
Near-Synonym Choice in an Intelligent Thesaurus

Diana Inkpen
School of Information Technology and Engineering,

University of Ottawa
800 King Edward, Ottawa, ON, Canada, K1N 6N5

diana@site.uottawa.ca

Abstract

An intelligent thesaurus assists a writer
with alternative choices of words and or-
ders them by their suitability in the writing
context. In this paper we focus on methods
for automatically choosing near-synonyms
by their semantic coherence with the con-
text. Our statistical method uses the Web
as a corpus to compute mutual information
scores. Evaluation experiments show that
this method performs better than a previ-
ous method on the same task. We also pro-
pose and evaluate two more methods, one
that uses anti-collocations, and one that
uses supervised learning. To asses the dif-
ficulty of the task, we present results ob-
tained by human judges.

1 Introduction

When composing a text, a writer can access a the-
saurus to retrieve words that are similar to a given
target word, when there is a need to avoid repeat-
ing the same word, or when the word does not
seem to be the best choice in the context.

Our intelligent thesaurus is an interactive appli-
cation that presents the user with a list of alter-
native words (near-synonyms), and, unlike stan-
dard thesauri, it orders the choices by their suit-
ability to the writing context. We investigate how
the collocational properties of near-synonyms can
help with choosing the best words. This problem
is difficult because the near-synonyms have senses
that are very close to each other, and therefore they
occur in similar contexts; we need to capture the
subtle differences specific to each near-synonym.

Our thesaurus brings up only alternatives that
have the same part-of-speech with the target word.

The choices could come from various inventories
of near-synonyms or similar words, for example
the Roget thesaurus (Roget, 1852), dictionaries of
synonyms (Hayakawa, 1994), or clusters acquired
from corpora (Lin, 1998).

In this paper we focus on the task of automati-
cally selecting the best near-synonym that should
be used in a particular context. The natural way to
validate an algorithm for this task would be to ask
human readers to evaluate the quality of the algo-
rithm’s output, but this kind of evaluation would
be very laborious. Instead, we validate the al-
gorithms by deleting selected words from sample
sentences, to see whether the algorithms can re-
store the missing words. That is, we create a lex-
ical gap and evaluate the ability of the algorithms
to fill the gap. Two examples are presented in Fig-
ure 1. All the near-synonyms of the original word,
including the word itself, become the choices in
the solution set (see the figure for two examples of
solution sets). The task is to automatically fill the
gap with the best choice in the particular context.
We present a method of scoring the choices. The
highest scoring near-synonym will be chosen. In
order to evaluate how well our method works we
consider that the only correct solution is the orig-
inal word. This will cause our evaluation scores
to underestimate the performance, as more than
one choice will sometimes be a perfect solution.
Moreover, what we consider to be the best choice
is the typical usage in the corpus, but it may vary
from writer to writer. Nonetheless, it is a conve-
nient way of producing test data.

The statistical method that we propose here is
based on semantic coherence scores (based on mu-
tual information) of each candidate with the words
in the context. We explore how far such a method
can go when using the Web as a corpus. We esti-

Sentence: This could be improved by more detailed
consideration of the processes of propagation inherent
in digitizing procedures.
Original near-synonym: error
Solution set: mistake, blooper, blunder, boner, contretemps,
error, faux pas, goof, slip, solecism

Sentence: The day after this raid was the official start of op-
eration strangle, an attempt to completely destroy the
lines of communication.
Original near-synonym: enemy
Solution set: opponent, adversary, antagonist, competitor,
enemy, foe, rival

Figure 1: Examples of sentences with a lexical
gap, and candidate near-synonyms to fill the gap.

mate the counts by using the Waterloo MultiText
System (Clarke and Terra, 2003b) with a corpus
of about one terabyte of text collected by a Web
crawler. We also propose a method that uses col-
locations and anti-collocations, and a supervised
method that uses words and mutual information
scores as featured for machine learning. To better
asses the difficulty of the task we present results
obtained by two human judges.

