
Intelligent Web Page Retrieval Using Wikipedia Knowledge

Falah H. Al-akashi
University of Ottawa
800 King Edward Av.

Ottawa, ON, K1N6N5, Canada
1-613-5625800

falak081@uottawa.ca

Diana Inkpen
University of Ottawa
800 King Edward Av.

Ottawa, ON, K1N6N5, Canada
1-613-5625800

diana@eecs.uottawa.ca

ABSTRACT
In this paper, we present an intelligent web retrieval system that is
able to rank webpages by using Wikipedia knowledge to enhance
a standard vector space model. Our index contains separate
information about the frequency of the terms in Wikpedia articles,
in home pages, and in other types of web pages, instead of using a
generic term frequency for the whole text collection.We also filter
out spam. We present results on the ClueWeb collection, for two
sets of queries, for an adhoc retrieval task and for a diversity task
(which aims at retrieving not only relevant information, but also
information for different aspects of the queries).

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval] - retrieval models,
query formulation, relevance feedback, search process.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Web retrieval, indexing, Wikipedia knowledge, home pages,
vector space model, query expansion.

1. INTRODUCTION
In order to experiment with new intelligent search model for the
web, we use a very large text collection named the ClueWeb1
dataset. It consists of about 1 billion web pages in ten languages
that were collected in January and February 2009. We can
evaluate our models by using the test and training queries made
available by the National Institute for Standards and Technology
(NIST) in 2011, as part of TREC2 (Text Retrieval Conference) for
the web search track3. The advantage of using these queries is that
NIST also made available expected solutions, called relevance

1http://lemurproject.org/clueweb09/
2http://trec.nist.gov/
3http://plg.uwaterloo.ca/~trecweb/2011.html

judgments, consisting of lists of document that are relevant
answers to each query.

We focus on two tasks: a classic text retrieval task, called adhoc
retrieval, and a diversity task. The diversity task is similar to the
adhoc retrieval task, but differs in its judging process and
evaluation measures. The goal of the diversity task is to return a
ranked list of pages that together provide complete coverage for a
query, while avoiding excessive redundancy in the result list. For
this task, the probability of relevance of a document is
conditioned on the documents that appear before it in the result
list, since the goal is to cover as different aspects of the relevant
information, without repetitions.

For evaluation, we used two sets of queries:36 training queries
that we used to test our system while we developed it (these
queries are in fact the 2010 test queries from the Web track at
TREC), and the 50 test queries from 2011, that we used for the
final testing.

Here are some examples of three queries from the 2010 set:

o “how to build a fence”
o “to be or not to be that is the question”
o “pvc”

Here are other examples of three queries from the 2011 set:

o “ritzcarlton lake lasvegas”
o "uplift at yellowstone national park”
o “trombone for sale”

For each dataset, we used the expected solutions built by the
human assessors from NIST, in order to evaluate the results of our
system. The evaluation for the ad-hoc retrieval task uses the
human judgments about how relevant is each document as an
answer to reach query. For the diversity task, the evaluation is
more complicated because the assessors have to look at different
sub-topics (possible meanings of each query).

The rest of the paper described each component of our system.
Section 2 describes our indexing model. Sections 3 explain how
we expanded and processed the queries. Section 4 explains how
we matched documents to queries in order to obtain answers to
the queries. A re-ranking based on reputation is done on the list of
selected documents, as explained in Section 5.Section 6 explains
how we filter out spam form the results. Section 7 presents our
results; we compare them to related work in Section 8, followed
by conclusions in Section 9.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WIMS'12, June 13-15, 2012 Craiova, Romania
Copyright © 2012 ACM 978-1-4503-0915-8/12/06... $10.00

