Support Vector Machines

Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in your own lecture, please include this message, or the following link to the source repository of Andrew's tutorials: http://www.cs.cmu.edu/~awm/tutorials . Comments and corrections gratefully received.

Andrew W. Moore Professor

School of Computer Science
 Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu
412-268-7599

Linear Classifiers

- denotes +1

$$
\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w, \boldsymbol{x}-b)
$$

- denotes -1

How would you classify this data?

Linear Classifiers

- denotes +1

How would you classify this data?

Linear Classifiers

- denotes +1

$$
\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w, \boldsymbol{x}-b)
$$

- denotes -1

How would you classify this data?

Linear Classifiers

Linear Classifiers

 $f \longrightarrow y^{\text {est }}$

- denotes +1
- denotes -1

Classifier Margin
 $f \longrightarrow y^{\text {est }}$

- denotes +1
- denotes -1
$\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w, \boldsymbol{x}-b)$
Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint.

Maximum Margin $f \quad y^{\text {est }}$

- denotes +1
- denotes -1

$\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w, \boldsymbol{x}-b)$
The maximum margin linear classifier is the linear classifier with the, um, maximum margin.

This is the simplest kind of SVM (Called an LSVM)

Maximum Margin

Why Maximum Margin?

1. Intuitively this feels safest.

- denotes +1

Support Vectors are those datapoints that the margin pushes up against

3. LOOCV is easy since the model is immune to removal of any non-support-vector datapoints.
4. There's some theory (using VC dimension) that is related to (but not the same as) the proposition that this is a good thing.
5. Empirically it works very very well.

Specifying a line and margin

- How do we represent this mathematically?
- ...in m input dimensions?

Specifying a line and margin

- Plus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=+1\}$
- Minus-plane $=\{\boldsymbol{x}: \boldsymbol{w} . \boldsymbol{x}+b=-1\}$
Classify as.. +1
if
w. $\boldsymbol{x}+b>=1$
-1
if
w. $\boldsymbol{x}+b<=-1$
Universe if $\quad-1<\boldsymbol{w} . \boldsymbol{x}+b<1$ explodes

Computing the margin width

- Plus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=+1\}$
- Minus-plane $=\{\boldsymbol{x}: \boldsymbol{w} . \boldsymbol{x}+b=-1\}$

Claim: The vector \mathbf{w} is perpendicular to the Plus Plane. Why?

Computing the margin width

- Plus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=+1\}$
- Minus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=-1\}$

Claim: The vector \mathbf{w} is perpendicular to the Plus Plane. Why?
Let \mathbf{u} and \mathbf{v} be two vectors on the Plus Plane. What is $\boldsymbol{w} \cdot(\boldsymbol{u}-\boldsymbol{v})$?

And so of course the vector \mathbf{w} is also perpendicular to the Minus Plane

Computing the margin width

- Plus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=+1\}$
- Minus-plane $=\{\boldsymbol{x}: \boldsymbol{w} . \boldsymbol{x}+b=-1\}$
- The vector \mathbf{w} is perpendicular to the Plus Plane
- Let \boldsymbol{x} be any point on the minus plane
- Let \boldsymbol{x}^{+}be the closest plus-plane-point to \boldsymbol{x}.

Any location in
R^{m} : not
necessarily a
datapoint

Computing the margin width

- Plus-plane $=\{\boldsymbol{x}: \boldsymbol{w}, \boldsymbol{x}+b=+1\}$
- Minus-plane $=\{\boldsymbol{x}: \boldsymbol{w} . \boldsymbol{x}+b=-1\}$
- The vector \mathbf{w} is perpendicular to the Plus Plane
- Let \boldsymbol{x} be any point on the minus plane
- Let \boldsymbol{x}^{+}be the closest plus-plane-point to \boldsymbol{x}.
- Claim: $\boldsymbol{x}^{+}=\boldsymbol{x}+\lambda \boldsymbol{w}$ for some value of λ. Why?

Computing the margin width

- Plus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b$
- Minus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=-1\}$
- The vector \mathbf{w} is perpendicular to the Plus Plane
- Let \boldsymbol{x} be any point on the minus plane
- Let \boldsymbol{x}^{+}be the closest plus-plane-point to \boldsymbol{x}.

So to get from \boldsymbol{x} to \boldsymbol{x}^{+} travel some distance in direction \boldsymbol{w}.

