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ABSTRACT

An anaglyph image allows the perception of depth when ob-
served through colored glasses such as the familiar red/blue
glasses. Although the method is very old, the techniques
used to generate anaglyph images are very empirical. This
paper describes a projection method to generate anaglyph
stereoscopic images using the spectral absorption curves of
the glasses, the spectral density functions of the display pri-
maries and the colorimentric properties of the human ob-
server.

1. INTRODUCTION

This paper describes a method to form an anaglyph stereo
image from the left and right color images of a stereo pair.
The anaglyph method was patented in 1891 by Louis Ducos
du Hauron, but similar methods had been demonstrated pre-
viously by W. Rollmann in 1853 and J.C. D’Almeida in
1858 [1]. The word anaglyph is from the Greek ��� =
again, 
���� = sculpture. In the classic method, used for
monochrome stereo images, the left view in blue (or green)
is superimposed on the same image with the right view in
red. When viewed through spectacles of corresponding col-
ors but reversed, the three-dimensional effect is perceived.

Color anaglyphs have also been proposed; a method to
produce a color anaglyph using Photoshop has been de-
scribed in [2] for red/cyan glasses. Although other stereo-
scopic visualization methods such as those using polarized
or shuttered glasses can give better results, the anaglyph
method is the only way that stereoscopic images can be
viewed on ordinary television sets or computer screens with
no special hardware other than inexpensive colored glasses.

There is very little literature on the production of anaglyph
images, and what exists is very empirical. The method pro-
posed in this paper is adapted to the spectral absorption
curves of the left and right filters of the anaglyph glasses.
A projection technique is used to compute the anaglyph im-
age that yields an image pair (after the glasses) as close as
possible to the desired stereo pair.

2. FORMULATION

2.1. The input stereo pair

The input to the process is a true-color stereo pair V 0

lj(x)
and V 0

rj(x), j = 1; 2; 3 and x 2 L. It is assumed that the
three components j = 1; 2; 3 are gamma-corrected RGB (in
that order) that can be directly displayed on a standard CRT
monitor; the ‘prime’ symbol denotes gamma-corrected sig-
nals. L is the sampling raster for the image which is arbi-
trary and can be either spatial or spatiotemporal. In an ideal
stereoscopic system, the three components go through the
display gamma, denoted by the function g(�), and excite the
display RGB phosphors. The spectral density functions of
the RGB display phosphors are denoted dj(�), j = 1; 2; 3
respectively. Thus, the spectral density of the light emanat-
ing from point x in the left and right images is given by

Ql(�;x) =

3X
j=1

Vlj(x)dj(�); (1)

Qr(�;x) =

3X
j=1

Vrj(x)dj(�) (2)

where Vlj(x) = g(V 0

lj(x)) and Vrj(x) = g(V 0

rj(x)). The
color perceived at point x in the left and right images is
determined by the projection of Q l(�;x) and Qr(�;x) onto
the visual subspace using color-matching functions �pk(�)
for the chosen set of primaries:

eVlk(x) = Z
Ql(�;x)�pk(�) d�

=

3X
j=1

Vlj(x)

Z
�pk(�)dj (�) d�

=

3X
j=1

ckjVlj(x); k = 1; 2; 3:

(3)

The integral is over the wavelengths of the visible spectrum,
approximately 370 nm to 730 nm. Thus, in matrix notation,



eV l(x) = CV l(x), where

[C]kj = ckj =

Z
�pk(�)dj(�) d�; (4)

V l(x) = [Vl1(x)Vl2(x)Vl3(x)]
T and eV l(x) =

[eVl1(x) eVl2(x) eVl3(x)]T . Similarly, eV r(x) = CV r(x). In
an ideal stereoscopic visualization system, the left eye sees
only the image defined by eV l(x) and the right eye sees only
the image defined by eV r(x).

We use the XYZ coordinate system, and so define the
color-matching functions �pk(�), k = 1; 2; 3 to be the stan-
dard �x(�), �y(�) and �z(�) respectively. These functions are
tabulated and graphed in [3].

The display phosphor spectral densities for a Sony Trini-
tron monitor are shown in Fig. 7.16 of [4] (the numerical
values were provided by Charles Poynton). Using these
spectral densities, the matrixC is

C =

2
40:4641 0:3055 0:1808
0:2597 0:6592 0:0811
0:0357 0:1421 0:9109

3
5 (5)

This matrix is similar to standard ones for converting from
various RGB spaces to XYZ, e.g., the Rec. 709 matrix on
page 148 of [4], but is slightly different. If different phos-
phors are used, a different matrix would result.

