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Abstract In this paper, we present a method for database
schema matching: the problem of identifying elements of
two given schemas that correspond to each other. Schema
matching is useful in e-commerce exchanges, in data inte-
gration/warehousing, and in semantic web applications. We
first present two corpus-based methods: one method is for
determining the semantic similarity of two target words and
the other is for automatic word segmentation. Then we pres-
ent a name-based element-level database schema matching
method that exploits both the semantic similarity and the
word segmentation methods. Our word similarity method
uses pointwise mutual information (PMI) to sort lists of
important neighbor words of two target words; the words
which are common in both lists are selected and their PMI val-
ues are aggregated to calculate the relative similarity score.
Our word segmentation method uses corpus type frequency
information to choose the type with maximum length and
frequency from “desegmented” text. It also uses a modi-
fied forward–backward matching technique using maximum
length frequency and entropy rate if any non-matching por-
tions of the text exist. Finally, we exploit both the semantic
similarity and the word segmentation methods in our pro-
posed name-based element-level schema matching method.
This method uses a single property (i.e., element name) for
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schema matching and nevertheless achieves a measure score
that is comparable to the methods that use multiple properties
(e.g., element name, text description, data instance, context
description). Our schema matching method also uses nor-
malized and modified versions of the longest common sub-
sequence string matching algorithm with weight factors to
allow for a balanced combination. We validate our methods
with experimental studies, the results of which suggest that
these methods can be a useful addition to the set of existing
methods.

Keywords Database schema matching · Semantic
similarity ·Word segmentation · Corpus-based methods

1 Introduction

Schema matching is the problem of identifying elements of
two given schemas that correspond to each other. It has been
the focus of research since the 1970s in the artificial intel-
ligence, databases, and knowledge representation commu-
nities. Schema matching can also be defined as discovering
semantically corresponding attributes in different schemas.
Traditionally, the problem of matching schemas has essen-
tially relied on finding pairwise-attribute correspondences.
Though schema matching identifies elements that correspond
to each other, it does not explain how they correspond. For
example, it might say that FirstName and LastName in one
schema are related to Name in the other, but it does not say
that concatenating the former yields the latter. Automatically
discovering these correspondences or matches is inherently
difficult.

Today, many researchers realize that schema matching is
a core problem in e-commerce exchanges, in data integra-
tion/warehousing, and in semantic web applications. Schema
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matching is fundamental for enabling query mediation and
data exchange across information sources [2,57]. While
schema matching has always been a problematic and interest-
ing aspect of information integration, the problem is exacer-
bated as the number of information sources to be integrated,
and hence the number of integration problems that must be
solved, grows. Such schema matching problems arise both in
“classical” scenarios such as company mergers, and in “new”
scenarios such as the integration of diverse sets of informa-
tion sources queriable over the web.

We present a schema matching method that uses a sin-
gle property (i.e., element name) for matching and achieves
a comparable F-measure score compared to methods that
use multiple properties (e.g., element name, text descrip-
tion, data instance, context description). If we use a single
property instead of multiple properties, it can speed up the
matching process; this is important when schema matching
is used in peer-to-peer (P2P) data management systems or
in online query processing environments. If the properties
that we use for schema matching contain element names or
any types of text description, then we need to focus on both
string matching and semantic similarity of words because
sometimes only string matching or only semantic similar-
ity of words provides good mapping results, and sometimes
we need to use both in a balanced way. Names in schemas
are often not segmented (words are connected together to
form a name); therefore a good word segmentation method
is required for better schema matching results. We propose
two corpus-based methods: one for determining the seman-
tic similarity of words and the other for word segmentation;
then we formulate a name-based schema matching method
that uses these two corpus-based methods. By corpus we
mean a large collection of general-purpose English text.

We were motivated to propose corpus-based similarity
and word segmentation methods for several reasons. First,
we focused our attention on corpus-based measures because
of their large type coverage (types of words). The types that
are used in real-world database schema elements are often
not found in dictionaries. Second, off-the-shelf corpus-based
similarity measures are not as comparable as dictionary-
based measures in performance which drew us to devise a
corpus-based similarity measure that would be comparable
to dictionary-based measures in performance.

Third, some existing corpus-based word segmentation
methods provide good precision score, but provide low recall
score and as a result low F-measure score. So, we were
inspired to propose a corpus-based word segmentation
method that would provide good F-measure score.

In this paper, we make the following contributions.

• First, we present a corpus-based method for determining
the semantic similarity of two target words. Our method
uses pointwise mutual information (PMI) to sort lists of

important neighbor words of the two target words and
distinguish the words which are common in both lists
and aggregate their PMI values from the opposite list to
calculate the relative similarity score. Evaluation results
show that our method outperforms several competing
corpus-based methods.

• Second, we present a new corpus-based method for auto-
matic word segmentation. Our method uses corpus-type
frequency information to choose the type with maximum
length and frequency from “desegmented”1 text. It also
uses a modified forward–backward matching technique
using maximum length frequency and entropy rate if
any non-matching portions of the text exist. Evaluation
results show that our method outperforms several com-
peting corpus-based segmentation methods.

• Third, we present a name-based element-level schema
matching method that exploits our proposed corpus-
based word similarity and word segmentation method
together with a substring matching algorithm. Finally,
we point out some areas where these methods or modi-
fied versions of these methods can be exploited.

The remainder of this paper is organized as follows.
Section 2 introduces the idea of corpus-based semantic simi-
larity of words, and describes in detail our proposed method,
with experimental results. In Sect. 3, we discuss corpus-
based word segmentation and related work. We also describe
our proposed word segmentation method with examples and
evaluation. Then Sect. 4 presents database schema match-
ing: a brief overview of schema matching approaches and our
proposed name-based element-level hybrid schema matching
method. Finally, we conclude in Sect. 5 with a brief discus-
sion of future work.

2 Semantic similarity of words

Semantic relatedness refers to the degree to which two con-
cepts or words are related (or not) whereas semantic simi-
larity is a special case or a subset of semantic relatedness.
Humans are able to easily judge if a pair of words are related
in some way. For example, most would agree that apple
and orange are more related than are apple and toothbrush.
Budanitsky and Hirst [9] point out that semantic similarity
is used when similar entities such as apple and orange or
table and furniture are compared. These entities are close
to each other in an is–a hierarchy. For example, apple and
orange are hyponyms of fruit and table is a hyponym of furni-
ture. However, even dissimilar entities may be semantically
related, for example, glass and water, tree and shade, or gym
and weights. In this case the two entities are intrinsically not

1 Words are connected together to form a name.
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similar, but are related by some relationship. Sometimes this
relationship may be one of the classical relationships such
as meronymy (is part of) as in computer–keyboard or a non-
classical one as in glass–water, tree–shade and gym–weights.
Thus two entities are semantically related if they are seman-
tically similar (close together in the is–a hierarchy) or share
any other classical or non-classical relationships.

Measures of the semantic similarity of words have been
used for a long time in applications in natural language pro-
cessing and related areas, such as the automatic creation of
thesauri [23,35,37], automatic indexing, text annotation and
summarization [36], text classification, word sense disambig-
uation [34,35,65], information extraction and retrieval [10,
62,64], lexical selection, automatic correction of word errors
in text and discovering word senses directly from text [45].

A word similarity measure is also used for language mod-
eling by grouping similar words into classes [8]. In databases,
word similarity can be used to solve semantic heterogeneity,
a key problem in any data sharing system whether it is a feder-
ated database, a data integration system, a message passing
system, a web service or a peer-to-peer data management
system [39].

2.1 Related work on semantic similarity of words

Many different measures of semantic similarity between
word pairs have been proposed, some using statistical or
distributional techniques [24,37], some using lexical data-
bases (thesaurus) and some hybrid approaches, combining
distributional and lexical techniques. PMI-IR [61] uses PMI
and information retrieval (IR) to measure the similarity of
pairs of words. PMI-IR is a statistical approach that uses a
huge data source: the web and the PMI of two words are
approximated by the number of web documents where they
co-occur. Another well-known statistical approach to mea-
suring semantic similarity is latent semantic analysis (LSA)
[31]. We will briefly discuss these two approaches in next
subsections.

Individual words in a given text corpus have more or less
differing contexts around them. The context of a word is
composed of words co-occurring with it within a certain win-
dow around it. Distributional measures use statistics acquired
from a large text corpora to determine how similar the con-
texts of two words are. These measures are also used as
approximations to measures of semantic similarity of words,
because words found in similar contexts tend to be semanti-
cally similar. Such measures have traditionally been referred
to as measures of distributional similarity. If two words have
many co-occurring words, then similar things are being said
about both of them and therefore they are likely to be seman-
tically similar. Conversely, if two words are semantically
similar then they are likely to be used in a similar fashion
in text and thus end up with many common co-occurrences.

For example, the semantically similar car and vehicle are
expected to have a number of common co-occurring words
such as parking, garage, model, industry, accident, traffic
and so on, in a large enough text corpus.

Various distributional similarity measures were discussed
in [63] where co-occurrence types of a target word are the
contexts in which it occurs and these have associated fre-
quencies which may be used to form probability estimates.
Lesk [33] was one of the first to apply the cosine measure,
which computes the cosine of the angle between two vec-
tors, to word similarity. The Jensen–Shannon (JS) divergence
measure [15,50] and the skew divergence measure [32] are
based on the Kullback–Leibler (KL) divergence measure.
Jaccard’s coefficient [56] calculates the proportion of fea-
tures belonging to either word that are shared by both words.
In the simplest case, the features of a word are defined as the
contexts in which it has been seen to occur. PMI was first used
to measure word similarity by Church and Hanks [13] where
positive values indicate that words occur together more than
would be expected under an independence assumption and
negative values indicate that one word tends to appear only
when the other does not. Jaccard-MI is a variant [37] in which
the features of a word are those contexts for which the point-
wise mutual information between the word and the context
is positive. Average mutual information corresponds to the
expected value of two random variables using the same equa-
tion as PMI and was used as a word similarity measure by
[15,52]. Cosine of pointwise mutual information was used by
[45] to uncover word senses from text. L1 norm method was
proposed as an alternative word similarity measure in lan-
guage modeling to overcome zero-frequency problems for
bigrams [15]. A likelihood ratio was used by [20] to test
word similarity under the assumption that the words in text
have a binomial distribution.

There are several dictionary-based approaches to measur-
ing the similarity of words. Most of the dictionary-based
approaches use WordNet [43], a broad coverage lexical net-
work of English words. Some use Roget’s Thesaurus.
Budanitsky and Hirst [9] presented a detail overview of sev-
eral WordNet based measures. We briefly discuss Lin’s [38]
approach, one of the hybrid measures using both the WordNet
and corpus in next subsection. Jarmasz and Szpakowicz [27]
implemented a similarity measure using Roget’s Thesaurus.