- Claim: $\boldsymbol{x}^{+}=\boldsymbol{x}+\lambda \boldsymbol{w}$ for some value of λ. Why?

Computing the margin width

What we know:

- w. $\boldsymbol{x}^{+}+b=+1$
- w. $\boldsymbol{x}+b=-1$
- $\boldsymbol{x}^{+}=\boldsymbol{x}+\lambda \boldsymbol{w}$
- $\left|\boldsymbol{x}^{+}-\boldsymbol{x}\right|=M$

It's now easy to get M in terms of \boldsymbol{w} and b

Computing the margin width

It's now easy to get M
in terms of \boldsymbol{w} and b
It's now easy to get M
in terms of \boldsymbol{w} and b

What we know:

- w. $\boldsymbol{x}^{+}+b=+1$
- w. $\boldsymbol{x}+b=-1$
- $\boldsymbol{x}^{+}=\boldsymbol{x}+\lambda w$
- $\left|\boldsymbol{x}^{+}-\boldsymbol{x}\right|=M$

Computing the margin width

What we know:

- w. $\boldsymbol{x}^{+}+b=+1$
- w. $\boldsymbol{x}+b=-1$
- $\boldsymbol{x}^{+}=\boldsymbol{x}+\lambda \boldsymbol{w}$
- $\left|\boldsymbol{x}^{+}-\boldsymbol{x}\right|=M$

$$
\lambda=\frac{2}{\mathbf{w} \cdot \mathbf{w}}
$$

Learning the Maximum Margin Classifier

Given a guess off \boldsymbol{w} and b we can

- Compute whether all data points in the correct half-planes
- Compute the width of the margin

So now we just need to write a program to search the space of \mathbf{w} 's and b 's to find the widest margin that matches all the datapoints. How?
Gradient descent? Simulated Annealing? Matrix Inversion?
EM? Newton's Method?

Learning via Quadratic Programming

- QP is a well-studied class of optimization algorithms to maximize a quadratic function of some real-valued variables subject to linear constraints.

Quadratic Programming

Find $\arg \max c+\mathbf{d}^{T} \mathbf{u}+\frac{\mathbf{u}^{T} R \mathbf{u}}{2}$

Subject to

$$
\left.\begin{array}{c}
a_{11} u_{1}+a_{12} u_{2}+\ldots+a_{1 m} u_{m} \leq b_{1} \\
a_{21} u_{1}+a_{22} u_{2}+\ldots+a_{2 m} u_{m} \leq b_{2} \\
\vdots \\
a_{n 1} u_{1}+a_{n 2} u_{2}+\ldots+a_{n m} u_{m} \leq b_{n}
\end{array}\right\}
$$

$$
n \text { additional linear }
$$

inequality
constraints

And subject to

Quadratic Programming

Find $\arg \max \quad c+\mathbf{d}^{T} \mathbf{u}+\mathbf{u}^{T} R \mathbf{u}$

 such constrained quadratic optima much more efficiently and reliably than gradient ascent.

And subj
(But they are very fiddly...you probably don't want to write one yourself)

Learning the Maximum Margin Classifier

- Compute the margin width Assume R datapoints, each $\left(\boldsymbol{x}_{k} y_{k}\right)$ where $y_{k}=+/-1$

What should our quadratic optimization criterion be?

How many constraints will we have?
What should they be?

Learning the Maximum Margin Classifier

- Compute the margin width Assume R datapoints, each $\left(\boldsymbol{x}_{k} y_{k}\right)$ where $y_{k}=+/-1$

What should our quadratic optimization criterion be?
Minimize w,w

How many constraints will we have? R
What should they be?
w. $\boldsymbol{x}_{k}+b>=1$ if $y_{k}=1$
w. $\boldsymbol{x}_{k}+b<=-1$ if $y_{k}=-1$

Uh-oh!

This is going to be a problem!

What should we do?

Uh-oh!

This is going to be a problem! What should we do?

Idea 1:

Find minimum $\boldsymbol{w}, \boldsymbol{w}$, while minimizing number of training set errors.

Problemette: Two things to minimize makes for an ill-defined optimization

Uh-oh!

This is going to be a problem!
What should we do?

Idea 1.1:

Minimize
$\mathbf{w} \boldsymbol{w}+C$ (\#train errors)
Tradeoff parameter

There's a serious practical problem that's about to make us reject this approach. Can you guess what it is?

Uh-oh! This is going to be a problem!

What should we do?

