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Abstract. In this paper, we present a new method for database schema match-
ing, the problem of identifying elements of two given schemas that correspond 
to each other. We use two methods based on a large text corpus: one method for 
determining the semantic similarity of two target words and the other for auto-
matic word segmentation. We present a name-based element-level database 
schema matching method that exploits the semantic similarity and the word 
segmentation method. We also use normalized and modified versions of the 
Longest Common Subsequence string matching algorithm with weight factors 
to allow for a balanced combination. Our goal is to develop a schema matching 
method that uses a single property (element name) for matching and achieves a 
comparable F-measure score with respect to the methods that use multiple 
properties (element name, text description, data instance, context description). 
We validate our method with experimental studies, the results of which suggest 
that the method is a useful addition to the set of existing schema matchers. 

1   Introduction 

Database schema matching is the problem of identifying elements of two given sche-
mas that correspond to each other. It has been the focus of research since the 1970s in 
the Artificial Intelligence, Databases, and Knowledge Representation communities. 
Schema matching can also be defined as discovering semantically corresponding at-
tributes in different schemas or detecting two names that denote the same concept in a 
flat ontology. Traditionally, the problem of matching schemas has essentially relied on 
finding pairwise attribute correspondences. Though schema matching identifies ele-
ments that correspond to each other, it does not explain how they correspond. For 
example, it might say that FirstName and LastName in one schema are related to 
Name in the other, but it does not say that concatenating the former yields the latter. 
Automatically discovering these correspondences or matches is inherently difficult.  
Today, many researchers realize that schema matching is a core problem in e-
commerce exchanges, in data integration / warehousing, and in Semantic Web appli-
cations. Schema matching is fundamental for enabling query mediation and data ex-
change across information sources [2], [21]. While schema matching has always been 
a problematic and interesting aspect of information integration, the problem is exacer-
bated as the number of information sources to be integrated, and hence the number of 



integration problems that must be solved, grows. Such schema matching problems 
arise both in “classical” scenarios such as company mergers, and in “new” scenarios 
such as the integration of diverse sets of queryable information sources over the Web. 
Purely manual solutions to the schema matching problem are too labor-intensive to be 
scalable; as a result, there has been a great deal of research into automated techniques 
that speed up this process by either automatically-discovering good mappings, or at 
least by proposing likely matches that are then verified by a human expert [9]. 

Rahm and Bernstein [18] point out that it is not possible to determine fully-
automatically all the matches between two schemas, primarily because most schemas 
have some semantics that affects the matching criteria but is not formally expressed or 
often not even documented. The implementation of the matching should therefore only 
determine match candidates, which the user can accept, reject, or change. Further-
more, the user should be able to specify matches for elements for which the system 
was unable to find satisfactory match candidates. 

In this paper we present a novel approach to database schema matching, by using 
natural language processing techniques. The paper is organized as follow: Section 2 
presents a short overview of different schema matching approaches. The corpus-based 
word similarity method and the word segmentation method that we use in schema 
matching are briefly described in Section 3. Our proposed schema matching method is 
described in Section 4 and examples are given in Section 5. Evaluation and experi-
mental results are presented in Section 6 and we conclude in Section 7. 

2   Classification of Schema Matching Approaches 

Rahm and Bernstein [18] summarize the major approaches to schema matching. There 
are individual matchers: each computes a mapping based on a single matching crite-
rion. Alternatively, combinations of individual matchers are built, either by using 
multiple matching criteria (e.g., name and type equality) within an integrated hybrid 
matcher or by combining multiple match results produced by different match algo-
rithms within a composite matcher.  

Among the individual matchers, linguistic matchers are of interest to us. They use 
element names and text (sentences) to find semantically similar schema elements. We 
discuss here two linguistic approaches: a) name matching and b) description matching.  

a. Element Name Matching  
Element name-based matching matches schema elements with equal or similar 

names. Similarity of names can be defined and measured in various ways, including: 
• Equality of name matching 
• Equality of canonical name representations after stemming and preprocessing 
• Equality of synonyms 
• Equality of hypernyms (words that are more general) 
• Similarity of names based on longest common substrings (LCS), edit distance, 

pronunciation, soundex, or other string similarity measures.  
Solving any task related to synonyms and hypernyms normally requires the use of 

thesauri or dictionaries. These specific dictionaries require a substantial effort to be 
built up in a consistent way. But corpus-based methods could be a better choice than 



dictionary-based methods as a balanced text corpus covers a huge collection of both 
domain-dependent and independent words including special terms and proper nouns.  

