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 Linear Classifiers 
f          x 

a 

yest 

denotes +1 

denotes -1 

f(x,w,b) = sign(w. x - b) 

How would you 
classify this data? 
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 Linear Classifiers 
f          x 

a 

yest 

denotes +1 

denotes -1 

f(x,w,b) = sign(w. x - b) 

Any of these 
would be fine.. 

 

..but which is 
best? 
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Classifier Margin 
f          x 

a 

yest 

denotes +1 

denotes -1 

f(x,w,b) = sign(w. x - b) 

Define the margin 
of a linear 
classifier as the 
width that the 
boundary could be 
increased by 
before hitting a 
datapoint. 
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Maximum Margin 
f          x 

a 

yest 

denotes +1 

denotes -1 

f(x,w,b) = sign(w. x - b) 

The maximum 
margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin. 

This is the 
simplest kind of 
SVM (Called an 
LSVM) 

Linear SVM 
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Maximum Margin 
f          x 

a 

yest 

denotes +1 

denotes -1 

f(x,w,b) = sign(w. x - b) 

The maximum 
margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin. 

This is the 
simplest kind of 
SVM (Called an 
LSVM) 

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against 

Linear SVM 
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Why Maximum Margin? 

denotes +1 

denotes -1 

f(x,w,b) = sign(w. x - b) 

The maximum 
margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin. 

This is the 
simplest kind of 
SVM (Called an 
LSVM) 

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against 

1. Intuitively this feels safest.  

2. If we’ve made a small error in the 
location of the boundary (it’s been 
jolted in its perpendicular direction) 
this gives us least chance of causing a 
misclassification. 

3. LOOCV is easy since the model is 
immune to removal of any non-
support-vector datapoints. 

4. There’s some theory (using VC 
dimension) that is related to (but not 
the same as) the proposition that this 
is a good thing. 

5. Empirically it works very very well. 
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Specifying a line and margin 

• How do we represent this mathematically? 

• …in m input dimensions? 

Plus-Plane 

Minus-Plane 

Classifier Boundary 
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Specifying a line and margin 

• Plus-plane   =    { x : w . x + b = +1 } 

• Minus-plane =   { x : w . x + b = -1 } 

 

Plus-Plane 

Minus-Plane 

Classifier Boundary 

Classify as.. +1 if w . x + b >= 1 

-1 if w . x + b <= -1 

Universe 
explodes 

if -1 < w . x + b < 1 
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Computing the margin width 

• Plus-plane   =    { x : w . x + b = +1 } 

• Minus-plane =   { x : w . x + b = -1 } 

Claim: The vector w is perpendicular to the Plus Plane. Why? 

 

M = Margin Width 

How do we compute 
M in terms of w 
and b? 
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Computing the margin width 

• Plus-plane   =    { x : w . x + b = +1 } 

• Minus-plane =   { x : w . x + b = -1 } 

Claim: The vector w is perpendicular to the Plus Plane. Why? 

 

M = Margin Width 

How do we compute 
M in terms of w 
and b? 

Let u and v be two vectors on the 
Plus Plane. What is w . ( u – v ) ? 

 And so of course the vector w is also 
perpendicular to the Minus Plane 
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Computing the margin width 

• Plus-plane   =    { x : w . x + b = +1 } 

• Minus-plane =   { x : w . x + b = -1 } 

• The vector w is perpendicular to the Plus Plane 

• Let x- be any point on the minus plane 

• Let x+ be the closest plus-plane-point to x-. 

M = Margin Width 

How do we compute 
M in terms of w 
and b? 

x- 

x+ 

Any location in 


m: not 

necessarily a 
datapoint 

Any location in 
Rm: not 
necessarily a 
datapoint 
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Computing the margin width 

• Plus-plane   =    { x : w . x + b = +1 } 

• Minus-plane =   { x : w . x + b = -1 } 

• The vector w is perpendicular to the Plus Plane 

• Let x- be any point on the minus plane 

• Let x+ be the closest plus-plane-point to x-. 