Idea 1.1:

Minimize
$\boldsymbol{\omega} . \boldsymbol{w}+C$ (\#train errors)
łradeoff parameter

- denotes +1
- denotes -1

Copyright © 2001, 2003, Andrew W. Moore

Can't be expressed as a Quadratic Programming problem.
Solving it may be too slow.
(Also, doesn't distinguish between disastrous errors and near misses)
you guess

Uh-oh!

This is going to be a problem! What should we do?

Idea 2.0:

Minimize

$\boldsymbol{w} \boldsymbol{w}+C$ (distance of error points to their correct place)

Learning Maximum Margin with Noise

,

- Compute the margin width Assume R datapoints, each $\left(\boldsymbol{x}_{k} y_{k}\right)$ where $y_{k}=+/-1$

What should our quadratic optimization criterion be?

How many constraints will we have?
What should they be?

Learning Maximum Margin with Noise

- Compute the margin width Assume R datapoints, each $\left(\boldsymbol{x}_{k} y_{k}\right)$ where $y_{k}=+/-1$

What should our quadratic How many constraints will we optimization criterion be? have? R
Minimize

$$
\frac{1}{2} \mathbf{w} \cdot \mathbf{w}+C \sum_{k=1}^{R} \varepsilon_{k}
$$

What should they be?
w. $\boldsymbol{x}_{k}+b>=1-\varepsilon_{k}$ if $y_{k}=1$
$\boldsymbol{w} . \boldsymbol{x}_{k}+b<=-1+\varepsilon_{k}$ if $y_{k}=-1$

Learning Maximum Margi

\qquad
$M=$ Given gl dimensions
we can
Compute sum d \forall istances
Our original (noiseless data) QP had $m+1$ variables: $w_{1}, w_{2}, \ldots w_{m}$ and b.

Our new (noisy data) QP has $m+1+R$ variables: $w_{1}, w_{2}, \ldots w_{m,}, b_{1}, \varepsilon_{k}, \varepsilon_{1}, \ldots \varepsilon_{R}$

What should our quadratic How many constrain $R=$ \# records optimization criterion be? Minimize

$$
\frac{1}{2} \mathbf{w} \cdot \mathbf{w}+C \sum_{k=1}^{R} \varepsilon_{k}
$$

What should they be?
w. $\boldsymbol{x}_{k}+b>=1-\varepsilon_{k}$ if $y_{k}=1$
$\boldsymbol{w} . \boldsymbol{x}_{k}+b<=-1+\varepsilon_{k}$ if $y_{k}=-1$

Learning Maximum Margin with Noise

Compute sum of distances of points to their correct zones

- Compute the margin width Assume R datapoints, each $\left(\boldsymbol{x}_{k} y_{k}\right)$ where $y_{k}=+/-1$

What should our quadratic How many constraints will we optimization criterion be? have? R
Minimize

$$
\frac{1}{2} \mathbf{w} \cdot \mathbf{w}+C \sum_{k=1}^{R} \varepsilon_{k}
$$

What should they be?

$$
\begin{aligned}
& \boldsymbol{w} \cdot \boldsymbol{x}_{k}+b>=1-\varepsilon_{k} \text { if } y_{k}=1 \\
& \underline{w} \cdot \boldsymbol{x}_{k}+\underline{b} \leq=-1+\varepsilon_{k} \text { if } y_{k}=-1
\end{aligned}
$$

There's a bug in this QP. Can you spot it?
Cō̄yright © $2 \overline{001}, 2 \overline{0} 0 \overline{3}$, Andrew W. Moore
Support Vector Machines: Slide 35

Learning Maximum Margin with Noise

Given guess of \boldsymbol{w}, b we can Compute sum of distances of points to their correct zones

- Compute the margin width Assume R datapoints, each $\left(\boldsymbol{x}_{k} y_{k}\right)$ where $y_{k}=+/-1$

What should our quadratic How many constraints will we optimization criterion be? have? $2 R$
Minimize

$$
\frac{1}{2} \mathbf{w} \cdot \mathbf{w}+C \sum_{k=1}^{R} \varepsilon_{k}
$$

What should they be?

$$
\begin{aligned}
& w . \boldsymbol{x}_{k}+b>=1-\varepsilon_{k} \text { if } y_{k}=1 \\
& w . \boldsymbol{x}_{k}+b<=-1+\varepsilon_{k} \text { if } y_{k}=-1 \\
& \varepsilon_{k}>=0 \text { for all } k
\end{aligned}
$$

An Equivalent QP

Warning: up until Kong Zhang spotted my error in Oct 2003, this equation had been wrong in earlier versions of the notes. This version is correct.