2.1.1 Latent semantic analysis (LSA)

LSA [31], a high-dimensional linear association model, ana-
lyzes a large corpus of natural text and generates a represen-
tation that captures the similarity of words and text passages.
The underlying idea is that the aggregation of all the word
contexts in which a given word does and does not appear
provides a set of mutual constraints that largely determines
the similarity of meaning of words and sets of words to each
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other [31]. The model tries to answer how people acquire as
much knowledge as they do on the basis of as little infor-
mation as they get. It uses the singular value decomposition
(SVD) to find the semantic representations of words by ana-
lyzing the statistical relationships among words in a large
corpus of text. The corpus is broken up into chunks of texts
approximately the size of a small text or paragraph. Landauer
and Dumais mentioned in [31] “. . .we took a sample consist-
ing of (usually) the whole text or its first 2,000 characters,
whichever was less, for a mean text sample length of 151
words, roughly the size of a rather long paragraph‘’. Analyz-
ing each text or paragraph, the number of occurrences of each
word is set in a matrix with a column for each word and a row
for each paragraph. Then each cell of the matrix (a word by
context matrix, X ), is transformed from the raw frequency
count into the log of the count. After that each cell is divided
by the entropy of the column, given by −∑

p log p, where
the summation is over all the paragraphs the word appeared.

The next step is to apply SVD to X , to decompose X into
a product of three matrices

X = W S P ′,

where W and P are in column orthonormal form (i.e., col-
umns are orthogonal) and S is the diagonal matrix of non-zero
entries (singular values). To reduce dimensions, the rows of
W and P corresponding to the highest entries of S are kept.
In other words, the new lower dimensional matrices WL, PL

and SL are the matrices produced by removing the columns
and rows with smallest singular values from W, P and S.
This new matrix

XL = WL SL P ′L

is a compressed matrix which represents all the words and
text samples in a lower dimensional space. Then the similar-
ity of two words, using LSA, is measured by the cosine of
the angle between their corresponding row vectors.

2.1.2 PMI-IR

PMI-IR [61], a simple unsupervised learning algorithm for
recognizing synonyms, uses PMI as follows:

score(choicei ) = p(problem & choicei )/p(choicei )

Here, problem represents the problem word and {choice1,

choice2, . . . , choicen} represent the alternatives. p
(problem & choicei ) is the probability that problem and
choicei co-occur. In other words, each choice is simply
scored by the conditional probability of the problem word,
given the choice word, p(problem|choicei ). If problem and
choicei are statistically independent, then the probability
that they co-occur is given by the product p(problem) ·
p(choicei ). If they are not independent, and they have a

tendency to co-occur, then p(problem & choicei ) will be
greater than p(problem) · p(choicei ).

PMI-IR used AltaVista Advanced Search query syntax to
calculate the probabilities. In the simplest case, two words
co-occur when they appear in the same document:

score1(choicei )

= hits(problem AND choicei )/hits(choicei )

Here, hits(x) is the number of hits (the number of docu-
ments retrieved) when the query x is given to AltaVista.
AltaVista provides how many documents contain both prob-
lem and choicei , and then how many documents contain
choicei alone. The ratio of these two numbers is the score
for choicei . There are three other versions of this scoring
equation based on the closeness of the pairs in documents,
considering antonyms, and taking context into account.

2.1.3 Lin’s measure

Lin [38] noticed that most of the similarity measures were
tied to a particular application domain or resource and then he
attempted to define a similarity measure that would be both
universal and theoretically justified. He used the following
three intuitions as a basis:

(1) The similarity between A and B is related to their com-
monality. The more commonality they share, the more
similar they are. The commonality between A and B is
measure by

I (common(A, B))

where common(A, B) is a proposition that states the
commonalities between A and B; I (s) is the amount
of information contained in a proposition s.

(2) The similarity between A and B is related to the differ-
ences between them. The more differences they have,
the less similar they are. The difference between A and
B is measure by

I (description(A, B))− I (common(A, B))

where description(A, B) is a proposition that describes
what A and B are.

(3) The maximum similarity between A and B is reached
when A and B are identical, no matter how much com-
monality they share.

Given these assumptions and definitions and the apparatus
of information theory, Lin proved the following theorem:

Similarity Theorem. The similarity between A and B is
measured by the ratio between the amount of information
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needed to state the commonality of A and B and the
information needed to fully describe what A and B are:

sim(A, B) = log P(common(A, B))

log P(description(A, B))

Lin demonstrated how this similarity theorem could be
applied in different domains using WordNet and corpus. For
example, his measure of similarity between two concepts in
taxonomy is a corollary of this theorem:

sim(A, B) = 2 log P(lso(A, B))

log P(A)+ log P(B)
,

where probabilities P(x) are determined by

P(x) =
∑
w∈W (x) count (w)

N
,

where W (x) is the set of words (nouns) in the corpus whose
senses are subsumed by concept x , and N is the total number
of word (noun) tokens in the corpus that are also present in
WordNet.

2.2 Proposed second-order co-occurrence PMI method

Let w1 and w2 be the two words for which we need to
determine the semantic similarity and C = {c1, c2, . . . , cm}
denotes a large corpus of text (after some preprocessing,
e.g., stop words elimination and lemmatization) containing
m words (tokens). Also, let T = {t1, t2, . . . , tn} be the set of
all unique words (types) which occur in the corpus C . Unlike
the corpus C , which is an ordered list containing many occur-
rences of the same words, T is a set containing no repeated
words. Throughout this section, we will usew to denote either
w1 or w2.

We set a parameter α, which determines how many words
before and after the target word w, will be included in the
context window. The window also contains the target word
w itself, resulting in a window size of 2α + 1 words. The
steps in determining the semantic similarity involve scan-
ning the corpus and then extracting some functions related
to frequency counts.

We define the type frequency function,

f t (ti ) = |{k: ck = ti }|, where i = 1, 2, . . . , n

which tells us how many times the type ti appeared in the
entire corpus. Let

f b(ti , w) = |{k: tk = w and tk± j = ti }|,
where i = 1, 2, . . . , n and – α ≤ j ≤ α, be the bigram
frequency function. f b(ti , w) tells us how many times word
ti appeared with word w in a window of size 2α + 1 words.

Then we define pointwise mutual information function for
only those words having f b(ti , w) > 0,

f pmi(ti , w) = log2
f b(ti , w)× m

f t (ti ) f t (w)
,

where f t (ti ) f t (w) > 0 and m is total number of tokens
in corpus C as mentioned earlier. Now, for word w1, we
define a set of words, X , sorted in descending order by their
PMI values with w1 and take the top-most β1 words having
f pmi(ti , w1) > 0.

X = {Xi }, where i = 1, 2, . . . , β1

and f pmi(t1, w1) ≥ f pmi(t2, w1)≥· · · f pmi(tβ1−1, w1)

≥ f pmi(tβ1, w1)

Similarly, for wordw2, we define a set of words, Y , sorted
in descending order by their PMI values with w2 and take
the top-most β2 words with f pmi(ti , w2) > 0.

Y = {Yi }, where i = 1, 2, . . . , β2

and f pmi(t1, w2)≥ f pmi(t2, w2) ≥ · · · f pmi(tβ2−1, w2)

≥ f pmi(tβ2, w2)

Note that we have not yet determined the value for βs
(either β1 or β2) which actually depend on the word w and
the number of types in the corpus (this will be discussed in
the next section).

Again, we define the β-PMI summation function. For
word w1, the β-PMI summation function is:

f β(w1) =
β1∑

i=1

(
f pmi(Xi , w2)

)γ
,

where f pmi(Xi , w2) > 0 and f pmi(Xi , w1) > 0 which sums
all the positive PMI values of words in the set Y also com-
mon to the words in the set X . In other words, this function
actually aggregates the positive PMI values of all the seman-
tically close words ofw2 which are also common inw1. Note
that we call it semantically close because all these words have
high PMI values with w2 and this does not ensure the close-
ness with respect to the distance within the window size.

Similarly, for wordw2, the β-PMI summation function is:

f β(w2) =
β2∑

i=1

(
f pmi(Yi , w1)

)γ
,

where f pmi(Yi , w1) > 0 and f pmi(Yi , w2) > 0 which sums
all the positive PMI values of words in the set X also com-
mon to the words in the set Y . In other words, this function
aggregates the positive PMI values of all the semantically
close words of w1 which are also common in w2. We have
not discussed the criteria for choosing the exponential para-
meter γ (this will be discussed in the next subsection).
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Finally, we define the semantic PMI similarity function
between two words, w1 and w2,

Sim(w1, w2) = f β(w1)

β1
+ f β(w2)

β2

2.2.1 Choosing the values of β and γ

A rule of thumb is used to choose the value of β. The value
of β is related to how many times the word w appears in the
corpus; that is, the frequency of w as well as the number of
types in the corpus. We define β as

βi =
(
log( f t (wi ))

)2 (log2(n))

δ
,

where i = 1, 2 and δ is a constant.

For all of our experiments we used δ = 6.5. The value of δ
depends on the size of the corpus. The smaller the corpus we
use, the smaller the value of δ we should choose. If we lower
the value of β we lose some important/interesting words, and
if we increase it we consider more words common to both
w1 and w2 and this significantly degrades the result.
γ should have a value greater than 1. The higher we choose

the value of γ , the greater emphasis on words having very
high PMI values with w. For all our experiments, we chose
γ = 3. We experimented on a small portion of the BNC to
find out the value of δ and γ . The value γ ≥ 4 is not a good
choice because it puts too much emphasis on words that have
very high PMI values withw and ignores all the words having
moderate or low PMI values.

2.3 Experimental results

Our method was empirically evaluated on the task of solving
80 synonym TOEFL questions and 50 synonym ESL ques-
tions; and using Miller and Charles’ [42] 30 noun pairs subset
and Rubenstein and Goodenough’s [53] 65 noun pairs.

In literature, though most of the word similarity measures
were evaluated using Miller and Charles’ [42] 30 noun pairs
subset and Rubenstein and Goodenough’s [53] 65 noun pairs,
we also evaluated our method on the 80 synonym TOEFL
questions and 50 synonym ESL questions to judge how well
our method performs on a task-based test.

We computed the SOC-PMI similarity values using the
British National Corpus (BNC)2 as a source of frequencies
and contexts. The size of this corpus is approximately 100
million words, and it is a balanced corpus: it contains texts
from various sources, general British English.