• Claim: x+ = x- + l w  for some value of l. Why? 

M = Margin Width 

How do we compute 
M in terms of w 
and b? 

x- 

x+ 
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Computing the margin width 

• Plus-plane   =    { x : w . x + b = +1 } 

• Minus-plane =   { x : w . x + b = -1 } 

• The vector w is perpendicular to the Plus Plane 

• Let x- be any point on the minus plane 

• Let x+ be the closest plus-plane-point to x-. 

• Claim: x+ = x- + l w  for some value of l. Why? 

M = Margin Width 

How do we compute 
M in terms of w 
and b? 

x- 

x+ 

The line from x- to x+ is 
perpendicular to the 
planes. 

So to get from  x- to x+ 
travel some distance in 
direction w. 
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Computing the margin width 

What we know: 

• w . x+ + b = +1  

• w . x- + b = -1  

• x+ = x- + l w 

• |x+ - x- | = M 

It’s now easy to get M 
in terms of w and b 

M = Margin Width 

x- 

x+ 
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Computing the margin width 

What we know: 

• w . x+ + b = +1  

• w . x- + b = -1  

• x+ = x- + l w 

• |x+ - x- | = M 

It’s now easy to get M 
in terms of w and b 

M = Margin Width 

w . (x - + l w) + b = 1  

=> 

w . x - + b + l w .w = 1 

=> 

-1 + l w .w = 1 

=> 

x- 

x+ 

w.w

2
λ
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Computing the margin width 

What we know: 

• w . x+ + b = +1  

• w . x- + b = -1  

• x+ = x- + l w 

• |x+ - x- | = M 

•   

M = Margin Width = 

M = |x+ - x- | =| l w |= 

x- 

x+ 

w.w

2
λ

wwww

ww

.

2

.

.2


www .|| λλ 

ww.

2
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Learning the Maximum Margin Classifier 

Given a guess of w and b we can 

• Compute whether all data points in the correct half-planes 

• Compute the width of the margin 

So now we just need to write a program to search the space 
of w’s and b’s to find the widest margin that matches all 
the datapoints. How? 

Gradient descent? Simulated Annealing? Matrix Inversion? 
EM? Newton’s Method? 

M = Margin Width = 

x- 

x+ 
ww.

2
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Learning via Quadratic Programming 
• QP is a well-studied class of optimization 

algorithms to maximize a quadratic function of 
some real-valued variables subject to linear 
constraints. 
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Quadratic Programming 

2
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Learning the Maximum Margin Classifier 
M = 

ww.

2

What should our quadratic 
optimization criterion be? 

How many constraints will we 
have?  

What should they be? 

Given guess of w , b we can 

• Compute whether all data 
points are in the correct 
half-planes 

• Compute the margin width 

Assume R datapoints, each 
(xk,yk) where yk = +/- 1 
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Learning the Maximum Margin Classifier 
Given guess of w , b we can 

• Compute whether all data 
points are in the correct 
half-planes 

• Compute the margin width 

Assume R datapoints, each 
(xk,yk) where yk = +/- 1 

M = 

ww.

2

What should our quadratic 
optimization criterion be? 

Minimize w.w 

How many constraints will we 
have? R 

What should they be? 

w . xk + b >= 1 if yk = 1 

w . xk + b <= -1 if yk = -1 
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Uh-oh! 

denotes +1 

denotes -1 

This is going to be a problem! 

What should we do? 



Support Vector Machines: Slide 28 Copyright © 2001, 2003, Andrew W. Moore 

Uh-oh! 

denotes +1 

denotes -1 

This is going to be a problem! 

What should we do? 

Idea 1: 

Find minimum w.w, while 
minimizing number of 
training set errors. 

Problemette: Two things 
to minimize makes for 
an ill-defined 
optimization 
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Uh-oh! 

denotes +1 

denotes -1 

This is going to be a problem! 

What should we do? 