Maximize $\sum_{k=1}^{R} \alpha_{k}-\frac{1}{2} \sum_{k=1}^{R} \sum_{l=1}^{R} \alpha_{k} \alpha_{l} Q_{k l}$ where $Q_{k l}=y_{k} y_{l}\left(\mathbf{x}_{k} \cdot \mathbf{x}_{l}\right)$

Subject to these constraints:
$0 \leq \alpha_{k} \leq C \quad \forall k$

$$
\sum_{k=1}^{R} \alpha_{k} y_{k}=0
$$

Then define:
$\mathbf{w}=\sum_{k=1}^{R} \alpha_{k} y_{k} \mathbf{x}_{k}$
Then classify with:
$\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w, \boldsymbol{x}-b)$
$b=y_{K}\left(1-\varepsilon_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{W}_{K}$
where $K=\arg \max \alpha_{k}$ k

An Equivalent QP

Warning: up until Kong Zhang spotted my error in Oct 2003, this equation had been wrong in earlier versions of the notes. This version is correct.

Maximize $\sum_{k=1}^{R} \alpha_{k}-\frac{1}{2} \sum_{k=1}^{R} \sum_{l=1}^{R} \alpha_{k} \alpha_{l} Q_{k l}$ where $Q_{k l}=y_{k} y_{l}\left(\mathbf{x}_{k} \cdot \mathbf{x}_{l}\right)$
Subject to these constraints:
$0 \leq \alpha_{k} \leq C \quad \forall k$

$$
\sum_{k=1}^{R} \alpha_{k} y_{k}=0
$$

Then define:
$\mathbf{w}=\sum_{k=1}^{R} \alpha_{k} y_{k} \mathbf{x}_{k}$
$b=y_{K}\left(1-\varepsilon_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{w}$
where $K=\arg \max \alpha_{k}$

Suppose we're in 1-dimension

What would SVMs do with this data?

Suppose we're in 1-dimension

Not a big surprise

Harder 1-dimensional dataset

That's wiped the smirk off SVM's face.

What can be done about this?

Harder 1-dimensional dataset

Remember how permitting nonlinear basis functions made linear regression so much nicer?

Let's permit them here too

$$
\mathbf{z}_{k}=\left(x_{k}, x_{k}^{2}\right)
$$

Harder 1-dimensional dataset

Remember how permitting nonlinear basis functions made linear regression so much nicer?

Let's permit them here too

$$
\mathbf{z}_{k}=\left(x_{k}, x_{k}^{2}\right)
$$

Common SVM basis functions

$\boldsymbol{z}_{k}=\left(\right.$ polynomial terms of \boldsymbol{x}_{k} of degree 1 to q)
$\boldsymbol{z}_{k}=\left(\right.$ radial basis functions of $\left.\boldsymbol{x}_{k}\right)$

$$
\mathbf{z}_{k}[j]=\varphi_{j}\left(\mathbf{x}_{k}\right)=\operatorname{KernelFn}\left(\frac{\left|\mathbf{x}_{k}-\mathbf{c}_{j}\right|}{\mathrm{KW}}\right)
$$

$\boldsymbol{z}_{k}=\left(\right.$ sigmoid functions of $\left.\boldsymbol{x}_{k}\right)$
This is sensible.
Is that the end of the story?
No...there's one more trick!

Quadratic

 Basis FunctionsNumber of terms (assuming m input dimensions $)=(m+2)$-choose-2
$=(m+2)(m+1) / 2$
$=\left(\right.$ as near as makes no difference) $\mathrm{m}^{2} / 2$

You may be wondering what those $\sqrt{2}$'s are doing.

- You should be happy that they do no harm
-You'll find out why they're there soon.

