
Real-Word Spelling Correction using Google Web 1T n-gram with Backoff

Aminul ISLAM
Department of Computer Science, SITE

University of Ottawa
Ottawa, ON, Canada

mdislam@site.uottawa.ca

Diana INKPEN
Department of Computer Science, SITE

University of Ottawa
Ottawa, ON, Canada

diana@site.uottawa.ca

Abstract:
We present a method for correcting real-word spelling
errors using the Google Web 1T n-gram data set and
a normalized and modified version of the Longest
Common Subsequence (LCS) string matching algo-
rithm. Our method is focused mainly on how to
improve the correction recall (the fraction of er-
rors corrected) while keeping the correction preci-
sion (the fraction of suggestions that are correct) as
high as possible. Evaluation results on a standard
data set show that our method performs very well.

Keywords:
Real-word; spelling correction; Google web 1T; n-
gram

1. Introduction
Real-word spelling errors are words in a text that occur

when a user mistakenly types a correctly spelled word when
another was intended. Errors of this type may be caused by
the writer’s ignorance of the correct spelling of the intended
word or by typing mistakes. Such errors generally go un-
noticed by most spellcheckers as they deal with words in
isolation, accepting them as correct if they are found in the
dictionary, and flagging them as errors if they are not. This
approach would be sufficient to correct the non-word error
myss in “It doesn’t know what the myss is all about.” but
not the real-word error muss in “It doesn’t know what the
muss is all about.” To correct the latter, the spell-checker
needs to make use of the surrounding context such as, in
this case, to recognise that fuss is more likely to occur than
muss in the context of all about. Ironically, errors of this
type may even be caused by spelling checkers in the cor-
rection of non-word spelling errors when the auto-correct
feature in some word-processing software sometimes silently
change a non-word to the wrong real word [1], and some-
times when correcting a flagged error, the user accidentally
make a wrong selection from the choices offered [2]. An ex-
tensive review of real-word spelling correction is given in [3,
1] and the problem of spelling correction more generally is
reviewed in [4].

In this paper, we present a method for correcting real-
word spelling error using the Google Web 1T n-gram data

978-1-4244-4538-7/09/$25.00 c©2009 IEEE.

set [5]1, and a normalized and modified version of the Longest
Common Subsequence (LCS) string matching algorithm (de-
tails are in section 3.1). Our intention is to focus on how to
improve the correction recall while maintaining the correc-
tion precision as high as possible. The reason behind this
intention is that if the recall for any method is around 0.5,
this means that the method fails to correct around 50 per-
cent of the errors. As a result, we can not completely rely on
these type of methods, for that we need some type of human
interventions or suggestions to correct the rest of the uncor-
rected errors. Thus, if we have a method that can correct
almost 90 percent of the errors, even generating some extra
candidates that are incorrect is more helpful to the human.

This paper is organized as follow: Section 2 presents a
brief overview of the related work. Our proposed method is
described in Section 3. Evaluation and experimental results
are discussed in Section 4. We conclude in Section 5.

2. Related Work
Work on real-word spelling correction can roughly be clas-

sified into two basic categories: methods based on semantic
information or human-made lexical resources, and methods
based on machine learning or probability information. Our
proposed method falls into the latter category.

2.1 Methods Based on Semantic Information
The ‘semantic information’ approach first proposed by [6]

and later developed by [1] detected semantic anomalies, but
was not restricted to checking words from predefined confu-
sion sets. This approach was based on the observation that
the words that a writer intends are generally semantically
related to their surrounding words, whereas some types of
real-word spelling errors are not.

2.2 Methods Based on Machine Learning
Machine learning methods are regarded as lexical disam-

biguation tasks and confusion sets are used to model the
ambiguity between words. Normally, the machine learn-
ing and statistical approaches rely on pre-defined confusion
sets, which are sets (usually pairs) of commonly confounded
words, such as {their, there, they’re} and {principle, princi-
pal}. [7], an example of a machine-learning method, com-
bined the Winnow algorithm with weighted-majority voting,
using nearby and adjacent words as features. Another ex-
ample of a machine-learning method is that of [8].

1Details of the Google Web 1T data set can be found at
www.ldc.upenn.edu/Catalog/docs/LDC2006T13/readme.txt.



2.3 Methods Based on Probability Information
[9] proposed a statistical method using word-trigram prob-

abilities for detecting and correcting real-word errors with-
out requiring predefined confusion sets. In this method, if
the trigram-derived probability of an observed sentence is
lower than that of any sentence obtained by replacing one
of the words with a spelling variation, then we hypothesize
that the original is an error and the variation is what the
user intended.

[2] analyze the advantages and limitations of [9]’s method,
and present a new evaluation of the algorithm, designed so
that the results can be compared with those of other meth-
ods, and then construct and evaluate some variations of the
algorithm that use fixed-length windows. They consider a
variation of the method that optimizes over relatively short,
fixed-length windows instead of over a whole sentence (ex-
cept in the special case when the sentence is smaller than
the window), while respecting sentence boundaries as natu-
ral breakpoints. To check the spelling of a span of d words
requires a window of length d+4 to accommodate all the tri-
grams that overlap with the words in the span. The smallest
possible window is therefore 5 words long, which uses 3 tri-
grams to optimize only its middle word. They assume that
the sentence is bracketed by two BoS and two EoS markers
(to accommodate trigrams involving the first two and last
two words of the sentence). The window starts with its left-
hand edge at the first BoS marker, and the [9]’s method is
run on the words covered by the trigrams that it contains;
the window then moves d words to the right and the process
repeats until all the words in the sentence have been checked.
As [9]’s algorithm is run separately in each window, poten-
tially changing a word in each, [2]’s method as a side-effect
also permits multiple corrections in a single sentence.

