA signal by locally
selecting the better estimate using the copy less corrupted by
crosstalk with the luma signal. The work in [7] introduced a
least-squares approach for optimal filter design that replaced
the window filter design method used in [6]. This new filter
design method was successful in producing lower order filters
(11×11) that achieved virtually identical demosaicking quality
as the higher order filters (21 × 21) used in [6]. We refer to
this method as the least-squares luma-chroma demultiplexing
(LSLCD) algorithm. The present paper further examines the
tradeoff relationship between demosaicking quality and speed
of demosaicking for this algorithm in order to recommend
filter specifications for the best system that balances quality
and speed. We argue in light of our experimental results that
this algorithm gives state-of-the-art performance, especially
when computational complexity is considered. Note that the
LSLCD formulation has been extended to arbitrary CFA
structures in [8].

The rest of this paper is organized as follows. In Sec-
tion II, the adaptive luma-chroma demultiplexing algorithm
is reviewed, and the least-squares filter design method is
described in detail. Section III presents the computational
complexity analysis of the system, and gives a structured
approach to reducing the computational complexity to give
the best tradeoff between demosaicking performance and
speed. Detailed simulation results and comparisons with five
competing methods in terms of objective quality measures
and computational time are reported in Section IV. Note that
a complete set of demosaicked images can be found on the
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associated web page [9]. Conclusions are drawn in Section V.

II. DEMOSAICKING SYSTEM DESIGN

A. Demosaicking by Adaptive Luma-Chroma Demultiplexing

The algorithm for Bayer demosaicking by adaptive luma-
chroma demultiplexing used in this paper is precisely the one
described in [6]; it is summarized here for completeness. We
assume that an underlying color image with RGB components
fR, fG, and fB is sampled on the rectangular integer lattice
Λ = Z2, with the upper left point of the image at coordinate
(0,0). The unit of length used in this paper is the vertical
spacing between sample elements in the CFA signal, denoted
1 px. The standard spatial multiplexing model of the Bayer
CFA signal is

fCFA[n1, n2]

= fR[n1, n2]mR[n1, n2] + fG[n1, n2]mG[n1, n2]

+fB [n1, n2]mB [n1, n2]

=
1

4
fR[n1, n2](1− (−1)n1)(1 + (−1)n2)

+
1

2
fG[n1, n2](1 + (−1)n1+n2)

+
1

4
fB [n1, n2](1 + (−1)n1)(1− (−1)n2). (1)

Expanding the expression and collecting like terms, one ob-
tains

fCFA[n1, n2]

= (
1

4
fR[n1, n2] +

1

2
fG[n1, n2] +

1

4
fB [n1, n2])

+(−1

4
fR[n1, n2] +

1

2
fG[n1, n2]

−1

4
fB [n1, n2])(−1)n1+n2

+(−1

4
fR[n1, n2] +

1

4
fB [n1, n2])((−1)n1 − (−1)n2)

, fL[n1, n2] + fC1[n1, n2](−1)n1+n2

+fC2[n1, n2]((−1)n1 − (−1)n2). (2)

This expression offers a different interpretation to the spatial
representation of the Bayer CFA signal. Specifically, the CFA
is treated as the multiplexing of one baseband signal and two
modulated difference signals. The baseband signal fL iden-
tifies an achromatic luma component and the two modulated
signals fC1 and fC2 identify two separate chromatic color dif-
ference components, referred to here as chroma components.

Substituting for −1 = ejπ in equation (2), one obtains

fCFA[n1, n2] = fL[n1, n2] + fC1[n1, n2]ejπ(n1+n2)

+ fC2[n1, n2](ejπn1 − ejπn2)

, fL[n1, n2] + fC1m[n1, n2]

+ fC2ma[n1, n2] + fC2mb[n1, n2], (3)

with Fourier transform

FCFA(u, v) = FL(u, v) + FC1(u− 0.5, v − 0.5)

+ FC2(u− 0.5, v)− FC2(u, v − 0.5), (4)

where frequencies are expressed in c/px.

The key observation of [6] is that the CFA signal con-
tains two separate modulated versions of fC2 which suffer
differently from crosstalk. Generally, in a local area, one
version suffers less from crosstalk than the other, and the
adaptive algorithm attempts to identify and favor the less
corrupted version to estimate fC2. The adaptive luma-chroma
demultiplexing algorithm of [6] is summarized in Fig. 1. Three
FIR linear shift-invariant bandpass filters h1, h2a, and h2b are
used to estimate the modulated components as f̂C1m, f̂C2ma,
and f̂C2mb respectively. The design of these filters is one key
aspect of this paper. In [6], 21 × 21 filters were designed
using the window method; in this paper, they are designed
using a least-squares criterion (as in [7]), and the effect of
filter size will be studied. Returning to Fig. 1, the estimated
modulated components are demodulated to baseband; f̂C1 is
retained as is, whereas f̂C2a and f̂C2b are adaptively combined
to yield the estimate f̂C2 = wf̂C2a + (1 − w)f̂C2b. The
weighting coefficient is w = eY /(eX+eY ), where eX and eY
represent the average local energy in the vicinity of frequencies
(fm, 0) and (0, fm). Specifically, hG1 is a Gaussian filter
with horizontal and vertical standard deviation rG1 and rG2,
modulated to the frequency (±fm, 0), and hG2 is the transpose
of the same Gaussian filter, modulated to (0,±fm). Then
eX = (fCFA ∗ hG1)2 ∗ hMA, where hMA is a 5 × 5 moving
average filter, and eY = (fCFA ∗ hG2)2 ∗ hMA. In [6], fm was
set to 0.375 c/px, and we could not improve on this value.
The standard deviations (rG1, rG2) = (3.0, 1.0) were found
to give the best performance. The effect of the Gaussian filter
order is studied in this paper. Although this adaptive weighting
algorithm is empirical, it gives excellent results, and we have
not been able to improve on it.

