
Semantic Similarity of Short Texts
 Aminul Islam and Diana Inkpen

University of Ottawa
School of Information Tech. and Eng.
Ottawa, Ontario, Canada, K1N 6N5
{mdislam, diana}@site.uottawa.ca

Abstract
This paper presents a method for measuring the

semantic similarity of texts using a corpus based measure of
semantic word similarity and a normalized and modified
versions of the Longest Common Subsequence (LCS) string
matching algorithm. Existing methods for computing text
similarity have focused mainly on either large documents or
individual words. In this paper, we focus on computing the
similarity between two sentence or between two short
paragraphs. The proposed method can be exploited in a
variety of applications involving textual knowledge
representation and knowledge discovery. Evaluation results
on two different data sets show that our method
outperforms several competing methods.

Keywords
Semantic similarity of words, similarity of short texts, corpus-
based measures.

1. Introduction
Similarity is a complex concept which has been widely
discussed in the linguistic, philosophical, and information
theory communities. Frawley [9] discusses all semantic
typing in terms of two mechanisms: the detection of
similarities and differences. For our task, given two input
text segments, we want to automatically determine a
score that indicates their similarity at semantic level, thus
going beyond the simple lexical matching methods
traditionally used for this task.

An effective method to compute the similarity
between short texts or sentences has many applications in
natural language processing and related areas such as
information retrieval and text filtering. For example, in
web page retrieval, text similarity has proven to be one of
the best techniques for improving retrieval effectiveness
[33] and in image retrieval from the Web, the use of short
text surrounding the images can achieve a higher
retrieval precision than the use of the whole document in
which the image is embedded [3]. The use of text
similarity is beneficial for relevance feedback and text
categorization [13], [24], text summarization [7], [22],
word sense disambiguation [19], methods for automatic
evaluation of machine translation [25], [31], evaluation
of text coherence [17], and schema matching in databases
[26].

One of the major drawbacks of most of the existing
methods is the domain dependency: once the similarity
method is designed for a specific application domain, it
cannot be adapted easily to other domains. To address
this drawback, we aim to develop a method that is fully
automatic and independent of the domain in applications

requiring small text or sentence similarity measure. The
computing of text similarity can be viewed as a generic
component for the research community dealing with text-
related knowledge representation and discovery.

This paper is organized as follow: Section 2 presents
a brief overview of the related work. Our proposed
method is described in Section 3. Evaluation and
experimental results are discussed in Section 4.

2. Related Work
There is extensive literature on measuring the similarity
between long texts or documents [15], [27], [28], but
there is less work related to the measurement of
similarity between sentences or short texts [8]. Related
work can roughly be classified into four major
categories: word co-occurrence/vector-based document
model methods, corpus-based methods, hybrid methods,
and descriptive feature-based methods.

The vector-based document model methods are
commonly used in Information Retrieval (IR) systems
[28], where the document most relevant to an input query
is determined by representing a document as a word
vector, and then queries are matched to similar
documents in the document database via a similarity
metric [37].

The Latent Semantic Analysis (LSA) [15], [16] and
the Hyperspace Analogues to Language (HAL) model [2]
are two well known methods in corpus-based similarity.
LSA analyzes a large corpus of natural language text and
generates a representation that captures the similarity of
words and text passages. The dimension of the word by
context matrix is limited to several hundreds because of
the computational limit of Singular Value Decomposition
(SVD). As a result the vector is fixed and the
representation of a short text is very sparse. The HAL
method uses lexical co-occurrence to produce a high-
dimensional semantic space. The authors’ experimental
results showed that HAL was not as promising as LSA in
the computation of similarity for short texts.

Hybrid methods use both corpus-based measures [38]
and knowledge-based measures [18] of word semantic
similarity to determine the text similarity. Mihalcea et al.
[30] suggest a combined method for measuring the
semantic similarity of texts by exploiting the information
that can be drawn from the similarity of the component
words. Specifically, they use two corpus-based measures,
PMI-IR (Pointwise Mutual Information and Information
Retrieval) [38] and LSA (Latent Semantic Analysis) [16]
and six knowledge-based measures [12], [18], [19], [23],

[34], [39] of word semantic similarity, and combine the
results to show how these measures can be used to derive
a text-to-text similarity metric. They evaluate their
method on a paraphrase recognition task. The main
drawback of this method is that it computes the similarity
of words from eight different methods, which is not
computationally efficient.