Idea 1.1: 

Minimize 

 w.w + C (#train errors) 

 

 

There’s a serious practical 
problem that’s about to make 
us reject this approach. Can 
you guess what it is? 

Tradeoff parameter 
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Uh-oh! 

denotes +1 

denotes -1 

This is going to be a problem! 

What should we do? 

Idea 1.1: 

Minimize 

 w.w + C (#train errors) 

 

 

There’s a serious practical 
problem that’s about to make 
us reject this approach. Can 
you guess what it is? 

Tradeoff parameter 
Can’t be expressed as a Quadratic 

Programming problem. 

Solving it may be too slow. 

(Also, doesn’t distinguish between 
disastrous errors and near misses) 
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Uh-oh! 

denotes +1 

denotes -1 

This is going to be a problem! 

What should we do? 

Idea 2.0: 

Minimize 
 w.w + C (distance of error  
                points to their 
                correct place) 
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Learning Maximum Margin with Noise 
Given guess of w , b we can 

• Compute sum of distances 
of points to their correct 
zones 

• Compute the margin width 

Assume R datapoints, each 
(xk,yk) where yk = +/- 1 

M = 

ww.

2

What should our quadratic 
optimization criterion be? 

How many constraints will we 
have?  

What should they be? 
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Learning Maximum Margin with Noise 
Given guess of w , b we can 

• Compute sum of distances 
of points to their correct 
zones 

• Compute the margin width 

Assume R datapoints, each 
(xk,yk) where yk = +/- 1 

M = 

ww.

2

What should our quadratic 
optimization criterion be? 

Minimize 





R

k

kεC
1

.
2

1
ww

e7  

e11  

e2  

How many constraints will we 
have? R 

What should they be? 

w . xk + b >= 1-ek if yk = 1 

w . xk + b <= -1+ek if yk = -1 
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Learning Maximum Margin with Noise 
Given guess of w , b we can 

• Compute sum of distances 
of points to their correct 
zones 

• Compute the margin width 

Assume R datapoints, each 
(xk,yk) where yk = +/- 1 

M = 

ww.

2

What should our quadratic 
optimization criterion be? 

Minimize 





R

k

kεC
1

.
2

1
ww

e7  

e11  
e2  

Our original (noiseless data) QP had m+1 
variables: w1, w2, … wm, and b. 

Our new (noisy data) QP has m+1+R 
variables: w1, w2, … wm, b, ek , e1 ,… eR  

m = # input 
dimensions 

How many constraints will we 
have? R 

What should they be? 

w . xk + b >= 1-ek if yk = 1 

w . xk + b <= -1+ek if yk = -1 

R= # records 
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How many constraints will we 
have? R 

What should they be? 

w . xk + b >= 1-ek if yk = 1 

w . xk + b <= -1+ek if yk = -1 

Learning Maximum Margin with Noise 
Given guess of w , b we can 

• Compute sum of distances 
of points to their correct 
zones 

• Compute the margin width 

Assume R datapoints, each 
(xk,yk) where yk = +/- 1 

M = 

ww.

2

What should our quadratic 
optimization criterion be? 

Minimize 





R

k

kεC
1

.
2

1
ww

e7  

e11  
e2  

There’s a bug in this QP. Can you spot it? 
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Learning Maximum Margin with Noise 
Given guess of w , b we can 

• Compute sum of distances 
of points to their correct 
zones 

• Compute the margin width 

Assume R datapoints, each 
(xk,yk) where yk = +/- 1 

M = 

ww.

2

What should our quadratic 
optimization criterion be? 