B. Least-Squares Filter Design

We have seen that the estimate for component X ∈
{C1m,C2ma,C2mb} is obtained by the spatial filtering op-
eration f̂X = fCFA ∗ hX′ where X ′ ∈ {1, 2a, 2b} respectively.
Suppose we have a model for the original signal fX so that
the difference between f̂X and fX can be expressed as a
stationary random field. Then, a suitable design criterion is
to minimize the expected squared error, resulting in the filter
hX′ = arg minhE[(fX [n1, n2]− (fCFA ∗ h)[n1, n2])2], which
is independent of (n1, n2) due to stationarity. Because good
models for fX do not exist yet, we can instead compile a set of
training images from typical color images and compute filters
that minimize squared errors over the training set; these filters
are the solution to standard least-squares problems [10].

Assume that we have chosen a training set of original RGB
color images. Thus, we also have access to the signals fC1m,
fC2ma andfC2mb, which are respectively the original baseband
signals fC1 and fC2 modulated to the appropriate centering
frequencies. Let us first consider C1 and filter h1. Recall that
the estimate f̂ (i)

C1m for the ith training image is obtained by
f̂

(i)
C1m = f

(i)
CFA ∗ h1. If h1 has region of support B that is a

subset of the ith image sampling raster Λi, then

f̂
(i)
C1m[n1, n2] =

∑
[k1,k2]∈B

h1[k1, k2]f
(i)
CFA[n1−k1, n2−k2]. (5)
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Fig. 1. Block diagram of adaptive luma-chroma demultiplexing algorithm for the Bayer CFA structure.

We define the total squared error (TSE) on C1 over every
pixel in a training set of K images by

TSEC1 =

K∑
i=1

∑
[n1,n2]∈Λi

(f̂
(i)
C1m[n1, n2]− f (i)

C1m[n1, n2])2. (6)

The least-squares filter h∗1 that minimizes the estimation error
on C1 is the solution to the least-squares problem

h∗1 = arg min
h1

TSEC1. (7)

We can reformulate the least-squares problem using matri-
ces. Let NB = |B| be the number of h1 filter coefficients
and let NW = |Λi| be the number of pixels in the ith

training image. Assume for now that NW is the same for
every training image. We may reshape f (i)

C1m into a NW × 1

column vector f
(i)
C1m by scanning f

(i)
C1m column-by-column

over Λi. Now, reshape h1 into a NB × 1 column vector h1

by scanning h1 column-by-column over B. Finally, construct
a NW ×NB matrix A(i) by scanning f (i)

CFA in alignment with
h1 such that each entry of the matrix product A(i)h1 realizes
equation (5). The result of A(i)h1 is the NW × 1 column
vector f̂

(i)
C1m aligned pixel-wise with f

(i)
C1m. These matrices

reformulate equation (7) into

h∗1 = arg min
h1

K∑
i=1

‖f̂ (i)
C1m − f

(i)
C1m‖

2

= arg min
h1

K∑
i=1

‖A(i)h1 − f
(i)
C1m‖

2, (8)

which is a standard least-squares problem with solution

h∗1 =

[
K∑
i=1

A(i)TA(i)

]−1 [ K∑
i=1

A(i)T f
(i)
C1m

]
. (9)

Finally, we reshape h∗1 back onto support B to get the least-
squares filter h∗1.

The same framework is used on C2 to obtain the least-
squares filters h2a and h2b defined over supports D and D′
(where D′ is the transpose of D). Here, we have

TSEC2 =

K∑
i=1

∑
[n1,n2]∈Λi

(f̂
(i)
C2m[n1, n2]−f (i)

C2m[n1, n2])2 (10)

with the adaptive estimate (see Fig. 1)

f̂
(i)
C2m[n1, n2] = wi[n1, n2](−1)n1×∑

[k1,k2]∈D

(h2a[k1, k2]f
(i)
CFA[n1 − k1, n2 − k2])

− (1− wi[n1, n2])(−1)n2×∑
[k1,k2]∈D′

(h2b[k1, k2]f
(i)
CFA[n1 − k1, n2 − k2]).

(11)

The set of weighting coefficients wi is obtained in the same
manner described previously. The sets wi and (1 − wi) are
modulated accordingly to match the centering frequencies of
fC2ma and fC2mb respectively.