Li et al. [20] propose another hybrid method that
derives text similarity from semantic and syntactic
information contained in the compared texts. Their
proposed method dynamically forms a joint word set
only using all the distinct words in the pairs of sentences.
For each sentence, a raw semantic vector is derived with
the assistance of the WordNet lexical database [32]. A
word order vector is formed for each sentence, again
using information from the lexical database. Since each
word in a sentence contributes differently to the meaning
of the whole sentence, the significance of a word is
weighted by using information content derived from a
corpus. By combining the raw semantic vector with
information content from the corpus, a semantic vector is
obtained for each of the two sentences. Semantic
similarity is computed based on the two semantic vectors.
An order similarity is calculated using the two order
vectors. Finally, the sentence similarity is derived by
combining semantic similarity and order similarity.

Feature-based methods try to represent a sentence
using a set of predefined features. Similarity between two
texts is obtained through a trained classifier. But finding
effective features and obtaining values for these features
from sentences make this category of methods more
impractical.

3. Proposed Method
The proposed method derives text similarity of two texts
by combining semantic similarity and string similarity,
with normalization. We call our proposed method the
Semantic Text Similarity (STS) method. We investigate
the importance of including string similarity by a simple
example. Let us consider a pair of texts, T1 and T2 that
contain a proper noun (proper name) ‘Maradona’ in T1.
In T2 the name ‘Maradona’ is misspelled to ‘Maradena’.

T1 : Many consider Maradona as the best player in
soccer history.

T2 : Maradena is one of the best soccer players.
Dictionary-based similarity measure can not provide any
similarity value between these two proper names. And
the chance to obtain a similarity value using corpus-
based similarity measures is very low. We obtain a good
similarity score if we use string similarity measures. The
following sections present a detailed description of each
of the above mentioned functions.

3.1 String Similarity between Words
We use the longest common subsequence (LCS) [1], [14]
measure with some normalization and small
modifications for our string similarity measure. We use

three different modified versions of LCS and then take a
weighted sum of these1. Melamed [29] normalized LCS
by dividing the length of the longest common
subsequence by the length of the longer string and called
it longest common subsequence ratio (LCSR). But LCSR
does not take into account of the length of the shorter
string which sometimes has a significant impact on the
similarity score.

We normalize the longest common subsequence
(LCS) so that it takes into account of the length of both
the shorter and the longer string and call it normalized
longest common subsequence (NLCS) which is,

)()(
))},(({

),(
2

1
ji

ji
ji slengthrlength

srLCSlength
srNLCSv

×
== (1)

While in classical LCS, the common subsequence
needs not be consecutive, in text matching, consecutive
common subsequence is important for a high degree of
matching. We use maximal consecutive longest common
subsequence starting at character 1, v2 = MCLCS1 (Fig.
1) and maximal consecutive longest common
subsequence starting at any character n, v3 = MCLCSn
(Fig. 2). In Fig. 1, we present an algorithm that takes two
strings as input and returns the shorter string or maximal
consecutive portions of the shorter string that
consecutively match with the longer string, where
matching must be from first character (character 1) for
both strings. In Fig. 2, we present another algorithm
where matching may start from any character (character
n). We also normalize MCLCS1 and MCLCSn.

We take the weighted sum of the values v1, v2, and v3
to determine string similarity score, where w1, w2, w3 are
weights and w1+w2+w3=1. Therefore, the similarity of the
two strings is: α = w1v1 + w2v2 + w3v3 (2)
We set equal weights for our experiments. 2

Algorithm MCLCS1
 Input: ri, sj // ri and sj are two input strings where
 // |ri| = τ, |sj| = η and τ ≤ η as mentioned earlier.
1. τ ← |ri|, η ← |sj|
2. while |ri| > 0
3. if ri ⊂ sj // i.e., sj ∩ ri = ri
4. return ri
5. else ri ← ri \ cτ // i.e., remove the right-
 // most character from ri
6. end if
7. end while
 Output: ri // ri is the Maximal Consecutive
 // LCS starting at character 1

Fig. 1. Maximal consecutive LCS starting at character 1.

1 We use modified versions because in our experiments we obtained

better results (precision and recall) for text matching on a sample of
data than when using the original LCS, or other string similarity
measures.

2 We use equal weights in several places in this paper in order to keep
the system unsupervised. If development data would be available, we
could adjust the weights.

