Word Embeddings

Vector
Semantics &
Embeddings

Adapted by Diana Inkpen, 2021 for csi5386 at
the University of Ottawa

From Chapter 6 of Speech and Language

Processing (3rd ed.), by Dan Jurafsky and James
H. Martin.

What do words mean?

Introductory logic classes:
> The meaning of "dog" is DOG; cat is CAT
Vx DOG(x) — MAMMAL(x)

Word senses: look in a dictionary
http://www.oed.com/

Words, Lemmas, Senses, Definitions

Pronu T . /'pepa/,U.S. /'pepar/
Forms: OE peopor (rare), OE pipcer (transmission erzer); OE pipor, QFpiglur (rare
Frequency (in current use):
Etymology: A borrowing from Latin B#¥mon: Latin piper.
< classical Latin piper, a loanwe#@ < Indo-Aryan (as is ancienjreek s#rept); compare Sai

I. The spiceerthe plant.

1.
hot pungent spice derived fro e prepapéd fruits (peppercorns) of
the pepper plant, Piper nigrum (g€e sense 2p/, used from early times to
season food, either whole or gfound to pogfder (often in association with
salt). Also (locally, chiefly#ith distingy#hing word): a similar spice
derived from the fruitg’0f certain othér species of the genus Piper; the
fruits themselves.

The ground spig#from Piper nigrum copfies in two forms, the more pungent black pepper, produced
from black p#Ppercorns, and the milgér white pepper, produced from white peppercorns: see BLACK
adj. andf Special uses 5a, PEPPERGARN n. 1a, and wHITE adj. and n.” Special uses 7b(a).

he plant Piper nigrum (family Piperaceae), a climbing shrub
indigenous to Sou}f Asia and also cultivated elsewhere in the tropics,

which has alterpéte stalked entire leaves, with pendulous spikes of small
green flowerg/pposite the leaves, succeeded by small berries turning red
when ripe Also more widely: any plant of the genus Piper or the family
Piperacgfe.

su. with distinguishing word: any of numerous plants of other
amilies having hot pungent fruits or leaves which resemble pepper (1a)
in taste and in some cases are used as a substitute for it.

emma sense definition

a U.S. The California pepper tree, Schinus molle. Cf. PEPPER TREE n. 3.

AA ny of various forms of capsicum, esp. Capsicum annuum var.
annuum. Originally (chiefly with distinguishing word): any variety of the
C. annuum Longum group, with elongated fruits having a hot, pungent
taste, the source of cayenne, chilli powder, paprika, etc., or of the
perennial C. frutescens, the source of Tabasco sauce. Now frequently
(more fully sweet pepper): any variety of the C. annuum Grossum
group, with large, bell-shaped or apple-shaped, mild-flavoured fruits,
usually ripening to red, orange, or yellow and eaten raw in salads or
cooked as a vegetable. Also: the fruit of any of these capsicums.

Sweet peppers are often used in their green immature state (more fully green pepper), but some
new varieties remain green when ripe.

Lemma pepper

Sense 1: spice from pepper plant

Sense 2: the pepper plant itself

Sense 3: another similar plant (Jamaican pepper)

Sense 4: another plant with peppercorns (California pepper)

Sense 5: capsicum (i.e. chili, paprika, bell pepper, etc)

A sense or “concept” is the meaning component of a word

Relations between senses: Synonymy

Synonyms have the same meaning in some or all
contexts.

o filbert / hazelnut

> couch / sofa

> big / large

o automobile / car

> vomit / throw up

> water / H,0

Relation: Synonymy

Note that there are probably no examples of perfect
synonymy.
> Even if many aspects of meaning are identical

o Still may not preserve the acceptability based on notions
of politeness, slang, register, genre, etc.

Relation: Synonymy?

water/H,0
big/large
brave/courageous

The Linguistic Principle of Contrast

Difference in form = difference in meaning

Abbé Gabriel Girard 1718

Re: "exact" synonyms

"J¢ ne crois pas qu'il y aitde-

mor fyuonimc dans aucune
11
Langue.