Name-based matching can identify multiple relevant matches for a given schema 
element i.e., it is not limited to finding just 1:1 matches. For example, it can match 
“address” with both “home address” and “office address”. Bright et. al. [3] discuss an 
approach to assigning different weights to different types of similarity relations. 

b. Description matching 
Often, schemas contain text descriptions of elements that typically explain the 

meaning of elements in natural language to express the intended semantics of schema 
elements. But the quality of these descriptions varies a lot. These comments can also 
be evaluated linguistically to determine the similarity between schema elements. For 
instance, this would help find that the following elements match, by a linguistic analy-
sis of the comments associated with each schema element: 

S1: empn // employee name 
S2: name // name of employee 
This linguistic analysis could be as simple as extracting keywords from the descrip-

tion which are used for synonym comparison, much like name matching. Some ap-
proaches consider rule-based schema matching which are domain dependent [16]. 

 

Madhavan et al. [13] use name matching and description matching as part of a 
combined method that builds a model for each schema element that includes knowl-
edge about other elements in a corpus of schemas and uses this model in the matching 
process. Specifically, given the element in a schema that is not in the corpus, it finds 
other elements in the corpus that are an alternate representation of the same underlying 
concept. The method uses the corpus of schemas to estimate various statistics about 
elements and relations in a domain to develop a better understanding of the domain. 
They use 4 base learners (name learner, text learner, data instance learner, and context 
learner) and a meta learner. For example, the name learner first tries to identify fre-
quent word roots in the element names by first splitting the names of the elements 
based on capitalization and stemming the resulting fragments. Then it splits the names 
into their corresponding n-grams to handle short forms, incomplete names and spelling 
errors that are common in schema names. Finally, the method uses each base learner 
to make a prediction of how a schema element is similar to each of the corpus ele-
ments. It combines the predictions of the base learners into a single similarity score. 

3   Two corpus-based methods 

We were motivated to use corpus-based similarity and word segmentation methods for 
the following reasons (by corpus here we mean a large collection of text). First, we 
focused our attention on corpus-based measures because of their large type coverage. 
The types that are used in real-world database schema elements are often not found in 
dictionaries. Second, some existing corpus-based word segmentation methods provide 
good precision score, but provide low recall, and as a result low F-measure score.  



3.1 Word Similarity Method  

There is a relatively large number of word-to-word similarity metrics in the literature, 
ranging from distance-oriented measures computed on semantic networks or knowl-
edge base (or dictionary / thesaurus-based measures), to metrics based on models of 
information theory (or corpus-based measures) learned from large text collections. A 
detailed review on word similarity can be found in [19], [23]. We choose a corpus-
based similarity measure because of the large type coverage.  
     PMI-IR [22] is a simple method for computing corpus-based similarity of words. It 
uses Pointwise Mutual Information, PMI(w1, w2) = log   p(w1 & w2) / p(w1) p(w2). 
Here, w1 and w2 are the two words; p(w1 & w2) is the probability that the two words 
co-occur. If w1 and w2 are statistically independent, then the probability that they co-
occur is given by the product p(w1) · p(w2). If they are not independent, and they have 
a tendency to co-occur, then p(w1 & w2) will be greater than p(w1) · p(w2). PMI-IR 
used AltaVista Advanced Search query syntax to calculate the probabilities. In the 
simplest case, two words co-occur when they appear in the same document. The prob-
abilities can be approximated by the number of documents (hits) retrieved:  