Algorithm MCLCSn
 Input: ri, sj // ri and sj are two input strings
 // where |ri| = τ, |sj| = η and τ ≤ η.
1. while |ri| > 0
2. determine all n-grams from ri where n = 1 .. |ri|

 and ir is the set of n-grams

3. if x ∈ Sj where {x | irx∈ , x = Max (ir)}

 // i is the number of n-grams and Max (ir)

 // returns the maximum length n-gram from ir
4. return x

5. else ir ← ir \ x // remove x from set ir
6. end if
7. end while
 Output: x // x is the Maximal Consecutive
 // LCS starting at any character n

Fig. 2. Maximal consecutive LCS starting at any character n

Algorithm semanticMatching
 Input: ri, sj // ri and sj are two input words
 // where |ri| = τ, |sj| = η and τ ≤ η.
1. v ← SOCPMI(ri, sj) // This method determines
 // semantic similarity between two words. Any
//other similarity method can also be used instead.
2. if v> λ // λ is the maximum possible similarity
values
3. v ← 1
4. else v ← v / λ
5. end if
Output: v // v is the semantic similarity value
 // between 0 and 1, inclusively

Fig. 3. Semantic similarity matching.

3.2 Semantic Similarity between Words
There is a relatively large number of word-to-word
similarity metrics in the literature, ranging from distance-
oriented measures computed on semantic networks or
knowledge base (or dictionary/thesaurus-based
measures), to metrics based on models of information
theory (or corpus-based measures) learned from large
text collections. A detailed review on word similarity can
be found in [21], [35]. We focus our attention on corpus-
based measures because of their large type coverage.

PMI-IR [38] is a simple method for computing
corpus-based similarity of words which uses Pointwise
Mutual Information. PMI-IR used AltaVista Advanced
Search query syntax to calculate the probabilities. LSA,
another corpus-based measure, analyzes a large corpus of
natural text and generate a representation that captures
the similarity of words (discussed in the Related Work
section).

We use the Second Order Co-occurrence PMI (SOC-
PMI) word similarity method [10] that uses Pointwise
Mutual Information to sort lists of important neighbor
words of the two target words from a large corpus. The

method considers the words which are common in both
lists and aggregate their PMI values (from the opposite
list) to calculate the relative semantic similarity. We
define the pointwise mutual information function for only
those words having f b(ti, w) > 0,

2

(,)
(,) log ,

() ()

b
pm i i

i t t
i

f t w m
f t w

f t f w
×

=

where f t(ti) tells us how many times the type ti appeared
in the entire corpus, f b(ti, w) tells us how many times
word ti appeared with word w in a context window words
and m is total number of tokens in the corpus. Now, for
word w1, we define a set of words, X, sorted in
descending order by their PMI values with w1 and taken
the top-most β1 words having f pmi(ti, w1) > 0.

X = {Xi}, where i = 1, 2, …, β1 and

f pmi(t1, w1) ≥ f pmi(t2, w1) ≥… f pmi(t β1-1, w1) ≥ f pmi(tβ1, w1)

Similarly, for word w2, we define a set of words, Y,
sorted in descending order by their PMI values with w2
and taken the top-most β2 words having f pmi(ti, w2) > 0.
The value of β (either β1 or β2) is related to how many
times a word w appears in the corpus, i.e., the frequency
of w as well as the number of types in the corpus. Then
we define the β-PMI summation function. For word w1,
the β-PMI summation function is:

 ()1
1 21

() (,) ,pmi
i

i
f w f X w

β γβ

=
= ∑

where, and
2

(,) 0p m i
if X w > 1

(,) 0pmi
if X w >

which sums all the positive PMI values of words in the
set Y also common to the words in the set X. In other
words, this function actually aggregates the positive PMI
values of all the semantically close words of w2 which
are also common in w1’s list. The higher the value of γ is,
the greater emphasis on words having very high PMI
values with w1 is given. Similarly, we calculate the β-
PMI summation function for word w2. Finally, we define
the semantic PMI similarity function between the two
words, w1 and w2,

 1 2
1 2

1 2

() ()
(,)

f w f w
Sim w w

β β

β β
= +

We normalize the semantic word similarity (Fig. 3),
so that it provides a similarity score between 0 and 1
inclusively. The word similarity method is a separate
module in our Text Similarity Method. Therefore any
other word similarity method could be substituted instead
of SOC-PMI. In that case, we need to set λ to the
maximum similarity value specific to that method.