2 Related work

The idea of using the Web as a corpus of texts has
been exploited by many researchers. Grefenstette
(1999) used the Web for example-based machine
translation; Kilgarriff (2001) investigated the type
of noise in Web data; Mihalcea and Moldovan
(1999) and Agirre and Martinez (2000) used it as
an additional resource for word sense disambigua-
tion; Resnik (1999) mined the Web for bilingual
texts; Turney (2001) used Web frequency counts
to compute information retrieval-based mutual-
information scores. In a Computational Linguis-
tics special issue on the Web as a corpus (Kil-
garriff and Grefenstette, 2003), Keller and Lapata
(2003) show that Web counts correlate well with
counts collected from a balanced corpus: the size
of the Web compensates for the noise in the data.
In this paper we are using a very large corpus of
Web pages to address a problem that has not been
successfully solved before.

In fact, the only work that addresses exactly the
same task is that of Edmonds (1997), as far as
we are aware. Edmonds gives a solution based
on a lexical co-occurrence network that included
second-order co-occurrences. We use a much
larger corpus and a simpler method, and we obtain
much better results.

Our task has similarities to the word sense dis-
ambiguation task. Our near-synonyms have senses
that are very close to each other. In Senseval,
some of the fine-grained senses are also close to
each other, so they might occur in similar con-
texts, while the coarse-grained senses are expected
to occur in distinct contexts. In our case, the near-
synonyms are different words to choose from, not
the same word with different senses.

Turney et al. (2003) addressed the multiple-
choice synonym problem: given a word, choose
a synonym for that word, among a set of possible
solutions. In this case the solutions contain one
synonym and some other (unrelated) words. They
achieves high performance by combining classi-
fiers. Clarke and Terra (2003a) addressed the same
problem as Turney et al., using statistical associ-
ations measures computed with counts from the
Waterloo terabyte corpus. In our case, all the pos-
sible solutions are synonyms of each other, and
the task is to choose one that best matches the
context: the sentence in which the original syn-
onym is replaced with a gap. It is much harder to
choose between words that are near-synonyms be-
cause the context features that differentiate a word
from other words might be shared among the near-
synonyms. Therefore we need features that catch
more subtle differences.

3 A statistical method for near-synonym
choice

Our method computes a score for each candidate
near-synonym that could fill in the gap. The near-
synonym with the highest score is the proposed
solution. The score for each candidate reflects how
well a near-synonym fits in with the context. It is
based on the mutual information scores between a
near-synonym and the content words in the context
(we filter out the stopwords).

The pointwise mutual information (PMI) be-
tween two words x and y compares the proba-
bility of observing the two words together (their
joint probability) to the probabilities of observ-
ing x and y independently (the probability of oc-
curring together by chance) (Church and Hanks,
1991): PMI(x, y) = log2

P (x,y)
P (x)P (y)

The probabilities can be approximated by:
P (x) = C(x)/N , P (y) = C(y)/N , P (x, y) =
C(x, y)/N , where C denotes frequency counts
and N is the total number of words in the corpus.
Therefore: PMI(x, y) = log2

C(x,y)·N
C(x)·C(y) , where N

can be ignored in comparisons, since is it the same
in all the cases.

We model the context as a window of size 2k
around the gap (the missing word): k words to the
left and k words to the right of the gap. If the sen-
tence is s = · · ·w1 · · ·wk Gap wk+1 · · ·w2k · · ·,
for each near-synonym NSi from the group of
candidates, the semantic coherence score is com-
puted by the following formula:

Score(NSi, s) = Σk
j=1PMI(NSi, wj) +

Σ2k
j=k+1PMI(NSi, wj).

We also experimented with the same formula
when the sum is replaced with maximum to see
whether a particular word in the context has higher
influence than the sum of all contributions (though
the sum worked better).

Because we are using the Waterloo terabyte cor-
pus and we issue queries to its search engine, we
have several possibilities of computing the fre-
quency counts. C(x, y) can be the number of co-
occurrences of x and y when y immediately fol-
lows x, or the distance between x and y can be up
to q. We call q the query frame size. The tool for
accessing the corpus allows us to use various val-
ues for q in queries. We used queries of the type
[q] > (x..y), which asks how many times x is fol-
lowed by y in a frame of size q.