[10] proposed a trigram-based method for real-word errors
without explicitly using probabilities or even localizing the
possible error to a specific word. This method simply as-
sumes that any word trigram in the text that is attested in
the British National Corpus [11] is correct, and any unat-
tested trigram is a likely error. When an unattested trigram
is observed, the method then tries the spelling variations of
all words in the trigram to find attested trigrams to present
to the user as possible corrections. The evaluation of this
method was carried out on only 7100 words of the Wall
Street Journal corpus, with 31 errors introduced (i.e., one
error in every approximately 200 words) obtaining a recall
of 0.33 for correction, a precision of 0.05 and a F-measure of
0.086.

3. Proposed Method
The proposed method first tries to determine some prob-

able candidates and then finds the best one among the can-
didates. We consider a string similarity function and a fre-
quency value function in our method. The following sections
present a detailed description of each of these functions, fol-
lowed by the procedure to determine some probable candi-
dates along with the procedure to find the best candidate.

3.1 String Similarity between Two Strings
We use the longest common subsequence (LCS) [12] mea-

sure with some normalization and small modifications for
our string similarity measure. We use the same three differ-
ent modified versions of LCS that [13] used, along with an-
other modified version of LCS, and then take a weighted sum

of these2. [14] showed that edit distance and the length of
the longest common subsequence are special cases of n-gram
distance and similarity, respectively. [15] normalized LCS by
dividing the length of the longest common subsequence by
the length of the longer string and called it longest common
subsequence ratio (LCSR). But LCSR does not take into ac-
count the length of the shorter string which sometimes has
a significant impact on the similarity score.

[13] normalized the longest common subsequence so that
it takes into account the length of both the shorter and the
longer string and called it normalized longest common sub-
sequence (NLCS). We normalize NLCS in the following way
as it gives better similarity value, as well as it is more com-
putationally efficient:

v1 = NLCS(si, sj) =
2× len(LCS(si, sj))

len(si) + len(sj)
(1)

While in classical LCS, the common subsequence needs
not be consecutive, in spelling correction, a consecutive com-
mon subsequence is important for a high degree of match-
ing. [13] used maximal consecutive longest common subse-
quence starting at character 1, MCLCS1 and maximal con-
secutive longest common subsequence starting at any char-
acter n, MCLCSn. MCLCS1 takes two strings as input and
returns the shorter string or maximal consecutive portions of
the shorter string that consecutively match with the longer
string, where matching must be from first character (charac-
ter 1) for both strings. MCLCSn takes two strings as input
and returns the shorter string or maximal consecutive por-
tions of the shorter string that consecutively match with the
longer string, where matching may start from any charac-
ter (character n) for both of the strings. They normalized
MCLCS1 and MCLCSn and called it normalized MCLCS1

(NMCLCS1) and normalized MCLCSn (NMCLCSn) respec-
tively. Similarly, we normalize NMCLCS1 and NMCLCSn

in the following way:

v2 =NMCLCS1(si, sj) =
2× len(MCLCS1(si, sj))

len(si) + len(sj)
(2)

v3 =NMCLCSn(si, sj) =
2× len(MCLCSn(si, sj))

len(si) + len(sj)
(3)

[13] did not consider consecutive common subsequence end-
ing at the last character, though MCLCSn sometimes covers
this, but not always. We argue that the consecutive common
subsequence ending at the last character is as significant as
the consecutive common subsequence starting at the first
character. So, we introduce the maximal consecutive longest
common subsequence ending at the last character, MCLCSz

(Algorithm 1). Algorithm 1, takes two strings as input and
returns the shorter string or the maximal consecutive por-
tions of the shorter string that consecutively matches with
the longer string, where matching must end at the last char-
acter for both strings. We normalize MCLCSz and call it
normalized MCLCSz (NMCLCSz).

v4 =NMCLCSz(si, sj) =
2× len(MCLCSz(si, sj))

len(si) + len(sj)
(4)

We take the weighted sum of these individual values v1, v2,
v3, and v4 from equation (1), (2), (3) and (4), respectively,

2 [13] use modified versions because in their experiments
they obtained better results (precision and recall) for schema
matching on a sample of data than when using the original
LCS, or other string similarity measures.



to determine the string similarity score, where α1, α2, α3,
α4 are weights and α1 + α2 + α3 + α4 = 1. Therefore, the
similarity of the two strings, S ∈ [0, 1] is:

S(si, sj) = α1v1 + α2v2 + α3v3 + α4v4 (5)

We heuristically set equal weights for most of our experi-
ments3. Theoretically, v3 ≥ v2 and v3 ≥ v4.