3.3 Overall Sentence Similarity
Our task is to derive a score between 0 and 1 inclusively
that will indicate the similarity between two texts P and
R at semantic level. The main idea is to find, for each
word in the first sentence, the most similar matching in
the second sentence. The method consists in the
following six steps:

Step 1: We use all special characters, punctuations, and
capital letters, if any, as initial word boundary and
eliminate all these special characters, punctuations and
stop words. We lemmatize each of the segmented words
to generate tokens. After cleaning we assume that the text
P = {p1, p2 …, pm} has m tokens and the text R = {r1, r2
…, rn} has n tokens and n ≥ m. Otherwise, we switch P
and R.
Step 2: We count the number of pi’s (say, δ) for which pi

= rj, for all p ∈ P and for all r ∈ R. I.e., there are δ tokens
in P that exactly match with R, where δ ≤ m. We remove
all δ tokens from both of P and R. So, P = {p1, p2 …, pm-

δ} and R = {r1, r2 …, rn-δ}. If all the terms match, m-δ =
0, we go to step 6.
Step 3: We construct a (m-δ)×(n-δ) string similarity
matrix (say, M1 = (αij)(m-δ)×(n-δ)) using the following
process: we assume any token pi ∈ P has τ characters,
i.e., pi = {c1c2…cτ}and any token rj ∈ R has η characters,
i.e., rj = {c1c2 … cη}where τ ≤ η. In other words, η is the
length of the longer token and τ is the length of the
shorter token. We calculate the followings:
v1 ← NLCS(pi, rj),
v2 ← NMCLCS1(pi, rj)
v3 ← NMCLCSn(pi, rj),
αij ← w1v1 + w2v2 + w3v3

i.e., αij is a weighted sum of v1, v2, and v3 where w1, w2,
w3 are weights and w1+w2+w3=1. We set equal weights
for our experiments.
 We put αij in row i and column j position of the matrix
for all i = 1 … m- δ and j = 1 … n- δ.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−−−

−

−

−

))(()(2)(1)(

)(21

)(222221

)(111211

1

δδδδδ

δ

δ

δ

αααα

αααα

αααα
αααα

nmjmmm

niijii

nj

nj

M

Step 4: We construct a (m-δ)×(n-δ) semantic similarity
matrix (say, M2 = (βij)(m-δ)×(n-δ)) using the following
process: We put βij (βij ← semanticMatching(pi, rj) (Fig.
3) in row i and column j position of the matrix for all i =
1 … m-δ and j = 1 … n-δ.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−−−

−

−

−

))(()(2)(1)(

)(21

)(222221

)(111211

2

δδδδδ

δ

δ

δ

ββββ

ββββ

ββββ
ββββ

nmjmmm

niijii

nj

nj

M

Step 5: We construct another (m-δ)×(n-δ) joint matrix
(say, M = (γij)(m-δ)×(n-δ)) using
 M ← ψM1 + φM2 (3)
(i.e., γij = ψαij + φβij) where ψ is the string matching
matrix weight factor. φ is the semantic similarity matrix

weight factor, and ψ + φ = 1. We set equal weights for
our experiments.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−−−

−

−

−

))(()(2)(1)(

)(21

)(222221

)(111211

δδδδδ

δ

δ

δ

γγγγ

γγγγ

γγγγ
γγγγ

nmjmmm

niijii

nj

nj

M

After constructing the joint matrix, M, we find out the
maximum-valued matrix-element, γij. We add this matrix
element to a list (say, ρ and ρ ← ρ ∪ γij) if γij > 0. We
remove all the matrix elements of i’th row and j’th
column from M. We repeat the finding of the maximum-
valued matrix-element, γij adding it to ρ and removing all
the matrix elements of the corresponding row and
column until either γij = 0, or m-δ-|ρ| = 0, or both.
Step 6: We sum up all the elements in a value ρ and add
δ to it to get a total score. We multiply this total score by
the reciprocal harmonic mean of m and n to obtain a
balanced similarity score between 0 and 1, inclusively.

| |

1
() (

(,)
2

i
i

m n
S P R

mn

ρ

δ ρ
=

)+ × +
=

∑
 (4)

4. Evaluation and Experimental Results
In order to evaluate our text similarity measure, we use
two different data sets: 30 sentence pairs [20] and the
Microsoft paraphrase corpus [6].

4.1 Experiment with Human Similarities of
Sentence Pairs
We use the same data set as Li et al. [20] (available at
http://www.docm.mmu.ac.uk/STAFF/D.McLean/Sentenc
eResults.htm). Li et al. [20] collected human ratings for
the similarity of pairs of sentences following existing
designs for word similarity measures. The participants
consisted of 32 volunteers, all native speakers of English
educated to graduate level or above. Li et al. [20] began
with the set of 65 noun pairs from Rubenstein and
Goodenough [36] and replaced them with their
definitions from the Collins Cobuild dictionary [4].
Cobuild dictionary definitions are written in full
sentences, using vocabulary and grammatical structures
that occur naturally with the word being explained. The
participants were asked to complete a questionnaire,
rating the similarity of meaning of the sentence pairs on
the scale from 0.0 (minimum similarity) to 4.0
(maximum similarity), as in Rubenstein and Goodenough
(R&G) [36]. Each sentence pair was presented on a
separate sheet. The order of presentation of the sentence
pairs was randomized in each questionnaire. The order of
the two sentences making up each pair was also
randomized. This was to prevent any bias being
introduced by order of presentation. Each of the 65
sentence pairs was assigned a semantic similarity score
calculated as the mean of the judgments made by the

