

Registration of two-sided documents

suffering from bleed through

Report of CSI4900 project
presented to

Prof. Eric Dubois

by
Yohan Bienvenue

1240071

April 11, 2001

 i

Summary

When documents are written on both sides, the ink might bleed through the paper. This is
particularly true with old documents. Reading and studying such documents is not easy
when serious bleed through is present. This report proposes a solution to correct the
problem and shows how the first part of this solution, the registration process, was
implemented. Using image processing techniques, the bleed through can be removed
using thresholds but not before the recto and verso sides have been properly registered.
First, both sides of the document are digitized. The verso is then flipped and corrected so
that the bleed through coordinates of one side correspond exactly with the coordinates of
the original writing on the other. This needs to be done because both sides are not
scanned precisely the same way and there might be a shift and a rotation difference
between the two. To do this we use an affine transformation of six parameters. The
parameters are found by optimizing the alignment process. Performance is an issue when
applying this algorithm on large size images and techniques are used to create a sample
set of pixels, which will be used to estimate the results. It was found that by uniformly
choosing only some pixel horizontally and vertically the performance was greatly
increased without affecting the alignment results. A technique that chooses only blocks of
pixels was also used in combination with the first one to increase performance even
more. For certain types of images, a perfect alignment process was not obtained and the
algorithm might have to be applied on sections of those images instead of the whole
image at once.

 ii

Table of contents

Page

Summary………………………………………………………………………………….. ……… i

Table of contents………………………………………………………………………………….. ii

Introduction……………………………………………………………………………………….. 1

Bleed through removal algorithm………………………………………………..……….. ……… 1

 Inapplicable solution…………………………………………………………………….. 1

 Overview………………………………………………………………………………… 1

 Registration process…………………………………………………….………. ……… 2

 Restoration process……………………………………………………………………… 3

Implementation of the registration process in Matlab…………………………...……………….. 3

 Goals…………………………………………………………………………………….. 3

 Overview………………………………………………………………………………… 4

 Defining “S”……………………………………………………………………………… 4

 Computation of the difference…………………………………………………………… 5

 Estimation of shift parameters…………………………………………………………… 6

 Optimization……………………………………………………………………………… 6

 Display…………………………………………………………………………………… 6

Analysis of the results…………………………………………………………………………….. 7

 Performance……………………………………………………………………………… 7

 Alignment………………………………………………………………………………… 7

 Some simulation results………………………………………………………………….. 7

Conclusion………………………………………………………………………………………… 10

Annex I : Source code…………………………………………………………………………….. 11

Annex II : Recto and verso of simulations documents…………………………………………… 18

References………………………………………………………………………………………… 22

 1

Introduction

When writing on both sides of a piece of paper, there is a risk we could create a problem
known as bleed through. As it can be seen on Figure 1, ink written on the verso side can
become visible on the recto side and vice versa. In the extreme, the ink might actually
bleed through the paper. The problem is quite obvious: trying to read a document
suffering from bleed through becomes a difficult task, as writings from both sides of the
document overlap. This report offers a solution to the problem by describing a method
that eliminates the bleed through on both sides of the document using image processing
techniques. First, the theory of the solution will be explained thoroughly. Then it will be
showed how the first part of this solution, the registration, was implemented in the
Matlab language. Finally, results will be presented and then analyzed to see the
efficiency of the implemented solution. I would like to thank Professor Eric Dubois who
helped me understand the basics and who offered me great support during the semester.

Figure 1: Document with a bleed through problem.

Bleed through removal algorithm

Inapplicable solution

First, it should be said that the use of a simple intensity threshold to eliminate the bleed
through is not possible. As it can be seen in Figure 1 above, the intensity of the bleed
through is sometimes very similar to the intensity of the original writing. Too similar to
dissociate them with a threshold. What will be used instead are image processing
techniques.

Overview

The algorithm is divided in two parts: the registration and the restoration. The registration
consists in digitizing both the recto and the document and try to perfectly make the recto
and the flipped verso overlap. See Figure 2. By having the bleed through perfectly
aligned with the original writing (the writing that caused this bleed through), it is possible
to eliminate the bleed through and restore the document using thresholds.

