
A Prototype Natural Language Interface for Animation Systems

Diana Inkpen and Darren Kipp
University of Ottawa, School of information Technology and Engineering

diana@site.uottawa.ca, dkipp076@uottawa.ca

Abstract

We present a prototype implementation of a

natural language interface to an animation system.
The interface provides the means for a human user to
issue commands in natural language to an avatar in a
virtual reality environment. The purpose of our system
is to convert the input text into commands in an
animation script language and execute them. Our
system uses a general-purpose parser and a domain-
specific semantic interpreter based on pattern
matching.

1. Introduction

This paper presents a prototype implementation of a
natural language interface to an animation system. The
main components of the system are: a parser, a
semantic interpreter, and a command interpreter. The
architecture of the system is presented in Figure 1 and
explained in detail in section 3. The parser is a general-
purpose natural-language parser [3]; it transforms each
input sentence into a parse tree. The semantic
interpreter takes as input the parse tree and generates
commands in an animation script language. The
command interpreter executes the animation script
using the animation module, which in our case is very
simple; it will be replaced by an anthropomorphic
avatar [5] in future work.

The semantic interpreter is the core of our system. It
directs sub-trees of the parse tree to the appropriate
sub-modules. The verb phrases are sent to the “action
processor”, which locates the main verb and identifies
the command to be generated. The other sub-trees are
sent to the “details processor”, which uses a pattern
matcher to identify values for attributes of the
commands, in the sub-trees. When certain attribute
values are not specified, default values are used. For
example, if the avatar is told to run without specifying
how fast, a default speed is used. When a sentence
contains a conjunction of two verb phrases, two

1consecutive commands are generated. Their attributes
come from the details processor, with attributes in the
sub-tree of each verb phrase allowed to overwrite
attributes from higher levels in the parse tree. This
allows us to capture the correct syntactic and semantic
dependencies.

An example of input and output to the system is the
following (the output format is explained in details in
section 6):

Input: John, walk five steps to the right.
Output: walk speed=5 direction=right repetition=5;

The system is designed to be easily extended to

accept other types of sentences, without modifying the
code, but only the text files used as parameters by the
semantic interpreter. More patterns (phrase and
sentence structures) can be added to the parameter file
of the details processor. New commands can be created
by adding more verbs and their synonyms to the
parameter file of the action processor. In order to
accommodate more than one avatar, another attribute
can be added to all commands, to store the name of the
avatar.

2. Related work

There is a lot of related work in natural language
interfaces. The two main directions are: more or less
ad-hoc systems for specific domains (see [1] [2] for

1 Copyright 2002 IEEE. Published in the Proceedings of
HAVE/2002, Nov., 2002 in Ottawa, ON, Canada. Personal
use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works, must be obtained
from the IEEE. Contact: Manager, Copyrights and
Permissions / IEEE Service Center / 445 Hoes Lane / P.O.
Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: +
Intl. 732-562-3966.

two surveys), or more-principled interfaces to
databases [6], that translate the natural language input
into SQL queries.

One work similar to ours with respect to the
application domain is [4], but there the emphasis was
placed on the animation rather than the natural
language interface. The system described in [4] used a
simplified grammar for its input commands. Our
system uses a general grammar and relies on the
semantic analyzer to interpret the resulting parse tree.

Figure 1: Command interpretation process

3. General Design Principles

Our system was designed to be an extendable
system for converting natural language into a script
language for animation. The semantic analyzer is
completely parameterized using input files. Any new
information added to the domain-specific lexicon or to
the phrase inventory is placed within these parameter
files. The animation module can be easily replaced
with a more elaborate animation module. The system
was implemented in Java.

The purpose of the system is to convert text
sentences into a script language and execute it. This
process is completed using three main steps (see
Figure 1). The first step of the process converts the
input text into a parse tree. The second step of the
process converts the parse tree into a script-like
command language. The final step is to interpret and
execute the command language and produce the
animation.

4. The syntactic analysis

The first module performs the parsing (the syntactic
analysis) of the input sentence. This module accepts a
string input and returns a tree data structure. See
Figure 2 for an example of a resulting parse tree. The
parser [3] that we used was developed by the Natural
Language Processing (NLP) group at Stanford
University. It comes with a collection of Java packages
for handling the data structures. The NLP group
periodically produces new versions of their Java
parser. These could be plugged into our animation
system very easily. It would also be possible to use
another parser with similar functionality to the
Stanford parser, by

Figure 2: Example of parse tree for "John,

walk five steps to the right.”

creating additional classes to interface it to the rest of
the software.