participants. The distribution of the semantic similarity
scores was heavily skewed toward the low similarity end
of the scale. A subset of 30 sentence pairs was selected to
obtain a more even distribution across the similarity
range. This subset contains all of the sentence pairs rated
1.0 to 4.0 and 11 (from a total of 46) sentences rated 0.0
to 0.9 selected at equally spaced intervals from the list.
The detailed procedure of this data set preparation is in
[20]. Table 1 shows average human similarity scores
along with Li et al.’s Similarity Method scores [20] and
our proposed Semantic Text Similarity scores. Human
similarity scores are provided as the mean score for each
pair and have been scaled into the range [0..1].

0.816
0.853

0.594

0.921

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithm Similarity
Measure

Semantic Text Similarity
Measure

Worst participant Best participant

Different Measures

C
or

re
la

tio
n

Fig. 4. Similarity correlations.

Table 1. Results on Li et al. sentence data set
R&
G
No.

R&G
word pair Sim.
in the
sentence

Human

(Mean)

Li et STS
al.
Sim.
Meth.

Meth.
R&
G
No.

R&G
word
pair in the
sentence

Human
Sim.
(Mean)

Li et STS
al.
Sim.
Meth.

Meth.

1

Cord
Smile

0.01 0.33 0.06 51

Glass
Tumbler

0.14 0.65 0.28

5

Autograph
Shore

0.01 0.29 0.11 52

Grin
Smile

0.49 0.49 0.32

9

Asylum
Fruit

0.01 0.21 0.07 53

Serf
Slave

0.48 0.39 0.44

13

Boy
Rooster

0.11 0.53 0.16 54

Journey
Voyage

0.36 0.52 0.41

17

Coast
Forest

0.13 0.36 0.26 55

Autograph
Signature

0.41 0.55 0.19

21

Boy
Sage

0.04 0.51 0.16 56

Coast
Shore

0.59 0.76 0.47

25

Forest
Graveyard

0.07 0.55 0.33 57

Forest
Woodland

0.63 0.7 0.26

29

Bird
Woodland

0.01 0.33 0.12 58

Implement
Tool

0.59 0.75 0.51

33

Hill
Woodland

0.15 0.59 0.29 59

Cock
Rooster

0.86 1 0.94

37

Magician
Oracle

0.13 0.44 0.20 60

Boy
Lad

0.58 0.66 0.60

41

Oracle
Sage

0.28 0.43 0.09 61

Cushion
Pillow

0.52 0.66 0.29

47

Furnace
Stove

0.35 0.72 0.30 62

Cemetery
Graveyard

0.77 0.73 0.51

48

Magician
Wizard

0.36 0.65 0.34 63

Automobil
Car

0.56 0.64 0.52

49

Hill
Mound

0.29 0.74 0.15 64

Midday
Noon

0.96 1 0.93

50

Cord
String

0.47 0.68 0.49 65

Gem
Jewel

0.65 0.83 0.65

Fig. 4 shows that our proposed Semantic Text Similarity
Measure achieves a high Pearson correlation coefficient
of 0.853 with the average human similarity ratings,
whereas Li et al.’s Similarity Measure [20] achieves
0.816. The improvement we obtained is statistically
significant at the 0.05 level3. In the human judging
experiment of Li et al. [20] the best human participant
obtained a correlation of 0.921 with the mean of the
participants and the worst participant obtained 0.594.

4.2 Experiment with Microsoft Paraphrase
Corpus
We use the semantic text similarity method to
automatically identify if two text segments are
paraphrases of each other. We use the Microsoft
paraphrase corpus [6], consisting of 4,076 training and

3 We used the test from http://faculty.vassar.edu/lowry/rdiff.html?

1,725 test pairs, and determine the number of correctly
identified paraphrase pairs in the corpus using the
semantic text similarity measure. The paraphrase pairs in
this corpus were labeled by two human annotators who
determined if the two sentences in a pair were
semantically equivalent paraphrases or not. The
agreement between the human judges who labeled the
candidate paraphrase pairs in this data set was measured
at approximately 83%, which can be considered as an
upper bound for an automatic paraphrase recognition task
performed on this data set.