Landauer and Dumais [31] employed word similarity mea-
sures to answer 80 synonym test questions from the Test
of English as a Foreign Language (TOEFL) using Latent

2 http://www.natcorp.ox.ac.uk/.
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Semantic Analysis (LSA). Turney [61] applied his PMI-IR
measure to answer 50 synonym test questions from a col-
lection of English as a Second Language (ESL) tests and the
same 80 TOEFL questions set that Landauer and Dumais [31]
used.

For the 80 TOEFL questions, the SOC-PMI method
correctly answered 76.25% of the questions, as shown in
Fig. 1. This is an improvement over the results presented by
Landauer and Dumais [31], using LSA, where 64.37% of the
questions were answered correctly, and Turney [61], using
the PMI-IR algorithm, where the best result was 73.75%. A
human average score on the same question set is 64.5% [31].

For the 50 ESL questions, the SOC-PMI method correctly
answered 68% of the questions (without using the context)
compared to [61] where the best result was 66%, as shown
in Fig. 3. The number of question or answer words that dif-
ferent methods did not find for the 80 TOEFL questions and
50 ESL questions are in Figs. 2 and 4, respectively. These
questions were not answered in the experiments because the
similarity could not be computed for all pairs of words.

For Miller and Charles’ [42] dataset, we got a correlation
of 0.764 with the human judges (Fig. 5). For Rubenstein and
Goodenough’s [53] dataset we got a correlation of 0.729.
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These correlation values are very good for a corpus-based
measure, considering that a baseline vector space method
using cosine obtains 0.406 for the first set and 0.472 for the
second set. For dictionary-based measures [27], the correla-
tions are slightly higher, but comparable to ours.

Figures 1 and 3 show that a method using Roget’s
thesaurus provides 2.5 and 14% more correct results than
ours for the 80 TOEFL questions and 50 ESL questions,
respectively. The WordNet-based measures—implemented
in the WordNet::Similarity package by Pedersen et al. [46]—
achieve lower accuracy on the two data sets than the Roget
measure [27]. The fact that the Roget measure performs bet-
ter than the corpus-based measures is to be expected, because
Roget’s thesaurus can be seen as a classification system. It
is composed of six primary classes and each is composed
of multiple divisions and then sections. This may be con-
ceptualized as a tree containing over a 1,000 branches for
individual meaning clusters or semantically linked words.
These words are not exactly synonyms, but can be viewed
as colors or connotations of a meaning or as a spectrum of a
concept. One of the most general words is chosen to typify
the spectrum as its headword, which labels the whole group.

Second-order co-occurrence PMI may be helpful as a tool
to aid in the automatic construction of the synonyms of a
word. This could be a future application of our proposed
method.

PMI-IR used AltaVista’s Advanced Search query syn-
tax to calculate probabilities. Note that the “NEAR” search
operator of AltaVista is an essential operator in the PMI-IR
method. However, it is no longer in use in AltaVista; this
means that, from the implementation point of view, it is not
possible to use the PMI-IR method in the same form in new
systems. In any case, from the algorithmic point of view, the
advantage of using SOC-PMI in our system is that it can cal-
culate the similarity between two words that do not co-occur
frequently, because they co-occur with the same neighboring
words.

Detecting semantic outliers in speech recognition tran-
scripts can use semantic similarity measures [26] and a cor-
pus-based similarity measure plays an important role because
of its large type coverage. The corpus-based measures were
shown to perform better than the Roget-based measure in the
task. In future work we can try the SOC-PMI method for this
task.

3 Corpus-based word segmentation

Word segmentation is an important problem in many natural
language processing tasks; for example, in speech recogni-
tion where there is no explicit word boundary information
given within a continuous speech utterance, or in interpret-
ing written languages such as Chinese, Japanese and Thai
where words are not delimited by white-space but instead
must be inferred from the basic character sequence. We dif-
ferentiate the terms word breaking and word segmentation.
Word breaking refers to the process of segmenting known
words that are predefined in a lexicon. Word segmentation
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refers to the process of both lexicon word segmentation and
unknown word or new word3 detection. Automatic word
segmentation is a basic requirement for unsupervised learn-
ing in morphological analysis. Developing a morphologi-
cal analyzer for a new language by hand can be costly and
time consuming, requiring a great deal of effort by highly
specialized experts.

In databases, word segmentation can be used in schema
matching to solve semantic heterogeneity, a key problem in
any data sharing system whether it is a federated database,
a data integration system, a message passing system, a web
service or a peer-to-peer data management system [39]. The
name of an element in a database typically contains words
that are descriptive of the element’s semantics. N -grams4

have been shown to work well in the presence of short forms,
incomplete names and spelling errors that are common in
schema names [19].

Also, extracting words (word segmentation) from a
scanned document page or a PDF is an important and basic
step in document structure analysis and understanding sys-
tems; incorrect word segmentation during OCR leads to
errors in information retrieval and in understanding the
document.

One of the common approaches involving an extensive
word list combined with an informed segmentation algo-
rithm can help achieve a certain degree of accuracy in word
segmentation, but the greatest barrier to accurate word
segmentation is in recognizing unknown words, words not
in the lexicon of the segmenter. This problem is dependent
both on the source of the lexicon as well as the correspon-
dence between the text in question and the lexicon. Fung
and Wu [21] reported that segmentation accuracy is sig-
nificantly higher when the lexicon is constructed using
the same type of corpus as the corpus on which it is
tested.

The term maximum-length descending-frequency means
that we choose maximum length n-grams that have a mini-
mum threshold frequency and then we look for further
n-grams in descending order based on length. If two n-grams
have same length then we choose the n-gram with higher fre-
quency first and then the n-gram with next higher frequency
if any of its characters are not a part of the previous one. If we
follow this procedure, after some iterations, we can be in a
state with some remaining characters (we call it residue) that
are not matched with any type in the corpus. To solve this, we
use the leftMaxMatching and rightMaxMatching algorithms
presented in Sect. 3.2 along with entropy rate.

3 New words in this paper refer to out-of-vocabulary words that are
neither recognized as named entities or factoids, nor derived by mor-
phological rules. These words are mostly domain-specific and/or time-
sensitive.
4 Sequence of n consecutive characters.

3.1 Related work on word segmentation

Word segmentation methods can be roughly classified as
either dictionary-based or statistically based methods, while
many state-of-the-art systems use hybrid approaches. In
dictionary-based methods, given an input character string,
only words that are stored in the dictionary can be identified.
The performance of these methods thus depends to a large
degree upon the coverage of the dictionary, which unfortu-
nately may never be complete because new words appear
constantly. Therefore, in addition to the dictionary, many
systems also contain special components for unknown word
identification. In particular, statistical methods have been
widely applied because they use a probabilistic or cost-based
scoring mechanism rather than a dictionary to segment the
text [22].

A simple word segmentation algorithm is to consider each
character a distinct word. This is practical for Chinese
because the average word length is very short, usually
between one and two characters, depending on the corpus
[21], and actual words can be recognized with this algo-
rithm. Although it does not assist in task such as parsing,
part-of-speech tagging or text-to-speech systems [60], the
character-as-word segmentation algorithm has been used to
obtain good performance in Chinese information retrieval, a
task in which the words in a text play a major role in indexing.

One of the most popular methods is maximum matching
(MM), usually augmented with heuristics to deal with ambi-
guities in segmentation. Another very common approach to
word segmentation is to use a variation of the maximum
matching algorithm, frequently referred to as the greedy algo-
rithm. The greedy algorithm starts at the first character in a
text and, using a word list for the language being segmented,
attempts to find the longest word in the list starting with that
character. If a word is found, the maximum-matching algo-
rithm marks a boundary at the end of the longest word, then
begins the same longest match search starting at the char-
acter following the match. If no match is found in the word
list, the greedy algorithm simply segments that character as
a word and begins the search starting at the next character.
A variation of the greedy algorithm segments a sequence of
unmatched characters as a single word; this variant is more
likely to be successful in writing systems with longer average
word lengths. In this manner, an initial segmentation can be
obtained that is more informed than a simple character-as-
word approach. As a demonstration of the application of the
character-as-word and greedy algorithms, consider an exam-
ple of “desegmented” English, in which all the white space
has been removed: the “desegmented” version of the text,
the most favourite music of all time, would thus be them-
ostfavouritemusicofalltime, Applying the character-as-word
algorithm would result in the useless sequence of tokens t h e
m o s t f a v o u r i t e m u s i c o f a l l t i m e, which is why this
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algorithm only makes sense for languages such as Chinese.
Applying the greedy algorithm with a “perfect” word list
containing all known English words would first identify the
word them, since that is the longest sequence of letters start-
ing at the initial t which forms an actual word. Starting at the
o following them, the algorithm would then find no match.
Continuing in this manner, themostfavouritemusicofalltime
would be segmented by the greedy algorithm as them o s t
favourite music of all time. A variant of the maximum match-
ing algorithm is the reverse maximum matching algorithm,
in which the matching proceeds from the end of the string of
characters, rather than the beginning. In the foregoing exam-
ple, themostfavouritemusicofalltime would be segmented as
the most favourite music o fall time by the reverse maximum
matching algorithm. Greedy matching from the beginning
and the end of the string of characters enables an algorithm
such as forward–backward matching, in which the results are
composed and the segmentation optimized based on the two
results [16].

Many unsupervised methods have been proposed for seg-
menting raw character sequences with no boundary infor-
mation into words [4,5,11,12,17,25,29]. Brent [4] gives a
good survey of these methods. Most current approaches are
using some form of expectation maximization (EM) to learn a
probabilistic speech-or-text model and then employing
Viterbi decoding procedures [48] to segment new speech or
text into words. One reason that EM is widely adopted for
unsupervised learning is that it is guaranteed to converge to
a good probability model that locally maximizes the like-
lihood or posterior probability of the training data. For the
problem of word segmentation, EM is typically applied by
first extracting a set of candidate multi-grams from a given
training corpus [17], initializing a probability distribution
over this set, and then using the standard iteration to adjust
the probabilities of the multi-grams to increase the posterior
probability of the training data.

Saffran et al. [55] proposed that word segmentation from
continuous speech may be achieved using transitional prob-
abilities (TP) between adjacent syllables A and B, where,
TP(A → B) = P(AB)/P(A), with P(AB) being the fre-
quency of B following A, and P(A) the total frequency of A.
Word boundaries are postulated at local minima, where the
TP is lower than its neighbors.

In corpus-based word segmentation, there is either no
explicit model learnt, as when neural networks [54] or lazy
learning [14] are used, or the derived models are less sophisti-
cated and do not use any abstractions of the word constituents
found in data [7,41]. Using annotated corpora greatly facili-
tates learning. However, there are situations in which one is
interested in unsupervised learning (UL), that is, from unan-
notated corpora. Motivation for UL can vary from purely
pragmatic, such as the high cost or unavailability of anno-
tated corpora, to theoretical, when language is modeled as

yet another communication code within the framework of
information theory [58].