As before, we cast the least-squares problem into matrix
form. Furthermore, we can simultaneously find the least-
squares filters h∗2a and h∗2b by temporarily merging the two
filter kernels. Once again, let NW = |Λi| be the number of
pixels in the ith training image and assume NW to be the same
for all images. Let ND = |D| be the number of h2a (or h2b)
filter coefficients. First, reshape f (i)

C2m into a NW × 1 column
vector f

(i)
C2m by scanning f

(i)
C2m column-by-column over Λi.

Next, reshape h2a and h2b into two ND × 1 column vectors
h2a and h2b respectively by scanning column-by-column and
then stack h2a over h2b to form the 2ND × 1 column vector

h2 =

[
h2a

h2b

]
.

Finally, construct a NW × 2ND matrix B(i) by scanning the
product values of f (i)

CFA and modulated weighting coefficients
in alignment with h2 such that each entry of the matrix
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product B(i)h2 realizes equation (11). The matrix product is
the NW×1 column vector f̂ (i)

C2m aligned pixel-wise with f
(i)
C2m.

With these matrices we can express the standard least-squares
problem on C2 as

h∗2 = arg min
h2

K∑
i=1

‖f̂ (i)
C2m − f

(i)
C2m‖

2

= arg min
h2

K∑
i=1

‖B(i)h2 − f
(i)
C2m‖

2, (12)

with solution

h∗2 =

[
K∑
i=1

B(i)TB(i)

]−1 [ K∑
i=1

B(i)T f
(i)
C2m

]
. (13)

Now extract h∗2a from the first ND entries of h∗2 and h∗2b from
remaining entries and then reshape h∗2a and h∗2b separately
back onto supports D and D′ to get the least-squares filters
h∗2a and h∗2b.

We have relied on the assumption that each training image
has the same number of pixels. Although this may not be true
in general, we can enforce this assumption by dividing each
training image into sub-images of the same dimensions. Then,
the sub-image size NW is constant for each piece and we train
over all sub-images instead. In [7] the sub-image window has
dimensions 96 pixels × 96 pixels giving NW = 9216 pixels.
The choice of NW has negligible effect on the demosaicking
results.

III. SYSTEM OPTIMIZATION

A. Filter Optimization Based on Quality versus Complexity

The least-squares filter design is completely automated as
long as we specify the rectangular kernel dimensions for filters
h1, h2a, and h2b. Therefore, we can program a scheme to
systematically explore the effects on demosaicking quality of
lowering the orders of the three filters. This is a worthwhile
endeavour because preliminary results in [7] have shown that
demosaicking quality and computational complexity form a
tradeoff relationship. More importantly, there exists a “sweet
spot” in terms of computational complexity where more com-
plex realizations of the algorithm using larger filter orders
give negligible improvements to objective and subjective de-
mosaicking quality.

We shall elaborate on the notion of computational complex-
ity as it pertains to the adaptive luma-chroma demultiplexing
algorithm. The algorithm comprises primarily spatial signal
filtering realized by the convolution operator, where the mul-
tiplication and addition are the only necessary atomic oper-
ations. The amount of required computational work depends
only on the sizes of the signal and the filter involved. Of these
two factors, only the filter kernel sizes can be adjusted to
produce different realizations of the algorithm; the signal size
depends on the unknown input CFA signal and so, without
loss of generality, we consider the work to demosaic one
image pixel. Furthermore, multiplications take significantly
more computation time than additions on most processors.
Therefore, counting the number of multiplications required

to demosaic one pixel is a good indicator of computational
complexity. Finally, because the algorithm uses the exact
same steps to demosaic any arbitrary image pixel, the single-
pixel count strictly reflects demosaicking speed — the fewer
multiplications required (i.e., less complexity), the faster the
demosaicking is.

By tracing the demosaicking steps described in Fig. 1 and
omitting any multiplications involving a constant operand, the
number of multiplications S required to demosaic one image
pixel is

S = 2(P1 + P2 + 1) +M1M2 + 2N1N2 + 3, (14)

where filter h1 has order M1 × M2, filter h2a has order
N1 × N2, filter h2b has order N2 × N1, and the separable
Gaussian filters hG1 and hG2 involved in the selection of
weighting coefficients have orders P1 × P2 and P2 × P1

respectively. Equation (14) shows that these filter orders are
the only adjustable parameters that have any effect on com-
putational complexity. The remaining adjustable parameters
include the two-dimensional standard deviations (rG1, rG2)
and the centering frequency parameter fm for the Gaussian
filters hG1 and hG2. However, they do not change Gaussian
filter orders and so they do not exert any influence on com-
putational complexity. A systematic full search showed that
(rG1, rG2) = (3.0, 1.0) is near optimal. Also, following the
recommendation in [6], we set fm = 0.375 c/px.

