
 
Statistical Parsing 



2/23/2014                                          Speech and Language Processing - Jurafsky and Martin        2 

 Statistical parsing 

 Sources of problems 

 Improvements 

 Grammar rewriting 

 Lexicalized grammars 
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CFG Parsing 

 We left CFG parsing (CKY) with the 
problem of selecting the “right” parse out 
of all the possible parses... 

 Now if we define “right” parse as “most 
probable parse” we get our old friend 

 
 Argmax P(Parse|Words) 
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Example 
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Probabilistic CFGs 

1 The framework (Model) 

 How to assign probabilities to parse trees 

2 Training the model (Learning) 

 How to acquire estimates for the probabilities 
specified by the model 

3 Parsing with probabilities (Decoding) 

 Given an input sentence and a model how can 
we efficiently find the best (or N best) tree(s) 
for that input 
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Simple Probability Model 

 A derivation (tree) consists of the 
collection of grammar rules that are in the 
tree 

 The probability of a tree is the product of the 
probabilities of the rules in the derivation. 



Example 

 How many “rules” are 
in this derivation? 
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Rule Probabilities 

 So... What’s the probability of a rule? 

 Start at the top... 
 A tree should have an S at the top. So given 

that we know we need an S, we can ask 
about the probability of each particular S rule 
in the grammar. 
 That is P(particular S rule | S is what I need) 

 So in general we need 

 

   For each rule in the grammar   
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Training the Model 

 We can get the estimates we need from 
an annotated database (i.e., a treebank) 

 

 

 

 

 For example, to get the probability for a 
particular VP rule, just count all the times the 
rule is used and divide by the number of VPs 
overall. 
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Parsing (Decoding) 

 So to get the best (most probable) parse 
for a given input 

 

1. Enumerate all the trees for a sentence 

2. Assign a probability to each using the model 

3. Return the best (argmax) 
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Example 

 Consider... 

 Book the dinner flight 



2/23/2014                                          Speech and Language Processing - Jurafsky and Martin        12 

Examples 

 These trees consist of the following rules. 
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Dynamic Programming 

 Of course, as with normal parsing we 
don’t really want to do it that way... 

 

 Instead, we need to exploit dynamic 
programming 

 For the parsing (as with CKY) 

 And for computing the probabilities and 
returning the best parse (as with Viterbi and 
HMMs) 
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Probabilistic CKY 

 Alter CKY so that the probabilities of 
constituents are stored in the table as they 
are derived 

 Probability of a new constituent A derived 
from the rule A  B C : 

 P(A  B C | A) * P(B) * P(C) 

 Where P(B) and P(C) are already in the table given 
the way that CKY operates 

 What we store is the MAX probability over all the A 
rules. 



2/23/2014                                          Speech and Language Processing - Jurafsky and Martin        15 

Probabilistic CKY 
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Probabilistic CFGs 

1 The framework (Model) 

 Product of probabilities of rules in a derivation 

2 Training the model (Learning) 

 MLE counts derived from a treebank 

3 Parsing with probabilities (Decoding) 

 CKY with max probabilities added in 



HW Questions 
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Problems with PCFGs 

 The probability model we’re using is just 
based on the the bag of rules in the 
derivation… 

1. Does not take the actual words into account 
in any useful way. 

2. Does not take into account where in the 
derivation a rule is used 

3. Does not work terribly well 
 That is, the most probable parse isn’t usually the 

right one (the one in the treebank test set). 
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Common Sources of Problems 

 Attachment ambiguities 

 PP attachment 

 Coordination problems 
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PP Attachment 
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Coordination 

Most grammars have a rule (implicitly) of 

the form  

X -> X and X. This leads to massive 

ambiguity problems. 
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Improved Approaches 

 There are two approaches to overcoming 
these shortcomings 

1. Rewrite the grammar to better capture the 
dependencies among rules  

2. Integrate lexical dependencies into the model 

1. And come up with the independence assumptions 
needed to make it work. 
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Solution 1: Rule Rewriting 

 The grammar rewriting approach attempts 
to capture local tree information by 
rewriting the grammar so that the rules 
capture the regularities we want. 

 

 By splitting and merging the non-terminals in 
the grammar 

 

 Example: split NPs into different classes… that 
is, split the NP rules into separate rules 
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Example: NPs 

 Our CFG rules for NPs don’t condition on 
where in a tree the rule is applied 

 But we know that not all the rules occur 
with equal frequency in all contexts. 

 Consider NPs that involve pronouns vs. those 
that don’t. 