3.2 Proposed word segmentation method

Let S = l1l2l3 . . . lm denote a text of m consecutive characters
without any space in between them for which we need to seg-
ment and C = {c1, c2, . . . , cτ } denote a large corpus of text
containing τ words (tokens). Also, let T p = {t1, t2, . . . , tp}
be the set of all (p) unique words (types) which occur in
the corpus C and T f = { f1, f2, . . . , f p} be the set of fre-
quencies of all the corresponding types in T p; where fx is the
frequency of type tx . Unlike the corpus C , which is an ordered
list containing many occurrences of the same words, T p is a
set containing no repeated words. Again, let n be the maxi-
mum length of any possible words in the segmented words list
where n ≤ m and N p = {l1, l2, . . . , ln, l1l2, l2l3, . . . , l1l2 . . .
ln, . . .} be the set of all possible n-grams where η = |N p|
is the total number of n-grams in N p. We can also consider
N p as N p = {w1, w2 . . . , wη}. And N f = { f ′1, f

′
2 . . . , f ′η}

be the set of frequencies of all the corresponding n-grams of
N p taken from T f ; where f ′x is the frequency of wx . To get
rid of the noise types of the corpus, we assign a set of mini-
mum frequencies for each possible length from 1 to n to be
considered as a valid word. M f = {α1, α2, . . . , αn}, where
αx is the minimum frequency required to be a valid word5

of length x . Minimum required frequency, αx is inversely
proportional to the word length, x . The steps of the method
are as follows:
Step 1: Sort all the elements of N p in descending order based
on length (in characters). Again sort in descending order for
same length words of the sorted N p (say N p) based on the
frequencies of N f . For each element in N p do the next steps:
Step 2: If S �= Ø and the current maximum length n-gram
(say wn) in N p satisfies f

′
n ≥ α|wn | and wn ∈ S (i.e., S ∩

wn =wn) then add wn to segmented word list, S
′
(i.e., S′ ←

S
′ ∪wn) and remove wn from S (i.e., S← S\wn) and add a

blank space as a boundary mark.
Step 3: If S �= Ø and not all elements in N p are done then
updatewn by the next maximum length n-gram from N p and
go to step 2.
Step 4: Rearrange all the words of S

′
in accordance with

S. If S = Ø, then output S
′

and exit. Otherwise, for each
remaining chunks6, r in S call matchResidue(r ), output S

′

and exit.

5 We experiment in BNC and find out the minimum frequency
range for nearly all valid words up to words of length 34, as in
BNC the length of the longest valid word is 34. For n = 34,M f =
{1000, 500, 50, 16, 15, 12, 10, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2}; for example, nearly all valid words of length
3 in BNC have a minimum frequency of 50 or more.
6 A single chunk may contain one or more characters.
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Fig. 6 Matching residue Algorithm matchResidue 

Input: r, S'   // r is the remaining chunk and S' is the current segmented word 

list

1.        // Take the prefix word, wn-1 and suffix word, wn of r from S'

2.        // according to the would be position of r in S'.

3. S' S' \ wn-1

4. S' S' \ wn

5. St wn-1 U r U wn

6.        // St = {l1l2l3 …lm}, where m is the length of St

7. St
' leftMaxMatching(St)

8. St
'' rightMaxMatching(St)

9. if ( |St
'| > | St

''| )

10. S' S' U St
''

11. elseif ( |St
'| < | St

''| )

12. S' S' U St
'

13. else

14.       find a ' ''{ , }t tx S S for which entropy rate 
x

i
if

x 1
2 )(log

1
 is maximum 

15. S' S' U x

16. end

Output: S'     // S' is the segmented word list after matching residue

In mat chResi due, if l e f t Max Mat ching and
r i ght Max Mat ching return same numbers of words then
we use entropy rate to decide which set of words we will
accept. The intuition behind using entropy rate is that if we
have a set of words having larger average frequency (we use
normalized frequency in the entropy rate) than the other set
of words, it is obvious that the first set of words is more
meaningful than the second set of words (Figs. 6, 7, 8).

3.3 A walk-through example

As a demonstration of the application of the proposed
algorithms, consider the same example of “desegmented”
English text, S = {themost f avouri temusico f alltime}7.
We have used the BNC corpus to calculate T p and T f . Let
n = 9 be the maximum length8 of all possible word in S and
M f = {1000, 500, 50, 16, 15, 12, 10, 3, 2}. Table 1 shows
the sorted n-grams, N p and their frequencies, N f for this
specific example.

For each element wn (say, favourite) in N p,

7 S is a set with one string element; a space in the string will be used
to replace a substring that will be taken out, in order to distinguish the
next parts to be processed.
8 Though in BNC, the length of the longest valid word is 34.

Step 2: wn satisfies f
′
n ≥ α|wn | as 4671 ≥ 2 and wn is a

substring of S.
S
′ = { f avouri te} and S = {themost musico f alltime}.

Step 3: Not all elements in N p are done, update wn =
{alltime} and go to step 2.
Step 2: does not satify f

′
n ≥ α|wn | as 6 < 10 though wn is a

substring of S.
Step 3: Not all elements in N p are done, update wn =
{ f avour} and go to step 2.
Step 2: Condition fails as wn is not a substring of S.
Step 3: Not all elements in N p are done, update wn =
{musico} and go to step 2.
Step 2: Condition fails as wn does not satisfy f

′
n ≥ α|wn | as

10 < 12.
Step 3: Not all elements in N p are done, update wn =
{music} and go to step 2.
Step 2: wn satisfies f

′
n ≥ α|wn | as 15134 ≥ 15 and wn is a

substring of S.
S
′ = { f avouri te, music} and

S = {themost o f alltime}.
We will only show the step 2 of all the remaining elements
in N p that satisfy the conditions.
Step 2: wn = {them}
S
′ = { f avouri te, music, them} and S={ost o f alltime}.

Step 2: wn = {t ime}
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Fig. 7 Matching leftmax Algorithm leftMaxMatching

// n is the maximum length of any possible valid words in St and n m

Input: St         // St is a ìdese gmented” word 

1. while St  Ø do 

2.  Np  {l1, l1l2, l1l2l3 ..,l1l2… ln}; 

3.      that is, Np  {w1, w2 …, wn}

4.       Nf  {f1
', f2

'…, fn
'}

5. Mf { 1, 2…, n}

6.     i 1

7.       while ( i n && i m )

8. if  ( fi
'

i )

9. max i

10. end

11.            increment i

12.     end 

13.     St
' St

' U wmax 

14.    St St \ wmax 

15. end 

Output: St
'      // St

' is the segmented word list after leftmax matching 

Fig. 8 Matching rightmax

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Algorithm rightMaxMatching

// n is the maximum length of any possible valid words in St and n m

Input: St       // St is a “desegmented” word

   while St  Ø do 

   Np  {lm, lm-1lm, lm-2lm-1lm,  .., lm-nlm-n+1… lm};

  that is, Np  {w1, w2 …, wn}

    Nf  {f1
', f2

'…, fn
'}

    Mf { 1, 2…, n}

    i 1

    while ( i n && i m )

if  ( fi
'

i )

max i

end

        increment i

    end 

    St
' St

' U wmax 

    St St \ wmax

end

Output: St
'     // St

' is the segmented word list after rightmax matching

S
′ = { f avouri te, music, them, time} and

S = {ost o f all}.
Step 2: wn = { f all}
S
′ = { f avouri te, music, them, time, f all} and

S = {ost o}.
Step 4: Rearrange S

′ = {them, f avouri te, music, f all,
t ime} and S �= Ø, so call mat chResi due(ost) and then
mat chResi due(o).
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Table 1 Sorted n-grams and their frequencies

N ps N f N ps N f

favourite 4671 tem 31

alltime 6 emo 20

favour 6805 ost 18

musico 10 of 3052752

Music 15134 it 1054552

them 167457 he 641236

time 164294 me 131869

most 98276 us 80206

fall 11202 co 17476

item 3780 th 16486

rite 293 st 15565

allt 28 al 7299

emus 14 fa 2172

musi 3 em 1641

the 6057315 os 1005

all 282012 te 831

our 93463 si 658

tim 3401 mo 639

hem 305 ti 615

sic 292 im 576

mus 269 lt 485

emu 247 av 291

ico 95 mu 276

uri 46 ll 233

fal 44 ri 230

ofa 36 ou 151

mos 36 a 2179299

fav 33 i 873059

Case 1: mat chResi due(ost) is called

S
′ = S

′ \{wn−1, wn}
S
′ = {them, f avouri te, music, f all, time}
\{them, f avouri te}
= {music, f all, time}

St = {themost f avouri te}
S
′
t = {them, os, t, f avouri te}
← l e f t Max Mat ching(themost f avouri te)

S
′′
t = {the, most, f avouri te}
← r i ght Max Mat ching(themost f avouri te)

As |S′t | > |S′′t |, S
′ = {music, f all, time}∪S

′′
t ;

S
′ = {T H E, most, f avouri te, music, f all, time}

Case 2: mat chResi due(o) is called

S′ = S′\{wn−1, wn}
S
′ = {the, most, f avouri te, music, f all, t ime}
\{music, f all}
= {the, most, f avouri te, t ime}

St = {musicof all}
S
′
t = {music, of, all}
← l e f t Max Mat ching(musicof all)

S
′′
t = {mus, ico, f all}
← r i ght Max Mat ching(musicof all)

As in this case |S′t | = |S′′t |, we need to find whether S′t
or S

′′
t maximizes the entropy rate, 1

|x |
∑|x |

i=1 log2( fi ), where

x ∈ {S′t , S
′′
t }. The entropy rate for S′t is (13.89 + 21.54 +

18.11)/3 and for S
′
t is (8.07 + 6.57 + 13.45)/3. So, S

′ =
{the, most, f avouri te, t ime}∪S′t , as 1∣

∣
∣S
′
t

∣
∣
∣

∑
∣
∣
∣S
′
t

∣
∣
∣

i=1 log2( fi ) >

1∣
∣
∣S
′′
t

∣
∣
∣

∑
∣
∣
∣S
′′
t

∣
∣
∣

i=1 log2( fi ). Finally, S
′ = {the,most, f avouri te,

music, of, all, t ime}.

3.4 Evaluation and experimental results

An obstacle to high-accuracy word segmentation is that there
are no widely accepted guidelines for what constitutes a
word; therefore, there is no agreement on how to “correctly”
segment a text in a “desegmented” language. Native speakers
of a language do not always agree about the “correct” seg-
mentation, and the same text could be segmented into several
very different (and equally correct) sets of words by differ-
ent native speakers. Such ambiguity in the definition of what
constitutes a word makes it difficult to evaluate segmentation
algorithms that follow different conventions, as it is nearly
impossible to construct a “gold standard” against which to
directly compare results [16]. As shown in Sproat et al. [59],
the rate of agreement between two human judges on this task
is less than 80%.