[l do not believe that there

IS @ synonymous word in any
language]

LA JUSTESSE -

DELA - -

' LANGUE FRANGOISE,

o

LES DIFFERENTES SIGNIFICATIONS
DESMOTS QUIPASSENT
'.'poy.n :' |

SYNONIMES" .

g, OO,

Par M.I'"AbL¢ GIRARD C.D. M, D. D, B,
p s A i.5,/,/,\.

fx - =1 .

; .‘_)'.}-.\., :‘;. '

A PARIS,

Chez LAURENT D'HouRry, Imprimeyr.

L braire, au bas delaruede la Harpe | vis.
a vislarue 8. Severin, au Saint E(}'wi;; 3

-

M DCC. XVIIlL
Avee Appribation & rivilegs dis Roy,

Relation: Similarity

Words with similar meanings. Not synonyms, but sharing
some element of meaning.

car, bicycle

cow, horse

Ask humans how similar 2 words are

wordi Jwordz simiariy

vanish disappear 0.8
behave obey 7.3
belief Impression 5.95
muscle bone 3.65
modest flexible 0.98

hole agreement 0.3

SimLex-999 dataset (Hill et al., 2015)

Evaluation measures

Pearson correlation between set of scores produced by the
system and the expected values produced by the human

judges. o 2 (= %) (v —)
VI (@ — 2?3 (% — 7)°

comelation coefficient

values of the z-warable im a sample
mean of the values of the x-variable

values of the y-wvanable in a sample

= e R
I | | |

mean of the values of the y-variable

Spearman correlation compares the ranks not the values.

Range of values [-1,1]. Close to zero means no correlation.

Relation: Word relatedness

Also called "word association"”

Words can be related in any way, perhaps via a semantic
frame or field

° car, bicycle: similar
° car, gasoline: related, not similar

Semantic field

Words that
o cover a particular semantic domain

o pear structured relations with each other.

hospitals

surgeon, scalpel, nurse, anaesthetic, hospital
restaurants

waiter, menu, plate, food, menu, chef
houses

door, roof, kitchen, family, bed

Relation: Antonymy

Senses that are opposites with respect to only one
feature of meaning

Otherwise, they are very similar!

dark/light short/long fast/slow rise/fall
hot/cold up/down in/out

More formally: antonyms can

> define a binary opposition or be at opposite ends of a scale
° long/short, fast/slow

o Be reversives:
o rise/fall, up/down

Relation: Superordinate/ subordinate

One sense is a subordinate of another if the first sense
IS more specific, denoting a subclass of the other

o caris a subordinate of vehicle

° mango is a subordinate of fruit

Conversely superordinate
> vehicle is a superordinate of car
° fruit is a subodinate of mango

Superordinate |vehicle fruit |furniture
Subordinate car mango |chair

So far

Concepts or word senses

> Have a complex many-to-many association with words (homonymy,
multiple senses)

Have relations with each other

o Synonymy

> Antonymy

o Similarity

> Relatedness

> Superordinate/subordinate, basic level
Connotation

0]

Distributional Semantics
Let's define words by their usages

One way to define "usage":

words are defined by their environments (the words around them)

Zellig Harris (1954):

If A and B have almost identical environments we say that they
are synonyms.

What does recent English borrowing ongchoi mean?

Suppose you see these sentences:
* Ong choi is delicious sautéed with garlic.
* Ong choi is superb over rice

* Ong choi leaves with salty sauces

And you've also seen these:
* ...spinach sautéed with garlic over rice
* Chard stems and leaves are delicious

* Collard greens and other salty leafy greens

Conclusion:
> Ongchoi is a leafy green like spinach, chard, or collard greens

Ongchoi: Inomoea aquatlca ”Water Spinach”

P T T A e

EES
kangkong

rau mudng

Yamaguchi, Wikimedia Commons, public domain

A new model of meaning focusing on
distributional similarity

Each word = a vector
> Not just "word" or word45.

Similar words are "nearby in space”

not good
bad
to by S dislike worst
that incredibly bad
C are worse
a | you
than \ith

IS

very good incredibly good

amazing fantastic
terrific nice

good

wonderful

We define a word as a vector

Called an "embedding" because it's embedded into a
space

The standard way to represent meaning in NLP

Every modern NLP algorithm uses embeddings as
the representation of word meaning

Fine-grained model of meaning for similarity

Intuition: why vectors?

