
A Statistical Model for Near-Synonym Choice

DIANA INKPEN

University of Ottawa

We present an unsupervised statistical method for automatic choice of near-synonyms when the
context is given. The method uses the Web as a corpus to compute scores based on mutual
information. Our evaluation experiments show that this method performs better than two previous
methods on the same task. We also describe experiments in using supervised learning for this
task. We present an application to an intelligent thesaurus. This work is also useful in machine
translation and natural language generation.

Categories and Subject Descriptors: I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—text analysis; I.2.6 [Artificial Intelligence]: Learning—induction; knowledge acquisition

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Lexical choice, near-synonyms, semantic similarity, Web as
a corpus, intelligent thesaurus

1. INTRODUCTION

When writing a text, a poorly chosen word can convey unwanted connotations,
implications, or attitudes. Similarly, in machine translation and natural language
generation systems, the choice among near-synonyms needs to be made carefully.
By near-synonyms we mean words that have the same meaning, but differ in lexical
nuances. For example, error, mistake, and blunder all mean a generic type of error,
but blunder carries an implication of accident or ignorance. In addition to paying
attention to lexical nuances, when choosing a word we need to make sure it fits
well with the other words in a sentence. In this paper we investigate how the
collocational properties of near-synonyms can help with choosing the best word in
each context. This problem is difficult because the near-synonyms have senses that
are very close to each other, and therefore they occur in similar contexts.

The work we present here is needed in two of our applications. The first one
is an intelligent thesaurus. A writer can access a thesaurus to retrieve words that
are similar to a given word, when there is a need to avoid repeating the same
word, or when the word does not seem to be the best choice in the context. A
standard thesaurus does not offer any explanation about the differences in nuances
of meaning between the possible word choices. Moreover, a standard thesaurus
tool does not attempt to order the choices to suit a particular writing context.
Our intelligent thesaurus offers explanations and orders the choices using their

Author’s address: School of Information Technology and Engineering, University of Ottawa, 800
King Edward, Ottawa, ON, Canada, K1N 6N5
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 0000-0000/2007/0000-0001 $5.00

ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007, Pages 1–17.

2 · Diana Inkpen

Sentence: This could be improved by more detailed consideration of the processes of
propagation inherent in digitizing procedures.
Original near-synonym: error
Solution set: mistake, blooper, blunder, boner, contretemps, error, faux pas, goof, slip, solecism

Sentence: The day after this raid was the official start of operation strangle, an attempt to
completely destroy the lines of communication.
Original near-synonym: enemy
Solution set: opponent, adversary, antagonist, competitor, enemy, foe, rival

Fig. 1. Examples of sentences with a lexical gap, and candidate near-synonyms to fill the gap.

collocational properties relative to the writing context.
The second application is a natural language generation (NLG) system [Inkpen

and Hirst 2003] that uses symbolic knowledge of near-synonym differences. This
knowledge was acquired by applying information extraction techniques to entries
in various dictionaries. We included a preliminary collocation module that reduces
the risk of choosing a near-synonym that does not fit with the other words in a
generated sentence (i.e., violates collocational constraints). The work presented in
this paper allows for a more comprehensive near-synonym collocation module.

More specifically, the task we address in this paper is the selection of the best
near-synonym that should be used in a particular context. The natural way to
validate an algorithm for this task would be to ask human readers to evaluate
the quality of the algorithm’s output, but this kind of evaluation would be very
laborious. Instead, we validate the algorithms by deleting selected words from
sample sentences, to see whether the algorithms can restore the missing words.
That is, we create a lexical gap and evaluate the ability of the algorithms to fill
the lexical gap. Two examples are presented in Figure 1. All the near-synonyms
of the original word, including the word itself, become the choices in the solution
set (see the figure for two examples of solution sets). The task is to automatically
fill the gap with the best choice in the particular context. We present a method
of scoring the choices. The highest scoring near-synonym will be chosen. In order
to evaluate how well our method works we consider that the only correct solution
is the original word. This will cause our evaluation scores to underestimate the
performance of our method, as more than one choice will sometimes be a perfect
solution. Moreover, what we consider to be the best choice is the typical usage in
the corpus, but it may vary from writer to writer. Nonetheless, it is a convenient
way of producing test data in an automatic way. To verify how difficult the task
is for humans, we perform experiments with human judges on a sample of the test
data. The statistical scoring method that we propose here is based on mutual
information scores of each candidate with the words in the context. We explore
how far such a method can go when using the Web as a corpus. We estimate the
counts by using the Waterloo MultiText System [Clarke and Terra 2003b] with a
corpus of about one terabyte of text collected by a Web crawler.

2. RELATED WORK

The idea of using the Web as a corpus of texts has been exploited by many re-
searchers. Radev and McKeown [1997] acquired different ways of referring to the
ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007.

A Statistical Model for Near-Synonym Choice · 3

same named entity, from the Web. Grefenstette [1999] used the Web for example-
based machine translation; Kilgarriff [2001] investigated the type of noise in Web
data; Mihalcea and Moldovan [1999] and Agirre and Martinez [2000] used it as an
additional resource for word sense disambiguation; Resnik [1999] mined the Web for
bilingual texts; Turney [2001] used Web frequency counts to compute information
retrieval-based mutual-information scores. In a Computational Linguistics special
issue on the Web as a corpus [Kilgarriff and Grefenstette 2003], Keller and Lapata
[2003] show that Web counts correlate well with counts collected from a balanced
corpus: the size of the Web compensates for the noise in the data. In this paper
we are using a very large corpus of Web pages to address a problem that has not
been successfully solved before.