2. INDEXING MODEL
Indexing is crucial for the task of finding relevant information on
the Web. Various indexing methods are used in a wide range of
applications, such as Home-page finding, Entity finding, and Web
pages classification. The design of highly-scalable indexing
algorithms is needed, especially with an estimate of one billion
pages currently accessible on the web. Previous work classifies
indexing of web documents in two types: word-based and phrase-
based indexing [1].
In word-based indexing, single words are used to build an index
table and to find a set of relevant pages according to some
computations. Recently, published work on very large scale
retrieval systems has been dealing with a metric that counts
occurrences for all distinct terms, with the goal to find all web
pages that are most relevant to a particular topic.
In order to find keyphrases that are important for each topic, a set
of articles can be assembled from a particular dictionary. This was
used recently for document clustering, entity finding, or document
classification in small collections of documents, but it has not
been used on the large scale webpage indexing.
Moreover, the current approach of word-based indexing does not
scale well for phrasal queries, because the positions of the words
need to be recorded, requiring a lot of storage space. On another
hand, indexing without considering word location for proximity
search causes two documents to seem similar if they have words
in common, even if they are on different in topics. Term
frequency is important in determining the topic of documents; but
this is not case for all documents configurations, because
documents may contain different topics located on different parts.
Only a few systems consider this aspect, for example by using a
sliding window for each topic [2]. Using phrases in the index in
addition to words eliminates is another way to deal with this
problem.
We categorized the documents in our repository index into three
types: Wikipedia articles, home pages, and other documents. Each
type holds a particular type of document. We will describe the
indexing algorithm that we used for each category.

2.1 Wikipedia Repository Indexing
Wikipedia is a collective knowledge source of approximately 5
million articles in English. The data in each article is structured
into several fields, and sometimes it has a relationship with other
articles using tags or links to expand a certain topic. Each article
has a unique vocabulary name (identifier or ID); sometimes
Wikipedia uses different faceted vocabulary terms to describe the
same article. We extracted the important information (keyphrases)
from each article and used it as setup information to rank each leaf
node in our customized index. Our system scanned through the
whole Wikipedia repository (the version that is included in the
ClueWeb collection) and computed the following normalized
vectors for each document:

• Words-occurrences (frequencies); we assigned a threshold
value to exclude all low frequency terms and to keep the
ones with frequency higher than the threshold.

• Outgoing-links occurrence frequencies; outgoing-links are all
URLs that point internally to other Wikipedia articles. For
us, if an article points to other articles frequently, at more
than one position in the content, then all these articles are
related or similar in topic.

• All external URLs.

Items such as html markups, navigation links, and stop-words
were removed. As a result, the outputs were transformed and
represented as vectors of the following structure:

௪ܦ ൌ ሼܦோ, ,ூܦ ,ܦ ,ோܦ ௧ሽܦ
whereܦோ is a document URL, ܦூ is a documents identifier,
ܦ is represents the outgoing-link frequencies (for the links that
are repeated frequently at more positions in the content), ܦோ
refers to all external links, and ܦ௧ represents all terms that
occurred with high frequency.
Thus, all documents in Wikipedia repository are transformed into
several tables of vectors available in the leaves of the index.

2.2 Home Pages Indexing
The use of page content for home-page finding is problematic for
several reasons. Often the first page in a site is a home page which
mostly contains navigational links for sitemap. Some potentially
useful evidence for home page finding is query-dependent. This
includes the presence of query words in the document’s text,
which is referring to anchor texts, or in the document’s URL. It is
known that full-text relevance ranking is not particularly effective
for home page finding [4]. Other potentially useful evidence is
query-independent. This was demonstrated in the TREC-2001
home page finding task [4]. The best run was submitted by
Westerveld et al. from UTwente/TNO [5] and used the pages
URLs as evidence. Generally, query-dependent and query-
independent are not the case for all situations of home-page
finding, because URLs sometimes use shortcuts or abbreviation
terms to represent some underlying meanings beyond the domain
name, e.g., “nist.com”. We used different representations when
we processed URLs for home-pages. We used two basic methods
for the home-page finding task: the first method is standard and it
uses the structure of URL names and the second method is
suitable for most abbreviated and embedded terms.

2.2.1 Processing URL Structures
According to the general structure of URLs, we classified them
into five categories (after stripping off all the symbols, numbers,
and all the trailing terms such as index, default, and welcome),
depending on the location of the term in the URL:

• If a term is located in the main domain section, e.g.,
“www.diana.com/”.

• If a term is mixed or embedded with other terms, such as Air
France in “airfrance.ca”.

• If a term is represented as a shortcut or an abbreviation, e.g.,
“www.uottawa.ca”.

• If a term is located in the sub-domain section, e.g.,
“trec.nist.com/”.

• Any an URL was ended at document’s name and preceded
by a symbol “~”, e.g., “www.uottawa.ca/~cadams”.

