#1

(a) (**4 points**) The 8.4Mpixel Panasonic Lumix LX1 digital camera has been advertised as the world's first compact camera with a 16:9 aspect ratio CCD. At maximum resolution, the digital image consists of 3840 pixels horizontally by 2160 pixels vertically. Given this information, what is the width X and the height Y of each CCD sensor element in units of picture height (ph)? Express your answer numerically as a rational number (fraction) such as 3/64. What is the sampling density (with units) and the number of samples per image?

(b) (4 points) Assume that the CCD sensor of 2(a) is used with a Bayer color filter array as was used in Lab 2, specifically with the pattern $\begin{bmatrix} G & R \\ B & G \end{bmatrix}$. Thus half of the sensor elements are used to capture green samples, while a quarter are used for the red and blue samples respectively. Specifically the green samples are captured on a hexagonal lattice Λ_G . Give a sampling matrix \mathbf{V}_G for the lattice Λ_G . Express it numerically in terms of units of ph, again expressing all

numbers as fractions. Assume that the center of the top left green sensor element is the origin of the coordinate system.

(c) (**6 points**) The green channel is upsampled/interpolated by a factor of two to the rectangular lattice of the full CCD sensor. This is accomplished using an FIR filter with unit sample response

$$h_i[x, y] = \delta[x, y] + \frac{1}{4}\delta[x - X, y] + \frac{1}{4}\delta[x + X, y] + \frac{1}{4}\delta[x, y - Y] + \frac{1}{4}\delta[x, y + Y]$$

where X and Y were found 2(a). Determine the frequency response $H_i(u, v)$ of this interpolation filter and express it in real form. What is the DC gain of the filter?

(d) (6 points) Assume that the green signal was to be interpolated using an ideal (Voronoi-cell) low-pass filter. Show the frequency response of this filter on the axes below for $-\frac{1}{X} \le u, v \le \frac{1}{X}$. Clearly indicate the pass-band, stop-band and value of the frequency response on the pass-band. Use cross-hatching to clearly identify the pass-band. Don't

response on the pass-band. Use cross-hatching to clearly identify the pass-band. Don forget that the frequency response is periodic.

_	_	_	_		 		-			-	-	-		-	-	_	_	_	_	_	-
																					1
							-				-	-			-	-					- 1
																					- 1
							-				-	-			-	-					- 1
L			 1.1.1		 																 ы
г					 				P												п
							-				-	-			-	-					- 1
			-					-			-	-			-	-					- 1
																					- 1
																					- 1
-			 · . ·		 																 -
																					- 1
							-														- 1
																					- 1
			-				-				-	-			-	-					- 1
-			 		 																 -
																					- 1
			-																		- 1
			-	-							-	-		-	-	-			-		- 1
																					- 1
-			 		 																 -
			-																		- 1
																					- 1
			-				-				-	-			-	-					- 1
																					- 1
_			 		 			5	S. 1. 1.	· · · ·		- · · ·	1	1	S						 -
E																					п
1						-	-	-			-	-			-						- 1
							-														- 1
1																					- 1
L			 		 																 ч
Г.																					-1
1							-				-	-			-						- 1
1																					- 1
1				-			-				-	-			-						- 1
-			 		 																 -1
1																					- 1
1			-	-		-	-	-	-	-		~	~	-	-	-					- 1
																					- 1
																					- 1
-			 · . ·		 									1							 -
																					- 1
							-				-	-			-	-					- 1
																					- 1
							-				-	-			-	-			-		- 1
-			 · . ·		 								1. I. I.								 -
							-	-				-			-	-					- 1
							-														- 1
																					- 1
																					- 1
-			 		 																 -
E																					п
																					- 1
							-					-			-	-					- 1
																					- 1
			-				-								-						- 1
-			 		 																 -1
			-				-								-						- 1
																					- 1
			-	-			-	-			-	-			-	-			-		- 1
			-				-	-				-			-	-					- 1
-			 		 																 -
																					- 1
																					- 1
1							-				-	-			-						- 1
1																					- 1
F		- 74	 		 								- · ·			T					 -
1																					- 1
1				-		-	-	-		-		~	*		-	-					- 1
1																					- 1
1				-			-	-				-	-	-		-		-			- 1
-			 1.01		 																 -
1																					- 1
1							-				-	-			-						- 1
1																					- 1
1							-				-				-						- 1
F			 1.1		 											1.1	1. J.	1.1.1		1.1	 -
1						-	-	-			-	-			-	-					- 1
1																					- 1
1				-			-	-			-	-	-	-		-					- 1
							-														- 1
F			 		 																 -
- E									£						×		1 K - 1				-1
1																					- 1
1				-			-	-				-			-						- 1
1																					- 1
L			 		 				·	·						· · ·					 ч
г.		- 2	 1.1		 			2.1.1						1			1,111	1.11			 -1
1			-	-				-			-		· · · ·	-	-		-		-		- 1
1							-								-						- 1
																					- 1
L																					_1
			 		 																 -1
-			-	-			-	-			-	-			-						- 1
Г																					- 1
Γ				-			-	-			-	-			-						- 1
Γ																					- 1
Γ					 								· · ·								 -
		- 1																			
F	• •	1																			
F	• •	7										-									1
F	• •	1	:										:	:	:			:			

#2. A discrete-space signal $f[x, y], (x, y) \in \Lambda_1$ defined on a lattice Λ_1 is to be converted to a signal $g[x, y], (x, y) \in \Lambda_2$ defined on a second lattice Λ_2 . The two lattices are specified by their respective sampling matrices \mathbf{V}_1 and \mathbf{V}_2 as follows:

$$\mathbf{V}_1 = \begin{bmatrix} 3X & X \\ 0 & X \end{bmatrix} \text{ and } \mathbf{V}_2 = \begin{bmatrix} 2X & 0 \\ 0 & 2X \end{bmatrix}$$

- (a) State and justify whether $\Lambda_1 \subset \Lambda_2$ or $\Lambda_2 \subset \Lambda_1$ or neither.
- (b) Design a system to convert signal f[x, y] into g[x, y] as described above. Show a complete block diagram and give precise definitions of all elements, including all frequency responses. Any LSI filters in cascade should be combined into a single equivalent filter.