
Near-Synonym Choice using a 5-gram Language
Model

Aminul Islam and Diana Inkpen

University of Ottawa
School of Information Technology and Engineering

Ottawa, ON, Canada, K1N 6N5
{mdislam, diana}@site.uottawa.ca

Abstract. In this work, an unsupervised statistical method for auto-
matic choice of near-synonyms is presented and compared to the state-
of-the-art. We use a 5-gram language model built from the Google Web
1T data set. The proposed method works automatically, does not require
any human-annotated knowledge resources (e.g., ontologies) and can be
applied to different languages. Our evaluation experiments show that this
method outperforms two previous methods on the same task. We also
show that our proposed unsupervised method is comparable to a super-
vised method on the same task. This work is applicable to an intelligent
thesaurus, machine translation, and natural language generation.

1 Introduction

Choosing the wrong near-synonym can convey unwanted connotations, impli-
cations, or attitudes. In machine translation and natural language generation
systems, the choice among near-synonyms needs to be made carefully. By near-
synonyms we mean words that have the same meaning, but differ in lexical
nuances. For example, error, mistake, and blunder all mean a generic type of
error, but blunder carries an implication of accident or ignorance. In addition
to paying attention to lexical nuances, when choosing a word we need to make
sure it fits well with the other words in a sentence. In this paper we investigate
how the collocational properties of near-synonyms can help with choosing the
best words. This problem is difficult because the near-synonyms have senses that
are very close to each other, and therefore they occur in similar contexts. We
build a strong representation of the context in order to capture the more subtle
differences specific to each near-synonym.

The work we present here can be used in an intelligent thesaurus. A writer
can access a thesaurus to retrieve words that are similar to a given word, when
there is a need to avoid repeating the same word, or when the word does not seem
to be the best choice in the context. A standard thesaurus does not offer any
explanation about the differences in nuances of meaning between the possible
word choices.

This work can also be applied to a natural language generation system [1]
that needs to choose among near-synonyms. Inkpen and Hirst [1] included a

preliminary collocation module that reduces the risk of choosing a near-synonym
that does not fit with the other words in a generated sentence (i.e., violates
collocational constraints). The work presented in this paper allows for a more
comprehensive near-synonym collocation module.

The task we address in this paper is the selection of the best near-synonym
that should be used in a particular context. Inkpen [2] argues that the natural
way to validate an algorithm for this task would be to ask human readers to
evaluate the quality of the algorithm’s output, but this kind of evaluation would
be very laborious. Instead, Inkpen [2] validates her algorithms by deleting se-
lected words from sample sentences, to see whether the algorithms can restore
the missing words. That is, she creates a lexical gap and evaluates the ability
of the algorithms to fill the lexical gap. Two examples from [2] are presented in
Figure 1. All the near-synonyms of the original word, including the word itself,
become the choices in the solution set (see the figure for two examples of solu-
tion sets). The task is to automatically fill the gap with the best choice in the
particular context. We present a method that can be used to scoring the choices.
For our particular task, we choose only the highest scoring near-synonym. In
order to evaluate how well our method works we consider that the only correct
solution is the original word. This will cause our evaluation scores to underesti-
mate the performance of our method, as more than one choice will sometimes
be a perfect solution. Moreover, what we consider to be the best choice is the
typical usage in the corpus, but it may vary from writer to writer. Nonetheless,
it is a convenient way of producing test data in an automatic way. To verify how
difficult the task is for humans, Inkpen [2] performed experiments with human
judges on a sample of the test data.

The near-synonym choice method that we propose here uses the Google Web
1T n-gram data set [3], contributed by Google Inc., that contains English word
n-grams (from unigrams to 5-grams) and their observed frequency counts cal-
culated over 1 trillion words from web page text collected by Google in January
2006. The text was tokenized following the Penn Treebank tokenization, except
that hyphenated words, dates, email addresses and URLs are kept as single to-
kens. The sentence boundaries are marked with two special tokens <S> and
</S>. Words that occurred fewer than 200 times were replaced with the special
token <UNK>. Table 1 shows the data sizes of the Web 1T corpus. The n-grams

Table 1. Google Web 1T Data Sizes

Number of Number Size on disk (in KB)

Tokens 1,024,908,267,229 N/A
Sentences 95,119,665,584 N/A
Unigrams 13,588,391 185,569
Bigrams 314,843,401 5,213,440
Trigrams 977,069,902 19,978,540
4-grams 1,313,818,354 32,040,884
5-grams 1,176,470,663 33,678,504

themselves must appear at least 40 times to be included in the Web 1T corpus1.
It is expected that this data will be useful for statistical language modeling, e.g.,
for machine translation or speech recognition, as well as for other uses.