The Stanford parser has been in existence for
several years and currently works very well. The only
significant problems encountered with the parser
involved very small, semi-incomplete sentences with
assumed subjects. These included examples such as
“Jump.” This was overcome by adding the avatar’s
name (in our case the avatar is named “John”) to all the
sentences. Although it is possible to train the parser
using your own data, the default probabilistic grammar
which was provided with the parser was used in our
project.

Another drawback of this parser was that it required
a significant amount of memory. It was therefore
necessary to restrict the size of the heap (to about
800Mb) when launching the Java program. This
restriction limited the length of sentences which it was

able to parse. This limitation did not cause any
problems in our application.

5. The semantic analysis

The major emphasis of our work was on the
semantic analyzer, whose architecture is detailed in
Figure 3. The semantic analyzer was designed to
accept a tree structure containing the parse tree and
return the command or the sequence of commands in
the form of a string. It uses five separate sub-modules.

The first module is called the command processor.
This module accepts the input tree and returns the
output string. Aside from I/O operations, it serves to
direct the sub-trees from the first level of the sentence
tree to the appropriate modules (either the details
processor or the action processor). This module
functions by first processing non verb phrases by
sending these sub-trees to the details processor. All
resulting details are collected in a list and sent to the
action processor along with the verb phrase. This
mechanism allows details from higher levels to
propagate down into the verb phrase. The action
processor returns one or more commands in the form
of a string.

The second module is the details processor. This
module has the responsibility of extracting command
details from sections of tree which are not verb
phrases. If this module encounters a verb phrase it
sends the verb phrase to the action processor for
handling.

The details processor uses a pattern matcher to
extract meaning from sections of sub-trees. If the
details processor matches a section of tree it returns the
resulting property. Otherwise, it must drill deeper in
the tree in order to attempt to find the correct property.

Figure 3: The semantic analyzer

The third module is the action processor. The action
processor is responsible for processing verb phrases.
The action processor works by first locating the verb
within the verb phrase. Once found, the verb is
compared with a list of possible verbs (and their
synonyms) representing the set of actions which the
avatar is capable of. Once a matching action is found, a
set of defaults associated with that action is returned.
The action processor then utilizes the services of the
details processor to obtain any additional details about
the action from other parts of the verb phrase. All the
information associated with the actions is provided in a
text input file.

Once all information about a particular command
has been obtained, the command attributes must be
resolved. Each command attributes is resolved
individually. The command attributes potentially come
from up to three locations.

Default attributes are returned by the command
generator. These attributes serve only as defaults and
can be overwritten by attributes returned by the details
processor. The remaining two locations come from
the details processor. The lower level of these
attributes come from portions of the parse tree which
are above or equal to the verb phrase sub-tree. These
attributes override the command defaults but can,
themselves, still be changed by attributes from portions
of the sentence which appear within the verb phrase.
Attributes from within the verb phrase are the highest
level and override all others.

The final situation the action processor must handle
is a sentence containing a conjunction within the first
level of a verb phrase. This situation results in two
verb phrases separated by a coordinating conjunction.
In such a circumstance, each of the verb phrases is
processed independently. Each of the verb phrases
inherits the same details from higher portions of the
tree but can interpret and possibly override them
independent of each other. Separate commands are
generated by each of the verb phrases. The result is
two separate commands generated for the input
sentence.

6. The command interpreter

An example of command to be interpreted is the
following, where the attributes of the two commands,
“walk” and “turn”, are speed, direction, and repetition
(duration):

walk speed=9 direction=left repetition=5;
turn speed=5 direction=reverse repetition=1;

The input sentence is this case was: “John, run to
the left and then turn back”. This is an example of a
sentence containing two coordinated verb phrases, for
which the semantic interpreter produced two
consecutive commands.

All commands are returned in the form of a string.
The command begins with the command action
followed by each attribute, denoted by the attribute
name, the equal sign, and the attribute value. Each
attribute name/value pair is separated by a space. The
command is completed with a semicolon. In the case
where several commands are generated each command
is separated by a semicolon. The command attributes
are permitted to appear in any order.

7. The animation module

The animation module is responsible for both
interpreting the commands and drawing the avatar to
the screen. Several commands within a string are easily
distinguished since each command ends with a
semicolon. Once separated, each command can be
interpreted separately.

Each individual command is processed by first
obtaining the action from the front of the command.
The remainder of the command provides the attributes
that describe the specifics of the animation.

The simplified avatar (Figure 4), a stick with head,
arms and legs, is a placeholder that will be replaced
with a realistic avatar [5].