 2

Figure 2: Perfect alignment Figure 3: Starting Alignment

Registration process

However, doing this alignment is not that simple. It is improbable that both the recto and
verso will be scanned exactly the same way. More likely, some small shifts and rotation
will exists between the two resulting images. By trying to do the alignment right away,
the situation shown in Figure 3 will probably happen. Therefore, we need some way of
correcting the verso so that the alignment becomes perfect, as in Figure 2.

Let us denote the recto of the document as fr(x,y) and the flipped verso as fv(x,y). In order
to obtain an ideal flipped verso, fv

I(x,y), we need to apply some transformation to fv(x,y).
This can be done by doing an affine transformation denoted by At.

Equation 1: fv

I(x,y) = At*fv(x,y)

This affine transformation involves six parameters: t11, t12, t21, t22 are used to correct
the rotation while t13 and t23 correct the horizontal and vertical shifts respectively.

Now, the question is how to find those parameters, that is, the parameters that will correct
the verso perfectly. We use what is called the difference. The difference can be seen as
the difference that remains between the recto and the flipped transformed verso when
they are aligned. It is a scalar. Let it be denoted by:

Equation 2: difference = || fr – At * fv||2

 It is clear that the smaller the difference is, the more perfect the alignment will be. This
all depends on our choice of parameters for the transformation. We can find an estimation
of those parameters by solving the following optimization problem:

Equation 3: te = arg min || fr – At * fv||2

 t

This equation means that we wish to minimize the difference using the affine
transformation parameters. It will return te, the estimated best parameters.
Using those estimated parameters we obtain our estimated ideal verso:

Equation 4: fv

I = Ate * fv

 3

Restoration process

At this point, we can proceed to the restoration of the document. Although it is beyond
the scope of the project, the restoration process will be briefly explained (for the recto
side) to help in the comprehension of the whole bleed through removal algorithm
process.

The idea is to replace the pixels of the recto corresponding to bleed through with the
background. The pixels of the recto might fall in one of those four categories:

1- There is recto writing but no bleed through
2- There is bleed through but no recto writing
3- There is no recto writing and no bleed through
4- There is both recto writing and bleed through

Using thresholds, we can identify when a pixel falls in category 2 and we can then
replace it with the background value. It is now clear why we need to obtain a perfect
alignment in the registration process. If we try to find in which category the pixel falls
with a bad alignment, the bleed through pixels don’t even correspond to the pixels of the
recto writing. They have to correspond exactly, like in the original document before the
scanning process.

Implementation of the registration process in Matlab

Implementing the registration process in Matlab is relatively easy. Built-in functions do a
lot to spare us from complex mathematical computations. Please see the code in annex
for details not covered in the following section.

Goals

The main goal of this project was performance, that is, to create an implementation
giving good results, in the least amount of cycles. The first obvious way to do this is to
avoid loops (i.e. FOR loop) as much as possible. There are many ways in Matlab to
work-around loops and achieve the same results. One of those is, again, to use Matlab
built-in functions. We can manipulate matrices with loops but Matlab functions are
optimized for that task and, when used, save a lot of cycles. The program created for this
project applied this rule severely. Loops were used only if absolutely necessary.

Another way to save some cycles is to perform all the calculations on a sample of pixels
instead of on the entire image. Fortunately, good results are possible using only a fraction
of the original pixels. The set of pixels we use is named S. At the start of the algorithm, S
represents all pixels but we reduce S by using “S reducing techniques”. See Figure 4. No
matter what technique we use tough, it must select the pixels uniformly throughout the
image. The first method consists in choosing every Kth pixels horizontally and vertically.
The second method used involves using blocks of pixels throughout the image. Both
methods can be combined to reduce S even more. However, reducing S too much will
result in a loss of information. Note that an amount of pixels around the perimeter of the
image (a border) is not included in S. The reason is that the results of a transformation on

 4

these pixels could be out-of-bound. In the end, S will be used to estimate the results we
would obtain if we used all pixels, using much less cycles.

 a) b)

Figure 4: a) Use only every K pixels b) Use blocks of pixels

Overview

Now, for the actual implementation. The algorithm is divided in two halves. The first half
registers the recto and verso, that is, it estimates the best transformation parameters. The
second half uses those parameters to obtain a visual representation of the alignment.