Sentence: This could be improved by more detailed consideration of the processes of
......... propagation inherent in digitizing procedures.
Original near-synonym: error
Solution set: mistake, blooper, blunder, boner, contretemps, error, faux pas, goof,
slip, solecism
Sentence: The day after this raid was the official start of operation strangle, an at-
tempt to completely destroy the lines of communication.
Original near-synonym: enemy
Solution set: opponent, adversary, antagonist, competitor, enemy, foe, rival

Fig. 1. Examples of sentences with a lexical gap, and candidate near-synonyms to fill
the gap.

This paper is organized as follow: Section 2 presents a brief overview of the
related work. Our proposed method is described in Section 3. Evaluation and
experimental results are discussed in Section 4. We conclude in Section 5.

2 Related Work

The idea of using the Google Web 1T n-gram data set as a resource in different
natural language processing applications has been exploited by many researchers.
Islam and Inkpen [4] use 3-grams of this data set to detect and correct real-word
spelling errors and also use n-grams to only correct real-word spelling errors [5].
Nulty and Costello [6] deduce the semantic relation that holds between two nouns
in a noun-noun compound phrase such as “flu virus” or “morning exercise” using
lexical patterns in the Google Web 1T corpus. Klein and Nelson [7] investigate
the relationship between term count (TC) and document frequency (DF) values
of terms occurring in the Web as Corpus (WaC) and also the similarity between
TC values obtained from the WaC and the Google n-gram dataset and they
mention that a strong correlation between the two would give them confidence
in using the Google n-grams to estimate accurate inverse document frequency
(IDF) values in order to generate well-performing lexical signatures based on the
TF-IDF scheme. Murphy and Curran [8] explore the strengths and limitations
of Mutual Exclusion Bootstrapping (MEB) by applying it to two novel lexical-
semantic extraction tasks: extracting bigram named entities and WordNet lexical
file classes [9] from the Google Web 1T 5-grams.

Turney et al. [10] addressed the multiple-choice synonym problem: given a
word, choose a synonym for that word, among a set of possible solutions. In
1 Details of the Google Web 1T data set can be found at

www.ldc.upenn.edu/Catalog/docs/LDC2006T13/readme.txt

this case the solutions contain one synonym and some other (unrelated) words.
They achieves high performance by combining classifiers. Clarke and Terra [11]
addressed the same problem as Turney et al., using statistical associations mea-
sures computed with counts from the Waterloo terabyte corpus. In our case,
all the possible solutions are synonyms of each other, and the task is to choose
one that best matches the context: the sentence in which the original synonym
is replaced with a gap. It is much harder to choose between words that are
near-synonyms because the context features that differentiate a word from other
words might be shared among the near-synonyms.

In fact, the works that address exactly the same task are that of Edmonds [12]
and Inkpen [2], as far as we are aware. Edmonds [12] gives a solution based on a
lexical co-occurrence network that included second-order co-occurrences whereas
Inkpen [2] uses a much larger corpus and a simpler method, and obtains better
results than that of [12].

Inkpen’s [2] unsupervised method is based on the mutual information scores
between a near-synonym and the content words in the context filtering out the
stopwords2. The pointwise mutual information (PMI) between two words x and
y compares the probability of observing the two words together (their joint prob-
ability) to the probabilities of observing x and y independently (the probability
of occurring together by chance) [13].

PMI(x, y) = log2

P (x, y)
P (x)P (y)

The probabilities can be approximated by: P (x) = C(x)/N , P (y) = C(y)/N ,
P (x, y) = C(x, y)/N , where C denote frequency counts and N is the total num-
ber of words in the corpus. Therefore,

PMI(x, y) = log2

C(x, y) ·N
C(x) · C(y)

where N can be ignored in comparisons, since is it the same in all the cases.
Inkpen [2] models the context as a window of size 2k around the gap (the missing
word): k words to the left and k words to the right of the gap. If the sentence is
s = · · ·w1 · · ·wk Gap wk+1 · · ·w2k · · · , for each near-synonym NSi from the
group of candidates, the score is computed by the following formula:

Score(NSi, s) = Σk−1
j=1PMI(NSi, wj) +Σ2k

j=k+1PMI(NSi, wj).