Consider sentiment analysis:

> With words, a feature is a word identity
o Feature 5: 'The previous word was "terrible™
° requires exact same word to be in training and test

> With embeddings:
o Feature is a word vector
> 'The previous word was vector [35,22,17...]
> Now in the test set we might see a similar vector [34,21,14]
> We can generalize to similar but unseen words!!!

We'll discuss 2 kinds of embeddings

tf-idf
o Information Retrieval workhorse!
> A common baseline model

o Sparse vectors
> Words are represented by (a simple function of) the counts of
nearby words

Word2vec

o Dense vectors

o Representation is created by training a classifier to predict
whether a word is likely to appear nearby

> In later chapters we'll discuss extensions called contextual
embeddings

Word vectors: Term-document matrix

Each document is represented by a vector of words

As You Like It

Twelfth Night

battle

good
fool
wit

1

14
36

0

Julius Caesar

Henry V

7
62

1

2

3
39
4
3

Visualizing document vectors

40
Henry V [4,13]
O 15 7
B
g 10 71/ Julius Caesar /1,7]
> 7] As You Like It /36,1] Twelfth Night /58,0]

—

I I I I I I I | | | I
5 10 15 20 25 30 35 40 45 50 55 60

fool

Vectors are the basis of information retrieval

As You Like It Twelfth Night Julius Caesar Henry V

3

battle 1 0 1
good 14 80
fool 36 58
wit 0 15

89
4
Vectors are similar for the two comedies

Different than the history

Comedies have more fools and wit and fewer battles.

|[dea for word meaning: Words can be vectors too!!!

As You Like It Twelfth Night Julius Caesar Henry V

battle

good
fool
wit

battle is "the kind of word that occurs in Julius Caesar and Henry V"

fool is "the kind of word that occurs in comedies, especially Twelfth Night"

More common: word-word matrix
(or "term-context matrix")

Two words are similar in meaning if their context vectors are similar

1s traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie
computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet

aardvark ... computer data result pie sugar
cherry 0 2 8 9 442 25
strawberry 0 0 1 60 19

0
digital 0 1670 1683 85 5 4
information 0 3325 3982 378 5 13

4000
E information
S 3000~ [3982,3325]
3. digital
S 2000-{/1683,1670]
O
© 1000—

| | | |
1000 2000 3000 4000

dala

Dot product and cosine

The dot product between two vectors is a scalar:

N

dot product(v,w) =v-w = Zviwi —Viw] +Vvows + ...+ VyWN
i=1

The dot product tends to be high when the two
vectors have large values in the same dimensions

Dot product can be a similarity metric between
vectors

Problem with raw dot-product

Dot product favors long vectors

Dot product is higher if a vector is longer (has higher
values in many dimension)

Vector length: N

V| = \ szz

i=1

Frequent words (of, the, you) have long vectors (since
they occur many times with other words).

So dot product overly favors frequent words

Alternative: cosine for computing word similarity

cosine(V,w) = =

The same as using normalized vectors.

Cosine as a similarity metric

0: vectors are orthogonal

-1: vectors point in opposite directions \ /
+1: vectors point in same directions \/ s

But since raw frequency values are non-negative, the
cosine for term-term matrix vectors ranges from 0-1

Cosine examples

o & m —mmm
cos(v, w) = =1L cherry 442 8
\VHW\ M \W\ \/°N 2J°N 2 .

Wi igital 5 1683 1670

information 5 3982 3325

cos(cherry,information) =
442 « 5+ 8 * 3982 + 2 * 3325 _ 017
V4422 + 82 4 224/52 439822 + 33252

cos(digital,information)

5x54+1683%x3982+1670%3325
V52 + 16832 + 167021/52 + 39822 + 33252

996

Visualizing cosines
(well, angles)

500 —

cherry
& digital
— =

iInformation

| |
500 1000

Dimension 1: ‘pie’

|
1500

2000 2500

Dimension 2: ‘computer’

3000

But raw frequency is a bad representation

* Frequency is clearly useful; if sugar appears a lot near
apricot, that's useful information.