In fact, the only work that addresses exactly the same task is that of Edmonds
[1997], as far as we are aware. Edmonds gives a solution based on a lexical co-
occurrence network that included second-order co-occurrences. We use a much
larger corpus and a simpler method, and we obtain much better results.

Our task has similarities to the word sense disambiguation task. Our near-
synonyms have senses that are very close to each other. In Senseval, some of the
fine-grained senses are also close to each other, so they might occur in similar
contexts, while the coarse-grained senses are expected to occur in distinct contexts.
In our case, the near-synonyms are different words to choose from, not the same
word with different senses.

Turney et al. [2003] addressed the multiple-choice synonym problem: given a
word, choose a synonym for that word, among a set of possible solutions. In
this case the solutions contain one synonym and some other (unrelated) words.
They achieve high performance by combining classifiers. Clarke and Terra [2003a]
addressed the same problem as Turney et al., using statistical associations measures
computed with counts from the Waterloo terabyte corpus. In our case, all the
possible solutions are synonyms of each other, and the task is to choose one that
best matches the context: the sentence in which the original synonym is replaced
with a gap. It is much harder to choose between words that are near-synonyms
because the context features that differentiate a word from other words might be
shared among the near-synonyms. Therefore the choice is done on the basis of a
few features that are discriminant.

3. A NEW STATISTICAL METHOD FOR NEAR-SYNONYM CHOICE

Our method computes a score for each candidate near-synonym that could fill in the
gap. The near-synonym with the highest score is the proposed solution. The score
for each candidate reflects how well a near-synonym fits in with the context. It is
based on the mutual information scores between a near-synonym and the content
words in the context (we filter out the stopwords).

The pointwise mutual information (PMI) between two words x and y com-
pares the probability of observing the two words together (their joint probability)
to the probabilities of observing x and y independently (the probability of occurring
together by chance) [Church and Hanks 1991].

PMI(x, y) = log2

P (x, y)
P (x)P (y)

ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007.

4 · Diana Inkpen

The probabilities can be approximated by: P (x) = C(x)/N , P (y) = C(y)/N ,
P (x, y) = C(x, y)/N , where C denote frequency counts and N is the total number
of words in the corpus. Therefore:

PMI(x, y) = log2

C(x, y) · N
C(x) · C(y)

where N can be ignored in comparisons, since is it the same in all the cases.
We model the context as a window of size 2k around the gap (the missing word):

k words to the left and k words to the right of the gap. If the sentence is
s = · · ·w1 · · ·wk Gap wk+1 · · ·w2k · · ·, for each near-synonym NSi from the group
of candidates, the score is computed by the following formula:

Score(NSi, s) = Σk
j=1PMI(NSi, wj) + Σ2k

j=k+1PMI(NSi, wj).

We also experimented with the same formula when the sum is replaced with
maximum to see whether a particular word in the context has higher influence than
the sum of all contributions.

Because we are using the Waterloo terabyte corpus and we issue queries to its
search engine, we have several possibilities of computing the frequency counts.
C(x, y) can be the number of co-occurrences of x and y when y immediately follows
x, or the distance between x and y can be up to q. We call q the query frame size.
The tool for accessing the corpus allows us to use various values for q in queries.
We used queries of the type [q] > (x..y), which asks how many times x is followed
by y in a frame of size q.

The search engine also allows us to approximate words counts with document
counts. If the counts C(x), C(y), and C(x, y) are approximated as the number of
document in which they appear, we obtain the PMI-IR formula [Turney 2001].
The queries we need to send to the search engine are the same but they are restricted
to document counts: C(x) is the number of document in which x occurs; C(x, y) is
the number of documents in which x is followed by y in a frame of size q; the query
is formulated as (〈doc〉..〈/doc〉) > [q] > (x..y).

Other statistical association measures, such as log-likelihood, could be used. We
tried only PMI because it is easy to compute on a Web corpus and because [Clarke
and Terra 2003a] showed that PMI performed better than other measures in their
experiments.

We present the results in Section 6.1, where we compare our method to a baseline
algorithm that always chooses the most frequent near-synonyms and to Edmonds’s
method for the same task, on the same data set. First, however, we present two
other methods to which we compare our results.

4. THE ANTI-COLLOCATIONS METHOD

For the task of near-synonym choice, another method that we implemented is the
anti-collocations method. By anti-collocation we mean a combination of words that
a native speaker would not use and therefore should not be used when automatically
generating text. This method uses a knowledge-base of collocational behavior of
near-synonyms that we acquired in previous work [Inkpen and Hirst 2002]. To build
this knowledge-base, we acquired collocations of the near-synonyms, from a corpus.
ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007.

A Statistical Model for Near-Synonym Choice · 5

ghastly mistake spelling mistake
∗ghastly error spelling error
ghastly blunder ∗spelling blunder
∗ghastly faux pas ∗spelling faux pas
∗ghastly blooper ∗spelling blooper
∗ghastly solecism ∗spelling solecism
∗ghastly goof ∗spelling goof
∗ghastly contretemps ∗spelling contretemps
∗ghastly boner ∗spelling boner
∗ghastly slip ∗spelling slip

Table I. Examples of collocations and anti-collocations. The ∗ indicates the anti-collocations.