Defining “S”

The first thing the registration algorithm needs to do is define S. To do this we start be
defining two vectors: SX and SY, representing the vector of x-coordinates and y-
coordinates respectively. The border is removed by clipping those vectors directly. Then
it is time to apply one or more “S reducing technique”. The first technique, see Figure4a,
is quite straightforward. All we have to do is use a step in the range of values to obtain
the desired effect.

Ex: To use only every 15 pixels in SX, we do SX = SX(1: 15 : length(SX));

The second technique is quite the opposite. Implementing it without loops is not an easy
task. First, we have to make sure that the length of each vector is divisible by the block
size. If not, we use padding to make it so. We then reshape the vector in the following
manner:

Let SX = [1, 2, 3, 4, 5, 6, 7,…., 12] and BLOCK_SIZE = 4
Then we reshape SX so that it is now in the following form:
SX = [1, 2, 3, 4

5, 6, 7, 8
 9, 10, 11, 12]

 5

In other words SX’s dimensions are (LENGTH / BLOCK_SIZE) x BLOCK_SIZE. The
division is why we wanted the length to be divisible by the block size (we want a integer
result). Now, we can delete the lines we want using a simple step technique as seen
before. The idea is that by deleting those lines, we actually delete entire blocks.
SX = [1, 2, 3, 4, 9, 10, 11, 12] after deleting line#2

We can combine both techniques easily. Simply use the vectors obtained with one
technique for the other.

Once this is done we can use the meshgrid function to combine SX and SY together and
easily obtain S.

If SX = [1,2,3] and SY = [1, 4] then S = [SX; SY] = [1, 2, 3, 1, 2, 3
 1, 1, 1, 4, 4, 4]

Computation of the difference

Before we go on with the next step, we need to explain how the difference is calculated.
Computing the difference is like a mini algorithm in it’s own and, actually, there is even a
separate file called findDiff6par (find the difference using six parameters) that does this.
Although it is not always used when the difference needs to be computed. The six
parameters are first used to transform (correct) the image’s coordinates. See Figure 5.

Figure 5: Transformation of image coordinates

We now have the new coordinates (XI and YI in Figure 5) but not the intensity of the
pixels at these new coordinates. We can find those by interpolating them using the old
intensities and the new coordinates. The interp2 (2-dimensional interpolation) function is
used to do this. It simply returns the new intensity vector. The type chosen is bi-linear
since it is the one that gave the best performance. Here is a simple example.

Ex: ZI = interp2(image, Z, XI, YI, ‘*linear’);

Note the *. Since XI and YI elements are equally spaced, we can add the * before the
type name to interpolate much faster.

Finally, we can compute the difference using the new intensity vector.

 6

Estimation of shift parameters before optimization

The next logical step is to proceed in finding the best parameters by solving the
optimization problem discussed before. However, the optimization function used in
Matlab requires a start point, that is, a start value for the parameters. The rotation
parameters, t11, t12, t21 and t22, are left alone and represent the identity matrix but the
shift parameters, t13 and t23, need to be estimated first. This allows the optimization
function to converge on the solution much faster. To do this we simply use a FOR loop
on the mini algorithm that computes the difference, where the loop counter is the
parameter itself, and keep the parameters that give the smallest difference. It is crude and
uses a lot of cycles but it is critical for the optimization function. Failing to do this results
in the optimization function to find a local minimum most of the time.

Optimization

Performing the optimization is simple. The function fminu is used. It works by
minimizing the findDiff6par function mentioned earlier. Once it converged to a solution
according to some tolerance level, it returns the best parameters. Here is an example.

Ex: best_parameters = fminu(‘findDiff6par’, parameters, options);

The parameters parameter is a vector containing the six transformation parameters and
the options parameter is used to choose options like tolerances and step length.
Once this is done, the official work is completed. But more can be done using the best
parameters, like display of the alignment.