We acknowledge, as in [5], that the semantic
similarity measure for short texts is a necessary step in
the paraphrase recognition task, but not always sufficient.
There might be cases when the same meaning is
expressed in one sentence and the exact opposite
meaning in the second sentence (for example by adding
the word not). For these situations deeper reasoning
methods are needed.

We evaluate the results in terms of accuracy, the
number of pairs predicted correctly divided by the total
number of pairs. We also measure precision (P = TP /
(TP + FP)), recall (R = TP / (TP + FN)) and F-measure
(F = 2PR / (P + R)). Here, TP, FP and FN stand for True
Positive, False Positive and False Negative respectively.

We use eleven different similarity thresholds ranging
from 0 to 1 with interval 0.1. In Table 2, when we use
similarity threshold score of 1 (i.e., matching word by
word exactly, therefore no semantic similarity matching
is needed), we obtain recall value of 0.0044 for the test
data set. We can consider this score as one of the
baselines. Mihalcea et al. [30] mentioned two other
baselines: Vector-based and Random. See Table 3 for the
results of these baselines and the results of several
methods from [30] and [5] (on the test set).

For this paraphrase identification task, we can
consider our proposed STS method as a supervised
method. Using training data set, we obtain the best
accuracy of 72.42% when we use 0.6 as the similarity
threshold score. Therefore we can recommend this
threshold for use on the test set, achieving an accuracy of
72.64% (our method predicts 1369 pairs as correct, out of
which 1022 pairs are correct among the 1725 manually
annotated pairs). Our results on the test set are shown in
Table 3.

For each candidate paraphrase pair in the test set, we
first calculate the semantic text similarity score using (4),

and then label the candidate pair as a paraphrase if the
similarity score exceeds a threshold of 0.6. We obtain the
same F-measure (81%) at the combined methods from
[30] and [5]. We obtain higher accuracy and precision at
the cost of decreasing recall.

Table 2. Characteristics of the paraphrase evaluation data
set and our results

Number
of pairs
in (data

set)

Number of Similarity
threshold
score in

our
method

pairs
determine

d as
correct by

human
annotators
(TP+FN)

Accuracy
(%)

Number
of

correct
pairs
(TP)

Number
of

predicte
d pairs

(TP+FP)

0 67.54 2753 4076

0.1 67.54 2753 4076

0.2 67.54 2753 4076

0.3 67.59 2753 4074

0.4 67.74 2751 4064

0.5 69.53 2708 3905

0.6 72.42 2435 3241

0.7 68.45 1874 2281

0.8 56.67 1085 1183

0.9 37.78 218 219

4076

(Training)

2753

1.0 32.82 15 15

0 66.49 1147 1725

0.1 66.49 1147 1725

0.2 66.49 1147 1725

0.3 66.49 1147 1725

0.4 66.66 1146 1720

0.5 68.86 1128 1646

0.6 72.64 1022 1369

0.7 68.06 768 940

0.8 56.29 443 493

0.9 38.38 86 88

1725

(Test)

1147

1.0 33.79 5 5

5. Conclusion
Our proposed STS method achieves a very good Pearson
correlation coefficient for 30 sentence pairs data set and
outperforms the results obtained by Li et al. [20] (the
improvement is statistically significant). For the
paraphrase recognition task, our proposed STS method
performs similar to the combined unsupervised method
[30] and the combined supervised method [5]. The main
advantage of our system is that is that it has lower
complexity and running time than the other systems [20],
[5], [30], because we use only one corpus-based measure,
while they combine both corpus-based and WordNet-
based measures. For example, Mihalcea et. al [30] use six
WordNet-based measures and two corpus-based

measures. The complexity of the algorithms and their
running time is given mainly by the number of searches
in the corpus and in WordNet. We don’t use WordNet at
all, therefore saving a lot of time. We add the string
similarity measure, but this is very fast, because we apply
it on short strings (no search needed).

Our method can be used as unsupervised or
supervised. For the second task, paraphrase recognition,
we used it as supervised, but only to find the best
threshold. For the first task, comparing our sentence
similarity score to scores assigned by human judges, our
system is used as unsupervised (there is no training data
available).