For each word that collocated with a near-synonym, we used a t-test (computed
with Web counts collected through the AltaVista search engine) to learn whether
the word forms a collocation or an anti-collocation with other near-synonyms in the
same group. A fragment of the knowledge-base is presented in Table I, for the near-
synonyms of the word error and two collocate words ghastly and spelling. The lines
marked by ∗ represent anti-collocations and the rest represent strong collocations.

The anti-collocations method simply ranks the strong collocations higher than
the anti-collocations. In case of ties it chooses the most frequent near-synonym. In
Section 6.2 we present the results of comparing this method to the method from
the previous section.

5. A SUPERVISED LEARNING METHOD

We can also apply supervised learning techniques to our task. It is easy to obtain
labelled training data, the same way we collected test data for the two unsupervised
methods presented above. We train classifiers for each group of near-synonyms. The
classes are the near-synonyms in the solution set. Each sentence is converted into
a vector of features to be used for training the supervised classifiers. We used two
types of features. One type of features are the scores of the left and right context
with each class (i.e., with each near-synonym from the group). The number of
features of this type is equal to twice the number of classes: one feature for the
score between the near-synonym and the part of the sentence at the left of the gap,
and one feature for the score between the near-synonym and the part of the sentence
at the right of the gap. The second type of features are the words in the context
windows. For each group of near-synonyms, we used as features the 500 most-
frequent words situated close to the gaps in a development set. The value of a word
feature for each training example is 1 if the word is present in the sentence (at the
left or at the right of the gap), and 0 otherwise. We trained classifiers using several
machine learning algorithms, to see which one is best at discriminating among the
near-synonyms. In Section 6.3, we present the results of several classifiers.

A disadvantage of the supervised method is that it requires training for each
group of near-synonyms. Additional training would be required whenever we add
more near-synonyms to our knowledge-base. An advantage of this method is that
we could improve the accuracy by using a combination of classifiers and by trying
other possible features. We think that part-of-speech features of the content words
in the context may not be very useful since all the possible solutions have the same

ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007.

6 · Diana Inkpen

Accuracy

Test set Number Base- Edmonds’s New New
(Exp1 Data) of cases line method method method

(Docs) (Words)

difficult, hard, tough 6,630 41.7% 47.9% 61.0% 59.1%

error, mistake, oversight 1,052 30.9% 48.9% 66.4% 61.5%

job, task, duty 5,506 70.2% 68.9% 69.7% 73.3%

responsibility, burden, 3,115 38.0% 45.3% 64.1% 66.0%
obligation, commitment

material, stuff, substance 1,715 59.5% 64.6% 68.6% 72.2%

give, provide, offer 11,504 36.7% 48.6% 52.0% 52.7%

settle, resolve 1,594 37.0% 65.9% 74.5% 76.9%

ALL (average) 31,116 44.8% 55.7% 65.1% 66.0%

Table II. Comparison between the new statistical method from Section 3, baseline algorithm, and
Edmonds’s method. See details about Experiment 1 in Section 6.1.

part-of-speech and might have similar syntactic behavior. Maybe some function
words immediately before the gaps could discriminate among the near-synonyms
in some groups.

6. EVALUATION

6.1 Comparison to Edmonds’s method

In this section we present results of the statistical method explained in Section 3.
We compare our results with those of Edmonds [1997], whose solution used the
texts from the year 1989 of the Wall Street Journal (WSJ) to build a lexical co-
occurrence network for each of the seven groups of near-synonyms from Table II.
The network included second-order co-occurrences. Edmonds used the WSJ 1987
texts for testing, and reported accuracies only a little higher than the baseline.
The near-synonyms in the seven groups were chosen to have low polysemy. This
means that some sentences with wrong senses of near-synonyms might be in the
automatically produced test set, but hopefully not many.

For comparison purposes, in this section we use the same test data (WSJ 1987)
and the same groups of near-synonyms. Our method is based on mutual informa-
tion, not on co-occurrence counts. Our counts are collected from a much larger
corpus. The seven groups of near-synonyms used by Edmonds are listed in the first
column of Table II. If we would have used groups of synonyms from WordNet, we
would probably obtain similar results, because the words in the seven groups differ
only a little. Here are the words from the WordNet synsets:
mistake, error, fault
job, task, chore
duty, responsibility, obligation
difficult, hard
material, stuff
put up, provide, offer
decide, settle, resolve, adjudicate.

Before we look at the results, we mention that the accuracy values we compute
are the percentage of correct choices when filling in the gap with the winning near-
ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007.

A Statistical Model for Near-Synonym Choice · 7

synonym. The expected solution is the near-synonym that was originally in the
sentence and it was taken out to create the gap. This measure is conservative, it
does not consider cases when more than one solution is correct.

Table II presents the comparative results for seven groups of near-synonyms.
The last row averages the accuracies for all the test sentences. The second column
shows how many test sentences we collected for each near-synonym group. The
third column is for the baseline algorithm that always chooses the most frequent
near-synonym. The fourth column presents the results reported in [Edmonds 1997].
The fifth column presents the result of our method when using document counts in
PMI-IR, and the last column is for the same method when using word counts in
PMI. We show in bold the best accuracy figure for each data set. We notice that
the automatic choice is more difficult for some near-synonym groups than for the
others.

