Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data

John Lafferty
Andrew McCallum
Fernando Pereira
Goal: Sequence segmentation and labeling

- Computational biology
- Computational linguistics
- Computer science
Overview

- Generative models
- Conditional models
- Label bias problem
- Conditional random fields
- Experiments
Generative Models

- HMMs and stochastic grammars
- Assign a joint probability to paired observation and label sequences
- Parameters are trained to maximize joint likelihood of training examples

Standard tool is the hidden Markov Model (HMM).

\[
P(X, Y) = \prod_i P(X_i | Y_i) P(Y_i | Y_{i-1})
\]
Generative Models

- Need to enumerate all possible observation sequences
- To ensure tractability of inference problem, must make strong independence assumptions (i.e., conditional independence given labels)
Conditional models

- Specify probabilities of label sequences given an observation sequence
- Does not expend modeling effort on the observations which are fixed at test time
- Conditional probability can depend on arbitrary, non-independent features of the observation sequence
Example: MEMMs

- Maximum entropy Markov models
- Each source state has an exponential model that takes the observation feature as input and outputs a distribution over possible next states
- Weakness: Label bias problem
Label Bias Problem

- Per-state normalization of transition scores implies "conservation of score mass"
- Bias towards states with fewer outgoing transitions
- State with single outgoing transition effectively ignores observation
Solving Label Bias

- Collapse states, and delay branching until get a discriminating observation
 - Not always possible or may lead to combinatorial explosion
Solving Label Bias (cont’d)

- Start with fully-connected model and let training procedure figure out a good structure
 - Precludes use of prior structure knowledge
Overview

- Generative models
- Conditional models
- Label bias problem
- Conditional random fields
- Experiments
Conditional Random Fields

- Undirected graph (random field)
- Construct conditional model $p(Y|X)$
- Does not explicitly model marginal $p(X)$
- Assumption: graph is fixed
 - Paper concerns itself with chain graphs and sequences
CRFs: Distribution

\[p_\theta(y \mid x) \propto \exp \left(\sum_{e \in E, k} \lambda_k f_k(e, y \mid e, x) + \sum_{v \in V, k} \mu_k g_k(v, y \mid v, x) \right) \]
CRFs: Example Features

\[
f_{y', y}(<u, v>, y|<u, v>, x) = \delta(y_u, y') \delta(y_v, y)
\]

\[
g_{y, x}(v, y|v, x) = \delta(y_v, y) \delta(x_v, x)
\]

- Corresponding parameters \(\lambda \) and \(\mu \) similar to the (logarithms of the) HMM parameters \(p(y'|y) \) and \(p(x|y) \)
CRFs: Parameter Estimation

- Maximize log-likelihood objective function

\[O(\theta) = \sum_{i=1}^{N} \log p_{\theta}(y^{(i)} | x^{(i)}) \]

- Paper uses iterative scaling to find optimal parameter vector
Overview

- Generative models
- Conditional models
- Label bias problem
- Conditional random fields
- Experiments
Experiment 1: Modeling Label Bias

- Generate data from simple HMM that encodes noisy version of network
- Each state emits designated symbol with prob. 29/32
- 2,000 training and 500 test samples
- MEMM error: 42%; CRF error: 4.6%
Experiment 2: More synthetic data

- Five labels: a – e
- 26 observation values: A – Z
- Generate data from a mixed-order HMM
- Randomly generate model
- For each model, generate sample of 1,000 sequences of length 25
MEMM vs. HMM

![Graph showing the comparison between MEMM and HMM errors]

- The x-axis represents HMM Error.
- The y-axis represents MEMM Error.
- The scatter plot shows a trend line indicating a strong positive correlation between the errors of the two models.

This graph visually demonstrates the similarity in performance between MEMM and HMM.
CRF vs. HMM
Experiment 3: Part-of-speech Tagging

- Each word to be labeled with one of 45 syntactic tags.
- 50%-50% train-test split
- out-of-vocabulary (oov) words: not observed in the training set

<table>
<thead>
<tr>
<th>model</th>
<th>error</th>
<th>oov error</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM</td>
<td>5.69%</td>
<td>45.99%</td>
</tr>
<tr>
<td>MEMM</td>
<td>6.37%</td>
<td>54.61%</td>
</tr>
<tr>
<td>CRF</td>
<td>5.55%</td>
<td>48.05%</td>
</tr>
<tr>
<td>MEMM⁺</td>
<td>4.81%</td>
<td>26.99%</td>
</tr>
<tr>
<td>CRF⁺</td>
<td>4.27%</td>
<td>23.76%</td>
</tr>
</tbody>
</table>

⁺Using spelling features
Part-of-speech Tagging

- Second set of experiments: add small set of orthographic features (whether word is capitalized, whether word ends in -ing, -ogy, -ed, -s, -ly ...)
- Overall error rate reduced by 25% and oov error reduced by around 50%

<table>
<thead>
<tr>
<th>model</th>
<th>error</th>
<th>oov error</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM</td>
<td>5.69%</td>
<td>45.99%</td>
</tr>
<tr>
<td>MEMM</td>
<td>6.37%</td>
<td>54.61%</td>
</tr>
<tr>
<td>CRF</td>
<td>5.55%</td>
<td>48.05%</td>
</tr>
<tr>
<td>MEMM+</td>
<td>4.81%</td>
<td>26.99%</td>
</tr>
<tr>
<td>CRF+</td>
<td>4.27%</td>
<td>23.76%</td>
</tr>
</tbody>
</table>

+ Using spelling features
Part-of-speech Tagging

- Usually start training with zero parameter vector (corresponds to uniform distribution)
- Use optimal MEMM parameter vector as starting point for training corresponding CRF
- MEMM$^+$ trained to convergence in around 100 iterations; CRF$^+$ took additional 1,000 iterations
- When starting from uniform distribution, CRF$^+$ had not converged after 2,000 iterations
Further Aspects of CRFs

- Automatic feature selection
 - Start from feature-generating rules and evaluate the benefit of the generated features automatically on data
Conclusions

- CRFs do not suffer from the label bias problem!
- Parameter estimation guaranteed to find the global optimum
- Limitation: Slow convergence of the training algorithm