
Using Neural Networks for
Modelling and Representing

Natural Languages
Tomas Mikolov, Facebook AI Research

COLING 2014

Structure of the tutorial

• Introduction

• Basic machine learning applied to natural language

• Introduction to neural networks

• Distributed representations of words

• Neural network based language models

• Future research

• Resources

Tomas Mikolov, COLING 2014 2

Introduction

• Text processing is the core business of internet companies today
(Google, Facebook, Yahoo, …)

• Machine learning and natural language processing techniques are
applied to big datasets to improve search, ranking and many other
tasks (spam detection, ads recommendation, email categorization,
machine translation, speech recognition, …)

Tomas Mikolov, COLING 2014 3

Introduction

• This tutorial introduces artificial neural networks applied to text
problems

• The focus is on the understanding of the main ideas: how neural
networks work, what they can and cannot do, what is deep learning

• Overview of some of the interesting results that have been already
achieved

Tomas Mikolov, COLING 2014 4

Basic machine learning applied to NLP

• Before we start talking about neural networks, basic techniques will be
briefly mentioned

• As we will see later, neural networks are closely related to the more basic
techniques

• To avoid re-discovery of the wheel, it is important to know the prior work

• Finally: while the basic techniques are often trivial, it is very hard to
improve upon them (and many fancy techniques fail to do so!)

Tomas Mikolov, COLING 2014 5

Basic machine learning applied to NLP

• N-grams

• Word classes

• Bag-of-words representations

• Logistic regression

• Support vector machines

Tomas Mikolov, COLING 2014 6

N-grams

• Standard approach to language modeling

• Task: compute probability of a sentence W

𝑃 𝑊 =

𝑖

𝑃(𝑤𝑖|𝑤1…𝑤𝑖−1)

• Often simplified to trigrams:

𝑃 𝑊 =

𝑖

𝑃(𝑤𝑖|𝑤𝑖−2,𝑤𝑖−1)

Tomas Mikolov, COLING 2014 7

N-grams: example

𝑃 "𝑡ℎ𝑖𝑠 𝑖𝑠 𝑎 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒" = 𝑃 𝑡ℎ𝑖𝑠 × 𝑃(𝑖𝑠|𝑡ℎ𝑖𝑠) × 𝑃 𝑎 𝑡ℎ𝑖𝑠, 𝑖𝑠 × 𝑃(𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒|𝑖𝑠, 𝑎)

• The probabilities are estimated from counts:

𝑃 𝑎 𝑡ℎ𝑖𝑠, 𝑖𝑠 =
𝐶(𝑡ℎ𝑖𝑠 𝑖𝑠 𝑎)

𝐶(𝑡ℎ𝑖𝑠 𝑖𝑠)

• Smoothing is used to redistribute probability to unseen events (this avoids
zero probabilities)

A Bit of Progress in Language Modeling (Goodman, 2001)

Tomas Mikolov, COLING 2014 8

Word classes

• One of the most successful NLP concepts in practice

• Similar words should share parameter estimation, which leads to
generalization

• Example:
𝐶𝑙𝑎𝑠𝑠1 = 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒, 𝑟𝑒𝑑
𝐶𝑙𝑎𝑠𝑠2 = (𝐼𝑡𝑎𝑙𝑦, 𝐺𝑒𝑟𝑚𝑎𝑛𝑦, 𝐹𝑟𝑎𝑛𝑐𝑒, 𝑆𝑝𝑎𝑖𝑛)

• Usually, each vocabulary word is mapped to a single class (similar
words share the same class)

Tomas Mikolov, COLING 2014 9

Word classes

• There are many ways how to compute the classes – usually, it is
assumed that similar words appear in similar contexts

• Instead of using just counts of words, we can use also counts of
classes, which leads to generalization (better performance on novel
data)

Class-based n-gram models of natural language (Brown, 1992)

Tomas Mikolov, COLING 2014 10

One-hot representations

• Simple way how to encode discrete concepts, such as words

Example:

vocabulary = (Monday, Tuesday, is, a, today)

Monday = [1 0 0 0 0]

Tuesday = [0 1 0 0 0]

is = [0 0 1 0 0]

a = [0 0 0 1 0]

today = [0 0 0 0 1]

Also known as 1-of-N (where in our case, N would be the size of the vocabulary)

Tomas Mikolov, COLING 2014 11

Bag-of-words representations

• Sum of one-hot codes
• Ignores order of words
Example:
vocabulary = (Monday, Tuesday, is, a, today)

Monday Monday = [2 0 0 0 0]

today is a Monday = [1 0 1 1 1]

today is a Tuesday = [0 1 1 1 1]

is a Monday today = [1 0 1 1 1]

Can be extended to bag-of-N-grams to capture local ordering of words

Tomas Mikolov, COLING 2014 12

Logistic regression

• Basic machine learning technique how to perform classification

• Input is a vector of features, output is usually one (binary
classification) or many (multinomial distribution)

• The weights matrix (or vector) directly connects inputs and output

Tomas Mikolov, COLING 2014

X2

X1

Y

13

Logistic regression

• Can be trained by stochastic gradient descent, and can be seen as a
neural network without any hidden layers (will be described later)

• Also called maximum entropy model in the NLP community

• Example C code for toy problem available at:
http://ai.stanford.edu/~ajoulin/code/nn.zip (joint work with Armand
Joulin; includes code for logistic regression, feedforward and
recurrent neural networks)

Tomas Mikolov, COLING 2014 14

http://ai.stanford.edu/~ajoulin/code/nn.zip

Support vector machines

• Another popular way how to perform classification, very similar to logistic
regression