The search engine also allows us to approxi-
mate words counts with document counts. If the
counts C(x), C(y), and C(x, y) are approximated
as the number of document in which they appear,
we obtain the PMI-IR formula (Turney, 2001).
The queries we need to send to the search engine
are the same but they are restricted to document
counts: C(x) is the number of document in which
x occurs; C(x, y) is the number of documents in
which x is followed by y in a frame of size q.

Other statistical association measures, such as
log-likelihood, could be used. We tried only PMI
because it is easy to compute on a Web corpus and
because (Clarke and Terra, 2003a) showed that
PMI performed better than other measures.

We present the results in Section 6.1, where we
compare our method to a baseline algorithm that
always chooses the most frequent near-synonyms
and to Edmonds’s method for the same task, on
the same data set. First, however, we present two
other methods to which we compare our results.

ghastly mistake spelling mistake
∗ghastly error spelling error
ghastly blunder ∗spelling blunder
∗ghastly faux pas ∗spelling faux pas
∗ghastly blooper ∗spelling blooper
∗ghastly solecism ∗spelling solecism
∗ghastly goof ∗spelling goof
∗ghastly contretemps ∗spelling contretemps
∗ghastly boner ∗spelling boner
∗ghastly slip ∗spelling slip

Table 1: Examples of collocations and anti-
collocations. The ∗ indicates the anti-collocations.

4 The anti-collocations method

For the task of near-synonym choice, an-
other method that we implemented is the anti-
collocations method. By anti-collocation we
mean a combination of words that a native speaker
would not use and therefore should not be used
when automatically generating text. This method
uses a knowledge-base of collocational behav-
ior of near-synonyms acquired in previous work
(Inkpen and Hirst, 2006). A fragment of the
knowledge-base is presented in Table 1, for the
near-synonyms of the word error and two collo-
cate words ghastly and spelling. The lines marked
by ∗ represent anti-collocations and the rest repre-
sent strong collocations.

The anti-collocations method simply ranks
the strong collocations higher than the anti-
collocations. In case of ties it chooses the most
frequent near-synonym. In Section 6.2 we present
the results of comparing this method to the method
from the previous section.

5 A supervised learning method

We can also apply supervised learning techniques
to our task. It is easy to obtain labeled training
data, the same way we collected test data for the
two unsupervised methods presented above. We
train classifiers for each group of near-synonyms.
The classes are the near-synonyms in the solution
set. The word that produced the gap is the ex-
pected solution, the class label; this is a convenient
way of producing training data, no need for man-
ual annotation. Each sentence is converted into a
vector of features to be used for training the su-
pervised classifiers. We used two types of fea-
tures. The features of the first type are the PMI
scores of the left and right context with each class
(each near-synonym from the group). The num-
ber of features of this type is twice the number

of classes, one score for the part of the sentence
at the left of the gap, and one for the part at the
right of the gap. The features of the second type
are the words in the context window. For each
group of near-synonyms, we used as features the
500 most-frequent words situated close to the gaps
in a development set. The value of a word fea-
ture for each training example is 1 if the word is
present in the sentence (at the left or at the right
of the gap), and 0 otherwise. We trained classi-
fiers using several machine learning algorithms, to
see which one is best at discriminating among the
near-synonyms. In Section 6.3, we present the re-
sults of several classifiers.

A disadvantage of the supervised method is
that it requires training for each group of near-
synonyms. Additional training would be required
whenever we add more near-synonyms to our
knowledge-base. An advantage of this method is
that we could improve the accuracy by using a
combination of classifiers and by trying other pos-
sible features. We think that part-of-speech fea-
tures of the content words in the context may not
be very useful since all the possible solutions have
the same part-of-speech and might have similar
syntactic behavior. Maybe some function words
immediately before the gaps could discriminate
among the near-synonyms in some groups.