We used a greedy algorithm to explore the relationship
between objective demosaicking quality and computational
complexity. Let us represent the set of filter orders using
vectors of the form
[ M1 M2 N1 N2 P1 P2 ]. Each valuation of this
vector defines a configuration that completely describes
a realization of the adaptive frequency-domain algorithm.
The greedy algorithm iterates from the initial configuration
[ 11 11 11 11 11 11 ], which is the recommendation
from [7], to the end configuration [ 1 1 1 1 1 1 ].
At each iteration the algorithm generates a maximum of six
temporary configurations (fewer if some entries have already
reached their end value) by decrementing each entry of the
current configuration by 2, one at a time. We chose the
step size of 2 to maintain odd-valued kernel dimensions. For
each temporary configuration the greedy algorithm prepares
an implementation of the demosaicking algorithm with the
appropriate least-squares and Gaussian filters that match the
configuration, and then performs demosaicking using this
system over a test set of color images. Finally, the greedy
algorithm exits the current iteration by retaining the temporary
configuration that yields the best objective quality as the new
“current” configuration. Regardless of whether it is discarded
or kept, a temporary configuration will never be tested again
at a later iteration.

Objective quality is determined by the average color mean-
square error (CMSE) metric on the RGB color space. Specif-
ically, the calculations involve first computing the average
MSE for each of the red, green, and blue channel over the
test images and then averaging the three MSEs to obtain the
CMSE. A smaller CMSE indicates better objective quality,
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which of course does not necessarily precisely reflect subjec-
tive quality. As an alternative measure of subjective quality,
the S-CIELAB ∆E∗ error measure has been proposed [11]
and used to evaluate demosaicking performance [4], and we
report those values as well in the paper. We used the MATLAB
implementation of the S-CIELAB ∆E∗ calculations available
in [12] and kept the default assumption of a 72 dpi display
seen from 18 inches away. There are two complexity reduction
techniques worth considering. Both techniques involve gen-
erating filters at post-design time that approximate the least-
squares filters h1, h2a, and h2b while possessing some compu-
tationally desirable properties. The first technique is to create
a quadrantally symmetric approximation from a least-squares
filter by averaging every set of four quadrantally related filter
coefficients and then redistributing this average value to those
four locations. Quadrantal symmetry generally reduces the
number of required multiplication in the convolution by a
factor of close to four. The number of multiplications SQS
required to demosiac one pixel is then

SQS = 2(P1 + P2 + 1) +
(M1 + 1)(M2 + 1)

4

+
(N1 + 1)(N2 + 1)

2
+ 3. (15)

The second technique is to create a separable filter by com-
puting the singular value decomposition of the least-squares
filter and then keeping only a first-order approximation that
corresponds to the largest singular value. The number of
multiplications SSF required to demosaic one pixel becomes

SSF = 2(P1 +P2 +1)+(M1 +M2)+2(N1 +N2)+3. (16)

The greedy algorithm is performed three times in total: once
without any complexity reduction technique, once with quad-
rantally symmetric filters, and once with separable filters.

Notice that the greedy algorithm does not exhaust every
single configuration. In this case, it takes 30 iterations to
reach the end configuration starting from the initial config-
uration. This means the algorithm tests fewer than 180 unique
configurations in one run, which is much less than the 56(=
15625) configurations contained within the boundaries of the
initial and end configurations. Moreover, the computational
complexity is always decreasing after every iteration. This is
easily verified using equations (14) – (16) and the fact that
one filter order is decremented at each iteration. These two
properties make the greedy algorithm an efficient optimization
technique. It is able to generate a sequence of successively
less complex configurations that best preserve objective quality
while considering only a small subset of configurations during
the analysis.

B. Optimization Results

The filter design training set and the demosaicking test set
of color images consisted of subsets from the 24 Kodak pho-
tosampler images of size 512×768 that are widely used in the
demosaicking literature. Fig. 2 shows the changes to objective
demosaicking quality, measured by CMSE and S-CIELAB
∆E∗, as a function of computational complexity, measured
by the number of multiplications, for one complete experiment

Fig. 2. Example plots of objective demosaicking quality as a function of
computational complexity, generated from one experiment with the greedy
algorithm.

with the greedy algorithm. Table I lists the configurations that
correspond to the plot points of the “standard” scenario (i.e.,
no quadrantal symmetry and no separable filters) in Fig. 2.
In this particular experiment the first twelve Kodak images
formed the training set and the last twelve images formed the
test set.

The experiment results confirm the tradeoff relationship
between demosaicking quality and speed. The plots also show
that the recommended filter specifications from [7], which
formed the initial configuration, can be simplified further with-
out much degradation in objective quality. The configurations
that best balance demosaicking quality and speed are the
ones clustered about the transition from negligible changes
to significant changes in CMSE and S-CIELAB ∆E∗. Using
Table I and favoring the least complex system possible, we
identify the configuration [ 5 5 9 3 11 1 ] as a good
choice, corresponding to a 5× 5 least-squares filter h1, 9× 3
least-squares filter h2a, 3 × 9 least-squares filter h2b, 11 × 1
Gaussian filter hG1 centered at (0.375, 0.0) c/px, and 1 × 11
Gaussian filter hG2 centered at (0.0, 0.375) c/px. Both 1D
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TABLE I
THE UNDERLYING CONFIGURATIONS AND PLOT DATA SUPPORTING THE