• Tries to maximize margin between the classes:

• Popular also because of existence of open-source packages: libsvm, svmtorch,
svmlight

Tomas Mikolov, COLING 2014

Figure from Wikipedia

15

Basic machine learning: summary

Main statistical tools for NLP:

• Count-based models: N-grams, bag-of-words

• Word classes

• Unsupervised dimensionality reduction: PCA

• Unsupervised clustering: K-means

• Supervised classification: logistic regression, SVMs

Tomas Mikolov, COLING 2014 16

Introduction to neural networks

• Motivation

• Architecture of neural networks: neurons, layers, synapses

• Activation function

• Objective function

• Training: stochastic gradient descent, backpropagation, learning rate,
regularization

• Intuitive explanation of “deep learning”

Tomas Mikolov, COLING 2014 17

Neural networks: motivation

• The main motivation is to simply come up with more precise way how
to represent and model words, documents and language than the
basic approaches

• There is nothing that neural networks can do in NLP that the basic
techniques completely fail at

• But: the victory in competitions goes to the best, thus few percent
gain in accuracy counts!

Tomas Mikolov, COLING 2014 18

Neuron (perceptron)

Tomas Mikolov, COLING 2014 19

Neuron (perceptron)

Tomas Mikolov, COLING 2014

Input synapses

20

Neuron (perceptron)

Tomas Mikolov, COLING 2014

Input synapses

w1

w2

w3

W: input weights

21

Neuron (perceptron)

Tomas Mikolov, COLING 2014

Input synapses

w1

w2

w3

W: input weights
Activation function: max(0, value)

Neuron with non-linear activation function

22

Neuron (perceptron)

Tomas Mikolov, COLING 2014

Input synapses

w1

w2

w3

W: input weights
Activation function: max(0, value)

Neuron with non-linear activation function

Output (axon)

23

Neuron (perceptron)

Tomas Mikolov, COLING 2014

Input synapses

w1

w2

w3

W: input weights
Activation function: max(0, value)
I: input signal

𝑂𝑢𝑡𝑝𝑢𝑡 = max(0, 𝐼 ∙ 𝑊)

Neuron with non-linear activation function

Output (axon)

i1

i3

i2

24

Neuron (perceptron)

• It should be noted that the perceptron model is quite different from
the biological neurons (those communicate by sending spike signals
at different frequencies)

• The learning seems also quite different

• It would be better to think of artificial neural networks as non-linear
projections of data

Tomas Mikolov, COLING 2014 25

Activation function

• In the previous example, we used max(0, value): this is usually
referred to as “rectified activation function”

• Many other functions can be used

• Other common ones: sigmoid, tanh

Tomas Mikolov, COLING 2014

Figure from Wikipedia

26

Activation function

• The critical part is however the non-linearity

• Example: XOR problem

• There is no linear classifier that can solve this problem:

Tomas Mikolov, COLING 2014

?

27

Non-linearity: example

Intuitive NLP example:

• Input: sequence of words

• Output: binary classification (for example, positive / negative
sentiment)

• Input: “the idea was not bad”

• Non-linear classifier can learn that “not” and “bad” next to each
other mean something else than “not” or “bad” itself

• “not bad” != “not” + “bad”

Tomas Mikolov, COLING 2014 28

Activation function

• The non-linearity is a crucial concept that gives neural networks more
representational power compared to some other techniques (linear
SVM, logistic regression)

• Without the non-linearity, it is not possible to model certain
combinations of features (like Boolean XOR function), unless we do
manual feature engineering

Tomas Mikolov, COLING 2014 29

Hidden layer

• Hidden layer represents learned non-linear combination of input
features (this is different than SVMs with non-linear kernels that are
not learned)

• With hidden layer, we can solve the XOR problem:

1. some neurons in the hidden layer will activate only for some
combination of input features

2. the output layer can represent combination of the activations of the
hidden neurons

Tomas Mikolov, COLING 2014 30

Hidden layer

• Neural net with one hidden layer is universal approximator: it can
represent any function

• However, not all functions can be represented efficiently with a single
hidden layer – we shall see that in the deep learning section

Tomas Mikolov, COLING 2014 31

Neural network layers

Tomas Mikolov, COLING 2014

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

32

Objective function

• Objective function defines how well does the neural network perform
some task

• The goal of training is to adapt the weights so that the objective
function is maximized / minimized

• Example: classification accuracy, reconstruction error

Tomas Mikolov, COLING 2014 33

Unsupersvied / supervised training

• When the goal is to model the input data, the training is called
unsupervised

• An example is auto-encoder: the objective function is to reconstruct
the input data at the output layer (by performing some kind of
compression when going through the hidden layer)

• Supervised training usually means that we have additional labels for
the input vectors, and the goal is to perform classification

Tomas Mikolov, COLING 2014 34

Training of neural networks

• There are many ways how to train neural networks

• The most widely used and successful in practice is stochastic gradient
descent

• Many algorithms are introduced as superior to SGD, but when
properly compared, the gains are not easy to achieve

Tomas Mikolov, COLING 2014 35

Training of neural networks

Forward pass:

• Input signal is presented first

• Hidden layer state is computed
(vector times matrix operation
and non-linear activation)

• Outputs are computed
(vectors times matrix operation
and usually non-linear activation)

Tomas Mikolov, COLING 2014

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

W: input weights
Activation function: max(0, value)
I: input signal

𝑂𝑢𝑡𝑝𝑢𝑡 = max(0, 𝐼 ∙ 𝑊)
36

Training of neural networks - SGD

Intuitive explanation of stochastic gradient descent:

• We update the weights after each training example is presented to
the network

• The input feature vector is used to compute the output vector during
the forward pass

• The target vector represents the desired output vector (in case of
classification it uses one-hot coding)

• We change the weights a little bit so that next time the same input
vector is presented, the output vector will be closer to the target
vector

Tomas Mikolov, COLING 2014 37

Training of neural networks - SGD

Intuitive explanation of stochastic gradient descent:

• We update the weights after each training example is presented to
the network

• The input feature vector is used to compute the output vector during
the forward pass

• The target vector represents the desired output vector (in case of
classification it uses one-hot coding)

• We change the weights a little bit so that next time the same input
vector is presented, the output vector will be closer to the target
vector

Tomas Mikolov, COLING 2014 38

Backpropagation

• To train the network, we need to
compute gradient of the error

• The gradients are sent back using
the same weights that were used
in the forward pass

Simplified graphical representation:

Tomas Mikolov, COLING 2014

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

39

Training of neural networks – learning rate

• Learning rate controls how much we change the weights: too little
value will result in long training time, too high value will erase
previously learned patterns

• In practice, we start with high learning rate and reduce it during
training

Tomas Mikolov, COLING 2014 40

Training of neural networks – training epochs

• Several training epochs over the training data are often performed

• Usually, the training is finished when performance on held-out
(validation) data does not improve

• The starting learning rate and how quickly it gets reduced can affect
the resulting performance in a great way: you have to tune this!

Tomas Mikolov, COLING 2014 41

Regularization

• As the network is trained, it often overfits the training data: it has
very good performance during training, but fails to generalize in test

• The network “memorizes” the training data: often, it will contain high
weights that are used to model only some small subset of data

• We can try to force the weights to stay small during training to avoid
this problem (L1 & L2 regularization)

Tomas Mikolov, COLING 2014 42

Training of neural networks: summary

• Stochastic gradient descent and backpropagation are usually good
enough

• The power of neural networks comes from non-linear hidden layer(s)

Tomas Mikolov, COLING 2014 43

What training typically does not do

Choice of the hyper-parameters has to be done manually:

• Type of activation function

• Choice of architecture (how many hidden layers, their sizes)

• Learning rate, number of training epochs

• What features are presented at the input layer

• How to regularize

It may seem complicated at first, the best way to start is to re-use some
existing setup and try your own modifications

Tomas Mikolov, COLING 2014 44

Comparison of neural networks to logistic
regression
• Neural networks can do everything logistic regression can do

(proof: the hidden layer can simply copy inputs)

• Logistic regression is in many cases computationally much more
efficient

• Thus, we should use both jointly: will be shown later

Tomas Mikolov, COLING 2014 45

Deep learning

• Deep model architecture is about having more computational steps
(hidden layers) in the model

• Deep learning aims to learn patterns that cannot be learned
efficiently with shallow models

Tomas Mikolov, COLING 2014 46

Deep learning

• But: it was previously mentioned that one hidden layer neural net is
universal approximator as it can represent any function

• Why would we need more hidden layers then?

Tomas Mikolov, COLING 2014 47

Deep learning

• The crucial part to understand deep learning is the efficiency

• The “universal approximator” argument says nothing else than that a
neural net with non-linearities can work as a look-up table to
represent any function: some neurons can activate only for some
specific range of input values

Tomas Mikolov, COLING 2014 48

Deep learning

• Look-up table is not efficient: for certain functions, we would need
exponentially many hidden units with increasing size of the input
layer

• Example of function that is difficult to represent: parity function (N
bits at input, output is 1 if the number of active input bits is odd)
(Perceptrons, Minsky & Papert 1969)

Tomas Mikolov, COLING 2014 49

Deep learning

• Having hidden layers exponentially larger than is necessary is bad

• If we cannot compactly represent patterns, we have to memorize
them -> need exponentially more training examples

Tomas Mikolov, COLING 2014 50

Deep learning

• Whenever we try to learn complex function that is a composition of
simpler functions, it may be beneficial to use deep architecture

Tomas Mikolov, COLING 2014

INPUT LAYER HIDDEN LAYER 1 HIDDEN LAYER 2 HIDDEN LAYER 3 OUTPUT LAYER

51

Deep learning

• Historically, deep learning was assumed to be impossible to achieve
by using SGD + backpropagation

• Recently there was a lot of success for tasks that contain signals that
are very compositional (speech, vision) and where large amount of
training data is available

Tomas Mikolov, COLING 2014 52

Deep learning

• Deep learning is still an open research problem

• Many deep models have been proposed that do not learn anything
else than a shallow (one hidden layer) model can learn: beware the
hype!