Thus, we have only five possibly evidences in the URL forms. We
used different scores for each status; we assigned the ranking
value “1”, “2”, or “3” for a term that is located on the main-
domain, sub-domain, and document-name, respectively.
Home-page finding methods require finding equivalent pages by
converting hyperlinks might to a canonical form, for example:
“http://bmo.com”

“http://www.bmo.com/”
“http://www.bmo.com:80/”
“http://www.bmo.com/index.htm/”
“http://www.bmo.com/welcome/”
“http://www.bmo.com/default”
“http://www.bmo.com/ (language code)/ index.html”
should be all represented as “www.bmo.com/”.

2.2.2 Embedded Keyword Extraction

URL keywords or terminology extraction is a challenging task.
Researchers employed different algorithms, such as a statistical
“n-grams” [5] or natural language processing methods for
tokenizing and analyzing URL data to extracting keywords that
can be utilized to index content. Besides web page popularity, we
exploit using query log files assembled by Alexa.com4 for finding
out the original keywords behind the embedded keywords in
domain names. Alexa.com computes traffic for all popular search
engines. We used the tf method for computing the occurrence of
frequent queries in log file. The log file contains the important
queries for each site accessed by users ; for instance “airfrance”,
“uottawa”, and “nist” are defined in log file as queries: “Air
France”, “University of Ottawa”, and “National Institute of
Standards and Technology”, respectively.

Our method was tested for home page finding for the TREC 2011
webtrack queries. For example the query “jax chemical company”
involved retrieving all home pages available in the corpus;
therefore our system was obtained a precision p@5=1.0 and
p@10=1.0 for this query.

2.3 Other Collection Indexing
Usually, web pages are indexed using their content, but not all
pages are useful for indexing their content, for instance
multimedia pages may contain videos, sound, or images; home-
pages sometimes contain little text; other web pages may contain
topical content such as programming code or navigational links
which are useless for indexing. Generally, we used two types of
index structures: word based index and key-phrase based index.

2.3.1 Word Based Index

Often the meaning of a document is conveyed by words located in
meta-content (such as URLs, titles, and headers). Normally there
is at least one term shared between meta-content and the
document content. If we can represent the shared word by a short
vector and the document content by another vector, it is possible
compute the similarity and the impact of that term in the
document. Basically, meta-content is available in three fields
(“title”, “headers”, and “URL”) and it is necessary to manipulate
all these fields together, because (i) we assume that not all
documents contain important terms in alone of these fields (ii)
usually keywords in the title, headers, and URL are
complementary to each other. If the header h1 is not available or it
is similar to the title, we chose “h2” or “h3”, alternatively. A very
short meta-text may not contain enough information and a long

4 http://www.alexa.com

text may contain unnecessary or redundant information. Also, it is
necessary to index the main content in order to provide a
comprehensive indexing. We use meta-keywords to trigger the
document’s topic, and then to go inside the index for other query
terms.

Two documents from different sites might have meta-content with
different impact, even they have similar meta-content. Documents
whose content has higher similarity to its meta-content should be
judged more relevant. Our model was modeled to measure the
closeness of any document content to its meta-content, by
computing the cosine similarity between the document content
and each meta-term, with the cosine similarity between two
vectors [8].

Before computing the similarity measure for each term in meta-
content, we processed the document content as follows:

• Stripping off all the html codes from the content of the
document

• Removing stop words, symbols, and numbers,
• Removing stemming characters from each term.
• Computing the frequency of occurrence tf of each term in the

document content.

Once the tf value of each term was computed, we used the cosine
similarity to quantify the impact of each term from the meta-
content. Each meta-term is assigned its cosine similarity measure
with the document content. To determine which meta-term is
significant, we use a specific threshold value to choose the best
terms and ignore others. On other hand, as we mentioned before,
not all terms in the content are available in the meta-content;
likewise it is rare to find all the query terms located in meta-
content. Therefore, it is impractical to rank web documents only
by their meta-contents; we need to add the term frequencies in the
content of the document. To reduce the storage needs, we ignored
all the terms that occurred only once. Each term in meta-content
has a vector with a certain dimension; including the cosine
measure, and the significant terms frequencies, in addition to the
“docID” and the “termID”. Document relevance is computed by
summing up the cosine similarity for the first query term which is
available in the meta-content; otherwise, only terms frequencies
are computed. Sometimes, queries contain digits when looking for
more precise results, e.g. “hp mini 2140”; therefore we address
this issue by adding one extra dimension to the vector to yield
document title. Hence, the meta-content of “n” terms is broken
down to “n” vectors; and then each vector is transmitted to a
corresponding node in the index, as shown below:

{docID}{TermID}{SC(Term)}{<t1,f><t2,f><t3,f>,….<tn,f>}{Ti
tle}

2.3.2 Key-Phrase Based Index

Our method does not employ computations for the terms that
occurred only once; but they can still be used for phrased queries.
Some documents are based on a fixed interval of sequence terms;
these terms could occur only once or could be repeated in the
document’s content. Terms do not need to occur at more than one
position in the content; for instance the query “map of brazil” is
sometimes located once at one position in the document; hence

terms occurrences are not important for the document’s relevance.
However, our method uses the key-phrase index with the respect
of computing terms frequencies for all the terms in the content.
For example, the query “Martha Stewart and imclone” requires to
compute the proximity search for all terms; computing the term
frequency for the term “imclone” and the key-phrase frequency
for the phrase “Martha Stewart” is important for computing
document’s relevance. To compute the key-phrase frequency, first
we strip off all stop-words, symbols, characters, and single letters
from the document content. Next, we compute the frequency of
single terms, double contiguous terms, then length three, four,
etc., as far as terms occurred together frequently. Then, for each
key-phase we compose a vector of fixed dimension, as shown
below:

{docID}{Key-phraseID, f}{<t1,f><t2,f><t3,f>….<tn,f>}{Title}

where key-phraseID is a hash key that is generated using the same
algorithm that generated the hash keys for each node in our index.

3. QUERY PROCESSING AND EXPANSION

Query processing is an important processing step and it includes:
detecting the type of the query, query normalization and query
expansion. Basically, we have five types of queries according to
the: title, domain, frequency.

• Title: this means that relevant pages contain all query terms
in core positions, as full keyphrases, e.g. “arkadelphia health
club” or “map of brazil”.

• Domain: this means that relevant documents are located in a
particular site or domain, e.g., “jax chemical company”.

• Occurrence: this means that relevant documents were
judged using the occurrences of query terms in the document,
e.g., “fact of uranus” or “Martha stewart and imclone”.

Each query is processed into three types of indexes mentioned in
section 2. We use overlapped term positions besides the priority
factor for each term in the query. Our system uses the following
criteria for processing a query:

• If the query length is one term, searching is done in two
indexes: the home-page index and the word-based index,
because a one-term query could look for a home page, e.g.,
“uottawa”, or, the term could be frequent in a document’s
content, regardless if it is a home page or not, e.g.,
“afganistan”.

• If the query length is two or three terms, searching occurs in
three indexes: the home-index, the word-based index, and the
key-phrase based index, e.g., “Map of Brazil” or “Ralph
Owen Brewster”.

• If the query length is four or more, searching occurs in two
indexes: the word-based and the key-phrase based index,
e.g., “Ritz Carlton Lake Las Vegas”. In the case of
keyphrase-based index, the query would be searched as:
“Ritz Carlton Lake Las Vegas”, “Ritz Carlton lake Las”, and
“Ritz Carlton Lake”; whereas in case of the word-based
index, first, a node “Ritz” is located and the system goes
through each document vector to find the other query terms.
Next, a node “Carlton” is located and then the system walks
through each document vector to finding other query terms;

and so on, regarding other terms query. The results from all
the search situations are aggregated in one list, without
duplication.

• If the query involves a prepositional or conjunctional term,
then the first term and the single term that occurred before or
after the conjunction is weight more than other terms in the
query, for example the terms “uplift” and “Yellowstone” on
the query “uplift at Yellowstone national park”; or a term
“french” and “casino” in a query “french lick resort and
casino”.

Search engines use query expansion to increase the quality of the
search results. It is assumed that users do not always formulate
search queries using the best terms. The goal of query expansion
is to increase recall, without decreasing too much the precision, by
including in the result pages which are more relevant (higher
quality), or at least equally relevant. In the same time, many of the
current commercial search engines use word frequency (tf-idf) to
assist in ranking. By ranking the occurrences of both the user
entered words and synonyms and alternate morphological forms,
documents with a higher density (high frequency and close
proximity) tend to migrate higher up in the search results, leading
to a higher quality of the search results near the top of the final
ranked list.