QP with basis functions

Maximize $\sum_{k=1}^{R} \alpha_{k}-\frac{1}{2} \sum_{k=1}^{R} \sum_{l=1}^{R} \alpha_{k} \alpha_{l} Q_{k l}$ where $Q_{k l}=y_{k} y_{l}\left(\mathbf{\Phi}\left(\mathbf{x}_{k}\right) . \mathbf{\Phi}\left(\mathbf{x}_{l}\right)\right)$
$\begin{aligned} & \text { Subject to these } \\ & \text { constraints: }\end{aligned} \quad 0 \leq \alpha_{k} \leq C \quad \forall k \quad \sum_{k=1}^{R} \alpha_{k} y_{k}=0 \quad 0 \quad 0$.
Then define:

$$
\begin{aligned}
& \mathbf{w}=\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k} \mathbf{\Phi}\left(\mathbf{x}_{k}\right) \\
& b=y_{K}\left(1-\varepsilon_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{w}_{K} \\
& \text { where } K=\arg \max \alpha_{k}
\end{aligned}
$$

Then classify with:
$\boldsymbol{f}(\boldsymbol{X}, w, b)=\operatorname{sign}(w . \boldsymbol{\phi}(\boldsymbol{x})-b)$

QP with basis functions

$$
\text { Maximize } \sum_{k=1}^{R} \alpha_{k}-\frac{1}{2} \sum_{k=1}^{R} \sum_{l=1}^{R} \alpha_{k} \alpha_{l} \alpha_{k} \text { where } Q_{k}=y_{k} y_{l}\left(\boldsymbol{\Phi}\left(\mathbf{x}_{k}\right) \cdot \boldsymbol{\Phi}\left(\mathbf{x}_{l}\right)\right.
$$

We must do $\mathrm{R}^{2} / 2$ dot products to
Subject to these constraints: get this matrix ready.
Each dot product requires $\mathrm{m}^{2} / 2$ additions and multiplications

Then define:
The whole thing costs $\mathrm{R}^{2} \mathrm{~m}^{2} / 4$. Yeeks!
a..or does it?
$\mathbf{w}=\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k} \mathbf{\Phi}\left(\mathbf{x}_{k}\right)$
$\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w . \boldsymbol{\phi}(\boldsymbol{x})-b)$
$b=y_{K}\left(1-\varepsilon_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{w}_{K}$
where $K=\underset{k}{\arg \max } \alpha_{k}$

	$\begin{gathered} 1 \\ \sqrt{2} a_{1} \\ \sqrt{2} a_{2} \\ \vdots \\ \sqrt{2} a_{m} \\ a_{1}^{2} \\ a_{2}^{2} \\ \vdots \\ a_{m}^{2} \\ \sqrt{2} a_{1} a_{2} \\ \sqrt{2} a_{1} a_{3} \\ \vdots \\ \sqrt{2} a_{1} a_{m} \\ \sqrt{2} a_{2} a_{3} \\ \vdots \\ \sqrt{2} a_{1} a_{m} \\ \vdots \\ \sqrt{2} a_{m-1} a_{m} \\ 03, \text { Andrew W. } \end{gathered}$	$\left(\begin{array}{c}1 \\ \sqrt{2} b_{1} \\ \sqrt{2} b_{2} \\ \vdots \\ \sqrt{2} b_{m} \\ b_{1}^{2} \\ b_{2}^{2} \\ \vdots \\ b_{m}^{2} \\ \sqrt{2} b_{1} b_{2} \\ \sqrt{2} b_{1} b_{3} \\ : \\ \sqrt{2} b_{1} b_{m} \\ \sqrt{2} b_{2} b_{3} \\ \vdots \\ \sqrt{2} b_{1} b_{m} \\ \vdots \\ \sqrt{2} b_{m-1} b_{m}\end{array}\right)$	$\left\{\begin{array}{l} \left\{\begin{array}{l} 1 \\ + \\ \sum_{i=1}^{m} 2 a_{i} b_{i} \\ + \\ \sum_{i=1}^{m} a_{i}^{2} b_{i}^{2} \end{array}\right. \\ + \\ \sum_{i=1}^{m} \sum_{j=i+1}^{m} 2 a_{i} a_{j} b_{i} b_{j} \end{array}\right.$

$$
\Phi(\mathbf{a}) \bullet \Phi(\mathbf{b})=
$$

$1+2 \sum_{i=1}^{m} a_{i} b_{i}+\sum_{i=1}^{m} a_{i}^{2} b_{i}^{2}+\sum_{i=1}^{m} \sum_{j=i+1}^{m} 2 a_{i} a_{j} b_{i} b_{j}$