• Not everything labeled “deep” is a successful example of deep
learning

Tomas Mikolov, COLING 2014 53

Neural networks and deep learning: summary

• Neural networks are basic machine learning technique, can be seen
as non-linear projections of the input features

• Start with SGD and backpropagation for training

• Deep learning can be useful for learning complex patterns in data

Tomas Mikolov, COLING 2014 54

Distributed representations of words

• Vector representation of words computed using neural networks

• Linguistic regularities in the word vector space

• Evaluation of performance

• Application to machine translation

Tomas Mikolov, COLING 2014 55

A very basic neural network applied to NLP

• Bigram neural language model

• Previous word is used to predict the current word by going through hidden
layer (classifier with as many outputs as there are words in the vocabulary)

Tomas Mikolov, COLING 2014

PREVIOUS WORD HIDDEN LAYER CURRENT WORD

56

A very basic neural network applied to NLP

• The input is encoded as one-hot

• The model will learn compressed, continuous representations of words
(usually the matrix of weights between the input and hidden layer)

Tomas Mikolov, COLING 2014

PREVIOUS WORD HIDDEN LAYER CURRENT WORD

57

Word vectors

• We call the vectors in the matrix between the input and hidden layer
word vectors (also known as word embeddings)

• Each word is associated with a real valued vector in N-dimensional
space (usually N = 50 – 1000)

• The word vectors have some similar properties to word classes;
however, many degrees of similarity are captured

Tomas Mikolov, COLING 2014 58

Word vectors

• These word vectors can be subsequently used as features in many
NLP tasks (Collobert et al, 2011)

• As word vectors can be trained on huge text datasets, they provide
generalization for systems trained with limited amount of supervised
data

• More complex model architectures can be used for obtaining the
word vectors (neural net language model with multi-task learning
(Collobert & Weston, 2008))

Tomas Mikolov, COLING 2014 59

Word vectors

• Many architectures were proposed for training the word vectors,
some labeled “deep”

• Do we really need deep learning here?

• Do we know how to apply deep learning to this task?

Tomas Mikolov, COLING 2014 60

Word vectors

• We need some way how to compare word vectors trained using
different architectures

• The comparison is tricky: people mostly published just their pre-
trained word vectors, everyone was using different datasets both for
training and evaluation…

• Conclusions based on experiments with different datasets are
misleading

Tomas Mikolov, COLING 2014 61

Word vectors - evaluation

Existing datasets like WS353 (word similarity, 353 word pairs with
human judgements of similarity) have several drawbacks:

• Tiny size, no heldout / test data split

• Performance is heavily biased by choice of the training data, less so
by the architecture of the model itself

Placing Search in Context: The Concept Revisited (Finkelstein et al, 2002)

Tomas Mikolov, COLING 2014 62

Word vectors – linguistic regularities

• Recently, it was shown that word vectors capture many linguistic properties
(gender, tense, plurality, even semantic concepts like “capital city of”)

• We can do nearest neighbor search around result of vector operation “King
– man + woman” and obtain “Queen” (Linguistic regularities in continuous
space word representations (Mikolov et al, 2013))

Tomas Mikolov, COLING 2014 63

Word vectors – datasets for evaluation

MSR dataset with 8K questions, mostly focuses on syntax - examples:

• good:better rough: ___

• good:best rough: ___

• better:best rougher: ___

• year:years law: ___

• see:saw return: ___

More in Linguistic Regularities in Continuous Space Word
Representations (Mikolov, Yih, Zweig, 2013)

Tomas Mikolov, COLING 2014 64

Word vectors – datasets for evaluation

Google word-based dataset, almost 20K questions, focuses on both
syntax and semantics:

• Athens:Greece Oslo: ___

• Angola:kwanza Iran: ___

• brother:sister grandson: ___

• possibly:impossibly ethical: ___

• walking:walked swimming: ___

More in Efficient estimation of word representations in vector space
(Mikolov et al, 2013)

Tomas Mikolov, COLING 2014 65

Word vectors – datasets for evaluation

Google phrase-based dataset, focuses on semantics:

• New York:New York Times Baltimore: ___

• Boston:Boston Bruins Montreal: ___

• Detroit:Detroit Pistons Toronto: ___

• Austria:Austrian Airlines Spain: ___

• Steve Ballmer:Microsoft Larry Page: ___

Distributed Representations of Words and Phrases and their
Compositionality (Mikolov et al, 2013)

Tomas Mikolov, COLING 2014 66

Word vectors – various architectures

• Neural net based word vectors were traditionally trained as part of neural network
language model (Bengio et al, 2003)

• This models consists of input layer, projection layer, hidden layer and output layer (will be
discussed in detail in the next section)

Tomas Mikolov, COLING 2014 67

Word vectors – various architectures

• We can extend the bigram NNLM for training the word vectors by
adding more context

Tomas Mikolov, COLING 2014

PREVIOUS WORD HIDDEN LAYER CURRENT WORD

68

Word vectors – various architectures

• The ‘continuous bag-of-words model’ (CBOW)
adds inputs from words within short window
to predict the current word

• The weights for different positions are shared

• Computationally much more efficient than
normal NNLM

• The hidden layer is just linear

Tomas Mikolov, COLING 2014 69

Word vectors – various architectures

• We can reformulate the CBOW model by
predicting surrounding words using the
current word

• This architectures is called ‘skip-gram NNLM’

• If both are trained for sufficient number
of epochs, their performance is similar

Tomas Mikolov, COLING 2014 70

Word vectors - training

• SGD + backpropagation

• Solution to very large output layer – size equal to vocabulary size, can
easily be in order of millions (too many outputs to evaluate):

1. Hierarchical softmax

2. Negative sampling

Tomas Mikolov, COLING 2014 71

Word vectors - training

• It is useful to sub-sample the frequent words (such as ‘the’, ‘is’, ‘a’, …)
during training

• Non-linearity does not seem to improve performance of these
models, thus the hidden layer does not use activation function

Tomas Mikolov, COLING 2014 72

Word vectors – negative sampling

• Instead of propagating signal from the hidden layer to the whole
output layer, only the output neuron that represents the positive
class + few randomly sampled neurons are evaluated

• The output neurons are treaded as independent logistic regression
classifiers

• This makes the training speed independent on the vocabulary size

Tomas Mikolov, COLING 2014 73

Word vectors – comparison of performance

Tomas Mikolov, COLING 2014

• Google 20K questions dataset (word based, both syntax and semantics)

• Almost all models are trained on different datasets
74

Word vectors – scaling up

• The choice of training corpus is usually more important than the
choice of the technique itself

• The crucial component of any successful model thus should be low
computational complexity

• Optimized code for computing the CBOW and skip-gram models has
been published as word2vec project:
https://code.google.com/p/word2vec/

Tomas Mikolov, COLING 2014 75

https://code.google.com/p/word2vec/

Word vectors – nearest neighbors

• More training data helps the quality a lot!