Example: NPs 
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 So that comes down to  

 NP --> Pronoun 

 

 Gets replaced with something like 

 NP_Subj --> Pronoun 

 NP_Obj --> Pronoun 

 

Separate rules, with different counts in the 
treebank and therefore different probabilities 
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Rule Rewriting 

 Three approaches 

1. Use linguistic knowledge to directly rewrite 
rules by hand 

1. NP_Obj and the NP_Subj approach 

2. Automatically rewrite the rules using context 
to capture some of what we want 

1. Ie. Incorporate context into a context-free 
approach 

3. Search through the space of all rewrites for 
the grammar that maximizes the probability 
of the training set 
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Local Context Approach 

 Condition the rules based on their parent 
nodes 

 Splitting based on tree-context captures some 
of the linguistic intuitions we saw with the NP 
example 
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Parent Annotation 

 Now we have non-terminals NP^S and NP^VP that 
should capture the subject/object and pronoun/full NP 
cases. That is… 

 NP^S -> PRP 

 NP^VP -> DT 

 VP^S -> NP^VP 
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Auto Rewriting 

 If this is such a good idea we may as well 
apply a learning approach to it. 

 Start with a grammar (perhaps a treebank 
grammar) 

 Search through the space of splits/merges 
for the grammar that in some sense 
maximizes parsing performance on the 
training/development set.  
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Auto Rewriting 

 Basic idea…  

 Split every non-terminal into two new non-
terminals across the entire grammar (X 
becomes X1 and X2). 

 Duplicate all the rules of the grammar that 
use X, dividing the probability mass of the 
original rule almost equally.  

 Run EM to readjust the rule probabilities 

 Perform a merge step to back off the splits 
that look like they don’t really do any good. 

 



Demo 

 Berkeley parser 

 

 The man Ms. Lohan was accused of hitting, 
Jose Rodriguez, told reporters he had suffered 
torn tendons in the encounter. 
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Demo 
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Demo 
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Solution 2:  
Lexicalized Grammars 

 Lexicalize the grammars with heads 

 Compute the rule probabilities on these 
lexicalized rules 

 Run probabilistic CKY as before 
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Dumped Example 
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How? 

 We used to have 
 VP -> V NP PP   P(rule|VP) 

 That’s the count of this rule divided by the number 
of VPs in a treebank 

 Now we have fully lexicalized rules... 
 VP(dumped)-> V(dumped) NP(sacks)PP(into) 

P(r|VP ^ dumped is the verb ^ sacks is the 
head of the NP ^ into is the head of the PP) 

To get the counts for that.. 
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Use Independence 

 When stuck, exploit independence and 
collect the statistics you can… 

 There are a large number of ways to do 
this... 

 Let’s consider one generative story: 
given a rule we’ll 

1. Generate the head 

2. Generate the stuff to the left of the head 

3. Generate the stuff to the right of the head 
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Example 

 So the probability of a lexicalized rule such 
as  

 VP(dumped)   V(dumped)NP(sacks)PP(into) 

 Is the product of the probability of 

 “dumped” as the head of a VP  

 With nothing to its left 

 “sacks” as the head of the first right-side thing 

 “into” as the head of the next right-side 
element 

 And nothing after that 
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Example 

 That is, the rule probability for 

 

 

 

is estimated as 
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Framework 

 That’s just one simple model 

 Collins Model 1 

 You can imagine a gazzillion other 
assumptions that might lead to better 
models 

 You just have to make sure that you can 
get the counts you need 

 And that it can be used/exploited 
efficiently during decoding 



2/23/2014                                          Speech and Language Processing - Jurafsky and Martin        41 

Last Point 

 Statistical parsers are getting quite good, 
but its still quite silly to expect them to 
come up with the correct parse given only 
syntactic information. 

 But its not so crazy to think that they can 
come up with the right parse among the 
top-N parses. 

 Lots of current work on 
 Re-ranking to make the top-N list even better 

 What’s the problem with this argument? 
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Evaluation 

 So if it’s unreasonable to expect  these 
probabilistic parsers to get the right answer 
what can we expect from them and how do 
we measure it. 

 Look at the content of the trees rather than 
the entire trees. 

 Assuming that we have gold standard trees for 
test sentences 
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Evaluation 

 Precision 
 What fraction of the sub-trees in our parse 

match corresponding sub-trees in the reference 
answer 
 How much of what we’re producing is right? 

 Recall 
 What fraction of the sub-trees in the reference 

answer did we actually get? 
 How much of what we should have gotten did we 

get? 
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Evaluation 

 Crossing brackets 

Parser hypothesis Reference answer 

((A B) C) (A (B C)) 
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Finally 

 In case someone hasn’t pointed this out 
yet, the lexicalization stuff is a thinly 
veiled attempt to incorporate semantics 
into the syntactic parsing process… 

 Duhh..,. Picking the right parse requires the 
use of semantics. 

 Which we’ll get to real soon now. 