“STANDARD” CURVE OF FIG. 2

Configuration # of Mult. CMSE S-CIELAB
[ 11 11 11 11 11 11 ] 412 9.42 0.812
[ 11 11 11 11 11 09 ] 408 9.42 0.812
[ 11 11 11 11 11 07 ] 404 9.42 0.812
[ 11 11 11 11 11 05 ] 400 9.42 0.812
[ 11 11 11 11 11 03 ] 396 9.42 0.811
[ 11 09 11 11 11 03 ] 374 9.44 0.811
[ 09 09 11 11 11 03 ] 356 9.48 0.811
[ 07 09 11 11 11 03 ] 338 9.52 0.812
[ 07 07 11 11 11 03 ] 324 9.54 0.814
[ 07 07 11 09 11 03 ] 280 9.59 0.815
[ 07 05 11 09 11 03 ] 266 9.64 0.818
[ 07 05 11 09 11 01 ] 262 9.71 0.820
[ 07 05 09 09 11 01 ] 226 9.81 0.824
[ 07 05 09 07 11 01 ] 190 9.89 0.827
[ 07 05 09 05 11 01 ] 154 9.86 0.829
[ 05 05 09 05 11 01 ] 144 10.01 0.832
[ 05 05 09 03 11 01 ] 108 10.31 0.833
[ 05 05 07 03 11 01 ] 96 11.09 0.852
[ 05 05 07 03 09 01 ] 92 12.68 0.930
[ 05 05 07 03 07 01 ] 88 14.17 1.029
[ 05 05 07 03 05 01 ] 84 13.36 0.952
[ 05 05 07 03 03 01 ] 80 13.36 0.952
[ 05 05 07 03 01 01 ] 76 14.18 0.977
[ 05 03 07 03 01 01 ] 66 15.78 1.017
[ 03 03 07 03 01 01 ] 60 20.67 1.142
[ 03 03 05 03 01 01 ] 48 26.59 1.259
[ 03 03 03 03 01 01 ] 36 56.64 1.795
[ 03 01 03 03 01 01 ] 30 154.42 6.360
[ 01 01 03 03 01 01 ] 28 207.44 9.324
[ 01 01 03 01 01 01 ] 16 300.46 10.992
[ 01 01 01 01 01 01 ] 12 735.79 17.401

Gaussian filters have a standard deviation of rG = rG1 = 3.0.
During our own subjective evaluation, the demosaicked images
produced by this configuration were perceived as being virtu-
ally identical to those from the more complex configurations.
Of course, designers can choose whichever configuration gives
their preferred tradeoff between quality and complexity.

The “quadrantal” and “separable” plots from Fig. 2 show
that using quadrantally symmetric or separable filter approxi-
mations do not affect the tradeoff relationship. Quandrantal
symmetry should definitely be used, whereas there is no
advantage to use separability.

Some additional observations can be made about the filters
themselves. In the first steps, the Gaussian filters hG1 and
hG2 are reduced to one-dimensional filters. This is reasonable
because at the centering frequencies (0.375, 0.0) c/px and
(0.0, 0.375) c/px, there is usually little energy along the
dimension not of interest (vertical for hG1 and horizontal for
hG2) in the local frequency spectrum of the pixel undergoing
demosaicking. Then, the order of h1 is reduced more quickly
than the order of h2. Also, it appears the least-squares filter
h1 prefers a square kernel, while the kernels for least-squares
filters h2a and h2b can be made significantly rectangular.

The entire experiment was repeated by assigning different
subsets of the Kodak dataset as the training and test sets. This
included trials where the training set and test set were iden-
tical. In every case we observe the same tradeoff relationship
reported by Fig. 2. The sequences of chosen configurations do
differ amongst the different setups. However, some configu-

rations are consistently chosen at the same iteration. In fact,
the identified configuration recommended earlier is one such
configuration.

IV. SIMULATION RESULTS

We have tested the proposed LSLCD algorithm un-
der numerous conditions and configurations. This section
presents some representative results and comparisons with
other reference methods from the recent literature. For the
main comparison, we have used the base configuration
[ 11 11 11 11 11 11 ], tested on the 24 Kodak pho-
tosampler images. A different set of filters was used for each
image, trained on the other 23 images in the dataset; this
set of filters is denoted fTO. Other configurations have also
been tested, including: using the same filters, trained on the
entire set, for all images; dividing the dataset into two subsets
of 12 images, and using the same filters for all the images
in one subset, where they were obtained by training on the
other subset of 12 images. There was little difference in the
results obtained with these alternate configurations. Thus, we
consider this result to be representative of the performance
of LSLCD. For reference, we also present the result with
filters trained on the test image itself (self-trained), denote fST.
This gives a lower bound on the mean-square error achievable
with the LSLCD algorithm, but it is not implementable since
the original RGB image is not available for training. The
frequency response of the sets of three 11×11 filters obtained
for image #1 in these two scenarios fST and fTO are illustrated
in Fig. 3 (a)-(f). We note that the two versions of h1 are quite
similar, whereas differences in h2a and h2b are quite evident.