Display

To see the effect of the best parameters visually, we can display the alignment and see if
it is perfect, near-perfect or way-off. We simply re-do some of the work that was done
before but this time we do it using all pixels instead of S. We need to do this to obtain the
complete image. Needless to say that doing this is very time consuming and stands for
90% of the algorithm’s execution time. In short, we simply define S as representing all
pixels. We then transform the flipped verso like in Figure 5 using the best parameters and
finally interpolate the final verso intensities by interpolating again. We then add the recto
with the transformed verso, display the result and watch the alignment.

 7

Analysis of the Results

Performance

The time required to complete the first part of the algorithm is very reasonable. Although
it strongly depends on the size of S. Trying to execute the algorithm using all pixels is not
a good idea. In fact, even for a very small image it takes several minutes to obtain the
parameters. Techniques to reduce S, have to be used. The block technique (see Figure4b)
used alone doesn’t really help. S is not reduced enough to obtain a reasonable
performance. The pixel technique (see Figure4a) is much more effective. It increases
performance tremendously. When both techniques are used together, the performance is
excellent. Some precise results are shown below.

Alignment

The alignment results are mixed, depending on the size of the images and the technique
used to reduce S. For fair size images (1000x1000) the results are almost perfect
regardless of the method chosen to reduce S. For bigger images, tough, it seems the
technique used to reduce S does matter. The pixel technique used alone gives good results
but when combined with the block method, bad alignments start to happen. For extra big
images, the alignment is rarely good, no matter what technique was used. Hopefully, this
will be solve in future work. Perhaps applying the algorithm on pieces of a big image
instead of the whole image and then combine the results might solve this problem. Some
visual alignment results are shown below.

Some simulation results (450mhz, 128RAM computer)

1)Test image (See annex for original recto and verso sides of this image)
 Dimension: 1088x1186
 Resolution: 150dpi

Pixel technique (Size of K = 15):
 Time to execute registration process: 25.6 seconds
 Time to for registration process + display routine: 52.3 seconds
 Size of S: 5700
 Difference: 38.286
 #function evaluations: 237
 *See Figure 6.

Combined technique (Size of K = 15, Size of Block = 10):
 Time to execute registration process: 9.8 seconds
 Time to for registration process + display routine: 33.2 seconds
 Size of S: 1190
 Difference: 9.541
 #function evaluations: 305
 *See Figure 7.

 8

 Figure 6: Test image, simulation#1

 Figure 7: Test image, simulation#2

 9

2)Page2 image (See annex for original recto and verso sides of this image)
 Dimension: 1656x1134
 Resolution: 96dpi

Pixel technique (Size of K = 15):
 Time to execute registration process: 23.6 seconds
 Time to for registration process + display routine: 164.1 seconds
 Size of S: 5621
 Difference: 48.767
 #function evaluations: 207

Combined technique (Size of K = 15, Size of Block = 10):
 Time to execute registration process: 10.5 seconds
 Time to for registration process + display routine: 130.5 seconds
 Size of S: 1152
 Difference: 10.347
 #function evaluations: 299

3)Page1 image (See annex for original recto and verso sides of this image)
 Dimension: 1303x2090
 Resolution: 96dpi

Pixel technique (Size of K = 27):
 Time to execute registration process: 17.14 seconds
 Time to for registration process + display routine: 402.4 seconds
 Size of S: 5624
 Difference: 68.88 (not good)
 #function evaluations: 80

Combined technique (Size of K = 27, Size of Block = 10):
 Time to execute registration process: 11.8 seconds
 Time to for registration process + display routine: 389.6 seconds
 Size of S: 1155
 Difference: 15.635 (not good)
 #function evaluations: 266

 10

Conclusion

A solution to the removal of bleed through was presented in this report. It was also
shown how the registration process was implemented in Matlab. An analysis of results
obtained through simulations were also given for this registration process. It should be
reiterated that the registration process is an important one for the whole bleed through
removal algorithm. Without it, the restoration process could not be applied.