Table 3. Text similarity results for paraphrase identification
(test set)

Metric Accuracy Precision Recall F-measure

Semantic similarity (corpus-based)

PMI-IR 69.9 70.2 95.2 81.0

LSA 68.4 69.7 95.2 80.5

STS 72.6 74.7 89.1 81.3

Semantic similarity (knowledge-based)

J & C 69.3 72.2 87.1 79.0

L & C 69.5 72.4 87.0 79.0

Lesk 69.3 72.4 86.6 78.9

Lin 69.3 71.6 88.7 79.2

W & P 69.0 70.2 92.1 80.0

Resnik 69.0 69.0 96.4 80.4

Combined(S) 71.5 72.3 92.5 81.2

Combined(U)70.3 69.6 97.7 81.3

Baselines

Threshold-1 33.8 100.0 0.44 0.87

Vector-based 65.4 71.6 79.5 75.3

Random 51.3 68.3 50.0 57.8

6. References
[1] L. Allison, T.I. Dix, ”A Bit-String Longest-Common-

Subsequence Algorithm,” Information Processing Letters,
vol. 23, pp. 305-310, 1986.

[2] C. Burgess, K. Livesay, and K. Lund, “Explorations in
Context Space: Words, Sentences, Discourse,” Discourse
Processes, vol. 25, nos. 2-3, pp. 211-257, 1998.

[3] T.A.S. Coelho, P.P. Calado, L.V. Souza, B. Ribeiro-Neto,
and R. Muntz, “Image Retrieval Using Multiple Evidence
Ranking,” IEEE Trans. Knowledge and Data Eng., vol.
16, no. 4, pp. 408-417, Apr. 2004.

[4] Collins Cobuild English Dictionary for Advanced
Learners, J. Sinclair, ed., third ed. Harper Collins Pub.,
2001.

[5] C. Corley and R. Mihalcea, “Measures of Text Semantic
Similarity,” Proc. ACL workshop on Empirical Modeling
of Semantic Equivalence, Ann Arbor, MI, June, 2005.

[6] W. Dolan, C. Quirk, and C. Brockett, “Unsupervised
Construction of Large Paraphrase Corpora: Exploiting
Massively Parallel News Sources,” Proc. 20th Int’l Conf.
Computational Linguistics, 2004.

[7] G. Erkan and D.R. Radev, “LexRank: Graph-Based
Lexical Centrality As Salience in Text Summarization,” J.
Artificial Intelligence Research, vol. 22, pp. 457-479,
2004.

[8] P.W. Foltz, W. Kintsch, and T.K. Landauer, “The
Measurement of Textual Coherence with Latent Semantic
Analysis,” Discourse Processes, vol. 25, nos. 2-3, pp. 285-
307, 1998.

[9] W. Frawley, Linguistic Semantics. Lawrence Erlbaum
Associates, Hillsdale, New Jersey, 1992.

[10] A. Islam and D. Inkpen, “Second Order Co-occurrence
PMI for Determining the Semantic Similarity of Words,”
Proc. Int’l Conf. on Language Resources and Evaluation,
Genoa, Italy, May, 2006.

[11] M. Jarmasz and S. Szpakowicz, “Roget's Thesaurus and
Semantic Similarity,” Proc. Int’l Conf. on Recent
Advances in Natural Language Processing, pp. 212-219,
2003.

[12] J. Jiang and D. Conrath, “Semantic Similarity based on
Corpus Statistics and Lexical Taxonomy,” Proc. Int’l
Conf. Research in Computational Linguistics, 1997.

[13] Y. Ko, J. Park, and J. Seo, “Improving Text Categorization
Using the Importance of Sentences,” Information
Processing and Management, vol. 40, pp. 65-79, 2004.

[14] G. Kondrak, “N-gram Similarity and Distance,” Proc. Twelfth
Int’l Conf. on String Processing and Information Retrieval,
pp. 115-126, 2005.

[15] T. K. Landauer and S. T. Dumais, “A Solution to Plato’s
Problem: The Latent Semantic Analysis Theory of the
Acquisition, Induction, and Representation of
Knowledge,” Psychological Review, vol. 104, nos. 2 , pp.
211-240, 1997.

[16] T. K. Landauer, P. W. Foltz, and D. Laham, “Introduction
to Latent Semantic Analysis,” Discourse Processes, vol.
25, nos. 2-3, pp. 259-284, 1998.

[17] M. Lapata and R. Barzilay, “Automatic Evaluation of Text
Coherence: Models and Representations,” Proc. 19th Int’l
Joint Conf. AI, 2005.

[18] C. Leacock and M. Chodorow, “Combining Local Context
and WordNet Sense Similarity for Word Sense
Identification,” WordNet, An Electronic Lexical Database,
The MIT Press, 1998.