In a supervised learning method, Inkpen [2] trains classifiers for each group
of near-synonyms. The classes are the near-synonyms in the solution set. Each
sentence is converted into a vector of features to be used for training the super-
vised classifiers. Inkpen used two types of features. One type of features consists
in the scores of the left and right context with each class (i.e., with each near-
synonym from the group). The number of features of this type is equal to twice
the number of classes: one feature for the score between the near-synonym and
2 We do not filter out stopwords or punctuation in our method.

the part of the sentence at the left of the gap, and one feature for the score be-
tween the near-synonym and the part of the sentence at the right of the gap. The
second type of features is formed by the words in the context windows. For each
group of near-synonyms, Inkpen used as features the 500 most frequent words
situated close to the gaps in a development set. The value of a word feature for
each training example is 1 if the word is present in the sentence (at the left or
at the right of the gap), and 0 otherwise. Inkpen trained classifiers using several
machine learning algorithms to see which one is best at discriminating among
the near-synonyms.

There has been quite a lot of work in unsupervised learning of word clusters
based on n-grams [14–16]. Our task has similarities to the word sense disam-
biguation task. Our near-synonyms have senses that are very close to each other.
In Senseval, some of the fine-grained senses are also close to each other, so they
might occur in similar contexts, while the coarse-grained senses are expected to
occur in distinct contexts. In our case, the near-synonyms are different words to
choose from, not the same word with different senses.

3 Proposed Method

Our task is to find the best near-synonym from a set of candidates that could fill
in the gap in an input text, using the Google Web 1T data set. Let us consider
an input text W which after tokenization3 has p (2≤p≤9) words4, i.e.,

W = {. . . wi−4 wi−3 wi−2 wi−1 wi wi+1 wi+2 wi+3 wi+4 . . .}

where wi (in position i) indicates the gap and wi in wi denotes a set of
m near-synonyms (i.e., wi = {s1, s2, · · · , sj , · · · , sm}). We take into account at
most four words before the gap and at most four words after the gap. Our task
is to choose the sj ∈ wi that best matches with the context. In other words, the
position i is the gap that needs to be filled with the best suited member from
the set, wi.

3 We need to tokenize the input sentence to make the n-grams formed using the
tokens returned after the tokenization consistent with the Google n-grams. The
input sentence is tokenized in a manner similar to the tokenization of the Wall Street
Journal portion of the Penn Treebank. Notable exceptions include the following:

- Hyphenated word are usually separated, and hyphenated numbers usually form
one token.

- Sequences of numbers separated by slashes (e.g., in dates) form one token.

- Sequences that look like urls or email addresses form one token.

4 If the input text has more than 9 words then we keep at most four words before the
gap and at most four words after the gap to make the length of the text 9. We choose
these numbers so that we could maximize the number of n-grams to use, given that
we have up to 5-grams in the Google Web 1T data set.

We construct m strings (S1 · · ·Sm) replacing the gaps in position i with
sj ∈ wi as follows:

S1 = · · ·wi−4wi−3wi−2wi−1s1wi+1wi+2wi+3wi+4 · · ·

S2 = · · ·wi−4wi−3wi−2wi−1s2wi+1wi+2wi+3wi+4 · · ·
...

Sm = · · ·wi−4wi−3wi−2wi−1smwi+1wi+2wi+3wi+4 · · ·

Using equation 7 in Section 3.2, we calculate P (S1), · · · , P (Sm). The index of
the target synonym, j, will be argmax

j∈1···m
P (Sj).

3.1 n-gram Language Model

A language model is usually formulated as a probability distribution P (S) over
strings S, and attempts to reflect how frequently a string S occurs as a sentence.
The most widely-used language models, by far, are n-gram language models [17].
We introduce these models by considering the case n = 5; these models are called
5-gram models. For a sentence S composed of the words w1 · · ·wp, without loss
of generality we can express P (S) as

P (S) = P (w1)P (w2|w1)P (w3|w1w2) · · ·P (wp|w1 · · ·wp−1)

=
p∏

i=1

P (wi|w1 · · ·wi−1) (1)

For n-gram models where n >2, we condition the probability of a word on the
identity of the last n-1 words. Generalizing equation 1 to n >2, we get