The registration process was implemented successfully for many types of images. For
bigger images, the alignment is sometimes not perfect tough. The performance of the
algorithm was greatly increased by performing an estimation of the results using a sample
of pixels only. It was found that by choosing K = ceiling(LENGTH / 80) for both
dimensions of the image gave the best results, performance and alignment wise. As for
the size of blocks, a single size of 25x25 was chosen as the one giving the best results
although it is not obvious still if this size is adequate for all types of images.
In the end, the time required to execute the algorithm on a 200x275 was reduced by a
factor of 25 by using both techniques.

Although perfect alignment results were not obtained for all types and sizes of images
(big images in particular), they were at least obtained in very reasonable time. Hopefully,
future work will tune this algorithm to obtain both good alignment and performance,
regardless of the image properties. The addition of the restoration process will then be
possible and the complete algorithm should prove extremely useful in correcting
documents with bleed through.The algorithm should open the door to new ideas as well.

 11

Annex I : Source Code

%Main Algorihtm

format long g
format compact

global S;
global B;
global I;
global N;
global flipped_fv;

%User enters paths for fr & fv (fv is flipped immediately)
%If image is of type truecolor, it is transformed into type grayscale
fr_path = input('Enter path for fr (image recto): ','s');
fr_info = imfinfo(fr_path);
fr = im2double(imread(fr_path));
if (strcmp(fr_info.ColorType, 'truecolor') | strcmp(fr_info.ColorType, 'RGB')) fr = rgb2gray(fr); end

fv_path = input('Enter path for fv (image verso): ','s');
fv_info = imfinfo(fv_path);
flipped_fv = im2double(imread(fv_path));
if (strcmp(fv_info.ColorType, 'truecolor') | strcmp(fr_info.ColorType, 'RGB')) flipped_fv = rgb2gray(flipped_fv); end
flipped_fv = fliplr(flipped_fv);

clear fv_path; clear fr_path;

%CONSTANTS
K = ceil((fv_info.Width)/80); %use every Kth pixel horizontally
J = ceil((fv_info.Height)/80); %use every Jth pixel vertically
SIZE = 10; %size of block in both H&V direction, also, distance between each block
BOR = 25; %width of border

fprintf('\nK = %d', K);
fprintf('\nJ = %d\n\n', J);

%User chooses method to calculate _P_arameters
method_P = input('Use which method to calculate parameters 1-nil 2-fminu: ');

%User chooses method to reduce size of _S_
method_S = input('Use which method to reduce size of "S" 1-Pixel Samples 2-Pixel Blocks 3-Both: ');

%Initilization of parameters
t13 = 0; t23 = 0;
t11 = 1; t12 = 0;
t21 = 0; t22 = 1;

%start timer (we want to calculate the time the program takes to execute tasks.)
time = cputime;

%Define the set of pixels "S" used to approximate the results.
%---
[m,n] = size(flipped_fv);

%If recto & verso have inequal sizes, they are made equal
delta_n = size(fr, 2) - n;
delta_m = size(fr, 1) - m;
if (delta_n > 0) fr(:, 1:delta_n) = []; end
if (delta_n < 0) flipped_fv(:, 1:abs(delta_n)) = []; end
if (delta_m > 0) fr(1:delta_m, :) = []; end

 12

if (delta_m < 0) flipped_fv(1:abs(delta_m), :) = []; end

[m,n] = size(flipped_fv);

%initialize S vectors. Note that the pixels outside the border are not used.
SX = [1+BOR:n-BOR];
SY = [1+BOR:m-BOR];

%------------------------------
%Use a method to make S smaller
%------------------------------

%1)PIXEL SAMPLES:Use only every Kth pixel in the image
if ((method_S == 1) | (method_S == 3))
 SX = SX(1:K:length(SX));
 SY = SY(1:J:length(SY));
end

%2)PIXEL BLOCKS METHOD: Cut the image in blocks and use only half of them, that is,
%use blocks of "SIZE" pixels that are "SIZE" pixels appart from each other

if ((method_S == 2) | (method_S == 3))