Figure 4: The simplified avatar

The animation module is the only hard coded part

of the current system. It uses separated code to execute
each command. The avatar is drawn by modifying
class variables, so that the position of the avatar is
changed each time the screen is redrawn. The ability to
add arm and leg movement is also included, but is not
used yet.

8. Results

Most predictable sentences were able to be
processed fairly successfully. As with most natural
language systems, the main difficulty is that the natural
language used by the user is highly variable and can be
highly ambiguous. In some respects, however, the
expectation placed on computer systems is also
extremely high. In general computer system systems
are expected to work very precisely. Because of this,
computers are often expected to outperform humans.
This is, however, unrealistic in case of natural
language processing because the computers do not
have real intelligence and lack world knowledge.
Moreover, there are situations that are truly ambiguous
even for humans.

Since the system uses editable parameter files for
matching commands and portions of the parse tree,
new words, phrases and sentence structures are most
easily handled by adding them to these text files. The
input files allow for new synonyms of command verbs
as well as new tree structures to be converted into
command attributes.

9. Conclusions

There are a number of difficulties with natural
language systems. Such difficulties can be reasonably
overcome by restricting the domain of the problem.
There are still, however, several problems occurring
when there is considerable variation in the sentence
structure.

The system was built in such a way that new
commands and properties could easily be added to the
system. This also allowed easy modification for new
sentence structures and phrases. Our system made use
of a generalized parser and grammar rather than a
specific one. This design left the task of extracting
meaning from the sentences to the semantic analyzer.
This allowed for greater sentence variety without
having to make modifications to the grammar used.
Instead, new patterns could simply be added to the text
parameter files.

A great deal of potential exists for natural language
interfaces for various types of applications. The main
solution is to restrict the domain enough to allow
system not to be excessively hampered by the massive
variety of natural human language.

10. Future work

One direction of future work is to add speech
recognition capabilities so that the commands can be
issued by voice. The speech recognition module will

include a domain model in order to reduce the number
of recognition errors.

Another direction of future work is to replace our
simple animation module with an existing full-scale
animation module [5].

Our semantic interpreter can be easily extended to
accommodate new commands, including arm and leg
movement for example. The command generator needs
to be adapted to generate commands and attributes for
these commands according to the specific animation
script language.

In future work our system could be expanded to
include additional avatars. This would allow a user to
be able to command two or more avatars separately. In
such a case, a name parameter would be required. Each
avatar will need to have a separate space of state and
environment variables.. The input sentences need to be
interpreted in the given context. Pronouns and other
deictic expressions that refer to objects or avatars will
need to be resolved.

The addition of new objects and avatars would
probably also require a push-down automata to store
previous commands. This would also a use to use
commands such as:

Now do the same with the red ball.

Such a command would require knowledge of what

was previously done and how it relates to the new
object, in this case, the red ball. Such information
could be stored by previous commands on a stack.

11. References

[1] I. Androutsopoulos, G.D. Ritchie, and P. Thanisch,
“Natural Language Interfaces to Databases: an Introduction”,
Journal of Language Engineering", 1(1), pp. 29-81, 1995

[2] R. C. Perrault and B. J. Grosz, "Natural Language
Interfaces", Annual Review of Computer Science, volume 1,
J.F. Traub, editor, pp. 435-452, Annual Reviews Inc., Palo
Alto, CA, 1986.

[3] D. Klein and C. D. Manning, “Accurate Unlexicalized
Parsing”, The 41th Meeting of the Association for
Computational Linguistics (ACL 2003), Sapporo, Japan,
2003.

[4] D. C. Petriu, X. L. Yang, and T. E. Whalen “Behaviour-
Based Script Language for Anthropomorphic Avatar
Animation in Virtual Environments”, International
Symposium on Virtual and Intelligent Measurement Systems
(VIMS 2002,), Mt. Alyeska Resort, USA, 2002.

[5] M. D. Petriu, N. D. Georganas, and T. E. Whalen
“Development of a Humanoid Avatar in Java3D”, IEEE
International Workshop on Haptic, Audio and Visual
Environments and their Applications (HAVE 2003), Ottawa,
ON, Canada, 2003.

[6] A. Popescu, O. Etzioni, H. Kautz, “Towards a Theory of
Natural Language Interfaces to Databases”, IUI 2003 Maimi,
Florida USA, 2003.

	1. Introduction
	2. Related work
	3. General Design Principles
	4. The syntactic analysis
	5. The semantic analysis
	6. The command interpreter
	8. Results
	9. Conclusions
	10. Future work
	11. References