* But overly frequent words like the, it, or they are not very
informative about the context

* Need a function that resolves this frequency paradox!

Two common solutions for word weighting

tf-idf: tf-idf value for word t in document d:

Wtd — tfl‘,d X 1dft

Words like "the" or "good" have very low idf

PMI: (Pointwise mutual information)
p(wl’WZ)
p(w1)p(wz)

© PM'(Wl,Wz) — log

See if words like "good" appear more often with "great" than
we would expect by chance

Term frequency (tf)

tf, 4= count(t,d)
Instead of using raw count, we squash a bit:

tf, 4= logyz(count(t,d)+1)

Document frequency (df)

df, is the number of documents t occurs in.

(note this is not collection frequency: total count across
all documents)

"Romeo" is very distinctive for one Shakespeare play:

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

Important: documents can be anything; we can call
each paragraph a document

Inverse document frequency (idf)

Word df idf

Romeo 1 1.57

N salad 2 1.27
dt; = log (—) Falstaff 4 0.967
dft forest 12 0.489
battle 21 0.246
N is the total number of documents wit ol
in the collection fool 36 0.012
good 37 0

sweet 37 0

Final tf-idf weighted value for a word

Wl‘,d — tfl‘,d X ldft

Raw counts:
As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 3
Tf=idf:
As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Sparse versus dense vectors

tf-idf vectors are
> long (length |V|= 20,000 to 50,000)
o sparse (most elements are zero)

Alternative: learn vectors which are
> short (length 50-1000)

> dense (most elements are non-zero)

Sparse versus dense vectors

Why dense vectors?

> Short vectors may be easier to use as features in machine
learning (fewer weights to tune)

> Dense vectors may generalize better than explicit counts
> They may do better at capturing synonymy:

o car and automobile are synonyms; but are distinct dimensions

o a word with car as a neighbor and a word with automobile as a
neighbor should be similar, but aren't

> |n practice, they work better

Common methods for getting short dense vectors

|H .

“Neural Language Model”-inspired models
> Word2vec (skipgram, CBOW), GloVe

Singular Value Decomposition (SVD)

o A special case of this is called LSA — Latent Semantic
Analysis

Alternative to these "static embeddings":
 Contextual Embeddings (ELMo, BERT)
* Compute distinct embeddings for a word in its context
e Separate embeddings for parts of words (FastText)

Embeddings you can download!

Word2vec (Mikolov et al)
https://code.google.com/archive/p/word2vec/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

A lot more

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/

Word2vec

Popular embedding method
Very fast to train

Code available on the web
ldea: predict rather than count

Word2vec

Instead of counting how often each word w occurs near "apricot”

> Train a classifier on a binary prediction task:
> |s w likely to show up near "apricot™?

We don’t actually care about this task
o But we'll take the learned classifier weights as the word embeddings

Big idea: self-supervision:
o A word c that occurs near apricot in the corpus asks as the gold "correct
answer" for supervised learning
> No need for human labels
> Bengio et al. (2003); Collobert et al. (2011)

Word2Vec: Skip-grams vs. CBOW ' (Mikoloy, 2014 Tutorial)

Input projection output Input project utput

w(t-2) w(t-2)

. SUM

w(t-1) w(t-1) \ |

| / B — | wo

w(t) L'—~ / .
w(t+1) w(t+1)
w(t+2)

w(t+2)

Skip-grams CBOW

Word2Vec: Skip-Grams

Word2vec provides a variety of options.
We'll do:

skip-grams with negative sampling (SGNS)

Approach: predict if candidate word cis a "neighbor”

1. Treat the target word t and a neighboring context word ¢
as positive examples.

2. Randomly sample other words in the lexicon to get
negative examples

3. Use logistic regression to train a classifier to distinguish
those two cases

4. Use the learned weights as the embeddings

Skip-Gram Training Data

Assume a +/- 2 word window, given training sentence:

...lemon, a [tablespoon of apricot jam, a] pinch...
cl c2 [target] c3 c4

Skip-Gram Classifier

(assuming a +/- 2 word window)

..lemon, a [tablespoon of apricot jam, a] pinch...
cl c2 [target] c3 c4

Goal: train a classifier that is given a candidate (word, context) pair
(apricot, tablespoon)
(apricot, aardvark)

