

Statistical Parsing

2/23/2014 Speech and Language Processing - Jurafsky and Martin 2

 Statistical parsing

 Sources of problems

 Improvements

 Grammar rewriting

 Lexicalized grammars

2/23/2014 Speech and Language Processing - Jurafsky and Martin 3

CFG Parsing

 We left CFG parsing (CKY) with the
problem of selecting the “right” parse out
of all the possible parses...

 Now if we define “right” parse as “most
probable parse” we get our old friend

 Argmax P(Parse|Words)

2/23/2014 Speech and Language Processing - Jurafsky and Martin 4

Example

2/23/2014 Speech and Language Processing - Jurafsky and Martin 5

Probabilistic CFGs

1 The framework (Model)

 How to assign probabilities to parse trees

2 Training the model (Learning)

 How to acquire estimates for the probabilities
specified by the model

3 Parsing with probabilities (Decoding)

 Given an input sentence and a model how can
we efficiently find the best (or N best) tree(s)
for that input

2/23/2014 Speech and Language Processing - Jurafsky and Martin 6

Simple Probability Model

 A derivation (tree) consists of the
collection of grammar rules that are in the
tree

 The probability of a tree is the product of the
probabilities of the rules in the derivation.

Example

 How many “rules” are
in this derivation?

2/23/2014 Speech and Language Processing - Jurafsky and Martin 7

2/23/2014 Speech and Language Processing - Jurafsky and Martin 8

Rule Probabilities

 So... What’s the probability of a rule?

 Start at the top...
 A tree should have an S at the top. So given

that we know we need an S, we can ask
about the probability of each particular S rule
in the grammar.
 That is P(particular S rule | S is what I need)

 So in general we need

 For each rule in the grammar

2/23/2014 Speech and Language Processing - Jurafsky and Martin 9

Training the Model

 We can get the estimates we need from
an annotated database (i.e., a treebank)

 For example, to get the probability for a
particular VP rule, just count all the times the
rule is used and divide by the number of VPs
overall.

2/23/2014 Speech and Language Processing - Jurafsky and Martin 10

Parsing (Decoding)

 So to get the best (most probable) parse
for a given input

1. Enumerate all the trees for a sentence

2. Assign a probability to each using the model

3. Return the best (argmax)

2/23/2014 Speech and Language Processing - Jurafsky and Martin 11

Example

 Consider...

 Book the dinner flight

2/23/2014 Speech and Language Processing - Jurafsky and Martin 12

Examples

 These trees consist of the following rules.

2/23/2014 Speech and Language Processing - Jurafsky and Martin 13

Dynamic Programming

 Of course, as with normal parsing we
don’t really want to do it that way...

 Instead, we need to exploit dynamic
programming

 For the parsing (as with CKY)

 And for computing the probabilities and
returning the best parse (as with Viterbi and
HMMs)

2/23/2014 Speech and Language Processing - Jurafsky and Martin 14

Probabilistic CKY

 Alter CKY so that the probabilities of
constituents are stored in the table as they
are derived

 Probability of a new constituent A derived
from the rule A B C :

 P(A B C | A) * P(B) * P(C)

 Where P(B) and P(C) are already in the table given
the way that CKY operates

 What we store is the MAX probability over all the A
rules.

2/23/2014 Speech and Language Processing - Jurafsky and Martin 15

Probabilistic CKY

2/23/2014 Speech and Language Processing - Jurafsky and Martin 16

Probabilistic CFGs

1 The framework (Model)

 Product of probabilities of rules in a derivation

2 Training the model (Learning)

 MLE counts derived from a treebank

3 Parsing with probabilities (Decoding)

 CKY with max probabilities added in

HW Questions

2/23/2014 Speech and Language Processing - Jurafsky and Martin 17

2/23/2014 Speech and Language Processing - Jurafsky and Martin 18

Problems with PCFGs

 The probability model we’re using is just
based on the the bag of rules in the
derivation…

1. Does not take the actual words into account
in any useful way.

2. Does not take into account where in the
derivation a rule is used

3. Does not work terribly well
 That is, the most probable parse isn’t usually the

right one (the one in the treebank test set).

2/23/2014 Speech and Language Processing - Jurafsky and Martin 19

Common Sources of Problems

 Attachment ambiguities

 PP attachment

 Coordination problems

2/23/2014 Speech and Language Processing - Jurafsky and Martin 20

PP Attachment

2/23/2014 Speech and Language Processing - Jurafsky and Martin 21

Coordination

Most grammars have a rule (implicitly) of

the form

X -> X and X. This leads to massive

ambiguity problems.

2/23/2014 Speech and Language Processing - Jurafsky and Martin 22

Improved Approaches

 There are two approaches to overcoming
these shortcomings

1. Rewrite the grammar to better capture the
dependencies among rules

2. Integrate lexical dependencies into the model

1. And come up with the independence assumptions
needed to make it work.

2/23/2014 Speech and Language Processing - Jurafsky and Martin 23

Solution 1: Rule Rewriting

 The grammar rewriting approach attempts
to capture local tree information by
rewriting the grammar so that the rules
capture the regularities we want.

 By splitting and merging the non-terminals in
the grammar

 Example: split NPs into different classes… that
is, split the NP rules into separate rules

2/23/2014 Speech and Language Processing - Jurafsky and Martin 24

Example: NPs

 Our CFG rules for NPs don’t condition on
where in a tree the rule is applied

 But we know that not all the rules occur
with equal frequency in all contexts.

 Consider NPs that involve pronouns vs. those
that don’t.