Just out of casual, innocent, interest, let's look at another function of \boldsymbol{a} and b:

$$
\begin{aligned}
& (\mathbf{a} . \mathbf{b}+1)^{2} \\
= & (\mathbf{a} . \mathbf{b})^{2}+2 \mathbf{a} \cdot \mathbf{b}+1 \\
= & \left(\sum_{i=1}^{m} a_{i} b_{i}\right)^{2}+2 \sum_{i=1}^{m} a_{i} b_{i}+1 \\
= & \sum_{i=1}^{m} \sum_{j=1}^{m} a_{i} b_{i} a_{j} b_{j}+2 \sum_{i=1}^{m} a_{i} b_{i}+1 \\
= & \sum_{i=1}^{m}\left(a_{i} b_{i}\right)^{2}+2 \sum_{i=1}^{m} \sum_{j=i+1}^{m} a_{i} b_{i} a_{j} b_{j}+2 \sum_{i=1}^{m} a_{i} b_{i}+1
\end{aligned}
$$

Maximize $\sum_{k=1}^{R} \alpha_{k}-\frac{1}{2} \sum_{k=1}^{R} \sum_{l=1}^{R} \alpha_{k} \alpha_{l} Q_{k l}$ where $Q_{k l}=y_{k} y_{l}\left(\mathbf{\Phi}\left(\mathbf{x}_{k}\right) \cdot \mathbf{\Phi}\left(\mathbf{x}_{l}\right)\right)$

Subject to these constraints:

We must do $\mathrm{R}^{2} / 2$ dot products to get this matrix ready.

Each dot product now only requires m additions and multiplications

Then define:

$$
\begin{aligned}
& \mathbf{w}=\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k} \mathbf{\Phi}\left(\mathbf{x}_{k}\right) \\
& b=y_{K}\left(1-\varepsilon_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{w}_{K} \\
& \text { where } K=\underset{k}{\arg \max } \alpha_{k}
\end{aligned}
$$

Higher Order Polynomials

Poly- nomial	$\boldsymbol{\phi}(\boldsymbol{x})$	Cost to build $Q_{k l}$ matrix tradition ally	Cost if 100 inputs	$\boldsymbol{\phi}(\boldsymbol{a}) \cdot \boldsymbol{\phi}(\boldsymbol{b})$	Cost to build $Q_{k l}$ matrix sneakily	Cost if 100 inputs
Quadratic	All $m^{2} / 2$ terms up to degree 2	$m^{2} R^{2} / 4$	$2,500 R^{2}$	$(\boldsymbol{a} \cdot \boldsymbol{b}+1)^{2}$	$m R^{2} / 2$	$50 R^{2}$
Cubic	All $m^{3} / 6$ terms up to degree 3	$m^{3} R^{2} / 12$	$83,000 R^{2}$	$(\boldsymbol{a} \cdot \boldsymbol{b}+1)^{3}$	$m R^{2} / 2$	$50 R^{2}$
Quartic	All $m^{4} / 24$ terms up to degree 4	$m^{4} R^{2} / 48$	$1,960,000 R^{2}$	$(\mathbf{a} \cdot \boldsymbol{b}+1)^{4}$	$m R^{2} / 2$	$50 R^{2}$

QP with Quintic basis functions

We must do $\mathrm{R}^{2} / 2$ dot products to get this matrix ready.

In 100-d, each dot product now needs 103 operations instead of 75 million

But there are still worrying things lurking away. What are they?

$$
\begin{aligned}
& \forall Q_{k l}=y_{k} y_{l}\left(\mathbf{\Phi}\left(\mathbf{x}_{k}\right) \cdot \boldsymbol{\Phi}\left(\mathbf{x}_{l}\right)\right) \\
& \forall k \quad \sum_{k=1}^{R} \alpha_{k} y_{k}=0
\end{aligned}
$$

COITSLIIILS.

Then define:

$$
\begin{aligned}
& \mathbf{w}=\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k} \mathbf{\Phi}\left(\mathbf{x}_{k}\right) \\
& b=y_{K}\left(1-\varepsilon_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{w}_{K} \\
& \text { where } K=\underset{k}{\arg \max } \alpha_{k}
\end{aligned}
$$

Then classify with:

$$
f(x, w, b)=\operatorname{sign}(w, \phi(x)-b)
$$

QP with Quintic basis functions

We must do $\mathrm{R}^{2} / 2$ dot products to get this matrix ready.