6 Evaluation

6.1 Comparison to Edmonds’s method

In this section we present results of the statis-
tical method explained in Section 3. We com-
pare our results with those of Edmonds’s (1997),
whose solution used the texts from the year 1989
of the Wall Street Journal (WSJ) to build a lexi-
cal co-occurrence network for each of the seven
groups of near-synonyms from Table 2. The net-
work included second-order co-occurrences. Ed-
monds used the WSJ 1987 texts for testing, and
reported accuracies only a little higher than the
baseline. The near-synonyms in the seven groups
were chosen to have low polysemy. This means
that some sentences with wrong senses of near-
synonyms might be in the automatically produced
test set, but hopefully not many.

For comparison purposes, in this section we
use the same test data (WSJ 1987) and the same
groups of near-synonyms (we call these sentences
the Exp1 data set). Our method is based on mutual
information, not on co-occurrence counts. Our

1. mistake, error, fault
2. job, task, chore
3. duty, responsibility, obligation
4. difficult, hard
5. material, stuff
6. put up, provide, offer
7. decide, settle, resolve, adjudicate.

Table 2: The near-synonym groups used in the
Exp1 data set.

Accuracy
Set No. of Base- Edmonds Stat. Stat.

cases line method method method
(Docs) (Words)

1. 6,630 41.7% 47.9% 61.0% 59.1%
2. 1,052 30.9% 48.9% 66.4% 61.5%
3. 5,506 70.2% 68.9% 69.7% 73.3%
4. 3,115 38.0% 45.3% 64.1% 66.0%
5. 1,715 59.5% 64.6% 68.6% 72.2%
6. 11,504 36.7% 48.6% 52.0% 52.7%
7. 1,594 37.0% 65.9% 74.5% 76.9%
AVG 31,116 44.8% 55.7% 65.1% 66.0%

Table 3: Comparison between the statistical
method from Section 3, baseline algorithm, and
Edmonds’s method (Exp1 data set).

counts are collected from a much larger corpus.
If we would have used groups of synonyms from
WordNet, we would probably obtain similar re-
sults, because the words in seven groups differ
very little.

Table 3 presents the comparative results for the
seven groups of near-synonyms (we did not repeat
them in the first column of the table, only the num-
ber of the group.). The last row averages the ac-
curacies for all the test sentences. The second col-
umn shows how many test sentences we collected
for each near-synonym group. The third column is
for the baseline algorithm that always chooses the
most frequent near-synonym. The fourth column
presents the results reported in (Edmonds, 1997).
column show the results of the supervised learning
classifier described in Section 5. The fifth column
presents the result of our method when using doc-
ument counts in PMI-IR, and the last column is for
the same method when using word counts in PMI.
We show in bold the best accuracy for each data
set. We notice that the automatic choice is more
difficult for some near-synonym groups than for
the others. In this paper, by accuracy we mean the
number of correct choices made by each method
(the number of gaps that were correctly filled).
The correct choice is the near-synonym that was
initially replaced by the gap in the test sentence.

To fine-tune our statistical method, we used the
data set for the near-synonyms of the word difficult
collected from the WSJ 1989 corpus as a develop-
ment set. We varied the context window size k
and the query frame q, and determined good val-
ues for the parameter k and q. The best results
were obtained for small window sizes, k = 1 and
k = 2 (meaning k words to the left and k words
to the right of the gap). For each k, we varied the
query frame size q. The results are best for a rel-
atively small query frame, q = 3, 4, 5, when the
query frame is the same or slightly larger then the
context window. The results are worse for a very
small query frame, q = 1, 2 and for larger query
frames q = 6, 7, ..., 20 or unlimited. The results
presented in the rest of the paper are for k = 2 and
q = 5. For all the other data sets used in this paper
(from WSJ 1987 and BNC) we use the parameter
values as determined on the development set.