Minimize 

How many constraints will we 
have? 2R 

What should they be? 

w . xk + b >= 1-ek if yk = 1 

w . xk + b <= -1+ek if yk = -1 

ek >= 0 for all k 





R

k

kεC
1

.
2

1
ww

e7  

e11  
e2  
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An Equivalent QP 

Maximize 
 


R

k

R

l

kllk

R

k

k Qααα
1 11 2

1
where ).( lklkkl yyQ xx

Subject to these 
constraints: 

kCαk 0

Then define: 





R

k

kkk yα
1

xw

k
k

KKKK

αK

εyb

maxarg where

.)1(



 wx

Then classify with: 

f(x,w,b) = sign(w. x - b) 

0
1




R

k

kk yα

Warning: up until Rong Zhang spotted my error in 
Oct 2003, this equation had been wrong in earlier 
versions of the notes. This version is correct. 
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An Equivalent QP 

Maximize where ).( lklkkl yyQ xx

Subject to these 
constraints: 

kCαk 0

Then define: 





R

k

kkk yα
1

xw

k
k

KKKK

αK

εyb

maxarg where

.)1(



 wx

Then classify with: 

f(x,w,b) = sign(w. x - b) 

0
1




R

k

kk yα

Datapoints with ak > 0 
will be the support 
vectors 

..so this sum only needs 
to be over the 
support vectors. 

Warning: up until Rong Zhang spotted my error in 
Oct 2003, this equation had been wrong in earlier 
versions of the notes. This version is correct. 


 


R

k

R

l

kllk

R

k

k Qααα
1 11 2

1
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R

k

R

l

kllk

R

k

k Qααα
1 11 2

1

An Equivalent QP 

Maximize where ).( lklkkl yyQ xx

Subject to these 
constraints: 

kCαk 0

Then define: 





R

k

kkk yα
1

xw

k
k

KKKK

αK

εyb

maxarg where

.)1(



 wx

Then classify with: 

f(x,w,b) = sign(w. x - b) 

0
1




R

k

kk yα

Datapoints with ak > 0 
will be the support 
vectors 

..so this sum only needs 
to be over the 
support vectors. 

Why did I tell you about this 
equivalent QP? 

• It’s a formulation that QP 
packages can optimize more 
quickly 

• Because of further jaw-
dropping developments 
you’re about to learn. 
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Suppose we’re in 1-dimension 

What would 
SVMs do with 
this data? 

x=0 
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Suppose we’re in 1-dimension 

Not a big surprise 

Positive “plane” Negative “plane” 

x=0 
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Harder 1-dimensional dataset 

That’s wiped the 
smirk off SVM’s 
face. 

What can be 
done about 
this? 

x=0 
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Harder 1-dimensional dataset 
Remember how 

permitting non-
linear basis 
functions made 
linear regression 
so much nicer? 

Let’s permit them 
here too 

x=0 ),( 2

kkk xxz
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Harder 1-dimensional dataset 
Remember how 

permitting non-
linear basis 
functions made 
linear regression 
so much nicer? 

Let’s permit them 
here too 

x=0 ),( 2

kkk xxz
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Common SVM basis functions 

zk = ( polynomial terms of xk of degree 1 to q ) 

zk = ( radial basis functions of xk ) 

 

 

zk = ( sigmoid functions of xk ) 

This is sensible.  

Is that the end of the story? 

No…there’s one more trick! 








 


KW

||
KernelFn)(][

jk

kjk φj
cx

xz
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Quadratic 
Basis Functions 
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)(xΦ

Constant Term 

Linear Terms 

Pure 
Quadratic 

Terms 

Quadratic 
Cross-Terms 

Number of terms (assuming m input 
dimensions) = (m+2)-choose-2 

= (m+2)(m+1)/2 

= (as near as makes no difference) m2/2 

 

You may be wondering what those  

     ’s are doing. 

•You should be happy that they do no 
harm 

•You’ll find out why they’re there soon.  

2



Support Vector Machines: Slide 47 Copyright © 2001, 2003, Andrew W. Moore 

QP with basis functions 

where ))().(( lklkkl yyQ xΦxΦ

Subject to these 
constraints: 

kCαk 0

Then define: 

k
k

KKKK

αK

εyb

maxarg where

.)1(



 wx

Then classify with: 

f(x,w,b) = sign(w. f(x) - b) 

0
1




R

k

kk yα





0 s.t. 