Algorithm 1: MCLCSz ( Maximal Consecutive LCS
ending at the last character)

input : si, sj /* si and sj are input strings

where |si| ≤ |sj | */
output: str /* str is the Maximal Consecutive

LCS ending at the last character */

str ←NULL1

c← 12

while |si| ≥ c do3

x← SubStr(si,−c, 1) /* returns cth character4

of si from the end */

y ← SubStr(sj ,−c, 1) /* returns cth character5

of sj from the end */

if x = y then6

str ← SubStr(si,−c, c)7

else8

return str9

end10

increment c11

end12

3.2 Normalized Frequency Value
We determine the normalized frequency value of each can-

didate word for a single position with respect to all other
candidates for the same position. If we find n replacements
of a word wi which are {wi1, wi2, · · · , wij , · · · , win}, and
their frequencies {fi1, fi2, · · · , fij , · · · , fin}, where fij is the
frequency of a n-gram (where n ∈ {5, 4, 3, 2} and any can-
didate word wij is a member of the n-gram), then we deter-
mine the normalized frequency value of any candidate word
wij as the frequency of the n-gram containing wij , over the
maximum frequency among all the candidate words for that
position.

F (wij) =
fij

max(fi1, fi2, · · · , fij , · · · , fin)
(6)

3.3 Determining Candidate Words (Phase 1)
Our task is to correct real-word spelling error from an in-

put text using Google Web 1T data set. First, we use Google
5-gram data set to find candidate words of the word having
spelling error. If the 5-gram data set fails to generate at
least one candidate word then we move forward to 4-gram
data set or 3-gram data set or 2-gram data set if the preced-
ing data set fails to generate at least one candidate word.
Let us consider an input text W which after tokenization4

has m words, i.e., W = {w1, w2, . . . , wi, . . . , wm}, where wi

3We use equal weights in several places in this paper in order
to keep the system unsupervised. If development data would
be available, we could adjust the weights.
4We need to tokenize the input sentence to make the n-
grams formed using the tokens returned after the tokeniza-
tion consistent with the Google n-grams. The input sentence
is tokenized in a manner similar to the tokenization of the

(i > 1)5 is the word having the spelling error. First, we
discuss how we find the candidates for the word marked as
a spelling error and, then we discuss the procedure to find
the most relevant single candidate from several candidates.

3.3.1 Determining candidate words using the 5-gram
data set

We use the following steps:

1. We define the term cut off frequency for word wi as
the frequency of the 5-gram wi−4 wi−3 wi−2 wi−1 wi

(where m > i > 5) in the Google Web 1T 5-grams, if
the said 5-gram exists. Otherwise, we set the cut off
frequency of wi as 0. The intuition behind using the
cut off frequency is the fact that, if the word is mis-
spelled, then the correct one should have a higher fre-
quency than the misspelled one in the context. Thus,
using the cut off frequency, we isolate a large number
of candidates that we do not need to process.

2. We find all the 5-grams (where only wi is changed while
wi−4, wi−3, wi−2 and wi−1 are unchanged), if any, hav-
ing frequency greater than the cut off frequency of wi

(determined in step 1). Let us consider that we find n
replacements of wi which are R1 = {wi1, wi2, · · · , win}
and their frequencies F1 = {fi1, fi2, · · · , fin} where fij

is the frequency of the 5-gram wi−4 wi−3 wi−2 wi−1

wij . If there is no such 5-gram (having frequency above
the cut off frequency), our task is two-fold: we set
matched←1, if there is at least one 5-gram, and we
jump to step 5 or 6 or 7 that is yet to visit.

3. For each wij ∈ R1, we calculate the string similarity
between wij and wi using equation (5) and then assign
a weight using the following equation (7) only to the
words that return the string similarity value greater
than 0.5.

weight(wi, wij) = βS(wi, wij) + (1− β)F (wij) (7)

Equation (7) is used to ensure a balanced weight be-
tween the string similarity function and the probability
function, where β refers to how much importance we

Wall Street Journal portion of the Penn Treebank. Notable
exceptions include the following:

- Hyphenated word are usually separated, and hyphen-
ated numbers usually form one token.

- Sequences of numbers separated by slashes (e.g., in
dates) form one token.

- Sequences that look like urls or email addresses form
one token.

5It means that we do not consider the first word as the word
with spelling error. Though, our method could have worked
for the first word too. We did not do it here due to efficiency
reasons. Google n-grams are sorted based on the first word,
then the second word, and so on. Based on this sorting, all
Google 5-grams, 4-grams, 3-grams and 2-grams are stored in
117, 131, 97 and 31 different files, respectively. For example,
all the 117 Google 5-gram files could have been needed to
access a single word instead of accessing just one 5-gram
file, that we do for any other words. This is because when
the first word needs to be corrected, it might be in any file
among those 117 5-gram files.



give to the string similarity function with respect to
the frequency function6.

4. We sort the words found in step 3 that were given
weights, if any, in descending order by the assigned
weights and keep only a fixed number7 of words as the
candidate words8.

5. If this step is not visited yet then we follow step 1
to step 4 with the 5-gram wi−3 wi−2 wi−1 wi wi+1 if
m− 1 > i > 4. Otherwise, we go to next step.