To fine-tune our statistical method, we used the data set for the near-synonyms
of the word difficult collected from the WSJ 1989 corpus as a development set.
We varied the context window size k and the query frame q, and determined good
values for the parameter k and q. The best results were obtained for small window
sizes, k = 1 and k = 2 (meaning k words to the left and k words to the right of
the gap). For each k, we varied the query frame size q. The results are best for
a relatively small query frame, q = 3, 4, 5, when the query frame is the same or
slightly larger then the context window. The results are worse for a very small
query frame, q = 1, 2. The results presented in the rest of the paper are for k = 2
and q = 5. For all the other data sets used in this paper (from WSJ 1987 and BNC)
we use the parameter values as determined on the development set.

Table II shows that the performance is generally better for word counts than for
document counts. Therefore, we prefer the method that uses word counts (which is
also faster in our particular setting). The difference between them is not statistically
significant. Our statistical method performs significantly better than Edmond’s
method and than the baseline algorithm. For all the results presented in this
paper, statistical significance tests were done using the paired t-test, as described
in [Manning and Schütze 1999], page 209.

In summary, the results are better for smaller context windows, for the sum of
all the PMIs with the words in the context window, not for taking the maximum
contribution. The performance decreases with larger query frames q = 5, 6, ..., 20
and degrades sharply when q is unlimited (the words are in the same document no
matter at what distance). Error analysis reveals that more often incorrect choices
happen when the context is weak: very short sentences, or sentences with very few
content words.

On average, our method performs 22 percentage points better than the baseline
algorithm, and 10 percentage points better than Edmonds’s method. Its perfor-
mance is similar to that of the supervised method (see Section 6.3). An important
advantage of our method is that it works on any group of near-synonyms without
training, whereas Edmonds’s method required a lexical co-occurrence network to
be built in advance for each group of near-synonyms and the supervised method
required training for each near-synonym group.

ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007.

8 · Diana Inkpen

(1) benefit, advantage, favor, gain, profit

(2) low, gush, pour, run, spout, spurt, squirt, stream

(3) deficient, inadequate, poor, unsatisfactory

(4) afraid, aghast, alarmed, anxious, apprehensive, fearful, frightened, scared, terror-
stricken

(5) disapproval, animadversion, aspersion, blame, criticism, reprehension

(6) mistake, blooper, blunder, boner, contretemps, error, faux pas, goof, slip, solecism

(7) alcoholic, boozer, drunk, drunkard, lush, sot

(8) leave, abandon, desert, forsake

(9) opponent, adversary, antagonist, competitor, enemy, foe, rival

(10) thin, lean, scrawny, skinny, slender, slim, spare, svelte, willowy, wiry

(11) lie, falsehood, fib, prevarication, rationalization, untruth

Fig. 2. Near-synonyms used in the evaluation experiments in Section 6.2.

6.2 Comparison to the anti-collocations method

In a second experiment we compare the results of our methods with the anti-
collocations method described in Section 4. We use the data set from [Inkpen and
Hirst 2002], which contains sentences from the first half of the British National
Corpus, with near-synonyms from the eleven groups listed in Figure 2. The num-
ber of near-synonyms in each group is higher compared with WordNet synonyms,
because they are taken from [Hayakawa 1994], a dictionary that explains differ-
ences between near-synonyms. Moreover we retain only the sentences in which at
least one of the context words is in our previously acquired knowledge-base of near-
synonym collocations. That is, the anti-collocations method works only if we know
how a word in the context collocates with the near-synonyms from a group. For
the sentences that do not contain collocations or anti-collocations, it will perform
no better than the baseline, because the information needed by the method is not
available in the knowledge-base. Even if we increase the coverage of the knowledge-
base, the anti-collocations method might still fail too often due to words that were
not included.

Table III presents the results of the comparison. We used two data sets: TestSam-
ple, which includes at most two sentences per collocation (the first two sentences
from the corpus); and TestAll, which includes all the sentences with collocations as
they occurred in the corpus. The reason to do these two tests was to not bias the
results due to frequent collocations.

The last two columns are the accuracies achieved by our new method. The
second last column shows the results of the new method when the word counts are
approximated with document counts. The improvement over the baseline is 16 to
27 percentage points. The improvement over the anti-collocations method is 10 to
17 percentage points.

6.3 Comparison to supervised learning

We present the results of the supervised method from Section 5 on the data sets
used in Section 6.1. As explained before, the data sets contains sentences with a
lexical gap. For each of the seven groups of near-synonyms, the class to choose
ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007.

A Statistical Model for Near-Synonym Choice · 9

Accuracy

Test set Number Baseline Anti-collocations New New
(Exp2 Data) of method method method

cases (Docs) (Words)

TestSample 171 57.0% 63.3% 75.6% 73.3%

TestAll 332 48.5% 58.6% 70.0% 75.6%

Table III. Comparison between the new statistical method from Section 3 and the anti-collocations
method from Section 4. See details about Experiment 2 in Section 6.2.

ML method (Weka) Features Accuracy (averaged)

Decision Trees PMI scores 65.4%

Decision Rules PMI scores 65.5%

Naive Bayes PMI scores 52.5%

K-Nearest Neighbor PMI scores 64.5%

Kernel Density PMI scores 60.5%

Boosting (Decision Stumps) PMI scores 67.7%

Naive Bayes 500 word features 68.0%

Decision Trees 500 word features 67.0%

Naive Bayes PMI + 500 word features 66.5%

Boosting (Decision Stumps) PMI + 500 word features 69.2%

Table IV. Comparative results for the supervised learning method using various ML learning
algorithms (Weka), averaged over the seven groups of near-synonyms from the Experiment 1 data
set.