Table 3 shows that the performance is generally
better for word counts than for document counts.
Therefore, we prefer the method that uses word
counts (which is also faster in our particular set-
ting). The difference between them is not statisti-
cally significant. Our statistical method performs
significantly better than both Edmond’s method
and the baseline algorithm. For all the results pre-
sented in this paper, statistical significance tests
were done using the paired t-test, as described in
(Manning and Schütze, 1999), page 209.

On average, our method performs 22 percentage
points better than the baseline algorithm, and 10
percentage points better than Edmonds’s method.
Its performance is similar to that of the supervised
method (see Section 6.3). An important advan-
tage of our method is that it works on any group
of near-synonyms without training, whereas Ed-
monds’s method required a lexical co-occurrence
network to be built in advance for each group
of near-synonyms and the supervised method re-
quired training for each near-synonym group.

We note that the occasional presence of near-
synonyms with other senses than the ones we need
might make the task somewhat easier. Nonethe-
less, the task is still difficult, even for human
judges, as we will see in Section 6.4. On the other
hand, because the solution allows only one correct
answer the accuracies are underestimated.

6.2 Comparison to the anti-collocations
method

In a second experiment we compare the results of
our methods with the anti-collocation method de-
scribed in Section 4. We use the data set from our
previous work, which contain sentences from the
first half of the British National Corpus, with near-
synonyms from the following eleven groups:

1. benefit, advantage, favor, gain, profit
2. low, gush, pour, run, spout, spurt, squirt, stream
3. deficient, inadequate, poor, unsatisfactory
4. afraid, aghast, alarmed, anxious, apprehensive, fearful,
frightened, scared, terror-stricken
5. disapproval, animadversion, aspersion, blame, criticism,
reprehension
6. mistake, blooper, blunder, boner, contretemps, error, faux
pas, goof, slip, solecism
7. alcoholic, boozer, drunk, drunkard, lush, sot
8. leave, abandon, desert, forsake
9. opponent, adversary, antagonist, competitor, enemy, foe,
rival
10. thin, lean, scrawny, skinny, slender, slim, spare, svelte,
willowy, wiry
11. lie, falsehood, fib, prevarication, rationalization, untruth

The number of near-synonyms in each group
is higher compared with WordNet synonyms, be-
cause they are taken from (Hayakawa, 1994), a
dictionary that explains differences between near-
synonyms. Moreover we retain only the sen-
tences in which at least one of the context words
is in our previously acquired knowledge-base of
near-synonym collocations. That is, the anti-
collocations method works only if we know how
a word in the context collocates with the near-
synonyms from a group. For the sentences that
do not contain collocations or anti-collocations,
it will perform no better than the baseline, be-
cause the information needed by the method is
not available in the knowledge-base. Even if we
increase the coverage of the knowledge-base, the
anti-collocation method might still fail too often
due to words that were not included.

Table 4 presents the results of the comparison.
We used two data sets: TestSample, which in-
cludes at most two sentences per collocation (the
first two sentences from the corpus); and TestAll,
which includes all the sentences with collocations
as they occurred in the corpus. The reason we
chose these two tests is not to bias the results due
to frequent collocations.

The last two columns are the accuracies
achieved by our method. The second last column
shows the results of the method when the word
counts are approximated with document counts.

Accuracy
Test set No. Base- Anti- Stat. Stat.

of line collocs method method
cases method (Docs) (Words)

Test 171 57.0% 63.3% 75.6% 73.3%
Sample
TestAll 332 48.5% 58.6% 70.0% 75.6%

Table 4: Comparison between the statistical
method from Section 3 and the anti-collocations
method from Section 4. (Exp2 data set from Sec-
tion 6.2).

ML method (Weka) Features Accuracy
Decision Trees PMI scores 65.4%
Decision Rules PMI scores 65.5%
Naı̈ve Bayes PMI scores 52.5%
K-Nearest Neighbor PMI scores 64.5%
Kernel Density PMI scores 60.5%
Boosting (Dec. Stumps) PMI scores 67.7%
Naı̈ve Bayes 500 words 68.0%
Decision Trees 500 words 67.0%
Naı̈ve Bayes PMI + 500 words 66.5%
Boosting (Dec. Stumps) PMI + 500 words 69.2%

Table 5: Comparative results for the supervised
learning method using various ML learning algo-
rithms (Weka), averaged over the seven groups of
near-synonyms from the Exp1 data set.