6. If this step is not visited yet then we follow step 1
to step 4 with the 5-gram wi−2 wi−1 wi wi+1 wi+2 if
m− 2 > i > 3. Otherwise, we go to next step.

7. If this step is not visited yet then we follow step 1
to step 4 with the 5-gram wi−1 wi wi+1 wi+2 wi+3 if
m− 3 > i > 2. Otherwise, we go to next step.

8. If we find exactly one word in step 4, then return that
word as the suggestion word and exit.

9. If we find more than one word in step 4, we go to
section 3.5. Otherwise, if matched=1 then return no
suggestion and exit.

3.3.2 Determining candidate words using the 4-gram
data set

We use the following steps:

1. We define the term cut off frequency for word wi as
the frequency of the 4-gram wi−3 wi−2 wi−1 wi (where
m > i > 4) in the Google Web 1T 4-grams, if the said
4-gram exists. Otherwise, we set the cut off frequency
of wi as 0.

2. We find all the 4-grams (where only wi is changed while
wi−3, wi−2 and wi−1 are unchanged), if any, having
frequency greater than the cut off frequency of wi (de-
termined in step 1). Let us consider that we find n
replacements of wi which are R1 = {wi1, wi2, · · · , win}
and their frequencies F1 = {fi1, fi2, · · · , fin} where fij

is the frequency of the 4-gram wi−3 wi−2 wi−1 wij . If
there is no such 4-gram, our task is two folds: we set
matched←1, if there is at least one 4-gram having any
frequency and we jump to step 5 or 6 that is yet to
visit.

3. For each wij ∈ R1, we calculate the string similarity
between wij and wi using equation (5) and then assign
a weight using equation (7) only to the words that
return the string similarity value greater than 0.5.

6We give more importance to string similarity function with
respect to frequency value function throughout the section
of ‘determining candidate words’ to have more candidate
words so that the chance of including the target word into
the set of candidate words gets higher. For this reason, we
heuristically set β=0.85 in equation (7) instead of setting
β=0.5.
7For our experiment, we heuristically set this number as
10. If we lower this number (say 2 or 3) then there is a
chance that sometimes the most appropriate candidate (so-
lution word) fails to be included in the candidate list.
8Sometimes the top candidate word might be either a plural
form or a past participle form of the original word. Or even
it might be a high frequency function word (e.g., the). We
omit these type of words from the candidacy.

4. We sort the words found in step 3 that were given
weights, if any, in descending order by the assigned
weights and keep only a fixed number of words as the
candidate words.

5. If this step is not visited yet then we follow step 1 to
step 4 with the 4-gram wi−2 wi−1 wi wi+1 if m− 1 >
i > 3. Otherwise, we go to next step.

6. If this step is not visited yet then we follow step 1 to
step 4 with the 4-gram wi−1 wi wi+1 wi+2 if m− 2 >
i > 2. Otherwise, we go to next step.

7. If we find exactly one word in step 4, then return that
word as the suggestion word and exit.

8. If we find more than one word in step 4, we go to
section 3.5. Otherwise, if matched=1 then return no
suggestion and exit.

3.3.3 Determining candidate words using the 3-gram
data set

We use the following steps:

1. We define the term cut off frequency for word wi as the
frequency of the 3-gram wi−2 wi−1 wi (where m > i >
3) in the Google Web 1T 3-grams, if the said 3-gram
exists. Otherwise, we set the cut off frequency of wi as
0.

2. We find all the 3-grams (where only wi is changed
while wi−2 and wi−1 are unchanged), if any, having
frequency greater than the cut off frequency of wi (de-
termined in step 1). Let us consider that we find n re-
placements of wi which are R1 = {wi1, wi2, · · · , win}
and their frequencies F1 = {fi1, fi2, · · · , fin} where
fij is the frequency of the 3-gram wi−2 wi−1 wij . If
there is no such 3-gram, our task is two folds: we set
matched←1, if there is at least one 3-gram having any
frequency and we jump to step 5, if it is yet to visit.

3. For each wij ∈ R1, we calculate the string similarity
between wij and wi using equation (5) and then assign
a weight using equation (7) only to the words that
return the string similarity value greater than 0.5.

4. We sort the words found in step 3 that were given
weights, if any, in descending order by the assigned
weights and keep only a fixed number of words as the
candidate words.

5. If this step is not visited yet then we follow step 1 to
step 4 with the 3-gram wi−1 wi wi+1 if m− 1 > i > 2.
Otherwise, we go to next step.

6. If we find exactly one word in step 4, then return that
word as the suggestion word and exit.

7. If we find more than one word in step 4, we go to
section 3.5. Otherwise, if matched=1 then return no
suggestion and exit.

3.3.4 Determining candidate words using the 2-gram
data set

We use the following steps:



1. We define the term cut off frequency for word wi as the
frequency of the 2-gram wi−1 wi (where m > i > 2) in
the Google Web 1T 2-grams, if the said 2-gram exists.
Otherwise, we set the cut off frequency of wi as 0.