And assigns each pair a probability:
P(+|w, c)

Similarity is computed from dot product

Remember: two vectors are similar if they have a high
dot product
> Cosine is just a normalized dot product

So:
o Similarity(w,c) o w - C

We'll need to normalize to get a probability
> (cosine isn't a probability either)

Turning dot products into probabilities

SIm(w,c) =w - ¢
To turn this into a probability

We'll use the sigmoid from logistic regression:
1

14+exp(—c-w)

P(+|w,c) = o(c-w)=

P(=lw,c) = 1—=P(+[w,c)

1
1 +exp(c-w)

o(—c-w)=

How Skip-Gram Classifier computes P(+|w, c)

1

P(+|w,c) = o(c-w)= I fexp(—c-w)

This is for one context word, but we have lots of context words.
We'll assume independence and just multiply them:

P(+|w,c1.1) = H o(ci-w)
i=1

L
log P(+|w,c1.1) = Z logo(c;-w)
i=1

Skip-gram classifier: summary

A probabilistic classifier that,
given a test target word w
its context window of L words ¢,
assigns a probability that w occurs in this window.

To compute this, we just need embeddings for all
the words.

These embeddings we'll need: a set for w, a set for ¢

1.d
aardvark [eee 1 \\

apricot [eee

- W target words

H _ zebra [ee9 |V| J

aardvark [eee] |V/| +1\\

apricot [eee

-~ C context & noise
words

zebra |[@ee] 2V)

Skip-Gram Training data

...lemon, a [tablespoon of apricot jam, a] pinch...
cl c2 [target] c3 c4

positive examples +
t C

apricot tablespoon
apricot of

apricot jam
apricot a

Skip-Gram Training data

..lemon, a [tablespoon of apricot jam, a] pinch...
cl c2 [target] c3 c4

positive examples +

t C For each positive
apricot tablespoon example we'll grab k
apricot of negative examples,
apricot jam sampling by frequency

apricot a

Skip-Gram Training data

...lemon, a [tablespoon of apricot jam, a] pinch...

cl c2 [target] c3 c4
positive examples + negative examp]es -
L ¢ t C t C
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where apricot dear
apricot a apricot coaxial apricot if

Word2vec: how to learn vectors

Given the set of positive and negative training instances,
and an initial set of embedding vectors

The goal of learning is to adjust those word vectors such
that we:

> Maximize the similarity of the target word, context word pairs
(W, ¢ o) drawn from the positive data

> Minimize the similarity of the (w, c
negative data.

reg) PAIrs drawn from the

Loss function for one w with ¢ C

pos’ ~negl ...C

negk

Maximize the dot product of the word with the actual context words,
and minimize the dot products of the word with the k negative
sampled non-neighbor words.

k
Lcg = —log P(+|w,cp0S)HP(|w,cnegi)}
i=1

- k
= — 10gP(—|—|w,Cpos)+ZlogP(_chnegi)}
i i=1

- — lOgP |W Cpos Zlog 1 — ’W Cheg;)):|

k
= — logG(cpos-w)—I—ZlogG(—cnegi-W)}
) i=1

Learning the classifier

How to learn?
> Stochastic gradient descent!

We'll adjust the word weights to
> make the positive pairs more likely
> and the negative pairs less likely,

o over the entire training set.

Intuition of one step of gradient descent

W <

C -

[aardvark [eee)
apricot (eeew|™ — —

k zebra [ee9®

(aardvark [eee
/

jam (eee Cpos |‘

Tolstoy [eee® Cneg2 -

K zebra |@ee

move apricot and jam closer,

~. increasing C,s * W
\
|
. . | ‘“ . . 5y
. ...apricot jam...
.
\‘ /
/| .
/ ', move apricot and matrix apart

: . decreasing c

. ’

negi "W

]
.’
.-
[
[

. - “move apricot and Tolstoy apart

decreasing C, ., * W

The derivatives of the loss function

Lcg

dLcE

JCpos
dLcE

dLcE

dw

k
log o (cpos - W) + Z log o (—Cpeg. - W)

i=1

[0 (Cpos-w) — 1w

Update equation in SGD

Start with randomly initiatized C and W matrices, then incrementally do updates

R ST
| _
CizjeLg — Cffzeg — 1 -G(Cileg 'W)]W
k
WH—l — - n [G(CpOS : wt) — 1]Cp0s + Z[G(Cnegi 'Wt)]cnegi

