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ABSTRACT
We present a method for correcting real-word spelling errors
using the Google Web 1T n-gram data set and a normalized
and modified version of the Longest Common Subsequence
(LCS) string matching algorithm. Our method is focused
mainly on how to improve the correction recall (the fraction
of errors corrected) while keeping the correction precision
(the fraction of suggestions that are correct) as high as pos-
sible. Evaluation results on a standard data set show that
our method performs very well.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Text analysis; I.2.1 [Artificial Intelligence]: Appli-
cations and Expert Systems—Natural language interfaces

General Terms
Algorithms, Experimentation, Performance

Keywords
Real-word, spelling correction, Google web 1T, n-gram

1. INTRODUCTION
Real-word spelling errors are words in a text that occur

when a user mistakenly types a correctly spelled word when
another was intended. Errors of this type may be caused
by the writer’s ignorance of the correct spelling of the in-
tended word or by typing mistakes. Such errors generally
go unnoticed by most spellcheckers as they deal with words
in isolation, accepting them as correct if they are found
in the dictionary, and flagging them as errors if they are
not. Ironically, errors of this type may even be caused by
spelling checkers in the correction of non-word spelling er-
rors when the auto-correct feature in some word-processing
software sometimes silently change a non-word to the wrong
real word [4], and sometimes when correcting a flagged error,
the user accidentally make a wrong selection from the choices
offered [10]. An extensive review of real-word spelling cor-
rection is given in [4].
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In this paper, we present a method for correcting real-
word spelling error using the Google Web 1T n-gram data
set [1]1, and a normalized and modified version of the Longest
Common Subsequence (LCS) string matching algorithm. We
do not try to correct an error, if any, in the first word as it
is not computationally feasible to search in the Google Web
1T n-grams while keeping the first word in the n-gram as a
variable. Our intention is to focus on how to improve the
correction recall while maintaining the correction precision
as high as possible.

This paper is organized as follow: Section 2 presents a
brief overview of the related work. Our proposed method is
described in Section 3. Evaluation and experimental results
are discussed in Section 4. We conclude in Section 5.

2. RELATED WORK
Work on real-word spelling correction can roughly be clas-

sified into two basic categories: methods based on semantic
information or human-made lexical resources, and methods
based on machine learning or probability information. Our
proposed method falls into the latter category.

The ‘semantic information’ approach first proposed by [5]
and later developed by [4] detected semantic anomalies, but
was not restricted to checking words from predefined confu-
sion sets. This approach was based on the observation that
the words that a writer intends are generally semantically
related to their surrounding words, whereas some types of
real-word spelling errors are not.

Machine learning methods are regarded as lexical disam-
biguation tasks and confusion sets are used to model the
ambiguity between words. Normally, the machine learn-
ing and statistical approaches rely on pre-defined confu-
sion sets, which are sets (usually pairs) of commonly con-
founded words, such as {their, there, they’re} and {prin-
ciple, principal}. Golding and Roth [2], an example of a
machine-learning method, combined the Winnow algorithm
with weighted-majority voting, using nearby and adjacent
words as features.

Mays et al. [8] proposed a statistical method using word-
trigram probabilities for detecting and correcting real-word
errors without requiring predefined confusion sets. Wilcox-
O’Hearn et al. [10] analyze the advantages and limitations of
[8]’s method, and present a new evaluation of the algorithm,
designed so that the results can be compared with those of
other methods, and then construct and evaluate some vari-
ations of the algorithm that use fixed-length windows. Ver-

1Details of the Google Web 1T data set can be found at
www.ldc.upenn.edu/Catalog/docs/LDC2006T13/readme.txt



berne [9] proposed a trigram-based method for real-word er-
rors without explicitly using probabilities or even localizing
the possible error to a specific word. This method simply
assumes that any word trigram in the text that is attested in
the British National Corpus is correct, and any unattested
trigram is a likely error.

3. PROPOSED METHOD
The proposed method first tries to determine some prob-

able candidates and then finds the best one among the can-
didates. We consider a string similarity function and a fre-
quency value function in our method. The following sections
present a detailed description of each of these functions, fol-
lowed by the procedure to determine some probable candi-
dates along with the procedure to find the best candidate.