In 100-d, each dot product now needs 103 operations instead of 75 million

But there are still worrying things lurking away. What are they?

$$
Q_{k l}=y_{k} y_{l}\left(\boldsymbol{\Phi}\left(\mathbf{x}_{k}\right) \cdot \boldsymbol{\Phi}\left(\mathbf{x}_{l}\right)\right)
$$

colisuallis.
-The fear of overfitting with this enormous number of terms
Then define:

$$
\mathbf{w}=\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k} \mathbf{\Phi}\left(\mathbf{x}_{k}\right.
$$

-The evaluation phase (doing a set of predictions on a test set) will be very expensive (why?)
$b=y_{K}\left(1-\varepsilon_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{W}_{K}$ where $K=\arg \max \alpha_{k}$ k

Then classify with:

$$
\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w . \phi(\boldsymbol{x})-b)
$$

QP with Quintic basis functions

We must do $\mathrm{R}^{2} / 2$ dot products to get this matrix ready.
In 100-d, each dot product now needs 103 operations instead of 75 million

But there are still worrying things lurking away. What are they?
$Q_{\nu}=v_{L} v_{I}\left(\boldsymbol{\Phi}\left(\mathbf{x}_{L}\right) \cdot \mathbf{\Phi}\left(\mathbf{x}_{\nu}\right)\right)$
The use of Maximum Margin magically makes this not a problem

Then define:

$$
\begin{aligned}
& \mathbf{w}=\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k} \mathbf{\Phi}\left(\mathbf{x}_{k}\right. \\
& b=y_{K}\left(1-\varepsilon_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{w}_{K} \\
& \text { where } K=\underset{k}{\arg \max } \alpha_{k}
\end{aligned}
$$

Because each w. $\boldsymbol{\phi}(\mathbf{x})$ (see below) needs 75 million operations. What can be done?

Then classify with:

$$
\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w, \phi(\boldsymbol{x})-b)
$$

QP with Quintic basis functions

We must do $\mathrm{R}^{2} / 2$ dot products to get this matrix ready.

In 100-d, each dot product now needs 103 operations instead of 75 million

But there are still worrying things lurking away. What are they?

Then define:

$$
\begin{aligned}
\mathbf{w} \cdot \boldsymbol{\Phi}(\mathbf{x}) & =\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k} \mathbf{\Phi}\left(\mathbf{x}_{k}\right) \cdot \mathbf{\Phi}(\mathbf{x}) \\
& =\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k}\left(\mathbf{x}_{k} \cdot \mathbf{x}+1\right)^{5}
\end{aligned}
$$

Only Sm operations (S=\#support vectors)
$Q_{L^{\prime}}=v_{L} v_{I}\left(\mathbf{\Phi}\left(\mathbf{x}_{L}\right) \cdot \mathbf{\Phi}\left(\mathbf{x}_{I}\right)\right)$
The use of Maximum Margin magically makes this not a problem

-The fear of overfitting with this enormous number of terms
-The evaluation phase (doing a set of predictions on a test set) will be very expensive (why?)

Because each w. $\boldsymbol{\phi}(\mathbf{x})$ (see below) needs 75 million operations. What nen be done?

Then classify with:

$$
\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w, \phi(\boldsymbol{x})-b)
$$

QP with Quintic basis functions

We must do $\mathrm{R}^{2} / 2$ dot products to get this matrix ready.

In 100-d, each dot product now needs 103 operations instead of 75 million

But there are still worrying things lurking away. What are they?

Then define:
-The fear of overfititing with this enormous number of terms

$$
\begin{aligned}
& \mathbf{W}=\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k} \mathbf{\Phi}\left(\mathbf{x}_{k}{ }^{|c|} \begin{array}{l}
\text { predictions on a test set) will be very } \\
\text { expensive (why?) }
\end{array}\right. \\
& \hline \mathbf{w} \cdot \mathbf{\Phi}(\mathbf{x})=\sum_{k \text { s.t. }}=\sum_{k \text { Because each w. } \phi(\mathbf{x}) \text { (see below) }} \alpha_{k} y_{k} \mathbf{\Phi}\left(\mathbf{x}_{k}\right) \cdot \mathbf{\Phi}(\mathbf{x}) \\
& \text { needs } 75 \text { million operations. What }
\end{aligned}
$$

-The evaluation phase (doing a set of

QP with Quintic basis functions

Maximize $\sum_{k=1}^{R} \alpha_{k}-\frac{1}{2} \sum_{k=1}^{R} \sum_{l=1}^{R} \alpha_{k} \alpha_{l} Q_{k l}$ wh $\begin{aligned} & \text { Andrew's opinion of why SVMs don't } \\ & \text { overfit as much as you'd think: }\end{aligned}$