The performance of word segmentation is usually mea-
sured using precision and recall, where recall is defined as
the percentage of words in the manually segmented text iden-
tified by the segmentation algorithm and precision is defined
as the percentage of words returned by the algorithm that also
occurred in the hand-segmented text in the same position.
In general, it is easy to obtain high performance for one of
the two measures but relatively difficult to obtain high per-
formance for both. F-measure (F) is the geometric mean of
precision (P) and recall (R) and expresses a trade-off between
those two measures. These performance measures are defined
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Fig. 9 Test result on the
Brown corpus
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as follows:

P = T P/(T P + F P)

R = T P/(T P + F N )

F = (1+ β)P R/(βP + R)

= 2 PR / (P + R), with β = 1 such that precision and recall
weighted equally. Here, TP, FP and FN stand for True Posi-
tive, False Positive and False Negative respectively.

For instance, if the target segmentation is “we are human”,
and the model outputs “weare human”, then precision is
1/2 (“human” out of “weare” and “human”, recall is 1/3
(“human” out of “we”, “are”, and “human”) and F-measure
is 2/5.

We used the type frequency from BNC and tested our seg-
mentation method on part of the BNC corpus. Specifically,
we converted a portion of the corpus to lowercase letters
and removed all white space and punctuation. We used 285K
characters and 57,904 tokens as our test data. We obtained
84.28% word precision rate 81.63% word recall rate and
82.93% word F-measure.

In a second test, we used the type frequency from BNC
and tested our segmentation method on the Brown corpus to
make sure that we test on different vocabulary from the train-
ing data. This ensures that some of the word in the test set
were not previously seen (out-of-vocabulary words). There
were 4,705,022 characters and 1,003,881 tokens in the Brown
corpus. We obtained 89.92% word precision rate, 94.69%
word recall rate and 92.24% word F-measure. The average
number of tokens per line could be the reason for obtaining
better result when we tested on the Brown corpus, as 8.49
and 16.07 are the average number of tokens per line in the
Brown corpus and the BNC corpus, respectively.

One of the best known results on segmenting the Brown
corpus is due to Kit and Wilks [29] who use a descrip-
tion-length gain method. They trained their model on the
whole corpus (6.13M) and reported results on the training
set, obtaining a boundary precision of 79.33%, a bound-
ary recall of 63.01% and boundary F-measure of 70.23%.
Peng and Schuurmans [47] trained their model on a subset

of the corpus (4,292K) and tested on unseen data. After the
lexicon is optimized, they obtained 16.19% higher recall and
4.73% lower precision; resulting in an improvement of 5.2%
in boundary F-measure. de Marcken [18] also used a mini-
mum description length (MDL) framework and a hierarchical
model to learn a word lexicon from raw speech. However, this
work does not explicitly yield word boundaries, but instead
recursively decomposes an input string down to the level
of individual characters. As pointed out by Brent [4], this
study gives credit for detecting a word if any node in the
hierarchical decomposition spans the word. Under this mea-
sure, de Marcken [18] reports a word recall rate of 90.5%
on the Brown corpus. However, his method creates numer-
ous chunks and therefore only achieves a word precision
rate of 17%. Christiansen et al. [12] used a simple recur-
rent neural network approach and report a word precision
rate of 42.7% and word recall rate of 44.9% on spontane-
ous child-directed British English. Brent and Cartwright [5]
used a MDL approach and reported a word precision rate
of 41.3% and a word recall rate of 47.3% on the CHILDES
collection. Brent [4] achieved about 70% word precision and
70% word recall by employing additional language model-
ing and smoothing techniques. Peng and Schuurmans [47]
obtained 74.6% word precision rate, 79.2% word recall rate
and 75.4% word F-measure on the Brown corpus. A balance
of high precision and high recall is the main advantage of
our proposed method. However, it is difficult to draw a direct
comparison between these results because of the different
test corpora used by different authors. Figure 9 summarizes
the result of different methods which are tested on the Brown
corpus based on precision, recall and F-measure. Though all
the methods in Fig. 9 use the Brown corpus, the testing data
sets in the Brown corpus are not exactly the same.

Actually, this method can effectively distill new words,
special terms and proper nouns when the corpus covers a
huge collection of both domain-dependent and domain-
independent words, and it can effectively avoid statistical
errors in shorter strings which belong to a longer one. How-
ever, names are not always easy to exploit and contain abbre-
viations and special characters that vary between domains.
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This method can be used to address this issue, an important
step of schema matching in databases. A generalized char-
acteristic of this method is that it can be extended as a dic-
tionary-based method or hybrid method with some additions
to the algorithms. The absence of type frequencies in dic-
tionary means that we can only use the length of the types.
In that case, we need to focus on what type to choose for
the same length types that share some common characters.
Again, we cannot choose whether we take the elements of
leftMaxMatching or rightMaxMatching when both of them
return the same number of elements as we cannot use entropy
rate for the absence of type frequencies. Experimental results
show that our method can segment words with high precision
and high recall.

4 Schema matching

Purely manual solutions to the schema matching problem
are too labor intensive to be scalable; as a result, there has
been a great deal of research into automated techniques that
can speed up this process by either automatically discover-
ing good mappings, or at least by proposing likely matches
that are then verified by a human expert [28]. Rahm and
Bernstein [49] point out that it is not possible to determine
fully automatically all matches between two schemas, pri-
marily because most schemas have some semantics that
affects the matching criteria but is not formally expressed
or often not even documented. The implementation of the
matching should therefore only determine match candidates,
which the user can accept, reject or change. Furthermore,
the user should be able to specify matches for elements for
which the system was unable to find satisfactory match
candidates.

4.1 Classification of schema matching approaches

Rahm and Bernstein [49] classify the major approaches to
schema matching. Figure 10 shows part of their classifica-
tion together with some sample approaches. An implemen-
tation of matching may use multiple match algorithms or
matchers.

This allows selecting the matchers depending on the appli-
cation domain and schema types. Given that multiple match-
ers could be used, two sub-problems arise. First, there is
the realization of individual matchers, each of which com-
putes a mapping based on a single matching criterion. Sec-
ond, there is the combination of individual matchers, either
using multiple matching criteria (e.g., name and type equal-
ity) within an integrated hybrid matcher or by combining
multiple match results produced by different match algo-
rithms within a composite matcher.

Schema Matching Approaches 

Combining matchers Individual matcher approaches 

Hybrid matchers Composite matchers 

Manual
Composition 

Automatic 
composition 

Schema based Instance based 

Element-level Structure-level 

Constraint-
based

Element-level

Constraint-
based

Constraint-
based

Linguistic

• Type
similarity 
• Key 
properties

• Graph
matching

• IR
techniques
(word
frequencies,
key terms)

• Value 
pattern and 
ranges

    • • •     • • •     • • •     • • • 

• Name 
similarity 
• Description 
Similarity 
• Global 
namespace

Linguistic

    • • • 

Our approach

Example of 

approaches

Further criteria:
- Match cardinality 
- Auxiliary info used

Fig. 10 Classification of schema matching approaches [49]

4.1.1 Linguistic approaches

Linguistic matchers use element names and text (i.e., words/
tokens or sentences) to find semantically similar schema ele-
ments. We discuss here two schema-level approaches, name
matching and description matching.

Element name matching. Element name-based match-
ing matches schema elements with equal or similar names.
Similarity of names can be defined and measured in various
ways, including:

• Equality of name matching. An important sub-case is the
equality of names from the same XML namespace, since
this ensures that the same names indeed bear the same
semantics.

• Equality of canonical name representations after stem-
ming and other preprocessing. This is important to deal
with special prefix/suffix symbols (e.g., CName→ cus-
tomer name, and EmpNO→ employee number)

• Equality of synonyms. This is important to deal with syn-
onyms (e.g., car synonymously matches automobile).

• Equality of hypernyms. Hypernym is a word that is more
generic than a given word. For example, fruit is a hyper-
nym of apple or orange. So, apple is–a fruit and orange
is–a fruit imply: apple hypernymically matches fruit,
orange hypernymically matches fruit, and apple matches
orange as siblings.
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• Similarity of names based on longest common substrings
(LCS), edit distance, pronunciation, soundex. (a phonetic
algorithm for indexing names by their sound when pro-
nounced in English and the basic aim is for names with
the same pronunciation to be encoded into the same string
so that matching can occur despite minor differences in
spelling.), etc. [3]. For example, representedBy matches
representative based on common substrings. We exper-
imented with these measures (edit, soundex, LCS, etc.)
thanks to a Perl package, produced by Grzegorz Kondrak
from University of Alberta [30].

Solving any task related to synonyms and hypernyms nor-
mally requires the use of thesauri or dictionaries. General nat-
ural language dictionaries such as LDOCE,9 Wordnet10 may
be useful; perhaps even multi-language dictionaries (e.g.,
English–German or German–English) to deal with input
schemas in different languages. In addition, name match-
ing can use domain- or enterprise-specific dictionaries and
is–a taxonomies containing common names, synonyms and
descriptions of schema elements, abbreviations, etc. These
specific dictionaries require a substantial effort to be built up
in a consistent way. The effort may be worth the investment,
especially for schemas with relatively flat structure where
dictionaries provide the most valuable matching hints. But
corpus-based methods could be a better choice than dictio-
nary-based methods as a balanced corpus covers a huge col-
lection of both domain-dependent and domain-independent
words including special terms and proper nouns. Further-
more, tools are needed to enable names to be accessed and
(re-)used, such as within a schema editor when defining new
schemas.

Homonyms (one of two or more words that have the same
sound and often the same spelling but differ in meaning)
can mislead a matching algorithm as homonyms are similar
names that refer to different elements. Clearly, homonyms
may be a part of natural language, such as bank (embank-
ment, river bank) and bank (place where money is kept). A
name matcher can reduce the number of wrongly matched
candidates using mismatch information supplied by users or
dictionaries, though it requires a substantial effort or at least,
the matcher can offer a warning of the potential ambiguity
due to multiple meanings of the name.

Name-based matching can identify multiple relevant
matches for a given schema element; that is, it is not lim-
ited to finding just 1:1 matches. For example, it can match
“address” with both “home address” and “office address”.
In the case of synonyms and hypernyms, the join-like pro-
cessing involves a list D of word pairs and their similarity
as a further input. Assume a relation-like representation as

9 http://www.longman.com/ldoce.
10 http://wordnet.princeton.edu.

follows:

S1(name11, name12...)