3.1 String Similarity between Two Strings
We use the same string similarity measure that [6, 7] used

with the following different normalization as it gives bet-
ter similarity value, as well as it is more computationally
efficient:

v1 = NLCS(si, sj) =
2× len(LCS(si, sj))

len(si) + len(sj)
(1)

v2 =NMCLCS1(si, sj) =
2× len(MCLCS1(si, sj))

len(si) + len(sj)
(2)

v3 =NMCLCSn(si, sj) =
2× len(MCLCSn(si, sj))

len(si) + len(sj)
(3)

v4 =NMCLCSz(si, sj) =
2× len(MCLCSz(si, sj))

len(si) + len(sj)
(4)

We take the weighted sum of these individual values v1, v2,
v3, and v4 from equation (1), (2), (3) and (4), respectively,
to determine the string similarity score, where α1, α2, α3,
α4 are weights and α1 + α2 + α3 + α4 = 1. Therefore, the
similarity of the two strings, S ∈ [0, 1] is:

S(si, sj) = α1v1 + α2v2 + α3v3 + α4v4 (5)

We heuristically set equal weights for most of our experi-
ments2. Theoretically, v3 ≥ v2 and v3 ≥ v4.

3.2 Normalized Frequency Value
We determine the normalized frequency value of each can-

didate word for a single position with respect to all other
candidates for the same position. If we find n replacements
of a word wi which are {wi1, wi2, · · · , wij , · · · , win}, and
their frequencies {fi1, fi2, · · · , fij , · · · , fin}, where fij is the
frequency of a n-gram (where n ∈ {5, 4, 3, 2} and any can-
didate word wij is a member of the n-gram), then we deter-
mine the normalized frequency value of any candidate word
wij as the frequency of the n-gram containing wij , over the
maximum frequency among all the candidate words for that
position.

F (wij) =
fij

max(fi1, fi2, · · · , fij , · · · , fin)
(6)

3.3 Determining Candidate Words (Phase 1)
First, we use Google 5-gram data set to find candidate

words of the word having spelling error. If the 5-gram data
set fails to generate at least one candidate word then we
move forward to 4-gram data set or 3-gram data set or

2We use equal weights in several places in this paper in order
to keep the system unsupervised. If development data would
be available, we could adjust the weights.

2-gram data set if the preceding data set fails to gener-
ate at least one candidate word. Let us consider an input
text W which after tokenization has m words, i.e., W =
{w1, w2, . . . , wi, . . . , wm}, where wi (i > 1)3 is the word hav-
ing the spelling error.

3.3.1 Determining candidate words using the 5-gram
data set

We use the following steps:

1. We define the term cut off frequency for word wi as
the frequency of the 5-gram wi−4 wi−3 wi−2 wi−1 wi

(where m > i > 5) in the Google Web 1T 5-grams, if
the said 5-gram exists. Otherwise, we set the cut off
frequency of wi as 0. The intuition behind using the
cut off frequency is the fact that, if the word is mis-
spelled, then the correct one should have a higher fre-
quency than the misspelled one in the context. Thus,
using the cut off frequency, we isolate a large number
of candidates that we do not need to process.

2. We find all the 5-grams (where only wi is changed while
wi−4, wi−3, wi−2 and wi−1 are unchanged), if any, hav-
ing frequency greater than the cut off frequency of wi

(determined in step 1). Let us consider that we find n
replacements of wi which are R1 = {wi1, wi2, · · · , win}
and their frequencies F1 = {fi1, fi2, · · · , fin} where fij

is the frequency of the 5-gram wi−4 wi−3 wi−2 wi−1

wij . If there is no such 5-gram (having frequency above
the cut off frequency), our task is two-fold: we set
matched←1, if there is at least one 5-gram, and we
jump to step 5 or 6 or 7 that is yet to visit.