Accuracy

Test set Number Base- Supervised Supervised Unsuper-
of cases line Boosting Boosting vised

(PMI) (PMI+words) method

difficult, hard, tough 6,630 41.7% 55.8% 57.3% 59.1%

error, mistake, oversight 1,052 30.9% 68.1% 70.8% 61.5%

job, task, duty 5,506 70.2% 86.5% 86.7% 73.3%

responsibility, burden, 3,115 38.0% 66.5% 66.7% 66.0%
obligation, commitment

material, stuff, substance 1,715 59.5% 70.4% 71.0% 72.2%

give, provide, offer 11,504 36.7% 53.0% 56.1% 52.7%

settle, resolve 1,594 37.0% 74.0% 75.8% 76.9%

ALL (average) 31,116 44.8% 67.7% 69.2% 66.0%

Table V. Comparison between the unsupervised statistical method from Section 3 and the super-
vised method described in Section 5, on the Experiment 1 data sets. The results of two of the
best supervised classifiers are presented.

from in order to fill in the gaps is one of the near-synonyms in each cluster. We
implemented classifiers that use as features either the PMI scores of the left and
right context with each class, or the words in the context windows, or both types of
features combined. We used as features the 500 most-frequent words for each group
of near-synonyms. We report accuracies for 10-fold cross-validation. We used the
Weka collection of machine learning algorithms [Witten and Frank 2000].

Table IV presents the results, averaged for the seven groups of near-synonyms, of
several classifiers from the Weka package. The classifiers that use PMI features are

ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007.

10 · Diana Inkpen

Decision Trees, Decision Rules, Naive Bayes, K-Nearest Neighbor, Kernel Density,
and Boosting a weak classifier (Decision Stumps – which are shallow decision trees).
Then a Naive Bayes classifier that uses only the word features is presented, and the
same type of classifiers with both types of features. The other classifiers from the
Weka package were also tried, but the results did not improve and these algorithms
had difficulties in scaling up. In particular, when using the 500 word features
for each training example, only the Naive Bayes algorithm was able to run in
reasonable time. We noticed that the Naive Bayes classifier performs very poorly
on PMI features only (55% average accuracy), but performs very well on word
features (68% average accuracy). In contrast, the Decision Tree classifier performs
well on PMI features, especially when using boosting with Decision Stumps. When
using both the PMI scores and the word features, the results are slightly higher. It
seems that both types of features are sufficient for training a good classifier, but
combining them adds value.

Table V presents the detailed results of two of the supervised classifiers, and
repeats, for easier comparison, the results of the unsupervised statistical method
from Section 6.1. The supervised classifier that uses only PMI scores performs
similar the unsupervised method. The best supervised classifier, that uses both
types of features, performs slightly better than the unsupervised statistical method,
but the difference is not statistically significant. We conclude that the results of
the supervised methods and the unsupervised statistical method are similar. An
important advantage of our unsupervised method is that it works on any group of
near-synonyms without training.

6.4 Comparison to language models

Since one of the main applications of our methods is lexical choice in machine
translation and statistical NLG, we need to compare our methods with the current
mainstream method for lexical choice: language modeling. The sum of mutual
information scores bears some similarity to a bigram language model. For example
PMI(w1, w2) + PMI(w2, w3) can be rewritten as:

PMI(w1, w2) + PMI(w2, w3) = log2

P (w1, w2)
P (w1)P (w2)

+ log2

P (w2, w3)
P (w2)P (w3)

=

=
log2 P (w1, w2)P (w2, w3)

P (w1)P (w2)2P (w3)
=

log2 P (w2|w1)P (w3|w2)
P (w2)2P (w3)2

Lexical choice in most statistical Machine Translation (MT) systems today is
heavily determined by the language model, and it has proven very difficult in prac-
tice to apply state-of-the-art Word Sense Disambiguation / lexical choice models to
obtain improvements over a baseline statistical MT with a language model [Carpuat
and Wu 2005].

We do not go into details here, but in previous work [Inkpen and Hirst 2006]
we compared the results of the anti-collocations method to the results of using a
3-gram language model. This language model is part on the HALogen NLG system
[Langkilde and Knight 1998] and it was built on 250 million words newspaper text:
AP Newswire, year 1988 and 1990; SJM, year 1991; and WSJ, years 1987–1988 and
ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007.

A Statistical Model for Near-Synonym Choice · 11

Test set J1-J2 J1 J2 System
Agreement Accuracy Accuracy Accuracy

difficult, hard, tough 72% 70% 76% 53%

error, mistake, oversight 82% 84% 84% 68%

job, task, duty 86% 92% 92% 78%

responsibility, burden, 76% 82% 76% 66%
obligation, commitment

material, stuff, substance 76% 82% 74% 64%

give, provide, offer 78% 68% 70% 52%

settle, resolve 80% 80% 90% 77%

ALL (average) 78.5% 79.7% 80.2% 65.4%

Table VI. Experiments with two human judges on a random subset of the Experiment 1 data set.

1990–1994. The comparison of the two methods was done on different groups of
near-synonyms, including some of the groups from the Experiment 1 data set. The
anti-collocation method performed better on the task of choosing the best near-
synonym in a context, therefore so would the statistical method based on PMI
(because we showed in Section 6.2 that our PMI-based method achieves higher
accuracy than the anti-collocations method).