S2(name21, name22...)

D(name11, name21, similarity) where similarity is a sim-
ilarity score for [name11, name21] between 0..1. Then a list
of all match candidates can be generated by the following
three-way join operation:
Select S1.name, S2.name, D.similarity
From S1, S2, D
where (S1.name = D.name11) and

(D.name21 = S2.name) and

(D.similarity > threshold)

The constraint here is that D will have to contain all rel-
evant pairs of the transitive closure over similar names. For
instance, if sim(A, B) = 0.6 and sim(B,C) = 0.7 are in
D, then probabilistically we would expect D also to contain
sim(B, A) = 0.6, sim(C, B) = 0.7 and sim(A,C) = x ,
sim(C, A) = x . Probabilistically, we would expect the sim-
ilarity value x to be 0.6 × 0.7 = 0.42, but this depends on
some factors such as the type of similarity, the use of hom-
onyms, and perhaps other factors. For example, we might
have sim(deliver, ship) = 0. 9 and sim(ship, boat) = 0.9,
but not sim(deliver, boat) = x for a high similarity value x .
Bright et al. [6] discuss another approach to assigning differ-
ent weights to different types of similarity relationships.

4.1.2 Description matching

Often, schemas contain text descriptions of elements that typ-
ically explain the meaning of elements in natural language to
express the intended semantics of schema elements. But the
quality of these descriptions varies a lot. These comments
can also be evaluated linguistically to determine the similar-
ity between schema elements. For instance, this would help
find that the following elements match by a linguistic analysis
of the comments associated with each schema element:

S1 : empn//employee name

S2 : name//name of employee

This linguistic analysis could be as simple as extracting
keywords from the description which are used for synonym
comparison, much like name matching. Some approaches
consider rule-based schema matching which are domain
dependent [44].

4.2 Proposed Name-based element-level schema matching
method

We use longest common subsequence (LCS) [1] measure with
some normalization and small modification for our string
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Fig. 11 Maximal consecutive
LCS starting at character 1

Algorithm MCLCS1

 Input: ri, sj                     // ri and sj are two input strings where |ri| = , |sj| = 

                                        // and  as mentioned earlier. 

1. |ri|, |sj|

2. while |ri|     // we usually set  to 1. Details are discussed in next section.

3. if
ji

Sr  ; that is, 
iij

rrS

4. return ri

5. else ri ri \ c  ; that is, remove the right-most character from ri

6. end if 

7. end while 

 Output: ri      // ri is the Maximal Consecutive LCS starting at character 1

Fig. 12 Maximal consecutive
LCS starting at any character n

similarity measures. We use three different modified versions
of LCS and then take weighted sum of these11. Kondrak [30]
showed that edit distance and the length of the longest com-
mon subsequence are special cases of n-gram distance and
similarity, respectively. Melamed [40] normalized LCS by
dividing the length of the longest common subsequence by
the length of the longer string and called it longest common
subsequence ratio (LCSR). But LCSR does not take into
account the length of the smaller string which sometimes
has a significant value in similarity score.

We normalize the LCS so that it takes into account the
length of both the smaller and the larger strings and call it

11 We use modified versions because in our experiments we obtained
better results (precision and recall for schema matching) than when
using the original LCS, or other string similarity measures.

normalized longest common subsequence (NLCS) which is,

v1 = N LC S(ri , s j ) = {length(LC S(ri , s j ))}2
length(ri )× length(s j )

While in classical LCS, the common subsequence need
not be consecutive, but in database schema matching, con-
secutive common subsequence is important for high degree
of matching. We use maximal consecutive longest common
subsequence starting at character 1, MC LC S1 (Fig. 11) and
maximal consecutive longest common subsequence starting
at any character n, MC LC Sn (Fig. 12). In Fig. 11, we present
an algorithm that takes two strings as input and returns the
smaller string or maximal consecutive portions of the smaller
string that consecutively match with the larger string, where
matching must be from first character (character 1) for both
of the strings. In Fig. 12, we present another algorithm that
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takes two strings as input and returns the smaller string or
maximal consecutive portions of the smaller string that con-
secutively match with the larger string, where matching may
start from any character (character n) for both of the strings.
We normalize MC LC S1 and MC LC Sn and call it normal-
ized MC LC S1(N MC LC S1) and normalized MC LC Sn

(N MC LC Sn), respectively.

v2 = N MC LC S1(ri , s j ) = {length(MC LC S1(ri , s j ))}2
length(ri )× length(s j )

v3 = N MC LC Sn(ri , s j ) = {length(MC LC Sn(ri , s j ))}2
length(ri )× length(s j )

We take the weighted sum of these individual v1, v2 and v3

to determine string similarity score, where w1, w2, w3 are
weights and w1+w2 +w3 = 1. Therefore, the similarity of
the two strings is:

α = w1v1 + w2v2 + w3v3.

We set equal weights for our experiments. Theoretically,
v3 ≥ v2.

For example, if ri = albastru and s j = alabaster , then

LC S(ri , s j ) = albastr

MC LC S1(ri , s j ) = al

MC LC Sn(ri , s j ) = bast

N LC S(ri , s j ) = 72/(8× 9) = 0.68

N MC LC S + 1 = 22/(8× 9) = 0.056

N MC LC Sn(ri , s j ) = 42/(8× 9) = 0.22

String similarity, α = w1v1 + w2v2 + w3v3

= 0.33× 0.68+ 0.33× 0.056+ 0.33× 0.22 = 0.32

We then use word similarity measure, normalize it (Fig. 13)
and combine it with the string similarity to obtain a final sim-
ilarity score. We now describe our schema matching method
in detail.

Consider two given database schemas R = {R1, R2, . . . ,

Rσ } and S = {S1, S2, . . . , Sχ }; for each element in one data-
base schema, we try to identify a matching element in the
other schema, if any, using element names. We assume that
schema R hasσ elements and Ri is the element’s name, where
i = 1, . . . , σ . Similarly, schema S has χ elements and S j is
the element’s name where j = 1, . . . , χ . Note that some
elements in R can match multiple elements in S, and vice
versa. So, our task is to identify whether an element name
Ri ∈ R matches an element name S j ∈ S. Both Ri and S j are
strings of characters. Our method provides a similarity score
between 0 and 1, inclusively. If the similarity score is above a
certain threshold then the elements are considered as match
candidates. If we set the threshold to 1 and the similarity
score reaches this value, only then are we certain about their
matching. For all other cases, we can only determine more or
less probable match candidates. The method comprises the
following six steps
Step 1: We use all special characters, punctuations, and cap-
ital letters, if any, as initial word boundary and eliminate all
these special characters and punctuations. After this initial
word segmentation, we pass each of these segmented words
to our word segmentation method and lemmatize to generate
tokens. We assume Ri = {r1, r2, . . . , rm} has m tokens and
S j = {s1, s2, . . . , sn} has n tokens and n ≥ m. Otherwise,
we switch Ri and S j .
Step 2: We count the number of ri s (say, δ) for which ri = s j ,
for all r ∈ Ri and for all s ∈ Si ; that is, there are δ tokens in
Ri that exactly match with S j , where δ ≤ m. We remove all
δ tokens from both of Ri and S j . So, Ri = {r1, r2, . . . , rm−δ}
and S j = {s1, s2, . . . , sn−δ}. If m − δ = 0, we go to step 6.
Step 3: We construct a (m − δ) × (n − δ) matching matrix
(say, M1 = (αi j )(m−δ)×(n−δ)) using the following process:
we assume any token ri ∈ Ri has τ characters; that is, ri =
{c1c2 . . . cτ } and any token s j ∈ S j has η characters; that
is, s j = {c1c2 . . . cη}where τ ≤ η. In other words, η is the
length of the larger token and τ is the length of the smaller

Fig. 13 Similarity matching
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token. We calculate the followings:

v1 ← N LC S(ri , s j )

v2 ← N MC LC S1(ri , s j )

v3 ← N MC LC Sn(ri , s j )

αi j ← w1v1 + w2v2 + w3v3;
αi j is a weighted sum of v1, v2 and v3 where w1, w2, w3 are
weights and w1 + w2 + w3 = 1. We set equal weights for
our experiments.

We put αi j in row i and column j position of the matrix
for all i = 1 . . .m − δ and j = 1 . . . n − δ.

M1 =

⎡

⎢
⎢
⎢
⎢
⎣

α11 α12 α1 j α1(n−δ)
α21 α22 α2 j α2(n−δ)
αi1 αi2 αi j αi(n−δ)

α(m−δ)1 α(m−δ)2 α(m−δ) j α(m−δ)(n−δ)

⎤

⎥
⎥
⎥
⎥
⎦

Step 4: We construct a (m−δ)×(n−δ) similarity matrix (say,
M2 = (βi j )(m−δ)×(n−δ)) using the following process: We put
βi j (βi j ← similari t yMatching(ri , s j ) (Fig. 13)) in row i
and column j position of the matrix for all i = 1, . . . ,m− δ
and j = 1, . . . , n − δ.

M2 =

⎡

⎢
⎢
⎢
⎢
⎣

β11 β12 β1 j β1(n−δ)
β21 β22 β2 j β2(n−δ)
βi1 βi2 βi j βi(n−δ)

β(m−δ)1 β(m−δ)2 β(m−δ) j β(m−δ)(n−δ)

⎤

⎥
⎥
⎥
⎥
⎦

Step 5: We construct another (m − δ)× (n − δ) joint matrix
(say, M = (γi j )(m−δ)×(n−δ)) using M ← ψM1 + ϕM2 (i.e.,
γi j = ψαi j + ϕβi j ) where ψ is the matching matrix weight
factor.ϕ is the similarity matrix weight factor, andψ+ϕ = 1.
Setting any one of these factors to 0 means that we do not
include that matrix. Setting both the factors to 0.5 means we
consider them equally important.

M =

⎡

⎢
⎢
⎢
⎢
⎣

γ11 γ12 γ1 j γ1(n−δ)
γ21 γ22 γ2 j γ2(n−δ)
γi1 γi2 γi j γi(n−δ)

γ(m−δ)1 γ(m−δ)2 γ(m−δ) j γ(m−δ)(n−δ)

⎤

⎥
⎥
⎥
⎥
⎦

After constructing the joint matrix, M , we find out the max-
imum-valued matrix-element, γi j . We add this matrix ele-
ment to a list (say, ρ and ρ ← ρUγi j ) if γi j ≥ ς (we will
discuss about the similarity threshold, ς in the next section).
We remove all the matrix elements of i th row and j th col-
umn from M . We repeat the finding of the maximum-valued
matrix-element, γi j adding it toρ and removing all the matrix
elements of the corresponding row and column until either
γi j < ς , or m − δ − |ρ| = 0, or both.
Step 6: We sum up all the elements in ρ and add δ to it to get
a total score. We multiply this total score by the reciprocal

harmonic mean of m and n to obtain a balance similarity
score between 0 and 1, inclusively.