=1

Two sets of embeddings

SGNS learns two sets of embeddings
Target embeddings matrix W
Context embedding matrix C

It's common to just add them together,
representing word i as the vector w; + C

Summary: How to learn word2vec (skip-gram)
embeddings

Start with V random d-dimensional vectors as initial
embeddings

Train a classifier based on embedding similarity

°Take a corpus and take pairs of words that co-occur as positive
examples

cTake pairs of words that don't co-occur as negative examples

°Train the classifier to distinguish these by slowly adjusting all
the embeddings to improve the classifier performance

°Throw away the classifier code and keep the embeddings.

Properties of Embeddings

Large windows (C= +/- 5) : nearest words are related
words in same semantic field
°Hogwarts nearest neighbors are Harry Potter world:

cDumbledore, Half-blood, Malfoy

Small windows (C= +/- 2) : nearest words are similar nouns,
words in same taxonomy
°Hogwarts nearest neighbors are other fictional schools

°Sunnydale, Evernight, Blandings

Word2vec: CBOW

* The ‘continuous bag-of-words model’ (CBOW)
adds inputs from words within short window to
predict the current word.

* The weights for different positions are shared.
* The hidden layer is linear.
(Mikolov, 2014 Tutorial)

Skip-grams vs. CBOW (Mmikoloy, 2014 Tutorial)

Input projection

w(t)

Skip-grams

o

\

output

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Input projection output
w(t-2)
SUM
w(t-1) -

—_— w(t)

w(t+1)

~\/

w(t+2)

CBOW

Skip-gram: work well with a

small amount of the training data,
represent well even rare words

or phrases.

CBOW: faster to train, slightly better
accuracy for the frequent words.

FastText Embeddings

* FastText is another word embedding method
that is an extension of the word2vec model.

* |nstead of learning vectors for words directly,

fastText represents each word as an n-gram of
characters.

* This helps capture the meaning of shorter words
and allows the embeddings to understand
suffixes and prefixes.

GloVe Embedding's (Pennington et al. 2014)

Count-based method not neural network.
Very large corpus.

Log-bilinear model with a weighted least-squares
objective.

Focus on encoding vector differences.

Analogy relations

The classic parallelogram model of analogical reasoning
(Rumelhart and Abrahamson 1973)

To solve: "apple is to tree as grape is to

)

Add apple — tree to grape to get vinf
ree

O
apple //1

/

Evaluation measure:
Accuracy over the set

f 3 |
‘ . of analo uestions.

grape

Analogy relations via parallelogram

The parallelogram method can solve analogies with both

sparse and dense embeddings (Turney and Littman 2005,
Mikolov et al. 2013b)

king — man + woman is close to queen

Paris — France + Italy is close to Rome

For a problem a:a*::b:b*, the parallelogram method is:

b* = argmax distance(x,a* —a+b)
X

| I | | | | | |
Structure in GloVE Embedding space
0.5 r heiress |
[
0.4+ I’ "
; niece I * countess
0.3+ *aunt I /' duchess
I%,ister’I I .
/
0.2} I‘ I I’ / // - empress
I / /
L G "+ madam ;1 A
I | i / / b
| elr / /
oL | inepiew , 7 | -
' ' » woman / t St
i | / / learl .
-0.1 , buncle ; ; . que%ar{'/
! brother ’ / ’ /{duke
-0.2F ; / - -
| / | //
/ emperor
_03F / l P i
/ / !
/ / l
-0.4r / / | =
[{sir |
_05+ {man L king =
| | | | | | | | | | |

-0 04 =03 =02 =01 0 01 02 03 04 05

Caveats with the parallelogram method

It only seems to work for frequent words, small
distances and certain relations (relating countries to
capitals, or parts of speech), but not others. (Linzen
2016, Gladkova et al. 2016, Ethayarajh et al. 2019a)

Understanding analogy is an open area of research
(Peterson et al. 2020)