PMI-IR(w1, w2)  =  hits(w1 AND w2) / (hits(w1) hits(w2)). 
    Latent Semantic Analysis (LSA) [12], a high-dimensional linear association model, 
analyzes a large corpus of natural text and generate a representation that captures the 
similarity of words and text passages. The underlying idea is that the aggregation of 
all the word contexts in which a given word does and does not appear provides a set of 
mutual constraints that largely determines the similarity of meaning of words and sets 
of words to each other [12]. The model tries to answer how people acquire as much 
knowledge as they do on the basis of as little information as they get. It uses the Sin-
gular Value Decomposition (SVD) to find the semantic representations of words by 
analyzing the statistical relationships among words in a large corpus of text. The simi-
larity of two words is measured by the cosine of the angle between their corresponding vectors. 
      We use Second Order Co-occurrence PMI (SOC-PMI) word similarity method [7] that 
uses Pointwise Mutual Information to sort lists of important neighbor words of the two target 
words from a large corpus. The method considers the words which are common in both lists 
and aggregate their PMI values (from the opposite list) to calculate the relative semantic simi-
larity. We empirically evaluated this method [7] by computing its correlation with the 
human scores for the Miller and Charles’s [15] 30 noun pair subset and the Rubenstein 
and Goodenough’s [20] 65 noun pairs. The evaluation also included the use of the 
word similarity method in the task of solving 80 synonym test questions from the Test 
of English as a Foreign Language (TOEFL), and 50 synonym test questions from a 
collection of English as a Second Language (ESL) tests. The evaluation results show 
that the method outperforms several competing methods (PMI-IR and LSA).  
     PMI-IR used AltaVista Advanced Search query syntax to calculate the probabili-
ties. The ‘NEAR’ search operator of AltaVista is an essential operator in PMI-IR 
method and it is no longer in use in AltaVista; this means that it is practically not 
possible to use PMI-IR method in the same form in new systems. Also, we prefer to 
SOC-PMI because it uses second-order co-occurrences, therefore it can compute simi-
larity even for two words that do not co-occur in the corpus. The word similarity 
method is a separate module in our Schema Matching Method. Therefore any other 



word similarity method could be substituted instead of SOC-PMI, if someone wants to 
try other word-similarity methods (dictionary-based, corpus-based, or hybrid).  

3.2 Word Segmentation Model 
 

Word segmentation methods can be roughly classified as either dictionary-based or 
corpus-based methods, while many state-of-the-art systems use hybrid approaches. In 
dictionary-based methods, given an input character string, only words that are stored 
in the dictionary can be identified. The performance of these methods thus depends to 
a large degree upon the coverage of the dictionary, which unfortunately may never be 
complete because new words appear constantly. Therefore, in addition to the diction-
ary, many systems contain special components for unknown word identification. In 
particular, statistical corpus-based methods have been widely applied because they use 
a probabilistic scoring mechanism rather than a dictionary to segment the text [6]. 
     We use a corpus-based method for automatic word segmentation [8]. The method 
formulates a generalized approach to word segmentation using maximum-length de-
scending-frequency and entropy rate. The term maximum-length descending-
frequency means that it chooses maximum length n-grams (sequences of n characters) 
that have a minimum threshold frequency; then it looks for further n-grams in de-
scending order, based on length. If two n-grams have the same length, it chooses the 
n-gram with highest frequency first and then the n-gram with next-highest frequency if 
any of its characters are not a part of the previous one. Following this procedure, after 
some iterations, it can be in a state with some remaining characters (they call it resi-
due) that is not matched with any type in the corpus. To solve this, the method merges 
residue with its adjacent words to form a string of characters and then apply a greedy 
matching from the beginning and the end of the string; this is an algorithm of forward-
backward matching type [4], in which the results are composed and the segmentation 
optimized based on the two results. The method chooses the result with lower number 
of words. If the two results return same number of words then it uses the entropy rate 
to decide which set of words to accept. The intuition behind using entropy rate is that 
if it has a set of words with larger average frequency (normalized frequency in the 
entropy rate) than the other set of words, it is obvious that the first set of words is 
more meaningful than the second set of words [8]. The method obtained 89.92% word 
precision rate, 94.69% word recall rate, and 92.24% word F-measure when they tested 
the segmentation method on the Brown corpus. The results of other word segmenta-
tion methods ([5], [17], [10]), which are also tested on the Brown corpus, show that 
our method outperforms these methods in terms of precision, recall, and F-measure. 