2. We find all the 2-grams (where only wi is changed while
wi−1 is unchanged) having frequency greater than the
cut off frequency of wi (determined in step 1). Let us
consider that we find n replacements of wi which are
R1 = {wi1, wi2, · · · , win} and their frequencies F1 =
{fi1, fi2, · · · , fin} where fij is the frequency of the 2-
gram wi−1 wij . If there is no such 2-gram, we set
matched←1, if there is at least one 2-gram having any
frequency.

3. For each wij ∈ R1, we calculate the string similarity
between wij and wi using equation (5) and then assign
a weight using equation (7) only to the words that
return the string similarity value greater than 0.5.

4. We sort the words found in step 3 that were given
weights, if any, in descending order by the assigned
weights and keep only a fixed number of words as the
candidate words.

5. If we find exactly one word in step 4, then return that
word as the suggestion word and exit.

6. If we find more than one word in step 4, we go to
section 3.5. Otherwise, if matched=1 then return no
suggestion and exit. Otherwise, we proceed to phase
2 (section 3.4).

3.4 Determining Candidate Words (Phase 2)
The question of why we use phase 2 is best understood by

the example “ · · · by releasing the WPPSS retort.” (Table 1)
where retort is the observed word that needs to be corrected.
But, there is no such 5-gram where retort can be changed
by following the condition of having the string similarity be-
tween retort and wi be at least 0.5 and keeping “by releasing
the WPPSS” unchanged. Similarly, there is no such 4-gram,
3-gram and 2-gram where retort can be changed by follow-
ing the same previous condition and keeping “releasing the
WPPSS”, “the WPPSS” and “WPPSS” unchanged respec-
tively. The reason of the unavailability of such n-grams is
that “WPPSS” is not a very common word in the Google
Web 1T data set.

To solve this issue is straightforward. We follow phase 1
with some small changes: instead of trying to find all the
n-grams (n ∈ {5, 4, 3, 2}) where only wi is changed while
keeping all of {· · · , wi−2, wi−1} unchanged, we try to find
all the n-grams (n ∈ {5, 4, 3, 2}) where wi, as well as any
but the first member of {· · · , wi−2, wi−1} are changed while
keeping the rest of {· · · , wi−2, wi−1} unchanged.

3.5 Determining the Suggestion Word
We use this section only if we have more than one candi-

date word found in section 3.3 or section 3.4. Let us consider
that we find n candidate words of wi in section 3.3 or sec-
tion 3.4 which are {wi1, wi2, · · · , wij , · · · , win}. For each
wij , we use the string similarity value between wij and wi

(already calculated using equation (5)) and the normalized
frequency value of wij (already calculated using equation
(6)) and then calculate the weight value using equation (7)

by setting β = 0.5. We find the word having the maximum
weight value as the target suggestion word which is:

Suggestion Word = argmax
wij

weight(wi, wij) (8)

4. Evaluation and Experimental Results
We used as test data the same data that [2] used in their

evaluation of [9] method, which in turn was a replication of
the data used by [6] and [1] to evaluate their methods.

The data consisted of 500 articles (approximately 300,000
words) from the 1987−89 Wall Street Journal corpus, with
all headings, identifiers, and so on removed; that is, just
a long stream of text. It is assumed that this data con-
tains no errors; that is, the Wall Street Journal contains no
malapropisms or other typos. In fact, a few typos (both non-
word and real-word) were noticed during the evaluation, but
they were small in number compared to the size of the text.

Malapropisms were randomly induced into this text at a
frequency of approximately one word in 200. Specifically,
any word whose base form was listed as a noun in WordNet
(but regardless of whether it was used as a noun in the text;
there was no syntactic analysis) was potentially replaced
by any spelling variation found in the lexicon of the ispell
spelling checker9. A spelling variation was defined as any
word with an edit distance of 1 from the original word; that
is, any single-character insertion, deletion, or substitution,
or the transposition of two characters, that results in another
real word. Thus, none of the induced malapropisms were
derived from closed-class words, and none were formed by
the insertion or deletion of an apostrophe or by splitting a
word. Though [2] mentioned that the data contained 1402
inserted malapropisms, there were only 1391 malapropisms.

Because it had earlier been used for evaluating [9]’s tri-
gram method, which operates at the sentence level, the data
set had been divided into three parts, without regard for ar-
ticle boundaries or text coherence: sentences into which no
malapropism had been induced; the original versions of the
sentences that received malapropisms; and the malapropized
sentences. In addition, all instances of numbers of vari-
ous kinds had been replaced by tags such as <INTEGER>,
<DOLLAR VALUE>, and<PERCENTAGE VALUE>. Ac-
tual (random) numbers or values were restored for these
tags. Some spacing anomalies around punctuation marks
were corrected. A detailed description of this data can be
found in [16, 2].

Some examples of successful and unsuccessful corrections,
using Google 5-grams, are shown in Table 1. Some of the
malapropisms created were “unfair” in the sense that no au-
tomatic procedure could reasonably be expected to see the
error. The canonical case is the substitution of million for
billion, or vice versa10; another is employee for employer, or
vice versa, in many (but not all) contexts. In some cases,
the substitution was merely a legitimate spelling variation
of the same word (e.g., labour for labor).

Table 2 shows some examples of successful and unsuccess-
ful corrections using Google 4-grams where Google 5-grams
fail to generate any suggestion. In Table 3 and Table 4, some

9Ispell is a fast screen-oriented spelling checker that shows
you your errors in the context of the original file, and sug-
gests possible corrections when it can figure them out.