Subject to these constraints:

$0 \leq \alpha_{k} \leq C$

Then define:

$$
\begin{aligned}
\mathbf{w}= & \sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k} \mathbf{\Phi}\left(\mathbf{x}_{k}\right) \\
\mathbf{w} \cdot \boldsymbol{\Phi}(\mathbf{x}) & =\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k} \mathbf{\Phi}\left(\mathbf{x}_{k}\right) \cdot \boldsymbol{\Phi}(\mathbf{x}) \\
& =\sum_{k \text { s.t. }, \alpha_{k}>0} \alpha_{k} y_{k}\left(\mathbf{x}_{k} \cdot \mathbf{x}+1\right)^{5}
\end{aligned}
$$

Only $S m$ operations ($S=$ \#support vectors)

No matter what the basis function, there are really only up to R parameters: $\alpha_{1 \prime} \alpha_{2} . . \alpha_{R^{\prime}}$ and usually most are set to zero by the Maximum Margin.

Asking for small w.w is like "weight decay" in Neural Nets and like Ridge Regression parameters in Linear regression and like the use of Priors in Bayesian Regression---all designed to smooth the function and reduce overfitting.

Then classify with:

$$
\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w, \phi(\boldsymbol{x})-b)
$$

SVM Kernel Functions

- $K(\boldsymbol{a}, \boldsymbol{b})=(\boldsymbol{a} \cdot \boldsymbol{b}+1)^{d}$ is an example of an SVM Kernel Function
- Beyond polynomials there are other very high dimensional basis functions that can be made practical by finding the right Kernel Function
- Radial-Basis-style Kernel Function:

$$
K(\mathbf{a}, \mathbf{b})=\exp \left(-\frac{(\mathbf{a}-\mathbf{b})^{2}}{2 \sigma^{2}}\right)
$$

- Neural-net-style Kernel Function:

$$
K(\mathbf{a}, \mathbf{b})=\tanh (\kappa \mathbf{a} \cdot \mathbf{b}-\delta)
$$

σ, κ and δ are magic parameters that must be chosen by a model selection method such as CV or VCSRM*
*see last lecture

VC-dimension of an SVM

- Very very very loosely speaking there is some theory which under some different assumptions puts an upper bound on the VC dimension as

$$
\left\lceil\frac{\text { Diameter }}{\text { Margin }}\right\rceil
$$

- where
- Diameter is the diameter of the smallest sphere that can enclose all the high-dimensional term-vectors derived from the training set.
- Margin is the smallest margin we'll let the SVM use
- This can be used in SRM (Structural Risk Minimization) for choosing the polynomial degree, RBF σ, etc.
- But most people just use Cross-Validation

SVM Performance

- Anecdotally they work very very well indeed.
- Example: They are currently the best-known classifier on a well-studied hand-written-character recognition benchmark
- Another Example: Andrew knows several reliable people doing practical real-world work who claim that SVMs have saved them when their other favorite classifiers did poorly.
- There is a lot of excitement and religious fervor about SVMs as of 2001.
- Despite this, some practitioners (including your lecturer) are a little skeptical.

Doing multi-class classification

- SVMs can only handle two-class outputs (i.e. a categorical output variable with arity 2).
- What can be done?
- Answer: with output arity N, learn N SVM's
- SVM 1 learns "Output==1" vs "Output != 1"
- SVM 2 learns "Output==2" vs "Output != 2"
- :
- SVM N learns "Output==N" vs "Output != N"
- Then to predict the output for a new input, just predict with each SVM and find out which one puts the prediction the furthest into the positive region.

References

- An excellent tutorial on VC-dimension and Support Vector Machines:
C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):955-974, 1998. http://citeseer.nj.nec.com/burges98tutorial.html
- The VC/SRM/SVM Bible:

Statistical Learning Theory by Vladimir Vapnik, WileyInterscience; 1998

What You Should Know

- Linear SVMs
- The definition of a maximum margin classifier
- What QP can do for you (but, for this class, you don't need to know how it does it)
- How Maximum Margin can be turned into a QP problem
- How we deal with noisy (non-separable) data
- How we permit non-linear boundaries
- How SVM Kernel functions permit us to pretend we're working with ultra-high-dimensional basisfunction terms