Example: NPs

2/23/2014 Speech and Language Processing - Jurafsky and Martin 25

 So that comes down to

 NP --> Pronoun

 Gets replaced with something like

 NP_Subj --> Pronoun

 NP_Obj --> Pronoun

Separate rules, with different counts in the
treebank and therefore different probabilities

2/23/2014 Speech and Language Processing - Jurafsky and Martin 26

Rule Rewriting

 Three approaches

1. Use linguistic knowledge to directly rewrite
rules by hand

1. NP_Obj and the NP_Subj approach

2. Automatically rewrite the rules using context
to capture some of what we want

1. Ie. Incorporate context into a context-free
approach

3. Search through the space of all rewrites for
the grammar that maximizes the probability
of the training set

2/23/2014 Speech and Language Processing - Jurafsky and Martin 27

Local Context Approach

 Condition the rules based on their parent
nodes

 Splitting based on tree-context captures some
of the linguistic intuitions we saw with the NP
example

2/23/2014 Speech and Language Processing - Jurafsky and Martin 28

Parent Annotation

 Now we have non-terminals NP^S and NP^VP that
should capture the subject/object and pronoun/full NP
cases. That is…

 NP^S -> PRP

 NP^VP -> DT

 VP^S -> NP^VP

2/23/2014 Speech and Language Processing - Jurafsky and Martin 29

Auto Rewriting

 If this is such a good idea we may as well
apply a learning approach to it.

 Start with a grammar (perhaps a treebank
grammar)

 Search through the space of splits/merges
for the grammar that in some sense
maximizes parsing performance on the
training/development set.

2/23/2014 Speech and Language Processing - Jurafsky and Martin 30

Auto Rewriting

 Basic idea…

 Split every non-terminal into two new non-
terminals across the entire grammar (X
becomes X1 and X2).

 Duplicate all the rules of the grammar that
use X, dividing the probability mass of the
original rule almost equally.

 Run EM to readjust the rule probabilities

 Perform a merge step to back off the splits
that look like they don’t really do any good.

Demo

 Berkeley parser

 The man Ms. Lohan was accused of hitting,
Jose Rodriguez, told reporters he had suffered
torn tendons in the encounter.

2/23/2014 Speech and Language Processing - Jurafsky and Martin 31

Demo

2/23/2014 Speech and Language Processing - Jurafsky and Martin 32

Demo

2/23/2014 Speech and Language Processing - Jurafsky and Martin 33

2/23/2014 Speech and Language Processing - Jurafsky and Martin 34

Solution 2:
Lexicalized Grammars

 Lexicalize the grammars with heads

 Compute the rule probabilities on these
lexicalized rules

 Run probabilistic CKY as before

2/23/2014 Speech and Language Processing - Jurafsky and Martin 35

Dumped Example

2/23/2014 Speech and Language Processing - Jurafsky and Martin 36

How?

 We used to have
 VP -> V NP PP P(rule|VP)

 That’s the count of this rule divided by the number
of VPs in a treebank

 Now we have fully lexicalized rules...
 VP(dumped)-> V(dumped) NP(sacks)PP(into)

P(r|VP ^ dumped is the verb ^ sacks is the
head of the NP ^ into is the head of the PP)

To get the counts for that..

2/23/2014 Speech and Language Processing - Jurafsky and Martin 37

Use Independence

 When stuck, exploit independence and
collect the statistics you can…

 There are a large number of ways to do
this...

 Let’s consider one generative story:
given a rule we’ll

1. Generate the head

2. Generate the stuff to the left of the head

3. Generate the stuff to the right of the head

2/23/2014 Speech and Language Processing - Jurafsky and Martin 38

Example

 So the probability of a lexicalized rule such
as

 VP(dumped) V(dumped)NP(sacks)PP(into)

 Is the product of the probability of

 “dumped” as the head of a VP

 With nothing to its left

 “sacks” as the head of the first right-side thing

 “into” as the head of the next right-side
element

 And nothing after that

2/23/2014 Speech and Language Processing - Jurafsky and Martin 39

Example

 That is, the rule probability for

is estimated as

2/23/2014 Speech and Language Processing - Jurafsky and Martin 40

Framework

 That’s just one simple model

 Collins Model 1

 You can imagine a gazzillion other
assumptions that might lead to better
models

 You just have to make sure that you can
get the counts you need

 And that it can be used/exploited
efficiently during decoding

2/23/2014 Speech and Language Processing - Jurafsky and Martin 41

Last Point

 Statistical parsers are getting quite good,
but its still quite silly to expect them to
come up with the correct parse given only
syntactic information.

 But its not so crazy to think that they can
come up with the right parse among the
top-N parses.

 Lots of current work on
 Re-ranking to make the top-N list even better

 What’s the problem with this argument?

2/23/2014 Speech and Language Processing - Jurafsky and Martin 42

Evaluation

 So if it’s unreasonable to expect these
probabilistic parsers to get the right answer
what can we expect from them and how do
we measure it.

 Look at the content of the trees rather than
the entire trees.

 Assuming that we have gold standard trees for
test sentences

2/23/2014 Speech and Language Processing - Jurafsky and Martin 43

Evaluation

 Precision
 What fraction of the sub-trees in our parse

match corresponding sub-trees in the reference
answer
 How much of what we’re producing is right?

 Recall
 What fraction of the sub-trees in the reference

answer did we actually get?
 How much of what we should have gotten did we

get?

2/23/2014 Speech and Language Processing - Jurafsky and Martin 44

Evaluation

 Crossing brackets

Parser hypothesis Reference answer

((A B) C) (A (B C))

2/23/2014 Speech and Language Processing - Jurafsky and Martin 45

Finally

 In case someone hasn’t pointed this out
yet, the lexicalization stuff is a thinly
veiled attempt to incorporate semantics
into the syntactic parsing process…

 Duhh..,. Picking the right parse requires the
use of semantics.

 Which we’ll get to real soon now.