P (S) =
p+1∏
i=1

P (wi|wi−1
i−n+1) (2)

where wj
i denotes the words wi · · ·wj . To estimate P (wi|wi−1

i−n+1), the frequency
with which the word wi occurs given that the words wi−1

i−n+1 precede the current
word wi, we simply count how often the n-gram wi

i−n+1 occurs in some text and
normalize by the total number of occurrences of any word in the same context.
Let C(wi

i−n+1) denote the number of times the n-gram wi
i−n+1 occurs in the

given text. Then

P (wi|wi−1
i−n+1) =

C(wi
i−n+1)∑

wi
C(wi

i−n+1)
(3)

Notice that C(wi−1
i−n+1) ≥

∑
wi
C(wi

i−n+1). To understand the inequality of
C(wi−1

i−n+1) and
∑

wi
C(wi

i−n+1), assume that both i and n are 5. Then, C(wi−1
i−n+1)

becomes C(w1w2w3w4), which is actually the frequency of a specific 4-gram,
w1w2w3w4, and

∑
wi
C(wi

i−n+1) becomes
∑

w5
C(w1w2w3w4w5), which is the

sum of the frequencies of all the 5-grams that start with the 4-gram, w1w2w3w4.
Thus, in general, C(w1w2w3w4) is equal to

∑
w5
C(w1w2w3w4w5). But, for some

specific cases, it is possible that C(w1w2w3w4) is greater than
∑

w5
C(w1w2w3w4w5).

For example, all the n-grams (2 ≤ n ≤ 5) that appear less than 40 times
have been filtered out from the Google Web 1T n-grams. This means all the
5-grams (starting with the 4-gram w1w2w3w4) that appear less than 40 times
have not been included in

∑
w5
C(w1w2w3w4w5). Thus, when we deal with the

Web 1T 5-grams and 4-grams, it is obvious that C(w1w2w3w4) is greater than or
equal to

∑
w5
C(w1w2w3w4w5). Thus, in general, we can say that C(wi−1

i−n+1) ≥∑
wi
C(wi

i−n+1). This also supports the idea of using the missing count (equa-
tion 4) in the smoothing formula (equation 5).

We use a smoothing method loosely based on the one-count method described
in [18]. Because tokens that appears less than 200 times and n-grams that appear
less than 40 times have been filtered out from the Web 1T, we use n-grams with
missing counts instead of n-grams with one counts [19]. The missing count is
defined as:

M(wi−1
i−n+1) = C(wi−1

i−n+1)−
∑
wi

C(wi
i−n+1) (4)

The corresponding smoothing formula is:

P (wi|wi−1
i−n+1) =

C(wi
i−n+1) + (1 + αn)M(wi−1

i−n+1)P (wi|wi−1
i−n+2)

C(wi−1
i−n+1) + αnM(wi−1

i−n+1)
(5)

Yuret [19] optimized the parameters αn > 0 for n = 2 · · · 5 on the Brown corpus
to yield a cross entropy of 8.06 bits per token. The optimized parameters are:
α2 = 6.71, α3 = 5.94, α4 = 6.55, α5 = 5.71

Thus, incorporating the smoothing formula in equation 2, we get

P (S) =
p+1∏
i=1

C(wi
i−n+1) + (1 + αn)M(wi−1

i−n+1)P (wi|wi−1
i−n+2)

C(wi−1
i−n+1) + αnM(wi−1

i−n+1)
(6)

3.2 The Language Model Used for Our Task

For the specified task, we simplify the 5-gram model described in Section 3.1.
From equation 2, it is clear that the maximum number of products possible is 10
as 2 ≤ p ≤ 9. Among these products, we can omit the products P (wi−1|wi−2

i−5),
P (wi−2|wi−3

i−6), P (wi−3|wi−4
i−7), P (wi−4|wi−5

i−8), and P (wi+5|wi+4
i+1) because these

product items have the same values for all j∈1 · · ·m. Thus, the five product items
that we consider are: P (wi|wi−1

i−4), P (wi+1|wi
i−3), P (wi+2|wi+1

i−2), P (wi+3|wi+2
i−1),

and P (wi+4|wi+3
i). Applying this simplification in equation 2 and equation 6,

we get

P (S) =
p∏

i=5

P (wi|wi−1
i−n+1)

=
p∏

i=5

C(wi
i−n+1) + (1 + αn)M(wi−1

i−n+1)P (wi|wi−1
i−n+2)

C(wi−1
i−n+1) + αnM(wi−1

i−n+1)
(7)

Equation 7 is actually used in a recursive way for n=5,4,3,2,1 (i.e., if the
current n-gram count is zero, then it is used with a lower n-gram, and so on). For
example, P (w5|w1w2w3w4) is a function of C(w1w2w3w4w5) and P (w5|w2w3w4);
if C(w1w2w3w4w5) > 0 then we do not consider P (w5|w2w3w4). This is a backoff
language model.