[19] M. Lesk, “Automatic Sense Disambiguation using
Machine Readable Dictionaries: How to Tell a Pine Cone
from an Ice Cream Cone,” Proc. SIGDOC Conf., 1986.

[20] Y. Li, D. McLean, Z. Bandar, J. O’Shea, and K. Crockett,
“Sentence Similarity Based on Semantic Nets and Corpus
Statistics,” IEEE Trans. Knowledge and Data Eng., vol.
18, no. 8, pp. 1138-1149, Aug. 2006.

[21] Y.H. Li, Z. Bandar, and D. McLean, “An Approach for
Measuring Semantic Similarity Using Multiple
Information Sources,” IEEE Trans. Knowledge and Data
Eng., vol. 15, no. 4, pp. 871-882, July/ Aug. 2003.

[22] C. Lin and E. Hovy, “Automatic Evaluation of Summaries
using n-gram Co-occurrence Statistics,” Proc. Human
Language Technology Conf., 2003.

[23] D. Lin, “An Information-theoretic Definition of
Similarity,” Proc. Int’l Conf. Machine Learning, 1998.

[24] T. Liu and J. Guo, “Text Similarity Computing Based on
Standard Deviation,” Proc. Int’l Conf. on Intelligent
Computing, D.-S. Huang, X.-P. Zhang and G.-B. Huang,
eds., LNCS 3644, Springer, pp. 456-464, 2005

[25] Y. Liu and C.Q. Zong, “Example-Based Chinese-English
MT,” Proc. 2004 IEEE Int’l Conf. Systems, Man, and
Cybernetics, vols. 1-7, pp. 6093-6096, 2004.

[26] J. Madhavan, P. Bernstein, A. Doan, and A. Halevy,
“Corpus-based Schema Matching,” Int’l Conf. Data Eng.,
2005.

[27] A. Maguitman, F. Menczer, H. Roinestad, and A.
Vespignani, “Algorithmic Detection of Semantic
Similarity,” Proc. 14th Int’l World Wide Web Conf., May
2005.

[28] C.T. Meadow, B.R. Boyce, and D.H. Kraft, Text
Information Retrieval Systems, second ed. Academic
Press, 2000.

[29] I.D. Melamed, “Bitext Maps and Alignment via Pattern
Recognition,” Computational Linguistics, vol. 25, no. 1,
pp. 107–130, 1999.

[30] R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-
based and Knowledge-based Measures of Text Semantic
Similarity,” Proc. American Association for Artificial
Intelligence, Boston, July, 2006.

[31] G.A. Miller and W.G. Charles, “Contextual Correlates of
Semantic Similarity,” Language and Cognitive Processes,
vol. 6, no. 1, pp. 1-28, 1991.

[32] G.A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K.J.
Miller, “Introduction to WordNet: An on-line lexical
database,” CSL 43, Cognitive Science Laboratory,
Princeton University, Princeton, NJ, 1993.

[33] E.K. Park, D.Y. Ra, and M.G. Jang, “Techniques for
Improving Web Retrieval Effectiveness,” Information
Processing and Management, vol. 41, no. 5, pp. 1207-
1223, 2005.

[34] P. Resnik, “Using Information Content to Evaluate
Semantic Similarity in a Taxonomy,” Proc. 14th Int’l Joint
Conf. AI, 1995.

[35] M.A. Rodriguez and M.J. Egenhofer, “Determining
Semantic Similarity among Entity Classes from Different
Ontologies,” IEEE Trans. Knowledge and Data Eng., vol.
15, no. 2, pp. 442-456, Mar./Apr. 2003.

[36] H. Rubenstein and J.B. Goodenough, “Contextual
Correlates of Synonymy,” Comm. ACM, vol. 8, no. 10, pp.
627-633, 1965.

[37] G. Salton and M. Lesk, Computer evaluation of indexing
and text processing. Prentice Hall, Ing. Englewood Cliffs,
New Jersey, pp. 143–180., 1971.

[38] P. Turney, “Mining the Web for Synonyms: PMI-IR
versus LSA on TOEFL,” Proc. Twelfth European Conf.
Machine Learning, 2001.

[39] Z. Wu and M. Palmer, “Verb Semantics and Lexical
Selection,” Proc. Ann. Meeting Association for
Computational Linguistics, 1994.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Guo:Jun.html

	Introduction
	Related Work
	Proposed Method
	String Similarity between Words
	Semantic Similarity between Words
	Overall Sentence Similarity

	Evaluation and Experimental Results
	Experiment with Human Similarities of Sentence Pairs
	Experiment with Microsoft Paraphrase Corpus

	Conclusion
	References