4.  Proposed Schema Matching Method 

We use the longest common subsequence (LCS) [1] measure with some normalization 
and small modifications for our string similarity measure. We use three different 
modified versions of LCS and then take a weighted sum of these1. Kondrak [11] 

                                                           
1 We use modified versions because in our experiments we obtained better results (precision and recall for 

schema matching on a sample of data) than when using the original LCS, or other similarity measures. 



showed that edit distance and the length of the longest common subsequence are spe-
cial cases of n-gram distance and similarity, respectively. Melamed [14] normalized 
LCS by dividing the length of the longest common subsequence by the length of the 
longer string and called it longest common subsequence ratio (LCSR). But LCSR 
does not take into account of the length of the smaller string which sometimes has a 
significant impact on the similarity score. 
     We normalize the longest common subsequence (LCS) so that it takes into account 
of the length of both the smaller and the longer string and call it normalized longest 
common subsequence (NLCS) which is,  
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While in classical LCS, the common subsequence need not to be consecutive, in data-
base schema matching, consecutive common subsequence is important for a high 
degree of matching. We use maximal consecutive longest common subsequence start-
ing at character 1, MCLCS1 (Figure 1) and maximal consecutive longest common 
subsequence starting at any character n, MCLCSN (Figure 2). In Figure 1, we present 
an algorithm that takes two strings as input and returns the smaller string or maximal 
consecutive portions of the smaller string that consecutively match with the longer 
string, where matching must be from first character (character 1) for both strings. In 
Figure 2, we present another algorithm that takes two strings as input and returns the 
smaller string or maximal consecutive portions of the smaller string that consecutively 
match with the longer string, where matching may start from any character (character 
n) for both of the strings. We also normalize MCLCS1 and MCLCSN and call it nor-
malized MCLCS1 (v2) and normalized MCLCSN (v3), respectively.  
    We take the weighted sum of these individual v1, v2, and v3 to determine string simi-
larity score, where w1, w2, w3 are weights and w1+w2+w3=1. Therefore, the similarity 
of the two strings is:   α = w1v1 + w2v2 + w3v3. We set equal weights for our experi-
ments. Theoretically,  v3 ≥ v2. We then use the word similarity measure, normalize it, 
and combine it with the string similarity to obtain the final similarity score.  

    We now describe our schema matching method in detail. Consider two given data-
base schemas R = {R1, R2 …, Rσ } and S = {S1, S2 …, Sχ }; for each element in one 
database schema, we try to identify a matching element in the other schema, if any, 
using element names. We assume that schema R has σ elements and Ri is the element’s 
name, where i = 1 … σ. Similarly, schema S has χ elements and Sj is the element’s 
name where j = 1 … χ. Note that some elements in R can match multiple elements in 
S, and vice versa. So, our task is to identify whether an element name RR

i
∈  matches 

an element name SS
j

∈ . Both Ri and Sj are strings of characters. Our method provides 

a similarity score between 0 and 1, inclusively. If the similarity score is above a cer-
tain threshold then the elements are considered match candidates. If we set the thresh-
old to 1 and the similarity score reaches this value, only then are we certain about their 
matching. For all other cases, we can only determine more or less probable match 
candidates. The method comprises the following six steps: 
Step 1: We use all special characters, punctuations, and capital letters, if any, as initial 
word boundary and eliminate all these special characters and punctuations. After this 



initial word segmentation, we pass the segmented words to the word segmentation 
method and lemmatize to generate tokens. We assume Ri = {r1, r2 …, rm} has m tokens 
and Sj = {s1, s2 …, sn} has n tokens and n ≥ m. Otherwise, we switch Ri and Sj.  
Step 2: We count the number of r i’s (say, δ) for which r i = sj, for all

i
Rr ∈ and for all 

i
Ss∈ . I.e., there are δ tokens in Ri that exactly match with Sj, where δ ≤ m. We re-

move all δ tokens from both of Ri and Sj. So, Ri = {r1, r2 …, rm-δ} and Sj = {s1, s2 …, sn-