The value of the stereoscopic image at each point x can
be considered to be an element of a six-dimensional vector
space S6. Arranged as a column matrix, we have

eV (x) =heVl1(x) eVl2(x) eVl3(x) eVr1(x) eVr2(x) eVr3(x)iT :

(6)

We can form a basis for this space using the columns of C
as follows:

cli =
�
c1i c2i c3i 0 0 0

�T
cri =

�
0 0 0 c1i c2i c3i

�T
i = 1; 2; 3

(7)

In terms of this basis, we have

eV (x) =
3X

j=1

Vlj(x)clj +
3X

j=1

Vrj(x)crj : (8)

If we define the 6� 6 matrix

C2 =
�
cl1 cl2 cl3 cr1 cr2 cr3

�
=

�
C 0

0 C

�
(9)

then we can write in matrix form

eV (x) = C2V (x): (10)

The set of realizable stereoscopic images has values that lie
in the convex subset of S68<
:

3X
j=1

vljclj +
3X

j=1

vrjcrj j 0 � vlj � 1; 0 � vrj � 1;

j = 1; 2; 3

9=
; : (11)

2.2. Visualization of an anaglyph image

A single anaglyph image is denoted V 0

aj(x), j = 1; 2; 3,
x 2 L where the three components are in the same gamma-
corrected RGB display primary system as the stereo pair of
the previous section. Thus, the spectral density of the light
emitted from the screen at x is given by

Qa(�;x) =

3X
j=1

Vaj(x)dj(�) (12)

where Vaj(x) = g(V 0

aj(x)).
The light from the CRT passes through two filters with

spectral absorption functions fl(�) and fr(�) before arriv-
ing at the left and right eyes respectively. Thus the light
spectral distribution at the left and right eyes is Qa(�;x)fl(�)
and Qa(�;x)fr(�) respectively. The corresponding sets of
XYZ tristimulus values are

eUlk(x) =

Z
Q(�;x)fl(�)�pk(�) d�

=

3X
j=1

Vaj(x)

Z
�pk(�)dj (�)fl(�) d�

=

3X
j=1

alkjVaj(x)

(13)

or in matrix form eU l(x) = AlV a(x), where

[Al]kj = alkj =

Z
�pk(�)dj (�)fl(�) d�: (14)

Similarly, eU r(x) = ArV a(x), where

[Ar]kj = arkj =

Z
�pk(�)dj(�)fr(�) d�: (15)

The goal is for the stereo pair perceived by viewing eU l(x)

and eU r(x), x 2 L, to be as similar as possible to the ideal
one perceived by viewing eV l(x) and eV r(x), x 2 L.

Of course, we can’t make eU l(x) = eV l(x) and eU r(x) =eV r(x) in general, since the filters fl(�) and fr(�) each
block certain wavelength bands. Specifically, if we want



to reproduce a feature that is dark in the left view and bright
in the right view due to disparity, the light emitted at point
x must lie mostly in the stopband of the left filter and in
the passband of the right filter. Thus, the two filters must be
complementary in some way. Fig. 1 shows the transmission
characteristic for two Roscolux filters that are similar to the
red and blue of commercial anaglyph glasses. Assuming
that the red filter is on the left and that the blue filter is on
the right, the matrices Al and Ar corresponding to these
filters are given by

Al =

2
40:3185 0:0769 0:0109
0:1501 0:0767 0:0056
0:0007 0:0020 0:0156

3
5 (16)

Ar =

2
40:0174 0:0484 0:1402
0:0184 0:1807 0:0458
0:0286 0:0991 0:7662

3
5 : (17)
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Fig. 1. Transmission as a function of wavelength of two
Roscolux filters: orange red (#25) and brilliant blue (#69).

The stereoscopic image values formed by viewing the
anaglyph image through spectacles with the colored filters
also lie in the six-dimensional space S6. However, they are
constrained to lie in a three-dimensional subspace. Define
the following three vectors in S6:

rj =
�
al1j al2j al3j ar1j ar2j ar3j

�T
; j = 1; 2; 3:

(18)

Then

eU (x) =

3X
j=1

Vaj(x)rj (19)

which lies in R = span(r1; r2; r3), a three-dimensional
subspace of S6. The set of all realizable anaglyph stereo-
scopic images lies in the convex subset of R8<

:
3X

j=1

vajrj j 0 � vaj � 1; j = 1; 2; 3

9=
; : (20)

If we define the matrix

R =
�
r1 r2 r3

�
=

�
Al

Ar

�
(21)

then equation (19) can be expressed in matrix form as

eU (x) = RV a(x): (22)

3. FORMATION OF AN ANAGLYPH IMAGE

Given the formulation of the previous section, the formation
of an anaglyph image can now be posed as an optimiza-
tion problem. Given a stereoscopic pair V l(x), V r(x),
x 2 L, we seek an anaglyph image V a(x), x 2 L with
0 � Vaj(x) � 1 such that the perceived image eU is as sim-
ilar as possible as the input image eV . Not only can we not
obtain equality of eU and eV because of the spectral charac-
teristics of the two filters, we must also take into account
the reduction in luminance due to the overall attenuation of
the filters.