The improvement over the baseline is 16 to 27 per-
centage points. The improvement over the anti-
collocations method is 10 to 17 percentage points.

6.3 Comparison to supervised learning

We present the results of the supervised method
from Section 5 on the data sets used in Sec-
tion 6.1. As explained before, the data sets con-
tain sentences with a lexical gap. For each of
the seven groups of near-synonyms, the class to
choose from, in order to fill in the gaps is one
of the near-synonyms in each cluster. We imple-
mented classifiers that use as features either the
PMI scores of the left and right context with each
class, or the words in the context windows, or both
types of features combined. We used as features
the 500 most-frequent words for each group of
near-synonyms. We report accuracies for 10-fold
cross-validation.

Table 5 presents the results, averaged for the
seven groups of near-synonyms, of several clas-
sifiers from the Weka package (Witten and Frank,
2000). The classifiers that use PMI features are
Decision Trees, Decision Rules, Naı̈ve Bayes, K-
Nearest Neighbor, Kernel Density, and Boosting a
weak classifier (Decision Stumps – which are shal-

Accuracy
Test Base- Supervised Supervised Unsuper-
set line Boosting Boosting vised

(PMI) (PMI+words) method
1. 41.7% 55.8% 57.3% 59.1%
2. 30.9% 68.1% 70.8% 61.5%
3. 70.2% 86.5% 86.7% 73.3%
4. 38.0% 66.5% 66.7% 66.0%
5. 59.5% 70.4% 71.0% 72.2%
6. 36.7% 53.0% 56.1% 52.7%
7. 37.0% 74.0% 75.8% 76.9%
AVG 44.8% 67.7% 69.2% 66.0%

Table 6: Comparison between the unsupervised
statistical method from Section 3 and the super-
vised method described in Section 5, on the Exp1
data set. The results of two of the best supervised
classifiers are presented.

low decision trees). Then, a Naı̈ve Bayes classifier
that uses only the word features is presented, and
the same type of classifiers with both types of fea-
tures. The other classifiers from the Weka package
were also tried, but the results did not improve and
these algorithms had difficulties in scaling up. In
particular, when using the 500 word features for
each training example, only the Naı̈ve Bayes al-
gorithm was able to run in reasonable time. We
noticed that the Naı̈ve Bayes classifier performs
very poorly on PMI features only (55% average
accuracy), but performs very well on word fea-
tures (68% average accuracy). In contrast, the De-
cision Tree classifier performs well on PMI fea-
tures, especially when using boosting with Deci-
sion Stumps. When using both the PMI scores and
the word features, the results are slightly higher.
It seems that both types of features are sufficient
for training a good classifier, but combining them
adds value.

Table 6 presents the detailed results of two of
the supervised classifiers, and repeats, for easier
comparison, the results of the unsupervised sta-
tistical method from Section 6.1. The supervised
classifier that uses only PMI scores performs sim-
ilar to the unsupervised method. The best super-
vised classifier, that uses both types of features,
performs slightly better than the unsupervised sta-
tistical method, but the difference is not statisti-
cally significant. We conclude that the results of
the supervised methods and the unsupervised sta-
tistical method are similar. An important advan-
tage of the unsupervised method is that it works
on any group of near-synonyms without training.

Test set J1-J2 J1 J2 System
Agreement Acc. Acc. Accuracy

1. 72% 70% 76% 53%
2. 82% 84% 84% 68%
3. 86% 92% 92% 78%
4. 76% 82% 76% 66%
5. 76% 82% 74% 64%
6. 78% 68% 70% 52%
7. 80% 80% 90% 77%
AVG 78.5% 79.7% 80.2% 65.4%

Table 7: Results obtained by two human judges on
a random subset of the Exp1 data set.