 %first, add padding so that the vector's size is divisible by SIZE
 if (mod(length(SX),SIZE) ~= 0)
 npad = SIZE - mod(length(SX),SIZE);
 SX = [SX, zeros(1, npad)];
 else
 npad = 0;
 end
 if (mod(length(SY),SIZE) ~= 0)
 mpad = SIZE - mod(length(SY), SIZE);
 SY = [SY, zeros(1, mpad)];
 else
 mpad = 0;
 end
 %Now delete unwanted blocks
 %1- We put all the image blocks in a single matrix, that is, the blocks are transformed into single lines.
 %2- By deleting lines, we actually delete blocks

 %delete a block every two lines (lines that represent blocks)
 SX = reshape(SX, SIZE, length(SX)/SIZE)';
 SX(2:2:size(SX,1), :) = [];
 SY = reshape(SY, SIZE, length(SY)/SIZE)';
 SY(2:2:size(SY,1), :) = [];
 %reshape as a 1-dim vector
 %SX = SX'; SX = SX(:)';
 %SY = SY'; SY = SY(:)';
 SX = reshape(SX', 1, size(SX,1)*size(SX,2));
 SY = reshape(SY', 1, size(SY,1)*size(SY,2));
 %remove the padding
 SX((length(SX)-npad):length(SX)) = [];
 SY((length(SY)-mpad):length(SY)) = [];

 clear npad;
 clear mpad;
end

%Create S using SX and SY calculated using method 1,2 or both
[SY,SX] = meshgrid(SY, SX);
SX = SX(:)';
SY = SY(:)';

 13

S = [SX; SY];
[M,N] = size(S);

%Obtain recto values, members of S
B = interp2(fr, SX, SY, '*linear');

clear SX;
clear SY;

%Create I, used in every interpolation regardeless of method chosen
I = ones(1, N);

%Initialize DIFF, the difference we are trying to minimize
DIFF = inf;

%Initialize RM, the rotation matrix
RM = [t11, t12; t21, t22];

%--
%Use method selected by user to calculate parameters and difference
%--
%1)NIL METHOD: This method does nothing to correct verso and should only be chosen
%in order to observe visually what happens when parameters are set to default.

%TEST! the two following lines should be deleted after test
%manual input of parameters
t13 = 5; t23 = -1.5; t11 = 1; t12 = 0; t21 = 0; t22 = 1;

if (method_P == 1)
 TM = repmat([t13; t23], 1, N);

 XIYI = RM * S + TM;
 XI = XIYI(1, :);
 YI = XIYI(2, :);
 clear XIYI;

 ZI = interp2(flipped_fv, XI, YI, '*linear');

 DIFF = (B-ZI).*(B-ZI)*I'

 clear ZI; clear XI; clear YI;

end

%2)FMINU METHOD: This method calculates the best parameters by solving an optimization problem
%using the fminu function. An estimate of parameters t13 & t23 must be done first.
if (method_P == 2)

 %The two following loops take samples horizontally and vertically to find an aera near where
 %the global minimum is. The cost is not negligible but failing to do this will result in the
 %optimization function (fminu) to find a LOCAL minimum most of the time.
 for i = -24:0.5:24

 TM = repmat([i; t23], 1, N);

 XIYI = RM * S + TM;
 XI = XIYI(1, :);
 YI = XIYI(2, :);

 clear XIYI; clear TM;

 ZI = interp2(flipped_fv, XI, YI, '*linear');

 14

 MINDIFF = (B-ZI).*(B-ZI)*I';

 clear ZI; clear XI; clear YI;

 if (MINDIFF < DIFF)
 DIFF = MINDIFF;
 t13 = i;
 end
 end

 fprintf('\nESTIMATES\n---------\n');
 fprintf('Estimate of t13 = %2.3f\n', t13);

 for i = -24:0.5:24

 TM = repmat([t13; i], 1, N);

 XIYI = RM * S + TM;
 XI = XIYI(1, :);
 YI = XIYI(2, :);

 clear XIYI; clear TM;

 ZI = interp2(flipped_fv, XI, YI, '*linear');

 MINDIFF = (B-ZI).*(B-ZI)*I';

 clear ZI; clear XI; clear YI;

 if (MINDIFF < DIFF)
 DIFF = MINDIFF;
 t23 = i;
 end
 end

 fprintf('Estimate of t23 = %2.3f\n\n', t23);

 clear MINDIFF; clear i;