The trade-off between precision and recall is one of the problems
of query expansion. However, to improve retrieval performance in
our system, we used query expansion for those queries that were
classified as Wikipedia articles; anchor terms or phrases that
frequently occurred in each article were used to expand the query
topic (anchor terms have been indexed previously); for instance,
the topic “all men are created equal” that ranked our system as
high precision P@5=0.8 and P@10=0.7, because the query was
expanded with the phrases “Gettysburg Address” and
“Declaration of Independence” from related Wikipedia articles. In
this way the system succeeded to retrieve relevant documents that
were not retrieved without the query expansion step, because they
contained the query terms with low frequency (all the terms
occurred once).

4. DOCUMENT RANKING

In this section, we explain our custom model for ranking
webpages which uses cosine measure similarity. As we said, not
all query terms have equal impact or weight. For each query, there
is one term has more impact than others; for instance the query,
“Martha stewart and imclone” is focused on a term “imclone”
more than on the other term.
However, we used the following formula for ranking documents
for each query:

Rank(ܦ,Q) = SC(ܦ, imclone) +
∑ ௐೕ

ೕసభ

ଵ

where SC(ܦ, imclone)is the cosine similarity for the query term
“imlcone” in document Di, Wji is the weight of query term j in
document i; and, t is the number of query terms.We added the sum
of all the weights of query terms because not only the term
“imclone” is important in the query, but other terms are also
important. That is, we used the cosine similarity for the term that
has more impact than others in the query, plus the sum of the
weights if all the query terms (the value is divided by 100 is to
find the percentage value).Finally, our system biases the final

ranking list by the site’s reputation, Wikipedia preferences, and
other preferences, as explained in the following subsections.

5. REPUTATION RANKING MODEL

Traditional methods for ranking documents are not optimal in
terms of search engine optimization (SEO). Smoothing ranked list
and changing documents positions in our search results was used
based on a number of factors designed to provide end-users with
helpful and accurate search results. In our method, we used two
strategies based on human references to improve our rankings.

5.1 Using alexa.com

With the massive amount of data available on the web, not all data
are reliable and valuable. There are a lot of sites with untruthfull
content that might be ranked high by our model. Informational
queries, for example, are always looking for reliable and valuable
information; this information is usually available in sites that can
be trusted. Summarizing, site reputation, ranked locally and
globally, are important in our relevancy algorithm. We used this
factor for enhancing our ranking algorithm by filtering out all the
poor sites. We exploited the information from www.alexa.com by
assembling all reputation values for the main domains in our
corpus.

5.2 Using Wikipedia

As we mentioned earlier in this paper, documents that are
classified as home pages or documents that are important articles
in the Wikipedia might change their rank in our final ranking list.
Human references are robust arguments to bias the ranking
towards some documents. Since we previously indexed all the
important external references to Wikipedia articles, the ranking
algorithm will make a match between the ranked list and the
archived indexed documents that existed in each node for the
search query. As a result, the matching documents will get higher
positions in the final list.

6. SPAM FILTERING
The ClueWeb09 collection contains a lot of spam documents. We
filtered out spam documents that would hurt the quality of our
retrieval. Cormack et al. [7] studied the spam filtering in the
“ClueWeb” collection and showed that the spam filtering could
significantly improve the performance of a system. Therefore,
computing term frequency and cosine term similarity in our
system could detect spam documents because they use many junk
words that affect the impact of each term (the cosine term
similarity in our method). If the cosine term frequency is lower
than a threshold, the document is considered junk; if it is higher
than a second threshold, the document is considered spam. In
between the two threshold values, the document is kept in the list
of relevant documents. We chose appropriate thresholds based on
a small development set.

7. EXPERIMENTAL RESULTS
We present results for the adhoc and the diversity tasks of the web
track. Our system is based on the collection of document Category
B of the ClueWeb09 corpus (50 million documents).

Table 1 and 2 list the results of different metrics for both the
diversity and the adhoc metrics, as average for the 36 training
queries (which are in fact the 2010 test queries). Tables 3 and 4
show the results for the 50 test queries (the 2011 test queries).

We use standard evaluation measures used in TREC. The primary
effectiveness measure for the adhoc task is expected reciprocal
rank in the first k documents retrieved (ERR@k) [9] [10]. We also
report anDCG [9], as well as standard binary measures, including
mean average precision (MAP) and precision at rank k (P@k).
The primary effectiveness measure for the diversity task is a
variant of intent-aware expected reciprocal rank (ERR-IA) [9].
We also report a number of other intent-aware measures
appearing in the literature, including αnDCG@k (Discount
Cumulative Gain), NRBP (Rank-biased Precision), and MAP-IA
[10].