6.4 Results obtained by human judges

We asked two human judges, native speakers of
English, to guess the missing word in a random
sample of the Exp1 data set (50 sentences for each
of the 7 groups of near-synonyms, 350 sentences
in total). The judges were instructed to choose
words from the list of near-synonyms. The choice
of a word not in the list was allowed, but not used
by the two judges. The results in Table 7 show
that the agreement between the two judges is high
(78.5%), but not perfect. This means the task is
difficult, even if some wrong senses in the test data
might have made the task easier in a few cases.

The human judges were allowed to choose more
than one correct answer when they were convinced
that more than one near-synonym fits well in the
context. They used this option sparingly, only in
5% of the 350 sentences. Taking the accuracy
achieved of the human judges as an upper limit,
the automatic method has room for improvement
(10-15 percentage points). In future work, we plan
to allow the system to make more than one choice
when appropriate (for example when the second
choice has a very close score to the first choice).

7 The intelligent thesaurus

Our experiments show that the accuracy of the first
choice being the best choice is 66 to 75%; there-
fore there will be cases when the writer will not
choose the first alternative. But the accuracy for
the first two choices is quite high, around 90%, as
presented in Table 8.

If the writer is in the process of writing and se-
lects a word to be replaced with a near-synonym
proposed by the thesaurus, then only the context
on the left of the word can be used for order-
ing the alternatives. Our method can be easily
adapted to consider only the context on the left of
the gap. The results of this case are presented in

Test set Accuracy Accuracy
first choice first 2 choices

Exp1, AVG 66.0% 88.5%
Exp2, TestSample 73.3% 94.1%
Exp2, TestAll 75.6% 87.5%

Table 8: Accuracies for the first two choices as
ordered by an interactive intelligent thesaurus.

Test set Accuracy Accuracy
first choice first 2 choices

Exp1, AVG 58.0% 84.8%
Exp2, TestSample 57.4% 75.1%
Exp2, TestAll 56.1% 77.4%

Table 9: Results of the statistical method when
only the left context is considered.

Table 9, for the data sets used in the previous sec-
tions. The accuracy values are lower than in the
case when both the left and the right context are
considered (Table 8). This is due in part to the fact
that some sentences in the test sets have very little
left context, or no left context at all. On the other
hand, many times the writer composes a sentence
or paragraph and then she/he goes back to change
a word that does not sound right. In this case, both
the left and right context will be available.

In the intelligent thesaurus, we could combine
the supervised and unsupervised method, by using
a supervised classifier when the confidence in the
classification is high, and by using the unsuper-
vised method otherwise. Also the unsupervised
statistical method would be used for the groups
of near-synonyms for which a supervised classi-
fier was not previously trained.

8 Conclusion

We presented a statistical method of choosing the
best near-synonym in a context. We compared
this method to a previous method (Edmonds’s
method) and to the anti-collocation method and
showed that the performance improved consider-
ably. We also show that the unsupervised statisti-
cal method performs comparably to a supervised
learning method.

Our method based on PMI scores performs
well, despite the well-known limitations of PMI
when used with corpora. PMI tends to have prob-
lems mostly on very small counts, but it works
reasonably with larger counts. Our web corpus is
quite large, therefore the problem of small counts
does not appear.

In the intelligent thesaurus, we do not make the

near-synonym choice automatically, but we let the
user choose. The first choice offered by the the-
saurus is the best one quite often; the first two
choices are correct 90% of the time.

Future work includes a near-synonym sense dis-
ambiguation module. In case the target word
selected by the writer has multiple senses, they
could trigger several groups of near-synonyms.
The system will decide which group represents the
most likely senses by computing the semantic co-
herence scores averaged over the near-synonyms
from each group.

We plan to explore the question of which inven-
tory of near-synonyms or similar words is the most
suitable for use in the intelligent thesaurus.

Choosing the right near-synonym in context is
also useful in other applications, such as natural
language generation (NLG) and machine transla-
tion. In fact we already used the near-synonym
choice module in an NLG system, for comple-
menting the choices made by using the symbolic
knowledge incorporated into the system.