 %initialize vector of _parameters_ for fminu
 parameters = [t13, t23, t11, t12, t21, t22];

 %Here the vector of _options_ for fminu is initialized.
 my_options = zeros(1, 18); %fminu options vector
 my_options(1) = 1; %Display option
 my_options(2) = 0.001; %Termination tolerance for parameters
 my_options(3) = 0.01; %Termination tolerance for function value (DIFF)
 %my_options(14) = 1000; %MaxFunEvals option
 my_options(18) = 0.25; %Step length
 options = foptions(my_options);

 [minparameters, options] = fminu('findDiff6par', parameters, options);
 t13 = minparameters(1);
 t23 = minparameters(2);
 t11 = minparameters(3);
 t12 = minparameters(4);
 t21 = minparameters(5);
 t22 = minparameters(6);
 DIFF = options(8);

end

 15

%Output of some results in Matlab window
fprintf('\nPARAMETERS\n----------\n');
fprintf('t13 = %2.5f\nt23 = %2.5f\n', t13, t23);
fprintf('[t11, t12 = [%2.5f, %2.5f\n t21, t22] %2.5f, %2.5f]\n', t11, t12, t21, t22);
fprintf('\nDIFFERENCE\n----------\n');
fprintf('DIFF = %4.3f\n', DIFF);
PartialTime = cputime - time;
fprintf('\nTime to execute algorithm: %4.3f\n', PartialTime);

clear S; clear minparameters; clear parameters; clear my_options; clear method_P;
clear B; clear I; clear RM; clear PartialTime;

%---
%DISPLAY
%Here we redo everything using ALL pixels (S = L) to obtain visual results
%Using the previously found parameters, we can interpolate the new _complete_ verso
%---

fprintf('\ncreating S (S = L)');

%here, S = L (minus the borders)
S2Y = [1+BOR:(m-BOR)];
S2X = [1+BOR:(n-BOR)];
m = length(S2Y);
n = length(S2X);
mn = m*n;

%create S
[S2Y,S2X] = meshgrid(S2Y, S2X);
S2X = S2X(:)';
S2Y = S2Y(:)';
S2 = [S2X; S2Y];

clear S2X;
clear S2Y;

fprintf('\ncreating TM2, RM2, XI2 and YI2');

TM2 = repmat([t13; t23], 1, mn);
RM2 = [t11, t12; t21, t22];
XIYI2 = RM2 * S2 + TM2;
XI2 = XIYI2(1, :);
YI2 = XIYI2(2, :);

clear XIYI2; clear S2; clear RM2; clear TM2; clear mn;
clear t11; clear t12; clear t13; clear t21; clear t22; clear t23;

fprintf('\nStarting Interp2');

%obtain new transformed verso by interpolation
ZI2 = interp2(flipped_fv, XI2, YI2, '*linear');
flipped_fv = (reshape(ZI2, n, m))';

clear XI2;
clear YI2;
clear ZI2;

fprintf('\nInterp2 Complete');

%adjust recto's size to match new verso (remove border)
fr(:, 1:BOR) = [];

 16

fr(:, (size(fr, 2) - BOR + 1):size(fr,2)) = [];
fr(1:BOR, :) = [];
fr((size(fr, 1) - BOR + 1):size(fr,1), :) = [];

fprintf('\nSize of recto adjusted');

clear delta_n; clear delta_m; clear n; clear m; clear BOR;
clear border1; clear border2; clear border3; clear border4;

%Here we transform [0,1] in [1,0]. We then ADD or SUBstract the recto & verso
%--
r_fr = abs(-1.+fr); %same as imadjust(fr, [0 1], [1 0]) but much much quicker
r_flipped_fv = abs(-1.+flipped_fv);
ADD = r_fr + r_flipped_fv; %[0,2]
%Two methods to bring the [0,2] values back to [0,1] (USE ONLY ONE)
 %Method 1: Use the average (official method; should always be used for true results)
 %ADD = 0.5 .* ADD;
 %ADD = abs(-1.+ADD);
 %Method 2: Cut out-of-range values (use only to obtain more pronounced visual results)
 ADD = (ADD > 1) + (ADD .* (ADD < 1));
 ADD = abs(-1.+ADD);
%Substract
% SUB = r_fr - r_flipped_fv;
% SUB = abs(-1.+SUB);

clear r_fr;
clear r_flipped_fv;