Tomas Mikolov, COLING 2014 76

Word vectors – more examples

Tomas Mikolov, COLING 2014 77

Word vectors – visualization using PCA

Tomas Mikolov, COLING 2014 78

Vectors: from words to phrases

• Linguistically, it does not make sense to treat New York or Air Canada as
separate words; we should be working with phrases (even more obvious
for names of people)

• Phrases can be constructed using mutual information criterion: if certain
words appear next to each other more than their individual frequency
suggests, they likely should form a phrase

• Simple way how to deal with phrases is to pre-process the training data
and rewrite all phrases as single tokens, such as New_York and Air_Canada

Tomas Mikolov, COLING 2014 79

Sentence-level representations

• To obtain sentence level representations, we can add unique tokens
to the data, one for each sentence (or short document)

• These tokens are trained in a similar way like other words in the skip-
gram or CBOW models, just using unlimited context window (within
the sentence boundaries)

Example:

SID__1 We think this was not the best way …

SID__2 Another reason was to …

Tomas Mikolov, COLING 2014 80

Sentence-level representations

• The sentence representations can be further used in classifiers
(logistic regression, SVM, or neural network)

• Needs to be trained for many epochs; seems to achieve state of the
art results on sentiment analysis tasks, beating much more intricate
approaches such as recursive neural networks

Distributed Representations of Sentences and Documents (Le et al,
2014)

Tomas Mikolov, COLING 2014 81

Translation of words and phrases using vector
spaces
• Idea: there are many languages across the world that describe the

same patterns – dogs have four legs, the sky is blue, …

• The words and concepts within languages should be related in a
similar way

Tomas Mikolov, COLING 2014 82

Translation of words and phrases using vector
spaces
• Thus, it should be enough to learn mapping between the language

vector spaces to perform basic translation

• We tried to start with small existing dictionary (5K most frequent
words), and tried to translate the remaining words

Tomas Mikolov, COLING 2014 83

English to Spanish: translation of words

• The results are surprisingly accurate, especially with models trained on a
lot of data

Tomas Mikolov, COLING 2014 84

Translation of words and phrases

• We could reach above 90% accuracy for the most confident
translations

• In cases where monolingual data are plentiful and bilingual data are
rare (internet slang words, distant language pairs, …), this technique
seems promising

More in: Exploiting similarities among languages for machine
translation (Mikolov et al, 2013)

Tomas Mikolov, COLING 2014 85

Comparison to prior state of the art

• The recent discoveries suggest that the whole neural net - word
vector idea is very close to the existing distributional semantics
models (counts of co-occurrences of words within a window)

• The non-linearities do not seem to be crucial for the unsupervised
learning (but would help if one would use the word vectors as
features in a classification task)

“You shall know a word by the company it keeps” (Firth, 1957)

Tomas Mikolov, COLING 2014 86

Comparison to prior state of the art

The linguistic regularities are not exclusive property of neural net based
representations: Linguistic Regularities in Sparse and Explicit Word
Representations (Levy & Goldberg, 2014)

Tomas Mikolov, COLING 2014 87

Comparison to prior state of the art

Comparison to traditional vector space models: Don’t count, predict! A
systematic comparison of context-counting vs. context-predicting
semantic vectors (Baroni et al, 2014)

Tomas Mikolov, COLING 2014 88

Distributed word representations: summary

• Simple models seem to be sufficient

• Parameter tuning is still a bit of an art: context size, number of
dimensions, training algorithm, …

• Large text corpora are crucial for good performance (some links will
be given in the Resources section)

• Train for more epochs if you have small training sets!

Tomas Mikolov, COLING 2014 89

Neural network based language models

• Feedforward and recurrent neural net architectures for language
modeling

• Dealing with large number of outputs: class based softmax,
hierarchical softmax

• Joint training with maximum entropy model

• Recurrent model with slow features

• Applications in language modeling, speech recognition, machine
translation

Tomas Mikolov, COLING 2014 90

Language modeling with neural networks

• Statistical language modeling is one of the oldest, well-studied and
important NLP tasks

• The language models are core of machine translation, speech
recognition and many other applications

• Historically, it was amazingly difficult to convincingly beat N-grams,
especially on larger than tiny datasets

Tomas Mikolov, COLING 2014 91

N-grams

• Task: compute probability of a sentence W

𝑃 𝑊 =

𝑖

𝑃(𝑤𝑖|𝑤1…𝑤𝑖−1)

• Often simplified to trigrams:

𝑃 𝑊 =

𝑖

𝑃(𝑤𝑖|𝑤𝑖−2,𝑤𝑖−1)

Tomas Mikolov, COLING 2014 92

Language modeling with neural networks

• Main deficiency of N-grams is the exponential growth of number of
parameters with length of the context

• Neural networks address this problem by performing dimensionality
reduction and parameter sharing

Tomas Mikolov, COLING 2014 93

Language modeling with neural networks

• Neural network language models are today state of the art, often
applied to systems participating in competitions (ASR, MT)

• There are two main types of neural network architectures for
language modeling: feedforward and recurrent

Tomas Mikolov, COLING 2014 94

Feedforward neural network LM

• Proposed by (Bengio et al, 2003)

• The projection layer is linear

• The hidden layer is non-linear

• Softmax at the output computes
probability distribution over
the whole vocabulary

• The basic model is
computationally very expensive

Tomas Mikolov, COLING 2014 95

Towards recurrent neural network LM

• Back to the bigram NNLM: is there a better way how to represent
time than using N-1 previous words as separate inputs?