δ}. If m-δ = 0, we go to step 6. 
Step 3: We construct a (m-δ)×(n-δ) matching matrix (say, M1 = (αij)(m-δ)×(n-δ)) using the 
following process: we assume any token 

ii
Rr ∈ has τ characters, i.e., r i = 

{ c1c2…cτ}and any token 
jj

Ss ∈  has η characters, i.e., sj = {c1c2 … cη}where τ ≤ η. In 

other words, η is the length of the longer token and τ is the length of the smaller token. 
We calculate the followings:   v1 ← NLCS(r i, sj)     v2 ← NMCLCS1(r i, sj) 
         v3 ← NMCLCSN(r i, sj) αij ← w1v1 + w2v2 + w3v3 
i.e., αij is a weighted sum of v1, v2, and v3 (equal weights). We put αij in row i and col-
umn j position of a matrix M1 for all i = 1..m-δ and j = 1..n-δ. 
Step 4: We construct a (m-δ)×(n-δ) similarity matrix (say, M2 = (βij)(m-δ)×(n-δ)) using the 
following process: We put βij  (the SOC-PMI similarity score) in row i and column j 
position of a matrix M2 for all i = 1 … m-δ and j = 1 … n-δ. 
Step 5: We construct another (m-δ)×(n-δ) joint matrix (say, M = (γij)(m-δ)×(n-δ)) using M 
← ψM1 + φM2 (i.e., γij = ψαij + φβij) where ψ is the matching matrix weight factor. φ is 
the similarity matrix weight factor, and ψ + φ = 1. Setting any one of these factors to 0 
means that we do not include that matrix. Setting both of the factors to 0.5 means we 
consider them equally important. 
     After constructing the joint matrix, M, we find out the maximum-valued matrix-
element, γij. We add this matrix element to a list (say, ρ and ρ ← ρ U γij) if γij ≥ ς (we 
will discuss about the similarity threshold, ς in next section). We remove all the matrix 
elements of i’ th row and j’th column from M. We repeat the finding of the maximum-
valued matrix-element, γij adding it to ρ and removing all the matrix elements of the 
corresponding row and column until either γij < ς, or m-δ-|ρ| = 0, or both.  
Step 6: We sum up all the elements in ρ and add δ to it to get a total score. We multiply this 
total score by the reciprocal harmonic mean of m and n to obtain a balance similarity score 
between 0 and 1, inclusively.  
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Choosing the values of ζ and ς  
ζ is the minimum number of characters for which we continue the matching process. 
Theoretically ζ could be any value between 1 and m inclusively. We set ζ to 1. If we 
set ζ to 1 then we can get expected matching result for small-length tokens. E.g., if we 
have three sample tokens named min, max and similarity and we set ζ to 1. The pair 
min max returns m and the pair min similarity returns Ø when we use MCLCS1. When 
we use MCLCSN, the first pair returns m and the second pair returns mi. But if we set 
ζ to 2, the pair min max returns Ø for both MCLCS1 and MCLCSN. If we set ζ to 3, 
the pair min similarity returns Ø for both MCLCS1 and MCLCSN.  



Theoretically, ς could be any value between 0 and 1, but we usually set ς close to 0 
(we set ς = 0.01 for all of our experiments). All matrix elements having values lower 
than ς may have negative impacts to the matching, thus it is better to omit them. 

 
Algorithm MCLCS1 
 Input: r i, sj // r i and sj are two input strings where |r i| = τ, |sj| = η and τ ≤ η as mentioned. 
1.    τ ← |r i|,  η ← |sj| 
2.    while |r i| ≥ ζ    // we usually set ζ to 1. Details are discussed in next section. 

3.           if 
ji

Sr ∈    // i.e., 
iij

rrS =I  

4.                      return r i 
5.           else r i ← r i \ cτ    //  i.e., remove the right-most character from r i 
6.           end if 
7.   end while 
 Output: r i      // r i is the Maximal Consecutive LCS starting at character 1 

Figure 1. Maximal Consecutive LCS starting at character 1. 

Algorithm MCLCSN 
  Input: r i, sj     // r i and sj are two input strings where |r i| = τ, |sj| = η and τ ≤ η. 
1.  while |r i| ≥ ζ    // we usually set ζ to 1.  