6.5 Experiments with human judges

We asked two human judges, native speakers of English, to guess the missing word
in a random sample of the Experiment 1 data set (50 sentences for each of the 7
groups of near-synonyms, 350 sentences in total). The results in Table VI show
that the agreement between the two judges is high (78.5%), but not perfect. This
means the task is difficult, even if some wrong senses in the automatically-produced
test data might have made the task easier in a few cases.

The human judges were allowed to choose more than one correct answer when
they were convinced that more than one near-synonym fits well in the context.
They used this option sparingly, only in 5% of the 350 sentences. In future work,
we plan to allow the system to make more than one choice when appropriate (for
example when the second choice has very close score to the first choice).

Taking the accuracy achieved by the human judges as upper limit, we conclude
that the automatic method has room for improvement of approximately 10-15 per-
centage points.

7. APPLICATIONS

7.1 Intelligent thesaurus

The intelligent thesaurus that we are developing is an interactive application that
presents the user with a list of alternative near-synonyms, and, unlike standard the-
sauri, it orders the choices to match the writing context and explains the differences
between the possible choices.

The new statistical method presented in this paper (in Section 3) allows us to
order the near-synonyms according to how well they fit into the writing context.
When composing a text, if the writer is unhappy with a word, he/she can select that
word and ask for a better substitute. The intelligent thesaurus provides alternative

ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007.

12 · Diana Inkpen

Test set Accuracy for Accuracy for
the first choice the first two choices

Experiment 1 Data, ALL 66.0% 88.5%

Experiment 2 Data, TestSample 73.3% 94.1%

Experiment 2 Data, TestAll 75.6% 87.5%

Table VII. Accuracies for the first two choices as ordered by an interactive intelligent thesaurus.

Test set Accuracy for Accuracy for
the first choice the first two choices

Experiment 1 Data, ALL 58.05% 84.82%

Experiment 2 Data, TestSample 57.4% 75.1%

Experiment 2 Data, TestAll 56.1% 77.4%

Table VIII. Results of the statistical method when only the left context is considered, for the data
sets from Section 6.1.

near-synonyms, in a context-dependent manner. Our experiments show that the
accuracy of the first choice being the best choice is 66 to 75%; therefore there will
be cases when the writer will not choose the first alternative. But the accuracy for
first two choices is quite high, around 90%, as presented in Table VII.

If the writer is in the process of writing and selects the last word to be replaced
with a near-synonym proposed by the thesaurus, then only the context on the left
of the word can be used for ordering the alternatives. Our method can be easily
adapted to consider only the context on the left of the gap. The results of this case
are presented in Table VIII, for the data sets used in the previous sections. The
accuracy values are lower than in the case when both the left and the right context
are considered (Table VII). This is due in part to the fact that some sentences
in the test sets have very little left context, or no left context at all. On another
hand, many times the writer composes a sentence or paragraph and then she/he
goes back to change a word that does not sound right. In this case, both the left
and right context will be available.

In the intelligent thesaurus, we could combine the supervised and unsupervised
method, by using a supervised classifier when the confidence in the classification
is high, and by using the unsupervised method otherwise. Also the unsupervised
statistical method would be used for the groups of near-synonyms for which a
supervised classifier was not previously trained.

Figure 3 presents a screen short of the current implementation of the intelligent
thesaurus application. The system allows the user to specify which synonym in-
ventory to use. We integrated Roget’s thesaurus [Roget 1852] in order to increase
coverage (the number of words for which alternatives are available). We used the
interface provided by Jarmasz and Szpakowicz [2001]. Roget’s thesaurus contains
among the related word several phrases (as seen in Figure 3). In future work, we
need to find new ways to score these phrases, because the PMI formula that we
used gives them too high scores.

The system also allows to specify from which corpus to collect the counts (in-
cluding from the Web, through the Google and Yahoo API). The system performs
ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007.

A Statistical Model for Near-Synonym Choice · 13

Fig. 3. Screen shot of the intelligent thesaurus application.

part-of-speech tagging (using QTAG1) on the text being written in the text editor,
in order to be able to suggest only synonyms with the right part-of-speech.

Our intelligent thesaurus can present in a separate window explanations of how
the near-synonyms differ in the lexical nuances they carry. This kind of knowledge
is available in a limited form, from our previous work [Inkpen and Hirst 2001] on ex-
tracting information from a special dictionary of synonym discrimination [Hayakawa
1994]. The coverage is limited in the sense that this knowledge-base contains only
5452 words, in 909 groups of near-synonyms. The explanations include denotational
nuances (what do the near-synonyms imply or suggest), how formal or informal they
are, and how positive or negative they might sound; also examples of usage are pro-
vided. We do not expand on this aspect of our intelligent thesaurus here because
the focus of this paper is on the collocational properties of the near-synonyms.

7.2 Natural language generation

In previous work [Inkpen and Hirst 2006] we presented and evaluated an NLG
system that pays particular attention to choosing the right near-synonyms. This
system extended HALogen[Langkilde and Knight 1998] with two extra modules: a

1http://www.english.bham.ac.uk/staff/omason/software/qtag.html

ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007.