Tomas Mikolov, COLING 2014

PREVIOUS WORD HIDDEN LAYER CURRENT WORD

96

Recurrent neural network LM

• Recurrent NNLM is about the same as the
bigram NNLM

• Additional weights from the hidden
layer in the previous time step

• In theory, the hidden layer can learn
to represent unlimited memory

Tomas Mikolov, COLING 2014 97

Training of NNLMs

• Feedforward NNLM: the classis SGD + backpropagation

• Recurrent NNLM: the same, but the backpropagation part is more
difficult to implement correctly

• The algorithm for computing gradients in RNN is called
“Backpropagation through time”

Tomas Mikolov, COLING 2014 98

• The intuition is that we unfold the RNN in time

• We obtain deep neural network with shared
weights U and W

Tomas Mikolov, COLING 2014

Backpropagation through time

99

• We train the unfolded RNN using normal
backpropagation + SGD

• In practice, we limit the number of
unfolding steps to 5 – 10

• It is computationally more efficient to
propagate gradients after few training
examples (batch mode)

Tomas Mikolov, COLING 2014

Backpropagation through time

100

Backpropagation through time

Problems of BPTT:

• Vanishing gradients

• Exploding gradients

Tomas Mikolov, COLING 2014 101

Vanishing gradients

• As we propagate the gradients back in time, usually their magnitude
decreases, and quickly approaches tiny values: this is called vanishing
gradient

• In practice this means that learning long term dependencies is
difficult

• Special architectures address this problem (Long Short-term Memory
– LSTM RNN (Hochreiter & Schmidhuber, 1997))

Tomas Mikolov, COLING 2014 102

Exploding gradients

• Sometimes, the gradients start to increase exponentially during
backpropagation through the recurrent weights: this is the exploding
gradient

• While this is a more rare situation, the effect can be catastrophic:
huge gradients will lead to big change of weights, and the network
will forget almost all it has learned so far

• Simple solution: clip values of the gradients

Tomas Mikolov, COLING 2014 103

Comparison of performance on small data:
Penn Treebank

• Small, standard dataset,
~1M words

• RNN outperforms FNN by
about 10%

More results in: Empirical Evaluation and Combination of Advanced
Language Modeling Techniques (Mikolov et al, 2011)

Tomas Mikolov, COLING 2014

Model Perplexity

Kneser-Ney 5-gram 141

Maxent 5-gram 142

Random forest 132

Feedforward NNLM 140

Recurrent NNLM 125

104

Scaling up to large datasets

• While neural network LMs have been around for a while, their
computational complexity compicated their use in real-world systems

Main computational bottlenecks:

1. Computation of probability distribution in the output layer

2. Dense matrix multiplication (FNN: projection -> hidden layer,
RNN: recurrent matrix)

Tomas Mikolov, COLING 2014 105

Softmax

• Softmax at the output layer computes probability distribution over
the whole vocabulary:

𝑔 𝑜 =
𝑒𝑜𝑖

 𝑘 𝑒
𝑜𝑘

• Sums to 1, all output values are non-negative

Tomas Mikolov, COLING 2014 106

Scaling up: short lists

• Instead of computing the whole probability distribution using NNLM,
we can evaluate just the most frequent words (2000 – 8000)

• The rest is computed using (fast) N-gram model

• Downside: significantly reduces accuracy (after all, modelling of rare
words is what neural nets do better than N-grams)

Continuous space language models (Schwenk, 2007)

Tomas Mikolov, COLING 2014 107

Scaling up: class based softmax

• Instead of normalizing probability
over all words, we:

1. Assign each word to a single class
2. Normalize over the class layer
3. Normalize over words from within

the current class

• Reduces complexity from |V| to about
sqrt(|V|)

Extensions of recurrent neural network
language model (Mikolov et al, 2011)

Tomas Mikolov, COLING 2014 108

Hierarchical softmax

• We can add classes over classes

• Extreme case: binary tree over the whole vocabulary

• Further reduces the complexity of softmax class to about log(|V|)

Hierarchical Probabilistic Neural Network Language Model (Morin &
Bengio, 2005)

Tomas Mikolov, COLING 2014 109

Hierarchical softmax

• Use of Huffman encoding further increases speed (frequent words
have short binary codes)

• Note: the tree nodes are conditioned
on the state of the hidden layer
(not on the state of other nodes)

Efficient estimation of word representations in vector space (Mikolov,
2013)

Tomas Mikolov, COLING 2014 110

HIDDEN LAYER HIERARCHICAL SOFTMAX

How to assign words to classes?

• Frequency: simple to implement, no pre-computation, but degrades
accuracy:
• ~10% worse PPL for classes against full softmax

• ~30% for Huffman binary tree

Tomas Mikolov, COLING 2014 111

How to assign words to classes?