4 Evaluation and Experimental Results

4.1 Comparison to Edmonds’s and Inkpen’s methods

In this section we present results of the proposed method explained in Section
3. We compare our results with those of Inkpen [2] and Edmonds [12]. Ed-
monds [12] solution used the texts from the year 1989 of the Wall Street Journal
(WSJ) to build a lexical co-occurrence network for each of the seven groups of
near-synonyms from Table 2. The network included second-order co-occurrences.
Edmonds used the WSJ 1987 texts for testing, and reported accuracies only a
little higher than the baseline. Inkpen’s [2] method is based on mutual informa-
tion, not on co-occurrence counts. Inkpen’s counts are collected from a much
larger corpus.

Accuracy
Test Set Number Base Edmonds’s Inkpen’s Inkpen’s Proposed

of Cases Line Method Method Method Method
(Supervised) (Unsup.) (Unsup.)

difficult, hard, tough 6,630 41.7% 47.9% 57.3% 59.1% 63.2%
error, mistake, oversight 1,052 30.9% 48.9% 70.8% 61.5% 78.7%
job, task, duty 5,506 70.2% 68.9% 86.7% 73.3% 78.2%
responsibility, burden, 3,115 38.0% 45.3% 66.7% 66.0% 72.2%
obligation, commitment
material, stuff, substance 1,715 59.5% 64.6% 71.0% 72.2% 70.4%
give, provide, offer 11,504 36.7% 48.6% 56.1% 52.7% 55.8%
settle, resolve 1,594 37.0% 65.9% 75.8% 76.9% 70.8%

ALL (average over 31,116 44.9% 53.5% 65.2% 61.7% 65.3%
all sentences)
ALL (average from 31,116 44.8% 55.7% 69.2% 66.0% 69.9%
group averages)

Table 2. Comparison among the new proposed method, a baseline algorithm, Ed-
monds’s method, and Inkpen’s unsupervised and supervised method

For comparison purposes, in this section we use the same test data (WSJ
1987) and the same groups of near-synonyms. The seven groups of near-synonyms
used by Edmonds are listed in the first column of Table 2. The near-synonyms
in the seven groups were chosen to have low polysemy. This means that some
sentences with wrong senses of near-synonyms might be in the automatically
produced test set, but hopefully not many.

Before we look at the results, we mention that the accuracy values we com-
pute are the percentage of correct choices when filling in the gap with the winning
near-synonym. The expected solution is the near-synonym that was originally in
the sentence, and it was taken out to create the gap. This measure is conserva-
tive; it does not consider cases when more than one solution is correct.

Table 2 presents the comparative results for the seven groups of near-synonyms.
The second last row averages the accuracies for all the test sentences, i.e., these
are calculated as the number of correct choices returned over total number of
sentences (i.e., 31116). The last row averages the accuracies for all the groups
averages, i.e., these are calculated as the sum of the accuracies (in percentage)
of all the seven groups over the number of groups (i.e., 7). The second column
shows how many test sentences we collected for each near-synonym group. The
third column is for the baseline algorithm that always chooses the most fre-
quent near-synonym. The fourth column presents the results reported in [12].
The fifth column presents the result of Inkpen’s [2] supervised method when
using boosting (decision stumps) as machine learning method and PMI+500
words as features. The sixth column presents the result of Inkpen’s [2] unsuper-
vised method when using word counts in PMI, and the last column is for our
proposed unsupervised method using the Google n-grams. We show in bold the
best accuracy figure for each data set. We notice that the automatic choice is
more difficult for some near-synonym groups than for the others.

Our method performs significantly better than the baseline algorithm, Ed-
mond’s method, and Inkpen’s unsupervised method and comparable to Inkpen’s
supervised method. For all the results presented in this paper, statistical sig-
nificance tests were done using the paired t-test, as described in [20], page 209.
Error analysis reveals that incorrect choices happen more often when the context
is weak, that is, very short sentences or sentences with very few content words.