)(
kαk

kkk yα xΦw

Maximize 
 


R

k

R

l

kllk

R

k

k Qααα
1 11 2

1

Warning: up until Rong Zhang spotted my error in 
Oct 2003, this equation had been wrong in earlier 
versions of the notes. This version is correct. 
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QP with basis functions 

where ))().(( lklkkl yyQ xΦxΦ

Subject to these 
constraints: 

kCαk 0

Then define: 

k
k

KKKK

αK

εyb

maxarg where

.)1(



 wx

Then classify with: 

f(x,w,b) = sign(w. f(x) - b) 

0
1




R

k

kk yα

We must do R2/2 dot products to 
get this matrix ready. 

Each dot product requires m2/2 
additions and multiplications 

The whole thing costs R2 m2 /4. 
Yeeks! 

…or does it? 



0 s.t. 

)(
kαk

kkk yα xΦw

Maximize 
 


R

k

R

l

kllk

R

k

k Qααα
1 11 2

1
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Just out of casual, innocent, interest, 
let’s look at another function of a and 
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They’re the same! 

And this is only O(m) to 
compute! 
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QP with Quadratic basis functions 

where ))().(( lklkkl yyQ xΦxΦ

Subject to these 
constraints: 

kCαk 0

Then define: 
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Then classify with: 

f(x,w,b) = sign(w. f(x) - b) 

0
1




R

k

kk yα

We must do R2/2 dot products to 
get this matrix ready. 

Each dot product now only requires 
m additions and multiplications 





0 s.t. 

)(
kαk

kkk yα xΦw

Warning: up until Rong Zhang spotted my error in 
Oct 2003, this equation had been wrong in earlier 
versions of the notes. This version is correct. 
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Higher Order Polynomials 

Poly-
nomial 

f(x) Cost to 
build Qkl 
matrix 
tradition
ally 

Cost if 100 
inputs 

f(a).f(b) Cost to 
build Qkl 
matrix 
sneakily 

Cost if 
100 
inputs 

Quadratic All m2/2 
terms up to 
degree 2 

m2 R2 /4 2,500 R2 (a.b+1)2 m R2 / 2 50 R2 

Cubic All m3/6 
terms up to 
degree 3 

m3 R2 /12 83,000 R2 (a.b+1)3 m R2 / 2 50 R2 

Quartic All m4/24 
terms up to 
degree 4 

m4 R2 /48 1,960,000 R2 (a.b+1)4 m R2 / 2 50 R2 
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QP with Quintic basis functions 

Maximize 
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Then define: 
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Then classify with: 

f(x,w,b) = sign(w. f(x) - b) 

0
1




R

k

kk yα

We must do R2/2 dot products to get this 
matrix ready. 

In 100-d, each dot product now needs 103 
operations instead of 75 million 

But there are still worrying things lurking away. 
What are they? 
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QP with Quintic basis functions 

Maximize 
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Subject to these 
constraints: 

kCαk 0

Then define: 
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We must do R2/2 dot products to get this 
matrix ready. 

In 100-d, each dot product now needs 103 
operations instead of 75 million 

But there are still worrying things lurking away. 
What are they? 

•The fear of overfitting with this enormous 
number of terms 

•The evaluation phase (doing a set of 
predictions on a test set) will be very 
expensive (why?) 
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QP with Quintic basis functions 

Maximize 
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Then classify with: 
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We must do R2/2 dot products to get this 
matrix ready. 

In 100-d, each dot product now needs 103 
operations instead of 75 million 

But there are still worrying things lurking away. 
What are they? 

•The fear of overfitting with this enormous 
number of terms 

•The evaluation phase (doing a set of 
predictions on a test set) will be very 
expensive (why?) 

Because each w. f(x) (see below) 

needs 75 million operations. What 
can be done? 

The use of Maximum Margin 
magically makes this not a 
problem 
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QP with Quintic basis functions 

Maximize 
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We must do R2/2 dot products to get this 
matrix ready. 

In 100-d, each dot product now needs 103 
operations instead of 75 million 

But there are still worrying things lurking away. 
What are they? 