Table 1. Diversity task results for the 36training queries

αnDCG@10 αnDCG@20 ERR-
IA@10

P-IA@10 P-IA@20

0.5464 0.5564 0.4377 0.3989 0.3110

MAP-IA NRBP ERR-
IA@20

strec@10 strec@20

0.1024 0.4181 0.4406 0.5705 0.6102

Table 2. Ad-hoc task results for the 36 training queries

NDCG@20 ERR@20 P@10 P@20 MAP
0.4024 0.2286 0.5200 0.454 0.0638

Table 3: Diversity task results for the 50 test queries

αnDCG@10 αnDCG@20 ERR-
IA@10

P-IA@10 P-IA@20

0.4380 0.4675 0.3578 0.2414 0.2098

MAP-IA NRBP ERR-
IA@20

strec@10 strec@20

0.0685 0.3207 0.3670 0.6731 0.7155

Table 4: Adhoc task results for the 50 test queries

NDCG@20 ERR@20 P@10 P@20 MAP
0.1743 0.09639 0.2909 0.2636 0.0838

For some queries, our system obtained good results, but for a few
of the queries, the precision of the retrieved document list was
zero because relevance judgments contained only documents
selected from the other part of the collection (Category “A”). For
other queries, our method was not able to model the meaning of
the queries. In some cases, the retrieved documents looked
relevant to us, but they were not relevant according to the
relevance judgments. This happened because it is difficult to
capture all relevant documents that satisfy all users’ needs in one

relevance judgment file, since users might have different points of
view at different moments in time.

8. COMPARISON TO RELATED WORK
In this section we compare our system to other systems, on the
same task and for the same dataset. We look at both the ad-hoc
and the diversity retrieval tasks. We chose the results of the best
systems presented in the TREC 2010 web track overview paper
[9] and in the TREC 2011 overview paper [11].

The results in Table 5 and Table 6 are for the training queries
(which were the 2010 test queries). According to the tables, our
current system obtains better results than the other systems that
used the same subset of the data, namely the part B of the
ClueWeb collection. The reason we and a few other systems that
we compare with used the part B of the ClueWeb collection is that
it requires 5TB of disk space, while the whole collection requires
25TB of disk space. We did not have 25TB of disk space
available.

Table 5. Comparison of the ad-hoc retrieval task results for
the training queries (the 2010 test queries) for three other
systems and for our current system

Group ERR@20 nDCG@20 P@20 MAP
ISI 0.134 0.225 0.379 0.133

IRRA 0.126 0.260 0.443 0.133

UAmsterdam 0.110 0.145 0.237 0.043

Our system 0.228 0.402 0.454 0.063

Table 6. Comparison of the diversity retrieval task results for
the training queries (the 2010 test queries) for four other
systems and for our current system

Group ERR-
IA@20

α-
nDCG
@20

NRBP MAP-
IA

uogTr 0.298 0.418 0.262 0.074

UAmsterdam 0.242 0.341 0.210 0.026

UCDSIFT 0.210 0.312 0.170 0.062

qirdcsuog 0.210 0.312 0.170 0.062

Our system 0.440 0.556 0.418 0.102

For the test queries from 2011, our run submitted at TREC 2011
was considered only for the ad-hoc task. We can compare our
results at the web track at TREC 2011 with other systems that
worked with the subset of the data collection named category B. It
is not fair to compare to the systems that used the whole data
collection (category A), because some documents that were in the
expected solution could not be retrieved by our system since they
were not in the reduced dataset. Table 7 presents the comparative
results, according to the track’s overview paper [11]. Our system
at TREC 2011 had different parameter settings than the system

described in this paper5; this is why the results in Table 7 are not
the same as in Table 4.

Table 7. Comparison of the ad-hoc retrieval task results for
the testing queries (the 2011 test queries) for the best two
systems from TREC 2011 and for our system submitted to
TREC 2011.

Group ERR@20 nDCG@20 P@20 MAP
Name not
Disclosed

0.131 0.233 0.298 0.110

Univ. of
Ottawa

0.122 0.204 0.275 0.079

Univ. of
Amsterdam

0.119 0.202 0.273 0.085

9. CONCLUSIONS
Our method used our own custom indexing and ranking model
based on Wikipedia knowledge. This model provides a variety of
analytic capabilities, including: concept extraction, concept
correlation, text summarization, spam filtering, and term to
document similarity.