For comparison, we have selected the following reference
methods:

A. The method of directional linear minimum mean-square
error estimation (LMMSE) of Zhang and Wu [13]. Sim-
ilar to the present paper, LMMSE attempts to minimize
mean-square error, but of different quantities.

B. The adaptive homogeneity directed (AHD) method of
Hirakawa and Parks [14], with δ = 2. Although this
method gives higher objective error than [18], it was
judged to give better subjective performance in the
survey of [3].

C. The original adaptive luma-chroma demultiplexing al-
gorithm of [6], with 21 × 21 filters designed using
the window method, denoted here as FDM (frequency
domain method).

D. The edge estimation for analyzing the variance of color
differences approach (VCD) of Chung and Chan [15].

E. The K-means singular value decomposition approach
to demosaicking (K-SVD) of Mairal et al. [16]. The
sparse nature of color images is manipulated to obtain
an appropriate dictionary that is used for demosaicking
with the iterative K-SVD algorithm.

F. The regularization approach to demosaicking (RAD) of
Menon and Calvagno [17].

Two objective quality measures (CPSNR and S-CIELAB
∆E∗) and computational time were used to evaluate the per-
formance of demosaicking algorithms. The S-CIELAB ∆E∗
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Fig. 3. Perspective view of frequency responses of filters for demosaicking image #1. (a-c) fST: h1, h2a, and h2b of size 11× 11 obtained by training with
image #1 . (d-f) fTO: h1, h2a, and h2b of size 11 × 11 obtained with training set consisting of images #2 − #24. (g-i) h1, h2a, and h2b of sizes 5 × 5,
9 × 3 and 3 × 9 obtained by training on images #2 − #24.

metric uses a perceptual model in an attempt to measure
the spatial color reproduction accuracy of an estimated im-
age against the original as seen by a human viewer [11].
A larger ∆E∗ value denotes more error in the estimated
image and hence poorer perceived visual quality. Additionally,
demosaicking speeds were tested by measuring the times that
each algorithm took to demosaic the 24 Kodak images. The
experiments were conducted on an Intel(R) Core(TM) i7-920
CPU (2.67 GHz) with 6 GB of RAM and using MATLAB
implementations of the algorithms by the original authors1.
Our software and all of the 24 original Kodak images and
those demosaicked using each of the tested methods are
available at [9]. The readers are invited to visit the website to
assess the visual quality of demosaicked images using different
demosaicking schemes.

A. Objective Performance Comparison with the Benchmarks

Table II shows the CPSNR and S-CIELAB ∆E∗ of the 24
test images and the average error measures. We discarded an

1Since VCD [15] and K-SVD [16] implementations were provided as
executable files, they are not included in this comparison.

eleven pixel wide border from each image during the error
calculations to exclude edge effects not representative of the
performance of the various methods. The bold-italic entries
indicate either the highest CPSNR or the smallest S-CIELAB
∆E∗ in each row (not including the non-implementable
LSLCD with self-trained filters, which is separated from other
results with a double line). The italic entries indicate the
second best result for these measures in each row. These
numerical results may not correspond directly to those re-
ported in other published papers, including [6], because of
differences in the test platforms, such as different versions of
the same images being used or slight differences in the metric
calculations (including the size of the excluded border).

It can be seen from Table II that the estimates of the
demosaicked images by the proposed LSLCD algorithm are
very competitive with the reference methods. The LSLCD
algorithm using fTO outperforms most of the other methods
on average, except [16]. The margins of improvement in
CPSNR are 0.08, 2.60, 0.55, 0.22, -0.34, and 0.42 dB, respec-
tively. Although the LSLCD algorithm does not give better
performance than K-SVD on average, the LSLCD algorithm
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TABLE II
CPSNR (M1) AND S-CIELAB ∆E∗ (M2) METRICS FOR 24 DEMOSAICKED IMAGES USING EIGHT ALGORITHMS. (A) LMMSE [13]. (B) AHD [14].

(C) FDM [6]. (D) VCD [15]. (E) K-SVD [16]. (F) RAD [17]. (G) LSLCD USING fTO . (H) LSLCD USING fST .

A B C D E F G H
Metric M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

1 38.51 1.108 34.98 1.248 38.13 1.156 38.59 1.105 39.71 1.009 38.28 1.198 38.67 1.133 39.55 1.052
2 40.92 0.648 39.11 0.801 40.01 0.671 40.12 0.744 41.41 0.612 39.84 0.718 40.81 0.642 41.54 0.581
3 42.73 0.479 40.91 0.574 41.65 0.534 42.67 0.518 43.21 0.491 42.10 0.548 42.37 0.509 43.22 0.481
4 41.08 0.671 38.73 0.851 40.62 0.688 40.60 0.757 42.02 0.623 40.85 0.706 41.34 0.644 42.01 0.610
5 38.09 1.070 35.26 1.309 37.85 1.052 37.91 1.063 38.81 0.935 38.01 1.117 38.30 1.024 38.78 0.941
6 40.25 0.774 37.36 0.864 40.03 0.777 40.06 0.780 40.10 0.829 39.84 0.851 40.42 0.771 41.01 0.721
7 42.38 0.574 40.36 0.686 42.12 0.537 42.25 0.614 43.30 0.513 42.43 0.577 42.86 0.526 43.59 0.468
8 36.06 1.332 33.60 1.434 35.22 1.482 36.45 1.282 36.42 1.405 36.02 1.400 35.66 1.449 36.16 1.433
9 42.84 0.569 40.71 0.649 42.06 0.591 43.12 0.574 43.09 0.573 42.07 0.648 42.85 0.581 43.05 0.569