•The fear of overfitting with this enormous 
number of terms 

•The evaluation phase (doing a set of 
predictions on a test set) will be very 
expensive (why?) 

Because each w. f(x) (see below) 

needs 75 million operations. What 
can be done? 

The use of Maximum Margin 
magically makes this not a 
problem 
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QP with Quintic basis functions 

Maximize 
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We must do R2/2 dot products to get this 
matrix ready. 

In 100-d, each dot product now needs 103 
operations instead of 75 million 

But there are still worrying things lurking away. 
What are they? 

•The fear of overfitting with this enormous 
number of terms 

•The evaluation phase (doing a set of 
predictions on a test set) will be very 
expensive (why?) 

Because each w. f(x) (see below) 

needs 75 million operations. What 
can be done? 

The use of Maximum Margin 
magically makes this not a 
problem 
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kkk yα xx When you see this many callout bubbles on 
a slide it’s time to wrap the author in a 
blanket, gently take him away and murmur 
“someone’s been at the PowerPoint for too 
long.” 
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QP with Quintic basis functions 

where ))().(( lklkkl yyQ xΦxΦ
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Andrew’s opinion of why SVMs don’t 
overfit as much as you’d think: 

No matter what the basis function, 
there are really only up to R 
parameters: a1, a2 .. aR, and usually 
most are set to zero by the Maximum 
Margin. 

Asking for small w.w is like “weight 
decay” in Neural Nets and like Ridge 
Regression parameters in Linear 
regression and like the use of Priors 
in Bayesian Regression---all designed 
to smooth the function and reduce 
overfitting.  
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SVM Kernel Functions 
• K(a,b)=(a . b +1)d is an example of an SVM 

Kernel Function 

• Beyond polynomials there are other very high 
dimensional basis functions that can be made 
practical by finding the right Kernel Function 

• Radial-Basis-style Kernel Function: 

 

 

• Neural-net-style Kernel Function: 
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,  and  are magic 
parameters that must 
be chosen by a model 
selection method 
such as CV or 
VCSRM*  

*see last lecture 
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VC-dimension of an SVM 
• Very very very loosely speaking there is some theory which 

under some different assumptions puts an upper bound on 
the VC dimension as 

 

 

• where 

• Diameter is the diameter of the smallest sphere that can 
enclose all the high-dimensional term-vectors derived 
from the training set. 

• Margin is the smallest margin we’ll let the SVM use 

• This can be used in SRM (Structural Risk Minimization) for 
choosing the polynomial degree, RBF , etc. 

• But most people just use Cross-Validation 










Margin

Diameter
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SVM Performance 
• Anecdotally they work very very well indeed. 

• Example: They are currently the best-known 
classifier on a well-studied hand-written-character 
recognition benchmark 

• Another Example: Andrew knows several reliable 
people doing practical real-world work who claim 
that SVMs have saved them when their other 
favorite classifiers did poorly. 

• There is a lot of excitement and religious fervor 
about SVMs as of 2001. 

• Despite this, some practitioners (including your 
lecturer) are a little skeptical. 
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Doing multi-class classification 
• SVMs can only handle two-class outputs (i.e. a 

categorical output variable with arity 2). 

• What can be done? 

• Answer: with output arity N, learn N SVM’s 

• SVM 1 learns “Output==1” vs “Output != 1” 

• SVM 2 learns “Output==2” vs “Output != 2” 

• : 

• SVM N learns “Output==N” vs “Output != N” 

• Then to predict the output for a new input, just 
predict with each SVM and find out which one puts 
the prediction the furthest into the positive region. 
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What You Should Know 
• Linear SVMs 

• The definition of a maximum margin classifier 

• What QP can do for you (but, for this class, you 
don’t need to know how it does it) 

• How Maximum Margin can be turned into a QP 
problem 

• How we deal with noisy (non-separable) data 

• How we permit non-linear boundaries 

• How SVM Kernel functions permit us to pretend 
we’re working with ultra-high-dimensional basis-
function terms 