SizeOfS = N
TotalTime = cputime - time;
fprintf('\n\nTime to execute algorithm + display routine: %4.3f\n', TotalTime);

clear time;
clear N; clear M;

fprintf('\nFinished, saving images....\n\n');

%Show result images directly on screen
%figure, imshow(fr);
%figure, imshow(flipped_fv);
%figure, imshow(ADD);
%figure, imshow(SUB);

%Save result images (recto, verso & ADD) under same format as source images.
ADD_fname = strcat('ADD.', fv_info.Format);
recto_fname = strcat('recto.', fr_info.Format);
verso_fname = strcat('verso.', fv_info.Format);

if (strcmp(fr_info.Format, 'tif') | strcmp(fr_info.Format, 'tiff'))
 imwrite(ADD, ADD_fname, fv_info.Format, 'Resolution', [fr_info.XResolution, fr_info.YResolution]);
 imwrite(fr, recto_fname, fr_info.Format, 'Resolution', [fr_info.XResolution, fr_info.YResolution]);
 imwrite(flipped_fv, verso_fname, fv_info.Format, 'Resolution', [fr_info.XResolution, fr_info.YResolution]);
end
if (strcmp(fr_info.Format, 'jpg') | strcmp(fr_info.Format, 'jpeg'))
 imwrite(ADD, ADD_fname, fv_info.Format, 'Quality', 100);
 imwrite(fr, recto_fname, fr_info.Format, 'Quality', 100);
 imwrite(flipped_fv, verso_fname, fv_info.Format, 'Quality', 100);
else
 %nothing implemented for other file formats yet.
end

clear all;

 17

% Difference algorithm

function diff = findDiff(parameters)

global S;
global B;
global I;
global N;
global flipped_fv;

t13 = parameters(1);
t23 = parameters(2);
t11 = parameters(3);
t12 = parameters(4);
t21 = parameters(5);
t22 = parameters(6);

RM = [t11, t12; t21, t22];
TM = repmat([t13; t23], 1, N);

XIYI = RM * S + TM;
XI = XIYI(1, :);
YI = XIYI(2, :);

clear XIYI;
clear TM;
clear RM;

ZI = interp2(flipped_fv, XI, YI, '*linear');

diff = (B-ZI).*(B-ZI)*I';

clear ZI;

 18

Annex II : Recto and verso of simulations documents

Test image

 19

Page2 image

 20

 21

Page1 image

 22

References

DUBOIS, Eric. “ Reduction of bleed-through in scanned manuscript documents “,
University of Ottawa, Ottawa, 4p.

SHARMA, Gaurav. “ Cancellation of show-through in duplex scanning “, in Proc. IEEE
Int. Conf. Image Processing, vol. 2, pp. 609-612, Sept. 2000.

ETTER, Dolores. C. KUNCICKY, David. Introduction to Matlab, Prentice Hall’s , 1999.

	Registration of two-sided documents
	Report of CSI4900 project
	presented to
	Prof. Eric Dubois
	by
	Yohan Bienvenue
	1240071
	April 11, 2001
	S
	Summary
	When documents are written on both sides, the ink might bleed through the paper. This is particularly true with old documents. Reading and studying such documents is not easy when serious bleed through is present. This report proposes a solution to corre
	
	
	
	
	
	Page

	Table of contents…………………………………………………………………………………..		ii
	Introduction………………………………………………………………………………………..		1
	Bleed through removal algorithm………………………………………………..	………..	………		1
	Inapplicable solution……………………………………………………………………..		1

	Introduction
	
	
	Inapplicable solution
	Overview
	Registration process
	Restoration process

	Implementation of the registration process in Matlab
	Goals
	Overview
	Computation of the difference
	Estimation of shift parameters before optimization
	Optimization
	Display
	Performance
	Alignment