10 42.61 0.544 40.45 0.620 42.21 0.549 42.48 0.575 42.89 0.536 42.47 0.601 42.85 0.541 43.00 0.532
11 40.08 0.737 37.25 0.856 39.74 0.759 39.69 0.784 40.19 0.779 39.70 0.800 40.33 0.731 40.43 0.725
12 43.51 0.461 41.53 0.520 43.05 0.464 43.43 0.491 43.67 0.484 43.19 0.519 43.46 0.479 43.72 0.472
13 34.80 1.560 31.02 1.943 35.07 1.583 34.89 1.588 35.31 1.531 34.84 1.625 34.89 1.573 36.57 1.421
14 37.01 0.981 35.12 1.202 35.85 1.079 36.61 1.081 37.77 0.948 36.10 1.079 36.75 0.991 37.82 0.923
15 39.87 0.657 37.57 0.798 39.67 0.659 39.83 0.675 40.92 0.600 39.89 0.685 40.03 0.636 40.67 0.584
16 43.81 0.531 41.22 0.587 43.66 0.531 43.77 0.551 43.47 0.582 43.24 0.593 44.09 0.526 44.45 0.497
17 41.84 0.517 38.93 0.612 41.57 0.524 41.47 0.574 41.84 0.529 41.49 0.559 42.00 0.507 42.17 0.501
18 37.47 1.008 34.39 1.290 37.44 1.022 37.21 1.064 37.88 0.957 37.47 1.033 37.80 0.965 37.89 0.983
19 40.90 0.752 38.18 0.874 40.35 0.790 41.02 0.757 41.04 0.755 40.01 0.844 40.87 0.755 41.04 0.735
20 41.27 0.545 38.88 0.642 40.39 0.601 41.29 0.557 41.51 0.564 41.00 0.594 41.25 0.567 41.44 0.524
21 39.16 0.901 36.32 1.030 38.74 0.935 39.30 0.901 39.62 0.884 39.22 0.940 39.28 0.892 39.65 0.868
22 38.44 0.964 36.17 1.215 38.09 0.940 38.20 1.028 38.73 0.911 38.29 0.972 38.67 0.908 38.86 0.884
23 43.28 0.495 41.46 0.614 42.12 0.506 42.77 0.566 43.83 0.467 42.35 0.536 43.15 0.479 44.25 0.440
24 35.53 1.018 32.47 1.312 35.39 1.012 35.23 1.057 35.72 1.011 35.57 1.055 35.60 0.969 35.75 0.990

Avg. 40.10 0.787 37.58 0.939 39.63 0.810 39.96 0.820 40.52 0.772 39.76 0.842 40.18 0.783 40.69 0.747

provides comparable CPSNR performance with significantly
lower computational cost. To obtain the result images of [16],
K-SVD first calculates rough results with a globally trained
dictionary followed by two times 20 learning iterations with
a patch sparsity equal to 20. This process involves heavy
computational costs, and is not currently applicable for real-
time systems.

Compared with the LMMSE method of [13], LSLCD algo-
rithm with fTO yields just slightly better CPSNR result (0.08
dB). The LSLCD algorithm fails to provide better average
CPSNR result (-0.34 dB) than K-SVD algorithm. However,
the CPSNR results are comparable to or better than the images
obtained using K-SVD for images # 6, 11, 16, 17. One should
keep in mind that increases to the CPSNR do not always
imply better subjective quality. For color images, human vision
system-based S-CIELAB metric may be more appropriate than
CPSNR metric. In terms of S-CIELAB ∆E∗ metric, LSLCD
with fTO yields better performance on average than most
of other reference methods except K-SVD (-0.004, -0.156, -
0.027, -0.037, 0.011, and -0.059, respectively), although again
LMMSE and K-SVD are very close.

B. CPSNR & S-CIELAB ∆E∗ vs. Computational Time

We now compare the performance of the LSLCD algorithm
against the other methods in terms of computation time. Ta-
ble III shows the average elapsed time to demosaic one 512×

TABLE III
AVERAGE TIME (S) TO DEMOSAIC ONE 512 × 768 IMAGE OF THE KODAK

DATASET. ALGORITHM LABELS (A) TO (C) AND (F) TO (H) CORRESPOND

TO THOSE USED IN TABLE II. (I) LSLCD USING RECOMMENDED FILTER

fRE .