References
Eneko Agirre and David Martinez. 2000. Exploring

automatic word sense disambiguation with decision
lists and the Web. In Proceedings of the Workshop
on Semantic Annotation And Intelligent Content,
COLING 2000, Saarbrücken/Luxembourg/Nancy.

Kenneth Church and Patrick Hanks. 1991. Word asso-
ciation norms, mutual information and lexicography.
Computational Linguistics, 16 (1):22–29.

Charles L. A. Clarke and Egidio Terra. 2003a. Fre-
quency estimates for statistical word similarity mea-
sures. In Proceedings of the Human Language Tech-
nology Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics (HLT-NAACL 2003), pages 165–172, Edmon-
ton, Canada.

Charles L. A. Clarke and Egidio Terra. 2003b. Passage
retrieval vs. document retrieval for factoid question
answering. In Proceedings of the 26th Annual Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 427–
428, Toronto, Canada.

Philip Edmonds. 1997. Choosing the word most typi-
cal in context using a lexical co-occurrence network.
In Proceedings of the 35th Annual Meeting of the As-
sociation for Computational Linguistics, pages 507–
509, Madrid, Spain.

Gregory Grefenstette. 1999. The World Wide Web
as a resource for example-based machine translation

tasks. In Proceedings of the ASLIB Conference on
Translating and Computers, London, UK.

S. I. Hayakawa, editor. 1994. Choose the Right Word.
Second Edition, revised by Eugene Ehrlich. Harper-
Collins Publishers.

Diana Inkpen and Graeme Hirst. 2006. Building and
using a lexical knowledge-base of near-synonym
differences. Computational Linguistics, 32 (2):223–
262.

Frank Keller and Mirella Lapata. 2003. Using the Web
to obtain frequencies for unseen bigrams. Computa-
tional Linguistics, 29 (3):459–484.

Adam Kilgarriff and Gregory Grefenstette. 2003. In-
troduction to the special issue on the Web as a cor-
pus. Computational Linguistics, 29 (3):333–347.

Adam Kilgarriff. 2001. Web as corpus. In Pro-
ceedings of the 2001 Corpus Linguistics conference,
pages 342–345, Lancaster, UK.

Dekang Lin. 1998. Automatic retrieval and clustering
of similar words. In Proceedings of the 36th An-
nual Meeting of the Association for Computational
Linguistics joint with 17th International Conference
on Computational Linguistics (ACL-COLING’98),
pages 768–774, Montreal, Quebec, Canada.

Christopher Manning and Hinrich Schütze. 1999.
Foundations of Statistical Natural Language Pro-
cessing. The MIT Press, Cambridge, MA.

Rada Mihalcea and Dan Moldovan. 1999. A method
for word sense disambiguation from unrestricted
text. In Proceedings of the 37th Annual Meeting
of the Association for Computational Linguistics,
pages 152–158, Maryland, MD.

Philip Resnik. 1999. Mining the Web for bilingual
text. In Proceedings of the 37th Annual Meeting
of the Association for Computational Linguistics,
pages 527–534, Maryland, MD.

Peter Mark Roget, editor. 1852. Roget’s Thesaurus of
English Words and Phrases. Longman Group Ltd.,
Harlow, Essex, UK.

P.D. Turney, M.L. Littman, J. Bigham, and V. Shnay-
der. 2003. Combining independent modules to
solve multiple-choice synonym and analogy prob-
lems. In Proceedings of the International Con-
ference RANLP-2003 (Recent Advances in Natural
Language Processing), pages 482–489, Borovets,
Bulgaria.

Peter Turney. 2001. Mining the Web for synonyms:
PMI-IR versus LSA on TOEFL. In Proceedings
of the Twelfth European Conference on Machine
Learning (ECML 2001), pages 491–502, Freiburg,
Germany.

Ian H. Witten and Eibe Frank. 2000. Data Mining:
Practical machine learning tools with Java imple-
mentations. Morgan Kaufmann, San Francisco, CA.