Brown classes:

• good accuracy (little to none loss in perplexity)

• has to be pre-computed

• not computationally efficient as the frequency-based classes
(need to evaluate more output nodes on average)

Other clustering techniques work too (for example K-means on pre-
trained word vectors).

Tomas Mikolov, COLING 2014 112

How to assign words to classes?

• Combination of both ideas (similarity of frequency and semantics):
good accuracy & speed

• We can learn the classes while penalizing frequent and infrequent
words to be within the same class

Speed Regularization and Optimality in Word Classing
(Zweig & Makarychev, 2013)

Tomas Mikolov, COLING 2014 113

Further scaling up: joint training of RNN with
Maxent model
• Logistic regression and neural networks are closely related

• Maximum entropy model is how logistic regression is called in NLP

• Logistic regression: fast, scales to very large datasets

• Neural networks: more compact and robust, generalize better

• Why not combine both?

Tomas Mikolov, COLING 2014 114

Joint training of RNN with Maxent model

• Just another matrix of weights in the RNN

• This corresponds to RNN with bigram ME:

• We can use n-gram features for ME

Strategies for training large scale neural network
language models (Mikolov et al, 2011)

Tomas Mikolov, COLING 2014

ME

115

Joint training of RNN with Maxent model

Joint training allows:

• To use the fast, big sparse model (direct weights between inputs and
outputs)

• The slow, dense part (hidden layer) can be much smaller

Tomas Mikolov, COLING 2014 116

Joint training of RNN with Maxent model

Q: Why not train models separately and combine their predictions?

A: If neural network is trained jointly with the maxent model, it can
learn just the complementary information.

By using the direct connections, we can reduce the hidden layer size
greatly and still achieve good performance.

Tomas Mikolov, COLING 2014 117

Wall Street Journal ASR task

• Performance in simple ASR task: 21% - 24% reduction of Word Error
Rate (WER) over good baseline

GT2 = Good-Turing smoothed 2-gram, KN5 = Kneser-Ney smoothed 5-gram

Tomas Mikolov, COLING 2014 118

IBM RT04 speech recognition system

• Strong ASR system from IBM, “model M“ was the previous state-of-art LM

• Bigger models = better results, RNNME works the best

Tomas Mikolov, COLING 2014 119

Analysis of results: RNN vs RNNME

The more training data there is, the more useful it is to train the model
jointly with ME features (same computational cost)

Tomas Mikolov, COLING 2014 120

Analysis of results: RNN vs RNNME

The same conclusion holds even for larger models: gains vanish with more data if
the model does not have capacity to store patterns

Tomas Mikolov, COLING 2014 121

Multi-threaded training of RNNME

• Another speedup ~10x, scales training to billions of words

One Billion Word Benchmark for Measuring Progress in

Statistical Language Modeling (Chelba et al, 2014)

Tomas Mikolov, COLING 2014 122

Summary: NN, RNN, RNNME

• RNN outperforms FNN on language modeling tasks, both are better
than n-grams

• The question “are neural nets better than n-grams” is incomplete: the
best solution is to use both

• Joint training of RNN and maxent with n-gram features works great on
large datasets

Tomas Mikolov, COLING 2014 123

Recurrent neural network with additional
features

• We can use extra features (POS, external
information, long context information, …)
represented as additional inputs

Context dependent recurrent neural network
language model (Mikolov & Zweig, 2012)

Tomas Mikolov, COLING 2014 124

Recurrent neural network with slow features

• We can define the extra features f(t) as exponentially decaying sum of word
vectors w(t):

𝑓 𝑡 = 𝑓 𝑡 − 1 𝛾 + 𝑤(𝑡)(1 − 𝛾)

• This will give the model longer term memory

• Performance in language modeling similar to Long Short-Term Memory (LSTM)
RNN – about 10% reduction of perplexity over simple RNN

LSTM-based LM: LSTM Neural Networks for Language Modeling (Sundermeyer et
al, 2012)

Tomas Mikolov, COLING 2014 125

Recurrent neural network with slow features

• 2 hidden layers

• One normal

• The other constrained
(diagonal)

• The values in diagonal can
be fixed (close to 1)

• Learns longer term patterns

Tomas Mikolov, COLING 2014

INPUT OUTPUT

RECURRENT

RECURRENT
(DIAGONAL)

126

Application to machine translation

• Straightforward: N-best list rescoring with NNLMs

• Search space in MT is huge, integration into decoding is a better idea

Decoding with Large-Scale Neural Language Models Improves
Translation (Vaswani et al, 2013)

Tomas Mikolov, COLING 2014 127

Application to machine translation

• Instead of conditioning prediction of word just on the previous words
within target sentence, we can use also the source sentence words

• We can use whole source sentence representation as additional input
features

Modeling both translation and language model probability with
NNLMs: Joint Language and Translation Modeling with Recurrent
Neural Networks (Auli et al, 2013)

Tomas Mikolov, COLING 2014 128

Application to machine translation

• Decoding with Joint NN models (probably the biggest improvement in MT recently)

• Additional inputs represent words in the source sentence around position that is
currently decoded

Fast and Robust Neural Network Joint Models for Statistical Machine Translation (Devlin et
al, 2014)

Tomas Mikolov, COLING 2014 129

Summary: Neural net Language Models

• NNLMs are currently the state-of-the-art in language modeling

• Considerable improvements in ASR, MT

• Significant ongoing efforts to scale training to very large datasets

Tomas Mikolov, COLING 2014 130

Summary: Neural net Language Models

• Much of the recent success is based on basic principles: big data, big
models, algorithmical efficiency, neural nets from the 80’s

• Neural network models incrementally extend existing paradigms

• So far there is no big success story of deep learning in NLP: maybe we
will have to do something novel to make it work?