10One such example is shown in FALSE NEGATIVE section
in Table 1. There are 40 malapropisms in the data set related
with million/billion.



SUCCESSFUL CORRECTION:
· · · chance to mend his fencers → fences [fences] with
Mr. Jefferies · · ·
· · · employees is the largest employee → employer [em-
ployer] in Europe and · · ·
SUCCESSFUL CORRECTION (in Second Phase):
· · · by releasing the WPPSS retort → report [report].
· · · tests comparing its potpourri covert → cover [cover]
with the traditional · · ·
FALSE POSITIVE CORRECTION:
· · · can almost see the firm → fire [farm] issue receding.
· · · the Senate to support aim → him [aid] for the
Contras · · ·
FALSE NEGATIVE:
I trust that the contract [contrast] between the Amer-
ican · · ·
· · · as much as <DOLLAR VALUE> billion [million].

Table 1: Examples of successful and unsuccessful
corrections using Google 5-grams. Italics indicate
the observed word, arrow indicates the correction,
square brackets indicate the intended word.

SUCCESSFUL CORRECTION:
· · · one of a corporate raiser → raider [raider]’s five
most · · ·
· · · of rumors about insider tracing → trading [trading]
in Pillsbury options · · ·
SUCCESSFUL CORRECTION (in Second Phase):
· · · , for the Belzberg brothels → brothers [brothers]’
First City · · ·
· · · typical of Iowa’s food → mood [mood] a month
before · · ·
FALSE POSITIVE CORRECTION:
· · · I’m uncomfortable tacking → talking [taking] a lot
of · · ·
· · · to approve a formal teat → test [text] of their pro-
posed · · ·
FALSE NEGATIVE:
A lot of the optimisms [optimists] were washed out · · ·
· · · published its support of patent [patient]-funded re-
search · · ·

Table 2: Examples of successful and unsuccessful
corrections using Google 4-grams. For these exam-
ples, Google 5-grams fail to generate any suggestion.

examples of successful and unsuccessful corrections using
Google 3-grams (where Google 5-grams and 4-grams fail to
generate any suggestion) and using Google 2-grams (where
Google 5-grams, 4-grams and 3-grams fail to generate any
suggestion) are shown respectively.

For each error, our method returns either a suggestion
(which is either correct11 or wrong12) or no suggestion13.

11A returned suggestion which is correct is also known as true
positive.

12A returned suggestion which is wrong is also known as false
positive.

13Also known as false negative. Generating no suggestion
means that the method does not find any better suggestion

SUCCESSFUL CORRECTION:
· · · Disappointment turned to dire traits → straits
[straits] when Vestron’s · · ·
· · · pay <DOLLAR VALUE> million in destitution →
restitution [restitution] related to contract · · ·
SUCCESSFUL CORRECTION (in Second Phase):
· · · its Ally & Gargano unity → unit [unit] settled their
suit · · ·
· · · 23 5/8 after rising 23 3/8 prints → points [points]
Tuesday.
FALSE POSITIVE CORRECTION:
· · · working on improving his lent → talent [left].
· · · company feels the 23 mate → rate [date] is for the
· · ·
FALSE NEGATIVE:
· · · town saloon after the battle [cattle] roundup.
· · · be this rock-firm [film] orgy, an · · ·

Table 3: Examples of successful and unsuccessful
corrections using Google 3-grams. For these exam-
ples, Google 5-grams and 4-grams fail to generate
any suggestion.

SUCCESSFUL CORRECTION:
· · · raider or Zurn management making → taking [tak-
ing] shares out of · · ·
· · · Silesia, said Solidarity advisor → adviser [adviser]
Jacek Kuron.
SUCCESSFUL CORRECTION (in Second Phase):
Mr. Mutert votes → notes [notes] that investors have
· · ·
FALSE POSITIVE CORRECTION:
· · · relieved if Super Tuesday toughs → tours [coughs]
up a front · · ·
· · · be reserved about indiscriminate clays → ways
[plays] in some groups · · ·
FALSE NEGATIVE:
· · · aimed at clearing out overstuffing [overstaffing] left
by previous · · ·
· · · NMS rose (8.4 billion [million]) than fell · · ·

Table 4: Examples of successful and unsuccessful
corrections using Google 2-grams. For these exam-
ples, Google 5-grams, 4-grams and 3-grams fail to
generate any suggestion.

Figure 1 shows the number of errors where either a sugges-
tion or no suggestion is generated for different combinations
of n-grams used. To give an example, using only 5-grams,
each of 505 errors either generate a suggestion or no sugges-
tion. It also means that in the next 5-4-gram combination,
we only process 886 errors14 (i.e., 1391-505). Figure 1 val-
idates the intuition behind using a combination of n-grams
rather using only n-grams (e.g., 5-grams) by showing that
while single 5-gram generates either a suggestion or no sug-
gestion for only 505 errors, a combination of 5-4-3-2-5′-4′-

than the observed word. In other words, the method thinks
that the observed word is indeed a correct one.

14We use the result of the previous 5-grams in 5-4-gram com-
bination, thus only use 4-grams in this combination.