Similari t y Score(Ri , S j ) =
(
δ +∑|ρ|

i=1 ρi

)
× (m + n)

2mn

4.2.1 Choosing the values of ζ, λ and ς

The parameter ζ is the minimum number of characters for
which we continue the matching process. Theoretically ζ
could be any value between 1 and m inclusively. We usually
set ζ to 1. If we use ζ to 1 then we can get expected matching
result for small-length tokens, e.g., if we have three sample
tokens named min, max and similarity and we set ζ to 1. The
pair min max returns m and the pair min similarity returns Ø
when we use MC LC S1. When we use MC LC Sn , the first
pair returns m and the second pair returns mi. But if we set
ζ to 2, the pair min max returns Ø for both MC LC S1 and
MC LC Sn . If we set ζ to 3, the pair min similarity returns
Ø for both MC LC S1 and MC LC Sn . Basically, λ is depen-
dent on the semantic similarity method we use. We choose
the value of λ based on the maximum range of the similarity
values for the semantic similarity method we use. We usually
set λ to 20 when we use SOCPMI semantic similarity method
because our experiments showed that 20 is the maximum of
the region of values for best matches. We can use any other
similarity measure including a dictionary-based or a hybrid
approach. For example, if we use the Roget-based measure
[27] than we need to set λ to 16. One of the main advantages
of using distributional measures based on corpus is that it
covers significantly more tokens than any dictionary-based
measure. Theoretically, ς could be any value between 0 and 1
exclusively, but we usually set ς close to 0 (we set ς = 0.01
for all of our experiments). All matrix elements having val-
ues lower than ς may have negative impacts to the matching
result, thus it is better to omit those.

4.3 Walk-through examples

We provide two examples that describe the proposed method
and determine the similarity score. In example 1, we use two
real element names from a database schema and in
example 2, we use two element names that we created, in
order to better illustrate the method (to cover all its strength
at once).

4.3.1 Example 1

Let Ri = “maxprice”, S j = “High_Price”.
Step 1: After eliminating all special characters and punc-
tuations, if any, and then using word segmentation method
and lemmatizing, we get Ri = {max, price} and S j =
{high, price} where m = 2 and n = 2.
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Step 2: Because only one token (i.e., price) in Ri exactly
matches with S j we set δ to 1. We remove price from both
Ri and S j . So, Ri = {max} and S j = {high}. As m−δ �= 0,
we proceed to next step.
Step 3: We construct a 1× 1 matching matrix, M1. Consider
the max high pair where η = 4 is the length of the larger
token (high), τ = 3 is the length of the smaller token (max)
and 0 is the maximal length of the consecutive portions of
the smaller token that consecutively match with the larger
token. So, v1 = v2 = v3 = 0 and α11 = 0.

high

M1 = max 0

Step 4: We construct a 1 × 1 similarity matrix, M2. Here,
λ = 20 as we used the SOCPMI method.

high
M2 = max 0.326

Step 5: We construct a 1×1 joint matrix, M and assign equal
weight factor by setting both ψ and ϕ to 0.5.

high

M = max 0.163

We find the only maximum-valued-matrix-element, γi j =
0.163 and add it to ρ as γi j ≥ ς (we use ς = 0.01 in this
example). So,ρ = {0.163}. The new M is empty after remov-
ing i th (i = 1) row and j th ( j = 1) column. We proceed to
next step as m − δ − |ρ| = 0. (Here, m = 2, δ = 1 and
|ρ| = 1)
Step 6:

Similari t y Score(Ri , S j ) =
(
δ +∑|ρ|

i=1 ρi

)
× (m + n)

2mn
= (1+ 0.163)× 4/8

= 0.582

4.3.2 Example 2

Let
Ri = “allmileage_make_maxkm”,
S j = “make_minmile_distance_possible_take”.

Step 1: After eliminating all special characters and punctua-
tions, if any, and then using word segmentation method and
lemmatizing, we get Ri = {all, mileage, make, max, km}
and S j = {make, min, mile, distance, possible, take}
where m = 5 and n = 6.

Step 2: Only one token (i.e., make) in Ri exactly matches
with S j therefore we set δ to 1. We remove make from both
Ri and S j . So, Ri = {all, mileage, max, km} and S j =
{min,mile, distance, possible, take}. As m − δ �= 0, we
proceed to next step.
Step 3: We construct a 4×5 matching matrix, M1. Consider
the mileage possible pair where length(LCS(mileage, possi-
ble)) = 3, η = 8 is the length of the larger token (possible),
τ = 7 is the length of the smaller token (mileage) and 2 is
the maximal length of the consecutive portions of the smaller
token that consecutively match with the larger token, where
matching starts from third character of the smaller token and
seventh character of the larger token. So, v1 = 32/(8× 7) =
0.16

v2 = 0

v3 = 22/(8× 7) = 0.071

and α24 = 0.33× v1 + 0.33× v2 + 0.33× v3 = 0.076

min mile distance possible take

all 0 0.055 0.041 0.027 0.082

mileage 0.188 0.565 0.058 0.076 0.058

M1 = max 0.11 0.082 0.027 0 0.055

km 0.11 0.082 0 0 0.123

Step 4: We construct a 4 × 5 similarity matrix, M2. Here,
λ = 20 as we used SOCPMI method.

min mile distance possible take

all 0.172 0.233 0.48 0 0.813

mileage 0.587 0.976 0.826 0 0.558

M2 = max 0.199 0.194 0.141 0 0.243

km 0.67 0.962 0.89 0 0.408

Step 5: We construct a 4×5 joint matrix, M and assign equal
weight factor by setting both ψ and ϕ to 0.5.

min mile distance possible take

all 0.086 0.144 0.26 0.013 0.447

mileage 0.388 0.771 0.442 0.038 0.308

M = max 0.154 0.138 0.084 0 0.149

km 0.39 0.522 0.445 0 0.266

We find the maximum-valued matrix-element, γi j = 0.771
and add it to ρ as γi j ≥ ς (we use ς = 0.01 in this example).
So, ρ = {0.771}. The new M after removing i th (i = 2) row
and j th ( j = 2) column is:
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min distance possible take

all 0.086 0.26 0.013 0.447

M = max 0.154 0.084 0 0.149

km 0.39 0.445 0 0.266

We find the maximum-valued matrix-element, γi j = 0.447
for this new M and add it to ρ as γi j ≥ ς . So, ρ = {0.771,
0.447}. The new M after removing i th (i = 1) row and j th
( j = 4) column is:

min distance possible

max 0.154 0.084 0

M = km 0.39 0.445 0

Here, 0.445 is the maximum-valued matrix-element and
γi j ≥ ς . So, ρ = {0.771, 0.447, 0.445}. The new M after
removing i th (i = 2) row and j th ( j = 2) column is:

min possible

M = max 0.154 0

We find 0.154 as the maximum-valued matrix-element and
γi j ≥ ς . So, ρ = {0.771, 0.447, 0.445, 0.154}. The new M
is empty after removing i th (i = 1) row and j th ( j = 1)
column.
We proceed to next step as m − δ − |ρ| = 0. (Here, m =
5, δ = 1 and |ρ| = 4)
Step 6:

Similari t y Score(Ri , S j ) =
(
δ +∑|ρ|

i=1 ρi

)
× (m + n)

2mn

= (1+ 1.817)× 11/60

= 0.516

4.4 Evaluation and experimental results

We now present experimental results that demonstrate the
performance of our method. All the schemas we used in our
experiments are from Madhavan et al. [39], where they used
web form schemas from two different domains, auto and real
estate. Web form schema matching is the problem of identi-
fying corresponding input fields in the web forms. Each web
form schema is a set of elements, one for each input. The
properties of each input include: the hidden input name or ele-
ment name that is passed to the server when the form is pro-
cessed, the description text and sample values in the option
box. We tested on the same data as Madhavan et al. [39],
all of it, while they used 75% of it, randomly selected. We

could not reproduce the exact 75% that they used. Figures 14
and 15 are two sample schemas from auto domain (vname
are the element names to be matched), while Fig. 16 is their
manual mapping (the tags <left> and <right> are used to
show an element name from the first schema that matches
with an element name from the second schema).

In each domain, they manually created mappings between
randomly chosen schema pairs. The matches were one–many;
that is, an element can match any number of elements in the
other schema. These manually created mappings are used as
a gold standard to compare the mapping performance of the
different methods, including our method. Table 2 provides
detailed information about each of the two domains and our
results.

In each domain, we compared each predicted mapping pair
against the manually created mapping pair. For our experi-
ment, we only used element names for matching. We used
11 different similarity thresholds ranging from 0 to 1 with
interval 0.1, e.g., using auto domain when we used similar-
ity threshold 0.1, our method matched 961 elements, out of
which 628 elements were among the 769 manually matched
elements. Precision vs. similarity threshold curves and recall
vs. similarity threshold curves of the two web domains for
the 11 different similarity thresholds are shown is Figs. 17
and 18, respectively. P–R curves of the two web domains
for the 11 different similarity thresholds are shown in Fig. 19
where the similarity threshold decreases from left to right in
the figure. Figure 20 shows F-measure vs. similarity thresh-
old curves; it is obvious that a lower similarity threshold (≈
0.2) gives a better F-measure score.

The reason for a lower similarity threshold to obtain a bet-
ter F-measure score is that we always take into accounts both
the string similarity and semantic word similarity measures.
If two strings have perfect semantic word similarity score
(≈ 1) and no string similarity score (≈ 0), it is practically a
perfect matching (e.g., car and vehicle); this lowers the total
similarity score. Again, we multiply this total score by the
reciprocal harmonic mean of m and n to obtain a balance
similarity score which also lowers the final similarity value.

In Fig. 18, when we use string similarity threshold score
of 1 (i.e., matching the element names exactly, therefore no
semantic similarity matching is needed), we obtain recall
values of 0.133 and 0.107 for auto and real estate domains,
respectively. We can consider these scores as the baselines.

Madhavan et al. [39] used three methods: direct, pivot
and augment. They selected a random 25% of the manu-
ally created mappings in each domain as training data and
tested on the remaining 75% of the mappings. In the aug-
ment method, they used different base learners such as name
learner, text learner, data instance learner, context learner
and then used a meta-learner to combine the predictions of
the different base learners into a single similarity score. To
train a learner, the augment method requires learner-specific
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Fig. 14 A sample schema
named “401car f inder” from
auto domain
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Fig. 15 A sample schema
named “AutoW eb” from auto
domain
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Fig. 16 Manual mapping
between “401car f inder” and
“AutoW eb”

positive and negative examples for the element on which it is
being trained. The direct method uses the same base learners
of augment method, but the training data for these learners are
extracted only from the schemas being matched. Pivot is the
method that computes cosine distance of the interpretation
vectors of the two elements directly.