Tomas Mikolov, COLING 2014 131

Future research

• Current research culture

• How to avoid common mistakes

• Hints how to recognize good papers and ideas

• Promising future directions

Tomas Mikolov, COLING 2014 132

Current research culture

• Thousands of NLP papers written each year, publish-or-perish

• Focus on incremental improvements

• The goal for NLP should be to develop machines that understand
language: what do we need to change to make the progress faster?

Tomas Mikolov, COLING 2014 133

Common problems in current research

Too much focus on state-of-the-art results:

• Not every idea can yield the best results immediately

• Leads to fragmentation of datasets

• Leads to “new names for the old tricks”

• Leads to untrustworthy claims in papers

Solution: start to accept papers with interesting ideas, do not consider
high complexity as an advantage, but serious disadvantage

Tomas Mikolov, COLING 2014 134

Common problems in current research

• Make the research more open

• It should be required for papers that claim to be state-of-the-art
to publish script + code that can reproduce results

Tomas Mikolov, COLING 2014 135

How to recognize good papers and ideas

• Reproducible results on standard datasets

• Published code (that actually compiles and works)

• Low complexity of ideas (if it can’t be explained simply, probably it
can be done better)

• However, it is hard to predict what ideas are going to lead to
breakthroughs…

Tomas Mikolov, COLING 2014 136

Promising future directions

• We should pick challenging problems that are really important
by themselves

Examples:

• Language understanding by machines

• What computational models can compactly represent human
languages

• Learning language from increasingly complex examples,
and through communication

Tomas Mikolov, COLING 2014 137

Future of AI research

Language understanding:

• Should aim to allow machines do what people can do

• Learn language through communication: intelligence is not about
knowing answers to everything, but about ability to learn new
concepts quickly

We need to revisit basic concepts in machine learning / NLP. Instead of
doing just big data statistics, we need to develop new paradigms.

Tomas Mikolov, COLING 2014 138

Resources

• Open-source neural-net based NLP software: RNNLM toolkit,
word2vec and other tools

• Links to large text corpora, pre-trained models

• Benchmark datasets for advancing the state of the art

Tomas Mikolov, COLING 2014 139

RNNLM toolkit

• Available at rnnlm.org

• Allows training of RNN and RNNME models

• Extensions are actively developed, for example multi-threaded
version with hierarchical softmax:
http://svn.code.sf.net/p/kaldi/code/trunk/tools/rnnlm-hs-0.1b/

Tomas Mikolov, COLING 2014 140

http://www.rnnlm.org/
http://svn.code.sf.net/p/kaldi/code/trunk/tools/rnnlm-hs-0.1b/

Word2vec

• Available at https://code.google.com/p/word2vec/

• Tool for training the word vectors using CBOW and skip-gram
architectures, supports both negative sampling and hierarchical
softmax

• Optimized for very large datasets (>billions of training words)

• Includes links to models pre-trained on large datasets (100B words)

Tomas Mikolov, COLING 2014 141

https://code.google.com/p/word2vec/

CSLM: Feedforward NNLM code

• Continuous Space Language Model toolkit:
http://www-lium.univ-lemans.fr/cslm/

• Implementation of feedforward neural network language model by
Holger Schwenk

Tomas Mikolov, COLING 2014 142

http://www-lium.univ-lemans.fr/cslm/

Other neural net SW

• List available at http://deeplearning.net/software_links/

• Mostly focuses on general machine learning tools, not necessarily NLP

Tomas Mikolov, COLING 2014 143

http://deeplearning.net/software_links/

Large text corpora

Short list available at the word2vec project:
https://code.google.com/p/word2vec/#Where_to_obtain_the_training
_data

• Sources: Wikipedia dump, statmt.org, UMBC webbase corpus

• Altogether around 8 billion words can be downloaded for free

Tomas Mikolov, COLING 2014 144

https://code.google.com/p/word2vec/#Where_to_obtain_the_training_data
http://www.aaa.com/

Benchmark datasets (LMs, word vectors)

• The Penn Treebank setup including the usual text normalization is part of
the example archive at rnnlm.org

• WSJ setup (simple ASR experiments, includes N-best lists):
http://www.fit.vutbr.cz/~imikolov/rnnlm/kaldi-wsj.tgz

• Datasets for measuring word / phrase similarity available at:

1. http://research.microsoft.com/en-
us/um/people/gzweig/Pubs/myz_naacl13_test_set.tgz

2. https://code.google.com/p/word2vec/source/browse/trunk/questions-
words.txt

3. https://code.google.com/p/word2vec/source/browse/trunk/questions-
phrases.txt

Tomas Mikolov, COLING 2014 145

http://www.rnnlm.org/
http://www.fit.vutbr.cz/~imikolov/rnnlm/kaldi-wsj.tgz
http://research.microsoft.com/en-us/um/people/gzweig/Pubs/myz_naacl13_test_set.tgz
https://code.google.com/p/word2vec/source/browse/trunk/questions-words.txt
https://code.google.com/p/word2vec/source/browse/trunk/questions-phrases.txt

Final summary

• Distributed word representations >= word classes

• Neural nets >= logistic regression

• Neural networks are useful statistical tool, but not the final solution
to AI by themselves

• Deep learning is an interesting research direction, but we need more
research to understand how to learn complex patterns in language

Tomas Mikolov, COLING 2014 146