0.96 0.93 0.92 0.91 0.91 0.91 0.91 0.91

0.34

0.61

0.81
0.87 0.87 0.87 0.88 0.88

0.50

0.74

0.86 0.89 0.89 0.89 0.89 0.89

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

5-gram 5-4-gram 5-4-3-gram 5-4-3-2-gram 5-4-3-2-5'-gram 5-4-3-2-5'-4'-gram 5-4-3-2-5'-4'-3'-gram 5-4-3-2-5'-4'-3'-2'-gram

Different combinations of n-gram used

Pr
ec

is
io

n,
 re

ca
ll 

an
d 

F-
m

ea
su

re
Precision Recall F-measure

Figure 3: Precision, recall and F-measure for different combinations of n-grams used.

505

943

1263
1368 1375 1383 1390 1391

0

200

400

600

800

1000

1200

1400

5-gram 5-4-gram 5-4-3-gram 5-4-3-2-
gram

5-4-3-2-5'-
gram

5-4-3-2-5'-
4'-gram

5-4-3-2-5'-
4'-3'-gram

5-4-3-2-5'-
4'-3'-2'-gram

Different combinations of n-grams used

N
um

be
r 

of
 e

rr
or

s 
w

he
re

 a
 s

ug
ge

st
io

n 
or

 n
o 

su
gg

es
tio

n  
is

 g
en

er
at

ed
 (o

ut
 o

f 1
39

1)

Figure 1: Number of errors where a suggestion or no
suggestion is generated for different combinations of
n-grams used. Apostrophe (′) is used to denote the
n-grams used in phase 2. x-y-· · · z-gram means that
we use x-grams, y-grams, · · · and z-grams.

472

851

1125
1206 1213 1217 1221 1222

21 64 98 116 116 118 121 121
12 28 40 46 47 48 48 48

0

200

400

600

800

1000

1200

1400

5-gram 5-4-gram 5-4-3-gram 5-4-3-2-
gram

5-4-3-2-5'-
gram

5-4-3-2-5'-
4'-gram

5-4-3-2-5'-
4'-3'-gram

5-4-3-2-5'-
4'-3'-2'-gram

Different combinations of n-grams used

N
um

be
r 

of
 t

ru
e 

po
si

tiv
es

, f
al

se
 p

os
iti

ve
s 

an
d 

fa
ls

e 
ne

ga
tiv

es
 

True Positive False Positive False Negative

Figure 2: Number of true positives, false positives
and false negatives for different combinations of n-
grams used.

3′-2′-gram generates the same for all 1391 errors.
Figure 2 breaks down the numbers shown in Figure 1 into

true positive, false positive and false negative. For example,
using only 5-grams, we get 493 suggestions, 472 out of them
are correct and 21 are incorrect, along with 12 no suggestion.

Figure 2 also shows that a combination of 5-4-3-2-5′-4′-3′-
2′-gram generates 1343 suggestions, 1222 out of them are
correct and 121 are incorrect, along with 48 no suggestion.

The performance is measured using Precision (P ), Re-
call (R) and F-measure (F ):

P =
number of correct suggestions returned

number of suggestions returned

R =
number of correct suggestions returned

total number of errors in the collection

F =
2PR

P +R

Figure 3 shows precision, recall and F-measure for differ-
ent combinations of n-gram used. We get highest precision
(0.96) when using only 5-gram which is obvious because 5-
gram uses maximum possible context words (which is four)
and as a result the chance of getting highest ratio between
the number of correct suggestions returned and the num-
ber of suggestions returned increases. But the recall at this
level is very poor (only 0.34). Figure 3 demonstrates how re-
call gets better using different combinations of n-gram while
keeping precision as high as possible. Using 5-gram to a
combination of 5-4-3-2-gram, we get a significant improve-
ment of recall but after that (i.e., a combination of 5-4-3-
2-gram to a combination of 5-4-3-2-5′-4′-3′-2′-gram), we get
only 0.01 recall increase.

We cannot directly compare our results with the correc-
tion results from previous work, because in that work the
correction was run on the results of the detection module,
cumulating the errors, while our correction module ran on
the correctly-flagged spelling errors. Still, we indirectly try
to compare our results with the previous work. Table 5
shows our method’s results on the described data set com-
pared with the results for the trigram method of [2] and
the lexical cohesion method of [1]. The data shown here
for trigram method are not from [2], but rather are later
results following some corrections reported in [16]15. That

15The result (detection recall=0.544, detection preci-
sion=0.528, correction recall=0.491, correction preci-
sion=0.503) mentioned in [16] seems to have some inconsis-
tency in correction recall and correction precision. Detection
true positives (762) and detection false positives (681) can
be calculated from detection precision and recall. Correc-
tion true positives and correction false positives are 688 and
755, respectively, given that the correction recall is 0.491.
Thus, correction precision is 0.477.