In Fig. 21, the direct, pivot and augment methods for the
auto domain achieved precision of around 0.76, 0.74 and
0.92, recall of around 0.74, 0.78, 0.72 and F-measure of
around 0.73, 0.74 and 0.78, respectively. We achieved around
0.78 as precision, recall and F-measure with 0.2 as similarity
threshold.

In Fig. 22, the direct, pivot and augment methods for the
real estate domain achieved precision of around 0.78, 0.71
and 0.76, recall of around 0.69, 0.74, 0.81 and F-measure

of around 0.71, 0.71 and 0.78, respectively. We achieved
precision of 0.68, recall of 0.75, and F-measure of 0.72 with
0.2 as similarity threshold.

Generally, it seems that precision does matter more than
recall in the schema matching problem. But pragmatically it
is not possible to determine fully automatically all matches
between two schemas, and the implementation of the match-
ing therefore only determine match candidates that are then
verified by a human expert. If a human expert is involved in
verification procedure then recall is as important as precision;
that is, F-measure does matter more than precision.

Our method is computationally less intensive than the
method of Madhavan et al. [39] because it uses a single prop-
erty in matching (element names), while their method uses
multiple properties (names, descriptions, instance values,
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Table 2 Characteristics of the
evaluation domains and our
results

Domain Number Number of Similarity Number of Number of Number of
name of schemas manual threshold score predicted correct manually created

mappings in our method mapping pairs mapping pairs mapping pairs

Auto 30 95 0 33,116 769 769

0.1 961 628

0.2 769 596

0.3 701 564

0.4 689 558

0.5 642 530

0.6 501 424

0.7 438 382

0.8 200 192

0.9 176 176

1.0 103 103

Real estate 20 57 0 4,262 280 280

0.1 364 232

0.2 310 211

0.3 248 176

0.4 228 173

0.5 203 164

0.6 155 130

0.7 124 105

0.8 59 55

0.9 48 48

1.0 30 30
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Fig. 17 Precision vs. similarity threshold curves of the two web
domains for 11 different similarity threshold

context). We feel that a rigorous comparison is not possi-
ble, since the algorithm of Madhavan et al. is not described
in sufficient details. However, we believe that the complexity
of our matcher is similar to that of Madhavan et al.’s name
learner; in addition they include the complexity of three other
learners.
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Fig. 18 Recall vs. similarity threshold curves of the two web domains
for 11 different similarity threshold

Finally, we wanted to measure the contribution of our
two new methods, the semantic similarity method and the
text segmentation method, to the task of database schema
matching.

When we used Lin’s [38] WordNet-based word similarity
method instead of our corpus-based word similarity method,
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Fig. 19 P–R curves of the two web domains for 11 different similarity
threshold (similarity threshold decreases from left to right)
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Fig. 20 F-measure vs. similarity threshold curves of the two web
domains for 11 different similarity threshold

Results on "auto" domain
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Fig. 21 Results on the auto domain

for the auto domain, we achieved a precision of 0.71, recall
of 0.63, and F-measure of 0.66. It matched 680 elements,
out of which 485 elements were among the 769 manually
matched elements. We compare this to the results of our
best run for the auto domain that had F-measure of 0.78

Results on "real estate" domain
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Fig. 22 Results on the real estate domain

(with precision and recall of 0.78 as well).12 The decrease in
F-measure due to the replacement of our semantic similarity
method is 0.12; the decrease in precision and recall is 0.07
and 0.15, respectively.

When we used a simplistic segmentation approach (seg-
mentation using only capitalization and punctuation) instead
of our proposed word segmentation approach, for the auto
domain, we achieved a precision of 0.76, recall of 0.68, and
F-measure of 0.71. It matched 687 elements, out of which
521 elements were among the 769 manually matched ele-
ments. The loss in F-measure, precision and recall due to
the simplistic segmentation method is 0.08, 0.02 and 0.10,
respectively.

We can conclude that our semantic similarity method con-
tributed a significant improvement (12 percentage points
for the auto domain). Our word segmentation method also
contributed significantly (an improvement of 8 percentage
points).

5 Conclusion and future work

5.1 Conclusion

In this paper, we addressed the task of database schema
matching. First, we evaluated a new corpus-based word simil-
arity measure, called SOC-PMI and compared it with existing
word similarity measures. We performed intrinsic evaluation
on the noun pairs mentioned earlier. We also performed a
task-based evaluation: solving synonyms test questions. One
of the main characteristics of the SOC-PMI method is that
we can determine the semantic similarity of two words even
though they do not co-occur within the window size at all
in the corpus. Actually, we are considering the second-order
co-occurrences, as we are judging also by the co-occurrences
of the neighbor words, not only the co-occurrence of the two

12 We used 0.2 as the similarity threshold, to have the same threshold
for the compared systems.
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target words. This is not the case for PMI-IR and many other
corpus-based semantic similarity measures.

Second, we proposed a word segmentation method that
could be exploited in web search engine to provide better
suggestion when the search text contains three or more words
in the “desegmented” part. The method can also effectively
distill new words, special terms and proper nouns when the
corpus covers a huge collection of both domain-dependent
and domain-independent words, and it can effectively avoid
statistical errors in shorter strings which belong to a longer
one. Experimental results show that our word segmentation
method can segment words with high precision and high
recall.

Finally, we exploit both the semantic similarity and the
word segmentation method in our proposed name-based ele-
ment-level schema matching method.

Our schema matching method uses a single property
(i.e., element name) for matching and achieves a comparable
F-measure score with respect to the methods that use mul-
tiple properties (e.g., element name, text description, data
instance, context description). If we use a single property
instead of multiple properties, it can speed up the match-
ing process which is important when schema matching is
used in P2P data management or online query processing
in P2P environment. Our method is scalable, in the sense
that, if needed, we could also add other properties (i.e., text
description, data instance matching) to obtain a better schema
matching result.

5.2 Future work

We plan to apply our proposed second-order co-occurrence
PMI method to other tasks, such as measuring the seman-
tic similarity of two texts and detecting semantic outliers in
speech recognition transcripts. The SOC-PMI method may
also be helpful as a tool to aid in the automatic construction
of the synonyms of a word. A very naïve approach would be
as follows. First, we need to sort out the significant words
list based on PMI values for the word (say, x) we are inter-
ested to find the synonyms. If there are n significant words
in this words list, we will apply the SOC-PMI method for
each possible pair mapping from x to n. Instead of taking
the similarity value, we will consider all the second-order
co-occurrence types and sort out this types list based on PMI
values. The words on the top of the list could be the best
candidates for synonyms of the word.

Our corpus-based word segmentation method can be
extended as a hybrid method with some additions to the algo-
rithms. The absence of type frequencies in dictionaries means
that we can only use the length of the types. In that case, we
need to focus on what type to choose for the same length
types that share some common characters. Again, we cannot
choose whether we take the elements of leftMaxMatching or

rightMaxMatching when both of them return the same num-
ber of elements as we cannot use entropy rate for the absence
of type frequencies. Future directions also involve integrat-
ing the current word segmentation algorithm into a larger
system for comprehensive and context-based word analysis.

Our proposed schema matching method together with the
semantic similarity of words method can be further extended
for the task of paraphrase recognition, entailment identifica-
tion and measuring the semantic similarity of texts. A corpus-
based measure is useful to identify any similarity between
words like President and Clinton from sentences ‘Mr. Pres-
ident was supposed to visit Europe’ and ‘Mr. Clinton was
supposed to visit Europe’. The proposed schema matching
method can also be updated in exactly the same way as the
text similarity approach to exploit text description matching,
another approach for schema matching.

Incorporating equality of canonical name representations
for special prefix/suffix symbols (e.g., CName→ customer
name, and EmpNO→ employee number) will enhance the
performance of the method. We tried with the Opaui,13 a col-
lection of lists of acronyms, abbreviations, and initialisms on
the Word Wide Web, which has 353,494 entries from 128
different categories, but it even made the result worse. The
reason is that misleading acronyms, abbreviations or initial-
isms return lower string similarity and semantic word simi-
larity scores.

Our name-based schema matching method can be aug-
mented with rule-based methods to improve the accuracy in
domain-specific schema matching.

Notice that our algorithms assumed that most element
names are tokenizable (contain words or fragments of words),
but not all of them. There are indeed types of data where it
was nearly impossible to obtain matches using element name
matching. For such cases, we got very low similarity values.
For example, in the Real Estate domain, a schema named
“CommercialRealEstate” had five fields/elements: cata, beds,
catb, catc, state, and another schema named “RealyInves-
tor-1” had seven fields/elements: OptionListSelectedTypes,
tScMinPriceSale, tScMaxPriceSale, tScMinSfSale, tScMax-
SfSale, tScMinUnits, tScMaxUnits. Their manual matches
are as follows: (cata = tScMinPriceSale and tScMaxPrice-
Sale), (catb = tScMinSfSale and tScMaxSfSale), (catc =
OptionListSelectedTypes). However, even by considering
cases like this one, we obtained good results on our experi-
mental data sets, which is from real-world web data sources.
This means that these type of data are not very frequent in
real-world web data sources. To test this hypothesis further,
we collected 112 element names from 12 websites.14 Among
them only eight names were not tokenizable.

13 http://www.abbreviationz.com/.
14 The list is available at http://www.site.uottawa.ca/∼diana/elements.
htm.
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To deal with non-tokenizable cases, we also plan to
combine our name-based schema matcher with other exist-
ing matchers, in order to address specific situations that our
method does not cover. When the element names are not
words or fragments of words, then we need to use an instance
matcher that looks at the type of the values in two columns,
or at the values of the instances. To quickly test this idea, we
implemented a simple type instance matcher that verifies the
type of instance values. In case our name matcher decided
to match two fields, we did not accept the match if the fields
had different types, for example if one field was a string
and the other was numeric. In this way, for the auto domain,
we eliminated 52 incorrect matches; increasing the precision
from 0.78 to 0.83 and the F-measure from 0.78 to 0.80. The
recall stayed the same because all the eliminated matches
were indeed wrong matches. If the instances are words, we
can re-use our semantic and string similarity matching at the
level of the instances. Sometimes two columns might match
if similar words are used to denote different fields in two dif-
ferent databases. In such cases, the precision of the matching
can be increased by matching the text descriptions of the col-
umns, if available. Our word-level similarity measure can be
used to determine the similarity level of two texts.
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