On average, our method performs 25 percentage points better than the base-
line algorithm, 14 percentage points better than Edmonds’s method, 4 per-
centage points better than Inkpen’s unsupervised method, and comparable to
Inkpen’s supervised method. An important advantage of our method is that
it works on any group of near-synonyms without training, whereas Edmonds’s
method requires a lexical co-occurrence network to be built in advance for each
group of near-synonyms and Inkpen’s supervised method requires training for
each near-synonym group.

Some examples of correct and incorrect choices, using our proposed method
are shown in Table 3. Table 4 shows some examples of cases where our pro-
posed method fails to generate any suggestion. Cases where our method failed
to provide any suggestion are due to the appearances of some very uncommon
proper names or nouns, contractions (e.g., n’t), hyphens between two words
(e.g., teen-agers), single and double inverted commas in the n-grams, and so on.
Preprocessing to tackle this issues would improve the results.

CORRECT CHOICE:

· · · viewed widely as a mistake → mistake [error, mistake, oversight] and a major
· · ·
· · · analysts expect stocks to settle → settle [settle, resolve] into a steady · · ·
· · · Sometimes that task → task [job, task, duty] is very straightforward · · ·
· · · carry a heavier tax burden → burden [responsibility, burden, obligation, com-
mitment] during 1987 because · · ·
INCORRECT CHOICE:

· · · would be a political mistake → error [error, mistake, oversight] to criticize the
· · ·
· · · its energies on the material → substance [material, stuff, substance] as well as
· · ·
· · · 23 , and must provide → give [give, provide, offer] Washington-based USAir at
· · ·
· · · Phog Allen – to resolve → settle [settle, resolve] the burning question · · ·

Table 3. Examples of correct and incorrect choices using our proposed method. Italics
indicate the proposed near-synonym choice returned by the method, arrow indicates
the original near-synonym, square brackets indicate the solution set.

NO CHOICE:

· · · two exchanges ’ ” → commitment [responsibility, burden, obligation, commit-
ment] to making serious · · ·
· · · He said ECD ’s → material [material, stuff, substance] is a multicomponent
· · ·
· · · Safe Rides , teen-agers → give [give, provide, offer] rides to other · · ·
· · · guilty plea does n’t → resolve [settle, resolve] the issue for · · ·
· · · sees Mr. Haig ’s → tough [difficult, hard, tough] line toward Cuba · · ·
· · · The 1980 Intelligence → Oversight [error, mistake, oversight] Act requires that
· · ·
· · · thought Mr. Cassoni ’s → job [job, task, duty] will be made · · ·

Table 4. Examples of sentences where our method fails to generate any suggestion.

4.2 Experiment with human judges

Inkpen [2] asked two human judges, native speakers of English, to guess the
missing word in a random sample of the experimental data set (50 sentences
for each of the 7 groups of near-synonyms, 350 sentences in total). The results
in Table 5 show that the agreement between the two judges is high (78.5%),
but not perfect. This means the task is difficult even if some wrong senses in
the automatically-produced test data might have made the task easier in a few
cases.

5 Here, each of the seven groups has equal number of sentences, which is 50. Thus, the
average from all 350 sentences and the average from group averages are the same.

Test set J1-J2 J1 J2 Inkpen’s Our
Agreement Accuracy Accuracy Accuracy Accuracy

difficult, hard, tough 72% 70% 76% 53% 62%
error, mistake, oversight 82% 84% 84% 68% 70%
job, task, duty 86% 92% 92% 78% 80%
responsibility, burden, 76% 82% 76% 66% 76%
obligation, commitment
material, stuff, substance 76% 82% 74% 64% 56%
give, provide, offer 78% 68% 70% 52% 52%
settle, resolve 80% 80% 90% 77% 66%

All (average)5 78.5% 79.7% 80.2% 65.4% 66%

Table 5. Experiments with two human judges on a random subset of the experimental
data set

The human judges were allowed to choose more than one correct answer when
they were convinced that more than one near-synonym fits well in the context.
They used this option sparingly, only in 5% of the 350 sentences. In future work,
we plan to allow the system to make more than one choice when appropriate
(e.g., when the second choice has a very close score to the first choice).