We improved several aspects of our system. We kept stopwords in
the key-phrase index. This allowed us to successfully process
queries such as “to be or not to be, that is the question”. The
conjunctions and prepositions also allowed us to separate
important terms in some queries, e.g., for the queries: “Martha
Stewart and imclone” and “earn money at home”, the important
terms are: “imclone” and “home”, respectively.

In future work, we plan to experiment with more types of queries
and more ways of including knowledge from Wikipedia in our
retrieval system.

10. ACKNOWLEDGMENTS
We thank NIST for evaluating the submitted TREC results. We
thank NSERC and Iraqi Embassy in Canada / Cultural Office for
supporting our research.

5Nearly every ranking algorithm has parameters that can be turned

to improve the effectiveness of the results. For example, Okapi
BM25 has the parameters k1, k2, and b used in term weighting,
and query likelihood. Ranking algorithms for web search can
have hundreds of parameters, the weights for the associated
features. In our system, we used two parameter values
(thresholds). If we use the same parameter value in the training
queries and testing queries, the results would be as shown in
tables 1-6 above. Our submitted system at TREC 2011 had
different parameters. The type of queries in 2011 is different
from the type of queries in 2010. Most of the queries in 2010
target the diversity task (short queries), whilst most queries in
2011 target the adhoc task (longer queries). The parameters
have default reasonable values in our system, but the optimum
parameter values vary with both the length of list being ranked
(the number of documents in that list) and the length of the
queries, so the system is able to improve the effectiveness of
search by tuning the appropriate values of the parameters.

11. REFERENCES

[1] Xiangji Huang, Damon Sotoudeh-Hosseini, HashmatRohian

and Xiangdong An, “York University at TREC 2007:
Genomics Track”, School of Information Technology, York
University, Toronto, Ontario, Canada, Department of
Computer Science & Engineering, York University, Toronto,
Ontario, Canada, 2007.

[2] Xu Chen, ZeyingPeng, Jianguo Wang, XiaomingYu,Yue
Liu, HongboXu, Xueqi Cheng, “ICTNET at Web Track
2010 Ad-hoc Task”, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, Graduate School of
Chinese Academy of Sciences, Beijing, 2010.

[3] DjoerdHiemstra and Claudia Hau, “MapReduce for
Experimental Search”, University of Twente, 2010.

[4] N. Craswell, D. Hawking, and S. Robertson. 2001. Effective
site finding using link anchor information. In Proceedings of
ACM SIGIR’01 (New Orleans, LA). 250–257, 2010.

[5] Nick Craswell and David Hawking, “Query-Independent
Evidence in Home Page Finding”, TrystanUpstill, Australian
National University and CSIRO Mathematical and
Information Sciences, 2010.

[6] EdaBaykan, Monika Henzinger, Ludmila Marian, lngmar
Weber, “Purely URL-based Topic Classification”,
EcolePolytechnique, Google, Lausanne, Switzerland. 2009.

[7] G. V. Cormack, M. D. Smucker, and C. L. A. Clarke.
“Efficient and effective spam filtering and re-ranking for
large web datasets”, April 2010.

[8] David A. Grossman, OphirFrieder, “Information Retrieval
Algorithms and Heuristics”, Second Edition, Illinois Institute
of Technology, Chicago, IL, USA, Springer, 2004.

[9] C.L.A. Clarke, N. Craswell, I. Soboroff, and G. V. Cormack,
Overview of the TREC 2010 Web Track. In Proceedings of
TREC 2010, NIST Special Publication: SP 500-294, 2010.

[10] Olivier Chapelle, Donald Metzler, Ya Zhang, and Pierre
Grinspan. “Expected Reciprocal Rank for Graded
Relevance”, Yahoo Labs and Google Inc, Santa Clara CA,
Sunnyvale CA, and San Bruno CA. ACM, 2009.

[11] C.L.A. Clarke, N. Craswell, I. Soboroff, and E.M. Voorhees,
NIST, Overview of the TREC2011 Web Track. In
Proceedings of TREC 2011, the Twentieth Text Retrieval
Conference, NIST Special Publication: SP 500-295, 2011.