14 · Diana Inkpen

symbolic and a statistical module for near-synonym choice.
Without going into details, we mention that the symbolic module deals with

nuances of meaning in an explicit way. Connotations or implications of certain
concepts are represented using an interlingual representation language and con-
cepts from an ontology. The user can specify what nuances of meaning are pre-
ferred in the generated sentence, in addition to the main meaning. Alternatively,
the preferences could come from the sentence in the source language, if our NLG
system is used as part of an interlingual machine translation system. The system
knows which near-synonyms carry which nuances of meaning because it contains
the knowledge automatically acquired from the special dictionary of synonym dis-
crimination [Hayakawa 1994].

The statistical module uses the anti-collocations method to choose near-synonyms
that collocate well with the other words in the context. We plan to replace it with
the PMI-based method, in order to increase coverage and accuracy.

8. CONCLUSION

We presented a statistical method of choosing the best near-synonym in a context.
We compared this method with two previous methods (Edmonds’s method and the
anti-collocations method) and showed that the performance improves considerably.
We also show that our unsupervised statistical method performs comparably to a
supervised learning method.

Our method based on PMI scores performs well, despite the well-known limita-
tions of PMI when used with corpora. PMI tends to have problems mostly on very
small counts, but it works reasonably with larger counts. Our web corpus is quite
large, therefore the problem of small counts does not appear.

We combine symbolic and statistical knowledge in two applications: an intelligent
thesaurus; and a natural language generation system that has knowledge of nuances
of meaning of near-synonyms.

The accuracy of 66 to 75% is not enough for automatic choice, but helps comple-
ment the choices made by using symbolic knowledge. In the intelligent thesaurus,
we do not make the near-synonym choice automatically, but we let the user choose.
The first choice offered by the thesaurus is the best one quite often, and if we
consider the first two choices, they are correct 90% of the time.

In this paper we focused on idiomatic usage of near-synonyms, while in previous
work we looked at nuances of meaning and differences between near-synonyms
in terms of connotations and implications [Inkpen and Hirst 2006]. There are,
though, some implications that are captured by idiomatic usage. For example,
Church and Hanks [1991] presented associations (collocations, but not necessarily
between adjacent wors) for the near-synonyms ship and boat; they suggest that a
lexicographer looking at these associations can infer that boats are generally smaller
than ships, because they are found in rivers and lakes and are used for small jobs
(e.g., fishing, police, pleasure), whereas ships are found in seas and are used for
serious business (e.g., cargo, war).

In future work, we plan to investigate the possibility to automatically infer this
kind of knowledge or to validate already acquired knowledge. Words that do not
associate with a near-synonym but associate with all the other near-synonyms in a
ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007.

A Statistical Model for Near-Synonym Choice · 15

cluster could tell us something about its nuances of meaning. For example terrible
slip is an anti-association, whereas terrible associates with mistake, blunder, error.
This is an indication that slip is a minor error. By further generalization, the
associations could become conceptual associations. This may allow the automatic
learning of denotational distinctions between near-synonyms from free text. The
concepts that are common to all the near-synonyms in a cluster could be part of
their main meaning, while those that associate only with one near-synonym could
be part of their implied nuances of meaning.

Future work includes a near-synonym sense disambiguation module to ensure
that the intelligent thesaurus does not offer alternatives for wrong senses of words.
In addition to the groups of synonyms from WordNet, Roget, and dictionaries of
synonyms, we could acquire synonyms from corpora, so that the intelligent the-
saurus can offer alternatives for a very large number of words. There is research
done on acquiring distributionally similar words [Lin 1998], but they include, in
addition to near-synonyms, words that are in other relations. Lin et al. [2003]
looked at filtering out the antonyms, using specific co-occurrence patterns. Words
that are in other relations could also be filtered out. One way to do this could be
to collect signatures for each potential near-synonym — words that associate with
it in many contexts. For two candidate words, if one signature is contained in the
other, the words are probably in a IS-A relation; if the signatures overlap totally, it
is a true near-synonymy relation; if the signatures overlap partially, it is a different
kind of relation.

Acknowledgments

We are most grateful to Egidio Terra, Charlie Clarke, and the School of Computer
Science of the University of Waterloo, for allowing us to use their terabyte webpage
corpus and the MultiText system. We thank Peter Turney and his colleagues at
IIT/NRC Ottawa for giving us access to their local copy of the corpus. We also
thank Peter Turney for sharing his Perl code for remote access to the corpus, and
for his comments on the draft of this paper. We thank Graeme Hirst for comments
on earlier versions of this paper. We thank Jayakumar Balasingham and Apoorve
Chokshi for their contribution to the implementation of the Intelligent Thesaurus
application and Mario Jarmasz for allowing us to use his software interface to
Roget’s thesaurus. Our work is funded by the Natural Sciences and Engineering
Research Council of Canada and the University of Ottawa.

REFERENCES

Agirre, E. and Martinez, D. 2000. Exploring automatic word sense disambiguation with deci-
sion lists and the Web. In Proceedings of the Workshop on Semantic Annotation And Intelligent
Content, COLING 2000. Saarbrücken/Luxembourg/Nancy.

Carpuat, M. and Wu, D. 2005. Evaluating the word sense disambiguation performance of
statistical machine translation. In Proceedings of the 43th Annual Meeting of the Association
for Computational Linguistics. Ann Arbor, Michigan, USA, 120–125.

Church, K., Gale, W., Hanks, P., and Hindle, D. 1991. Using statistics in lexical analysis.
In Lexical Acquisition: Using On-line Resources to Build a Lexicon, U. Zernik, Ed. Lawrence
Erlbaum, 115–164.