3. For each wij ∈ R1, we calculate the string similarity
between wij and wi using equation (5) and then assign
a weight using the following equation (7) only to the
words that return the string similarity value greater
than 0.5.
weight(wi, wij) = βS(wi, wij) + (1− β)F (wij) (7)

Equation (7) is used to ensure a balanced weight be-
tween the string similarity function and the frequency
value function, where β refers to how much importance
we give to the string similarity function with respect
to the frequency value function.

4. We sort the words found in step 3 that were given
weights, if any, in descending order by the assigned
weights and keep only a fixed number of words as the
candidate words.

5. If this step is not visited yet then we follow step 1
to step 4 with the 5-gram wi−3 wi−2 wi−1 wi wi+1 if
m− 1 > i > 4. Otherwise, we go to next step.

6. If this step is not visited yet then we follow step 1
to step 4 with the 5-gram wi−2 wi−1 wi wi+1 wi+2 if
m− 2 > i > 3. Otherwise, we go to next step.

7. If this step is not visited yet then we follow step 1
to step 4 with the 5-gram wi−1 wi wi+1 wi+2 wi+3 if
m− 3 > i > 2. Otherwise, we go to next step.

8. If we find exactly one word in step 4, then return that
word as the suggestion word and exit.

9. If we find more than one word in step 4, we go to
section 3.5. Otherwise, if matched=1 then return no
suggestion and exit.

3It means that we do not consider the first word as the word
with spelling error.



3.3.2 Determining candidate words using the 4-gram,
3-gram and 2-gram data set

We use the same steps described in section 3.3.1 to de-
termine the candidate words using the 4-gram, 3-gram and
2-gram data set. If we find more than one candidate word,
we go to section 3.5. Otherwise, if matched=1 then return
no suggestion and exit. Otherwise, we proceed to phase 2.

3.4 Determining Candidate Words (Phase 2)
We follow phase 1 with some small changes: instead of

trying to find all the n-grams (n ∈ {5, 4, 3, 2}) where only wi

is changed while keeping all of {· · · , wi−2, wi−1} unchanged,
we try to find all the n-grams (n ∈ {5, 4, 3, 2}) where wi, and
any but the first member of {· · · , wi−2, wi−1} are changed
while keeping the rest of {· · · , wi−2, wi−1} unchanged.

3.5 Determining the Suggestion Word
We use this section only if we have more than one candi-

date word found in section 3.3 or section 3.4. Let us consider
that we find n candidate words of wi in section 3.3 or sec-
tion 3.4 which are {wi1, wi2, · · · , wij , · · · , win}. For each
wij , we use the string similarity value between wij and wi

(already calculated using equation (5)) and the normalized
frequency value of wij (already calculated using equation
(6)) and then calculate the weight value using equation (7)
by setting β = 0.5. We find the word having the maximum
weight value as the target suggestion word which is:

Suggestion Word = argmax
wij

weight(wi, wij) (8)

4. EVALUATION AND EXPERIMENTAL RE-
SULTS

We used as test data the same data that [10] used in their
evaluation of [8] method, which in turn was a replication
of the data used by [5] and [4] to evaluate their methods.
The data consisted of 500 articles (approximately 300,000
words) from the 1987−89 Wall Street Journal corpus, with
all headings, identifiers, and so on removed; that is, just a
long stream of text.

Malapropisms were randomly induced into this text at a
frequency of approximately one word in 200. Specifically,
any word whose base form was listed as a noun in WordNet
was potentially replaced by any spelling variation found in
the lexicon of the ispell spelling checker4. A spelling vari-
ation was defined as any word with an edit distance of 1
from the original word. Though [10] mentioned that the
data contained 1402 inserted malapropisms, there were only
1391 malapropisms. A detailed description of this data can
be found in [3, 10].

Some examples of successful and unsuccessful corrections,
using Google 5-grams, are shown in Table 1. For each er-
ror, our method returns either a suggestion (which is either
correct5 or wrong6) or no suggestion7. Figure 1 shows the
number of errors where either a suggestion or no suggestion
is generated for different combinations of n-grams used. Fig-
ure 2 breaks down the numbers shown in Figure 1 into true
positive, false positive and false negative.