In order to obtain the anaglyph image by optimization,
we need an error metric that computes numerically the sub-
jective difference between a stereo pair and an anaglyph
type approximation. I know of no such error metric, so this
initial study uses the following simplifications:

� The approximation is carried out independently at each
sample location.

� The error metric at each point is a weighted squared
error between eU and eV .

� A global scaling of the Vaj is used to account for the
attenuation of the filters.

Given these assumptions, the Vaj(x) are determined by ap-
plying the projection theorem. The resulting values, which
are not in the desired range of [0,1], are then scaled with
fixed scaling factors sj applied to all pixels of the image and
then truncated to the [0,1] range. Experiments have shown
that this approach can give a better three-dimensional effect
than previously described empirical methods. It can easily
be adapted to other filters and even to the shuttered anaglyph
method.

In order to apply the projection theorem, we define an
inner product on S6 such that the resulting norm is a suitable



distance measure for our problem. A general inner product
has the form

hv1 j v2i = vT
1
Wv2 (23)

where W is a positive-definite matrix. The corresponding
norm is

kvk2 = hv j vi = vTWv: (24)

If W = I , the 6� 6 identity matrix, this results in a famil-
iar Euclidean distance in the XYZ space (or more precisely
in the Cartesian product of the XYZ space with itself). Use
of other diagonal matrices W can allow weighting of the
Y component more heavily than X and Z to favor repro-
duction of the correct luminance at the expense of greater
color errors. Non-diagonal weighting matrices can corre-
spond to distances with respect to other sets of primaries
than XYZ. The projection approach is then to determine
for each x the element of R that is closest in the sense
of the chosen norm to eV (x), i.e., find bV a(x) such that
k eV (x) �

P
3

j=1
bVaj(x)rjk is minimized. This is followed

by scaling and clipping.
The method for finding the projection is standard; our

approach is very similar to that described in Section 3.3.3
of [5]. We form the 3� 3 Grammian matrix �,

� =

2
4hr1 j r1i hr2 j r1i hr3 j r1i
hr1 j r2i hr2 j r2i hr3 j r2i
hr1 j r3i hr2 j r3i hr3 j r3i

3
5 (25)

and the 3� 1 matrix �(x),

�(x) =

2
64hr1 j

eV (x)i

hr2 j eV (x)i

hr3 j eV (x)i

3
75 : (26)

Then the projection is given by

bV a(x) = �
�1�(x): (27)

Using the matrixR previously defined, these equations can
be expressed � = RTWR and �(x) = RTW eV (x), so
that

bV a(x) = (RTWR)�1RTW eV (x)

= (RTWR)�1RTWC2V (x):
(28)

Note that the 3 � 6 matrix (RTWR)�1RTWC2 is fixed
and can be precomputed.

As mentioned previously, the resulting components bVaj
will not in general lie in the required interval [0,1]. One
approach to perform normalization is as follows. Assume
that the uniform anaglyph image V a(x) = V aw gives the
brightest achromatic (gray) image when viewed through the

anaglyph glasses. Ideally we would like V aw = [1 1 1]T .
This is our best approximation of a uniform white V l(x) =
V r(x) = [1 1 1]T . Thus if we apply the projection equa-
tion (28) with V (x) = E = [1 1 1 1 1 1]T , we obtain bEa =
(RTWR)�1RTWC2E instead of the desired V aw. We
can obtain the correct result by premultiplying by the diag-
onal normalizing matrixN = diag(Vawj= bEaj). Thus with
normalization included, the anaglyph image is given by

bV an(x) =N (RTWR)�1RTWC2V (x)

= PV (x):
(29)

In this case the fixed 3�6 matrixP =N(RTWR)�1RT �
WC2 can be precomputed. The final step is clipping to the
range [0,1] and application of gamma correction.

4. CONCLUSION

The projection method described in this paper has been used
to generate numerous anaglyph images adapted to different
types of colored glasses. The images produced are superior
to those produced with classical methods such as the one
described in [2]. The results cannot be shown in this pa-
per since the images are meant to be viewed on a CRT dis-
play through colored glasses. Sample images can be found
the the web page associated with this paper at the URL
http://www.site.uottawa.ca/˜edubois/icassp01/. Further work
is required to find the optimal absorption curves for glasses
matched to the display primaries and the properties of the
human visual system, as well as to find a better error metric.
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