Church, K. and Hanks, P. 1991. Word association norms, mutual information and lexicography.
Computational Linguistics 16 (1), 22–29.

ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007.

16 · Diana Inkpen

Clarke, C. L. A. and Terra, E. 2003a. Frequency estimates for statistical word similarity mea-
sures. In Proceedings of the Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics (HLT-NAACL 2003). Edmonton,
Canada, 165–172.

Clarke, C. L. A. and Terra, E. 2003b. Passage retrieval vs. document retrieval for factoid
question answering. In Proceedings of the 26th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. Toronto, Canada, 427–428.

Edmonds, P. 1997. Choosing the word most typical in context using a lexical co-occurrence
network. In Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics. Madrid, Spain, 507–509.

Grefenstette, G. 1999. The World Wide Web as a resource for example-based machine trans-
lation tasks. In Proceedings of the ASLIB Conference on Translating and Computers. London,
UK.

Hayakawa, S. I., Ed. 1994. Choose the Right Word. Second Edition, revised by Eugene Ehrlich.
HarperCollins Publishers.

Inkpen, D. Z. and Hirst, G. 2001. Building a lexical knowledge-base of near-synonym differences.
In Proceedings of the Workshop on WordNet and Other Lexical Resources, Second Meeting of
the North American Chapter of the Association for Computational Linguistics (NAACL 2001).
Pittsburgh, USA, 47–52.

Inkpen, D. Z. and Hirst, G. 2002. Acquiring collocations for lexical choice between near-
synonyms. In Proceedings of the Workshop on Unsupervised Lexical Acquisition, 40th Annual
Meeting of the Association for Computational Linguistics (ACL 2002). Philadelphia, USA,
67–76.

Inkpen, D. Z. and Hirst, G. 2003. Near-synonym choice in natural language generation. In Pro-
ceedings of the International Conference RANLP-2003 (Recent Advances in Natural Language
Processing). Borovets, Bulgaria, 204–211.

Inkpen, D. Z. and Hirst, G. 2006. Building and using a lexical knowledge-base of near-synonym
differences. Computational Linguistics 32 (2).

Jarmasz, M. and Szpakowicz, S. 2001. The design and implementation of an electronic lexical
knowledge base. In Proceeding of the 14th Biennial Conference of the Canadian Society for
Computational Studies of Intelligence (AI 2001). Ottawa, Canada, 325–334.

Keller, F. and Lapata, M. 2003. Using the Web to obtain frequencies for unseen bigrams.
Computational Linguistics 29 (3), 459–484.

Kilgarriff, A. 2001. Web as corpus. In Proceedings of the 2001 Corpus Linguistics conference.
Lancaster, UK, 342–345.

Kilgarriff, A. and Grefenstette, G. 2003. Introduction to the special issue on the Web as a
corpus. Computational Linguistics 29 (3), 333–347.

Langkilde, I. and Knight, K. 1998. The practical value of N-grams in generation. In Proceed-
ings of the 9th International Natural Language Generation Workshop. Niagara-on-the-Lake,
Canada, 248–255.

Lin, D. 1998. Automatic retrieval and clustering of similar words. In Proceedings of the 36th
Annual Meeting of the Association for Computational Linguistics joint with 17th International
Conference on Computational Linguistics (ACL-COLING’98). Montreal, Quebec, Canada,
768–774.

Lin, D., Zhao, S., Qin, L., and Zhou, M. 2003. Identifying synonyms among distributionally
similar words. In Proceedings of the Eighteenth Joint International Conference on Artificial
Intelligence (IJCAI-03). Acapulco, Mexico.

Manning, C. and Schütze, H. 1999. Foundations of Statistical Natural Language Processing.
The MIT Press, Cambridge, Massachusetts.

Mihalcea, R. and Moldovan, D. 1999. A method for word sense disambiguation from unre-
stricted text. In Proceedings of the 37th Annual Meeting of the Association for Computational
Linguistics. Maryland, USA, 152–158.

ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007.

A Statistical Model for Near-Synonym Choice · 17

Radev, D. and McKeown, K. R. 1997. Building a generation knowledge source using internet-
accessible newswire. In Proceedings of the Fifth ACL Conference on Applied Natural Language
Processing ANLP’97. Washington, DC, 221–228.

Resnik, P. 1999. Mining the Web for bilingual text. In Proceedings of the 37th Annual Meeting
of the Association for Computational Linguistics. Maryland, USA, 527–534.

Roget, P. M., Ed. 1852. Roget’s Thesaurus of English Words and Phrases. Longman Group
Ltd., Harlow, Essex, England.

Turney, P. 2001. Mining the Web for synonyms: PMI-IR versus LSA on TOEFL. In Proceedings
of the Twelfth European Conference on Machine Learning (ECML 2001). Freiburg, Germany,
491–502.

Turney, P., Littman, M., Bigham, J., and Shnayder, V. 2003. Combining independent mod-
ules to solve multiple-choice synonym and analogy problems. In Proceedings of the International
Conference RANLP-2003 (Recent Advances in Natural Language Processing). Borovets, Bul-
garia, 482–489.

Witten, I. H. and Frank, E. 2000. Data Mining: Practical machine learning tools with Java
implementations. Morgan Kaufmann, San Francisco, USA.

ACM Transactions of Speech and Language Processing, Vol. 4, No. 1, 2007.