Method A B C F G H I
Time
Image

31.15 44.80 0.380 0.378 0.306 0.305 0.297

768 image of the Kodak dataset, where (I) represents LSLCD
algorithm using recommended filter fRE with configuration
[ 5 5 9 3 11 1 ]. As can be seen in Table III, the
computation and implementation complexities of the LSLCD
algorithm are considerably lower than the method (F) of [17],
which is known as the most efficient of the conventional
methods. The elapsed computation time of LSLCD algorithm
with fST, fTO, and fRE is 80.9 %, 80.7 %, and 78.5 %,
respectively, of that of [17].

As a further evaluation, we follow the method of com-
parison of Portilla et al. [19]. In their paper Portilla et al.
compared their algorithm against other solutions in terms of
demosaicking visual quality (S-CIELAB ∆E∗) and speed of
demosaicking. In addition to their comparison, we have added
CPSNR results in the comparison. Speed of demosaicking
is evaluated by the measured average time (in seconds) to
demosaic one image. For each algorithm we calculate the
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Method CPSNR S-CIELAB Time TimeMethod

TimeI

A 40.102 0.7873 31.1470 104.99
B 37.582 0.9388 44.8023 151.02
C 39.626 0.8101 0.3801 1.28
F 39.760 0.8415 0.3779 1.27
G 40.692 0.7473 0.3056 1.03
H 40.178 0.7834 0.3051 1.03
I 40.035 0.8062 0.2967 1.00

Fig. 4. Plot of demosaicking CPSNR (dB) and visual quality (S-CIELAB
∆E∗) versus speed (s) of demosaicking for the algorithms under comparison.
The red, blue, and green squares correspond to the LSLCD algorithms with
fST , fTO , and fRE , respectively. The red, blue, green, and yellow circles
correspond to the algorithms LMMSE, AHD, FDM, and RAD, respectively.
Algorithm labels (A) to (I) correspond to those used in Table III.

CPSNR and S-CIELAB ∆E∗ value of every test image and
then compute the average CPSNR and S-CIELAB ∆E∗ for
the set. At the same time, we measure the total elapsed time
to demosaic the 24 images and then compute the average time
consumed by the demosaicking of one image. Finally, we plot
the average CPSNR, S-CIELAB ∆E∗ values and the average
demosaicking times on a 2D scatter plot.

Fig. 4 shows the 2D scatter plot of the data collected
from an instance of the experiment. Portilla et al. remarked
in [19] that demosaicking algorithms can be grouped into
three broad categories: “high speed, low quality”, “medium-
low speed, high quality”, and those “in between”. Fig. 4
certainly confirms these three classifications of conventional
demosaicking methods. However, the LSLCD demosaicking
algorithm and its variants do not belong to any of those
categories because they give “high speed, high quality”. We

conclude from Fig. 4 that the LSLCD demosaicking algorithm
offers the best demosaicking visual quality while maintaining
the fastest demosaicking speeds. We recognize that these
complexity comparisons are very rough and dependent on the
specific MATLAB implementations. However, they are the
best mechanism we have to evaluate relative computational
complexity, and we have used the implementations of the
original authors in all cases.

C. Subjective Quality Comparison

In [9], all results of the original and the demosaicked
images by benchmark schemes ([13], [14], [6], [15], [16], and
[17]) and our proposed algorithm (LSLCD with fST, fTO, and
fRE) are shown to allow subjective quality assessment by the
reader. The subjective quality can be appraised with regard
to reconstruction of textures, edges, and different kinds of
geometric details such as diagonals, corners, and fine patterns.
Images in [9] indicate how each benchmark method fares
in reconstructing the demosaicked images in these difficult
regions. The proposed LSLCD algorithm appears to yield
visually more friendly color images with color artifacts well
removed, consistent with the objective quality measures.

V. CONCLUSION

This paper has presented a detailed analysis of the adaptive
least-squares luma-chroma demultiplexing algorithm for Bayer
demosaicking. It has been shown to provide state-of-the-art
demosaicking performance in terms of CPSNR and S-CIELAB
∆E∗ with low complexity, and gives the best performance-
complexity tradeoff of the methods studied. Essentially op-
timal performance is achieved with 11 × 11 bandpass filters
to extract the modulated chroma components, compared to
the 21 × 21 filters used in [6]. However, a systematic study
of the objective performance as a function of the filter size
shows that a significant further reduction in complexity can be
achieved with little loss in performance. For example, a system
using a 5× 5 filter for h1 and 9× 3 and 3× 9 filters for h2a

and h2b gives near optimal performance. Quadrantal symmetry
should definitely be exploited, but no advantage was obtained
with separable filters. It was also found that one-dimensional
Gaussian filters are sufficient to form the adaptation signal.

Although a training set is required for filter design, the
performance is not very sensitive to the choice of training set,
so any set of images representative of the given application
can be used to design a fixed set of filters. The methodology
presented in this paper is applicable to any CFA structure using
the methods described in [8]. Further work is underway to
better deal with crosstalk near the Nyquist region boundary, as
in the picket fence in the well-known lighthouse image (image
19 in the Kodak dataset), and to obtain a more solid theoretical
basis for the adaptation rule (although the present one works
very well). An interesting problem for further investigation is
to design filters for the LCD demosaicking approach in the
absence of a training set.
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