2.    determine all n-grams from r i where n = 1 .. |r i|   and ir is the set of n-grams 

3.    if  jsx∈  where {x | irx∈ ,  x = Max ( ir )} 

 // i is the number of n-grams and Max (ir ) returns the maximum length n-gram from ir  

4.           return x 

5.    else ir  ← ir \ x  // remove x from set ir    

6.   end if 
7. end while 
  Output: x     // x is the Maximal Consecutive LCS starting at any character n  

Figure 2.  Maximal consecutive LCS starting at any character n 

5. Example 

We provide an example that describes the proposed method and determine the similar-
ity score. We use two simple element names from a database schema, for brevity.   
     Let Ri = “maxprice”, Sj = “High_Price”.  

Step 1:  After eliminating all special characters and punctuations, if any, and then 
using word segmentation method and lemmatizing , we get Ri = {max, price} and Sj = 
{ high, price} where m = 2 and n = 2. 

Step 2: Because only one token (i.e., price) in Ri exactly matches with Sj we set δ to 
1. We remove price from both Ri and Sj. So, Ri = {max} and Sj = {high}. As m – δ ≠ 
0, we proceed to next step.    

Step 3: We construct a 1×1 matching matrix, M1. Consider the max high pair 
where η = 4 is the length of the longer token (high), τ = 3 is the length of the smaller 



token (max) and 0 is the maximal length of the consecutive portions of the smaller 
token that consecutively match with the longer token. So, v1 = v2 = v3 = 0 and α11 = 0. 

  high 

M1 = max    0 
Step 4: We construct a 1×1 similarity matrix, M2. Here, λ = 20 as we used the 

SOCPMI method. 
  high 

M2 = max 0.326 

Step 5: We construct a 1×1 joint matrix, M and assign equal weight factor by set-
ting both ψ and φ to 0.5. 

  high 

M = max 0.163 

We find the only maximum-valued-matrix-element, γij = 0.163 and add it to ρ as γij 
≥ ς (we use ς = 0.01 in this example). So, ρ = {0.163}. The new M is empty after 
removing i’th (i = 1) row and j’th (j = 1) column. We proceed to next step as m-δ-|ρ| = 
0. (Here, m = 2, δ = 1 and |ρ| = 1.) 

Step 6: 1
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6. Evaluation and Results 

We now present experimental results that demonstrate the performance of our method. 
All the schemas we used in our experiments are from Madhavan et al. [13], where they 
used web form schemas from two different domains, auto and real estate. Web form 
schema matching is the problem of identifying corresponding input fields in the web 
forms. Each web form schema is a set of elements, one for each input. The properties 
of each input include: the hidden input name or element name that is passed to the 
server when the form is processed, the description text and sample values in the option 
box. We tested on the same data as Madhavan et al. [13], all of it, while they used 
75% of it, randomly selected. We could not reproduce the exact 75% that they used.  
In each domain, they manually created mappings between randomly chosen schema 
pairs. The matches were one-many, i.e., an element can match any number of elements 
in the other schema. These manually created mappings are used as a gold standard to 
compare the mapping performance of the different methods, including our method. 
Table 1 provides detailed information about each of the two domains and our results. 
For each domain, we compared each predicted mapping pair against the manually 
created mapping pair. For our experiment, we only used element names for matching. 
We used eleven different similarity thresholds ranging from 0 to 1 with interval 0.1. 
For example, using the auto domain when we used similarity threshold 0.1, our 
method matched 961 elements, out of which 628 elements were among the 769 manu-
ally matched elements. The last three columns of the table show the precision, recall, 
and F-measure for the two domains, for the various threshold values. A low similarity 
threshold (≈ 0.2) gives the best F-measure score. 



     The reason for a lower similarity threshold to obtain a better F-measure score is 
that we always take into accounts both the string similarity and the semantic word 
similarity measures. If two strings have perfect semantic word similarity score (i.e. ≈ 
1) and no string similarity score (i.e. ≈ 0), which is practically a perfect matching (e.g., 
car and vehicle), the total similarity score will be lower. Again, we multiply this total 
score by the reciprocal harmonic mean of m and n to obtain a balanced similarity 
score; this also lowers the final similarity value. When we use string similarity thresh-
old score of 1 (i.e., matching the element names exactly, therefore no semantic simi-
larity matching is included), we obtain recall values of 0.133 and 0.107 for the auto 
and real estate domains, respectively. We can consider these as baselines. 