Detection correction
R P F R P F

Lexical cohesion[1]
0.306 0.225 0.260 0.281 0.207 0.238

Trigrams[2]
0.544 0.528 0.536 0.491 0.477 0.484

Google n-grams
- - - 0.88 0.91 0.89

Table 5: A comparison of recall, precision, and F-
measure for three methods of malapropism detec-
tion and correction on the same data set.

the corrected result of [2] can detect 762 errors and thus
correct 688 errors out of these 762 detected errors means
each of the correction precision, recall and F-measure is 0.9.
It is obvious that the performance of correcting the rest of
the undetected errors will not be the same as correcting the
detected errors because these errors are difficult to correct
since they are difficult to detect in the first place. Still, the
correction performance of our proposed method is compara-
ble to the correction performance of the method that runs on
the results of the detection module, cumulating the errors.

Moreover, considering the fact16 that 85 malapropisms out
of 1391 created were “unfair” in the sense that no automatic
procedure could reasonably be expected to see the error[16],
to have a method generating 1222 correct suggestions along
with 121 wrong suggestions and 48 no suggestion could be
useful.

5. Conclusions
Our purpose in this paper was the development of a high-

quality correction module. The Google n-grams proved to
be very useful in correcting real-word errors. When we tried
with only 5-grams the precision (0.96) was good, though the
recall (0.34) was too low. Having sacrificed a bit of the pre-
cision score, our proposed combination of n-grams method
achieves a very good recall (0.88) while maintaining the pre-
cision at 0.91. Our attempts to improve the correction recall
while maintaining the precision as high as possible are help-
ful to the human correctors who post-edit the output of the
real-word spell checker. If there is no postediting, at least
more errors get corrected automatically. Our method could
also correct misspelled words, not only malapropism, with-
out any modification. In future work, we plan to add a de-
tection module and extend our method to allow for deleted
or inserted words, and to find the corrected strings in the
Google Web 1T n-grams. In this way we will be able to
correct grammar errors too.

Acknowledgments
This work is funded by the Natural Sciences and Engineering
Research Council of Canada. We want to thank Professor
Graeme Hirst from the Department of Computer Science,
University of Toronto, for providing the evaluation data set.

References
16Though we did not consider this fact in the evaluation pro-
cedure.

[1] G. Hirst and A. Budanitsky, “Correcting real-word
spelling errors by restoring lexical cohesion,” Natural
Language Engineering, vol. 11, pp. 87–111, March
2005.

[2] L. A. Wilcox-O’Hearn, G. Hirst, and A. Budanitsky,
“Real-word spelling correction with trigrams: A
reconsideration of the mays, damerau, and mercer
model,” in Proceedings, 9th International Conference
on Intelligent Text Processing and Computational
Linguistics (CICLing-2008) (Lecture Notes in
Computer Science 4919, Springer-Verlag)
(A. Gelbukh, ed.), (Haifa), pp. 605–616, February
2008.

[3] J. Pedler, Computer Correction of Real-word Spelling
Errors in Dyslexic Text. PhD thesis, Birkbeck, London
University, 2007.

[4] K. Kukich, “Technique for automatically correcting
words in text,” ACM Comput. Surv., vol. 24, no. 4,
pp. 377–439, 1992.

[5] T. Brants and A. Franz, “Web 1T 5-gram corpus
version 1.1.,” tech. rep., Google Research, 2006.

[6] G. Hirst and D. St-Onge, WordNet: An electronic
lexical database, ch. Lexical chains as representations
of context for the detection and correction of
malapropisms, pp. 305–332. Cambridge, MA: The
MIT Press, 1998.

[7] A. R. Golding and D. Roth, “A winnow-based
approach to context-sensitive spelling correction,”
Machine Learning, vol. 34, no. 1-3, pp. 107–130, 1999.

[8] A. J. Carlson, J. Rosen, and D. Roth, “Scaling up
context-sensitive text correction,” in Proceedings of the
Thirteenth Conference on Innovative Applications of
Artificial Intelligence Conference, pp. 45–50, AAAI
Press, 2001.

[9] E. Mays, F. J. Damerau, and R. L. Mercer, “Context
based spelling correction,” Information Processing and
Management, vol. 27, no. 5, pp. 517–522, 1991.

[10] S. Verberne, “Context-sensitive spell checking based
on word trigram probabilities,” Master’s thesis,
University of Nijmegen, February-August 2002.

[11] L. Burnard, Reference Guide for the British National
Corpus (World Edition), October 2000.
www.natcorp.ox.ac.uk/docs/userManual/urg.pdf.

[12] L. Allison and T. Dix, “A bit-string
longest-common-subsequence algorithm,” Information
Processing Letters, vol. 23, pp. 305–310, 1986.

[13] A. Islam and D. Inkpen, “Semantic text similarity
using corpus-based word similarity and string
similarity,” ACM Transactions on Knowledge
Discovery from Data, vol. 2, no. 2, pp. 1–25, 2008.

[14] G. Kondrak, “N-gram similarity and distance,” in
Proceedings of the 12h International Conference on
String Processing and Information Retrieval, (Buenos
Aires, Argentina), pp. 115–126, 2005.

[15] I. D. Melamed, “Bitext maps and alignment via
pattern recognition,” Computational Linguistics,
vol. 25, no. 1, pp. 107–130, 1999.

[16] G. Hirst, “An evaluation of the contextual spelling
checker of microsoft office word 2007,” January 2008.
http://ftp.cs.toronto.edu/pub/gh/Hirst-2008-
Word.pdf.