5 Conclusions

We presented an unsupervised statistical method of choosing the best near-
synonym in a context. We compared this method with three previous methods
(Edmonds’s method and two of Inkpen’s method) and show that the performance
improved considerably. It is interesting that our unsupervised statistical method
is comparable to a supervised learning method.

Future work includes an intelligent thesaurus and a natural language gener-
ation system that has knowledge of nuances of meaning of near-synonyms. We
plan to include a near-synonym sense disambiguation module to ensure that the
thesaurus does not offer alternatives for wrong senses of words.

Acknowledgments

References

1. Inkpen, D.Z., Hirst, G.: Near-synonym choice in natural language generation. In:
Proceedings of the International Conference RANLP-2003 (Recent Advances in
Natural Language Processing), Borovets, Bulgaria (2003) 204–211

2. Inkpen, D.: A statistical model for near-synonym choice. ACM Transactions on
Speech and Language Processing 4 (2007) 1–17

3. Brants, T., Franz, A.: Web 1T 5-gram corpus version 1.1. Technical report, Google
Research (2006)

4. Islam, A., Inkpen, D.: Real-word spelling correction using Google Web 1T 3-grams.
In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2009, Singapore, Association for Computational Linguistics
(2009) 1241–1249

5. Islam, A., Inkpen, D.: Real-word spelling correction using Google Web 1T n-
gram data set. In: Proceedings of the 18th ACM Conference on Information and
Knowledge Management, CIKM 2009, Hong Kong, ACM (2009) 1689–1692

6. Nulty, P., Costello, F.: Using lexical patterns in the Google Web 1T corpus to
deduce semantic relations between nouns. In: Proceedings of the Workshop on
Semantic Evaluations: Recent Achievements and Future Directions (SEW-2009),
Boulder, Colorado, Association for Computational Linguistics (2009) 58–63

7. Klein, M., Nelson, M.L.: Correlation of term count and document frequency for
Google n-grams. In et al., B.M., ed.: Proceedings of the 31st European Confer-
ence on Information Retrieval. Volume 5478/2009 of Lecture Notes in Computer
Science., Springer Berlin / Heidelberg (2009) 620–627

8. Murphy, T., Curran, J.: Experiments in mutual exclusion bootstrapping. In:
Proceedings of the Australasian Language Technology Workshop 2007, Melbourne,
Australia (2007) 66–74

9. Fellbaum, C., ed.: WordNet: An electronic lexical database. MIT Press (1998)
10. Turney, P., Littman, M., Bigham, J., Shnayder, V.: Combining independent mod-

ules to solve multiple-choice synonym and analogy problems. In: Proceedings of
the International Conference RANLP-2003 (Recent Advances in Natural Language
Processing), Borovets, Bulgaria (2003) 482–489

11. Clarke, C.L.A., Terra, E.: Frequency estimates for statistical word similarity mea-
sures. In: Proceedings of the Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics (HLT-NAACL
2003), Edmonton, Canada (2003) 165–172

12. Edmonds, P.: Choosing the word most typical in context using a lexical co-
occurrence network. In: Proceedings of the 35th Annual Meeting of the Association
for Computational Linguistics, Madrid, Spain (1997) 507–509

13. Church, K., Hanks, P.: Word association norms, mutual information and lexicog-
raphy. Computational Linguistics 16 (1) (1991) 22–29

14. Brown, P.F., deSouza, P.V., Mercer, R.L., Pietra, V.J.D., Lai, J.C.: Class-based
n-gram models of natural language. Computational Linguistics 18 (1992) 467–479

15. Pereira, F., Tishby, N., Lee, L.: Distributional clustering of english words. In:
Proceedings of the 31st Annual Meeting of the Association for Computational
Linguistics. (1993) 183–190

16. Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings of
the 17th international conference on Computational linguistics, Morristown, NJ,
USA, Association for Computational Linguistics (1998) 768–774

17. Chen, S.F., Goodman, J.T.: An empirical study of smoothing techniques for lan-
guage modeling. Technical Report TR-10-98, Computer Science Group, Harvard
University (1998)

18. Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for lan-
guage modeling. In: 34th Annual Meeting of the Association for Computational
Linguistics. (1996) 310–318

19. Yuret, D.: KU: Word sense disambiguation by substitution. In: Proceedings of the
4th workshop on Semantic Evaluations (SemEval-2007), Prague, Czech Republic
(2007) 207–214

20. Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing.
The MIT Press, Cambridge, Massachusetts (1999)