 

Table 1. Characteristics of the evaluation domains and our results. 
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0 33116 769 0.02 1.00 0.05 
0.1 961 628 0.65 0.82 0.73 
0.2 769 596 0.78 0.78 0.78 
0.3 701 564 0.80 0.73 0.77 
0.4 689 558 0.81 0.73 0.77 
0.5 642 530 0.83 0.69 0.75 
0.6 501 424 0.85 0.55 0.67 
0.7 438 382 0.87 0.50 0.63 
0.8 200 192 0.96 0.25 0.40 
0.9 176 176 1.00 0.23 0.37 
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1.0 103 103 1.00 0.13 0.24 
0 4262 280 0.07 1.00 0.12 

0.1 364 232 0.64 0.83 0.72 
0.2 310 211 0.68 0.75 0.72 
0.3 248 176 0.71 0.63 0.67 
0.4 228 173 0.76 0.62 0.68 
0.5 203 164 0.81 0.59 0.68 
0.6 155 130 0.84 0.46 0.60 
0.7 124 105 0.85 0.38 0.52 
0.8 59 55 0.93 0.20 0.32 
0.9 48 48 1.00 0.17 0.29 
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Madhavan et al. [13] used three methods: direct, pivot and augment. They selected 

a random 25% of the manually created mappings in each domain as training data and 
tested on the remaining 75% of the mappings. In the augment method, they used dif-
ferent base learners such as name learner, text learner, data instance learner, context 
learner and then used a meta-learner to combine the predictions of the different base 
learners into a single similarity score. To train a learner, the augment method requires 
learner specific positive and negative examples for the element on which it is being 



trained. The direct method uses the same base learners, but the training data for these 
learners is extracted only from the schemas being matched. Pivot is the method that 
computes cosine distance of the interpretation vectors of the two elements directly. 

For the auto domain, the direct, pivot and augment methods achieved precision of 
around 0.76, 0.74 and 0.92, recall of around 0.74, 0.78, 0.72 and F-measure of around 
0.73, 0.74 and 0.78 respectively. We achieved around 0.78 as precision, recall and F-
measure with 0.2 as similarity threshold. For the real estate domain, the direct, pivot 
and augment methods achieved precision of 0.78, 0.71 and 0.76, recall 0.69, 0.74, 
0.81 and F-measure of 0.71, 0.71 and 0.78, respectively. We achieved precision of 
0.68, recall of 0.75, and F-measure of 0.72, with the same threshold. 
    Generally, it seems that precision matters more than recall in the schema matching 
problem. But pragmatically it is not possible to determine fully-automatically all 
matches between two schemas, and the implementation of the matching therefore only 
determine match candidates that are then verified by a human expert. If a human ex-
pert is involved in the verification procedure then recall is as important as precision. 
     Note that our algorithms assumed that most element names are tokenizable, but not 
all of them. There are indeed types of data where it was nearly impossible to obtain 
matches using element name matching. For such cases, we got very low similarity 
values. However, even by considering cases like this one, we obtained good results on 
our experimental data sets, which is from real-world web data sources. This means 
that this type of data is not very frequent in real-world web data sources. 

6. Conclusions  

Our schema matching method uses a single property (i.e., element name) for matching 
and achieves a comparable F-measure score with respect to the methods that use mul-
tiple properties (e.g., element name, text description, data instance, context descrip-
tion). If we use a single property instead of multiple properties, it can speed up the 
matching process which is important when schema matching is used in Peer-to-Peer 
(P2P) data management or online query processing in P2P environments. Our method 
is scalable, in the sense that, if needed, we could also add other properties (i.e., text 
description and context description) to obtain a better schema matching result. To deal 
with non-tokenizable cases, we also plan to combine our name-based schema matcher 
with other existing matchers, in order to address specific situations that our method 
does not cover. When the element names are not words or fragments of words, then 
we need to use an instance matcher that looks at the type of the values in two columns, 
or at the values of the instances. If the instances are words, we can re-use our semantic 
and string similarity matching at the level of the instances. Sometimes two columns 
might match if similar words are used to denote different fields in two different data-
bases. In such cases, the precision of the matching can be increased by matching the 
text descriptions of the columns, when available. A word-level similarity measure can 
be used to determine the similarity level of two description texts. 
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