4Ispell is a fast screen-oriented spelling checker that shows
you your errors in the context of the original file, and sug-
gests possible corrections when it can figure them out.
5A returned correct suggestion is also known as true positive.
6A returned wrong suggestion is also known as false positive.
7Also known as false negative.

SUCCESSFUL CORRECTION:
· · · chance to mend his fencers → fences [fences] with
Mr. Jefferies · · ·
· · · employees is the largest employee → employer [em-
ployer] in Europe and · · ·
SUCCESSFUL CORRECTION (in Second Phase):
· · · by releasing the WPPSS retort → report [report].
· · · tests comparing its potpourri covert → cover [cover]
with the traditional · · ·
FALSE POSITIVE CORRECTION:
· · · can almost see the firm → fire [farm] issue receding.
· · · the Senate to support aim → him [aid] for the
Contras · · ·
FALSE NEGATIVE:
I trust that the contract [contrast] between the Amer-
ican · · ·
· · · as much as <DOLLAR VALUE> billion [million].

Table 1: Examples of successful and unsuccessful
corrections using Google 5-grams. Italics indicate
the observed word, arrow indicates the correction,
square brackets indicate the intended word.
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Figure 1: Number of errors where a suggestion or no
suggestion is generated for different combinations of
n-grams used. Apostrophe (′) is used to denote the
n-grams used in phase 2. x-y-· · · z-gram means that
we use x-grams, y-grams, · · · and z-grams.
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Figure 2: Number of true positives, false positives
and false negatives for different combinations of n-
grams used.

The performance is measured using Precision (P ), Re-
call (R) and F-measure (F ). The fraction of suggestions
returned that are correct is the correction precision and the
fraction of errors corrected is the correction recall. Figure 3
shows precision, recall and F-measure for different combina-
tions of n-gram used. Figure 3 demonstrates how recall gets
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Figure 3: Precision, recall and F-measure for different combinations of n-grams used.

Detection correction
R P F R P F

Lexical cohesion [4]
0.306 0.225 0.260 0.281 0.207 0.238

Trigrams [10]
0.544 0.528 0.536 0.491 0.477 0.484

Google n-grams
- - - 0.88 0.91 0.89

Table 2: A comparison of recall, precision, and F-
measure for three methods of malapropism detec-
tion and correction on the same data set.

better using different combinations of n-gram while keeping
precision as high as possible.

We cannot directly compare our results with the correc-
tion results from previous work, because in that work the
correction was run on the results of the detection module,
cumulating the errors, while our correction module ran on
the correctly-flagged spelling errors. Still, we indirectly try
to compare our results with the previous work. Table 2
shows our method’s results on the described data set com-
pared with the results for the trigram method of [10] and
the lexical cohesion method of [4]. The data shown here
for trigram method are not from [10], but rather are later
results following some corrections reported in [3]. That the
corrected result of [10] can detect 762 errors and thus cor-
rect 688 errors out of these 762 detected errors means each
of the correction precision, recall and F-measure is 0.9. It
is obvious that the performance of correcting the rest of the
undetected errors will not be the same as correcting the de-
tected errors because these errors are difficult to correct since
they are difficult to detect in the first place. Still, the cor-
rection performance of our proposed method is comparable
to the correction performance of the method that runs on
the results of the detection module, cumulating the errors.

5. CONCLUSIONS
Our purpose in this paper was the development of a high-

quality correction module. The Google n-grams proved to
be very useful in correcting real-word errors. When we tried
with only 5-grams the precision (0.96) was good, though the
recall (0.34) was too low. Having sacrificed a bit of the pre-
cision score, our proposed combination of n-grams method
achieves a very good recall (0.88) while maintaining the pre-
cision at 0.91. Our attempts to improve the correction recall
while maintaining the precision as high as possible are help-
ful to the human correctors who post-edit the output of the
real-word spell checker. If there is no postediting, at least

more errors get corrected automatically. Our method could
also correct misspelled words, not only malapropism, with-
out any modification. In future work, we plan to add a de-
tection module and extend our method to allow for deleted
or inserted words, and to find the corrected strings in the
Google Web 1T n-grams. In this way we will be able to
correct grammar errors too.
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