

Parsing

1/11/2014 Speech and Language Processing - Jurafsky and Martin 2

Verb Phrases

 English VPs consist of a head verb along
with 0 or more following constituents
which we’ll call arguments.

1/11/2014 Speech and Language Processing - Jurafsky and Martin 3

Subcategorization

 Even though there are many valid VP rules
in English, not all verbs are allowed to
participate in all those VP rules.

 We can subcategorize the verbs in a
language according to the sets of VP rules
that they participate in.

 This is just an elaboration on the
traditional notion of transitive/intransitive.

 Modern grammars have many such classes

1/11/2014 Speech and Language Processing - Jurafsky and Martin 4

Subcategorization

 Sneeze: John sneezed

 Find: Please find [a flight to NY]NP

 Give: Give [me]NP[a cheaper fare]NP

 Help: Can you help [me]NP[with a flight]PP

 Prefer: I prefer [to leave earlier]TO-VP

 Told: I was told [United has a flight]S

 …

Programming Analogy

 It may help to view things this way

 Verbs are functions or methods

 They participate in specify the number,
position, and type of the arguments they
take...

 That is, just like the formal parameters to a
method.

1/11/2014 Speech and Language Processing - Jurafsky and Martin 5

1/11/2014 Speech and Language Processing - Jurafsky and Martin 6

Subcategorization

 *John sneezed the book

 *I prefer United has a flight

 *Give with a flight

 As with agreement phenomena, we need
a way to formally express these facts

1/11/2014 Speech and Language Processing - Jurafsky and Martin 7

Why?

 Right now, the various rules for VPs
overgenerate.

 They permit the presence of strings containing
verbs and arguments that don’t go together

 For example

 VP -> V NP therefore

 Sneezed the book is a VP since “sneeze” is a
verb and “the book” is a valid NP

1/11/2014 Speech and Language Processing - Jurafsky and Martin 8

Possible CFG Solution

 Possible solution for
agreement.

 Can use the same
trick for all the
verb/VP classes.

 SgS -> SgNP SgVP

 PlS -> PlNp PlVP

 SgNP -> SgDet
SgNom

 PlNP -> PlDet PlNom

 PlVP -> PlV NP

 SgVP ->SgV Np

 …

1/11/2014 Speech and Language Processing - Jurafsky and Martin 9

CFG Solution for Agreement

 It works and stays within the power of
CFGs

 But it is a fairly ugly one

 And it doesn’t scale all that well because
of the interaction among the various
constraints explodes the number of rules
in our grammar.

1/11/2014 Speech and Language Processing - Jurafsky and Martin 10

Summary

 CFGs appear to be just about what we need to
account for a lot of basic syntactic structure in
English.

 But there are problems
 That can be dealt with adequately, although not

elegantly, by staying within the CFG framework.

 There are simpler, more elegant, solutions that
take us out of the CFG framework (beyond its
formal power)
 LFG, HPSG, Construction grammar, XTAG, etc.

 Chapter 15 explores one approach (feature
unification) in more detail

1/11/2014 Speech and Language Processing - Jurafsky and Martin 11

Treebanks

 Treebanks are corpora in which each sentence
has been paired with a parse structure
(presumably the correct one).

 These are generally created
1. By first parsing the collection with an automatic

parser

2. And then having human annotators hand correct
each parse as necessary.

 This generally requires detailed annotation
guidelines that provide a POS tagset, a
grammar, and instructions for how to deal with
particular grammatical constructions.

Parens and Trees

1/11/2014 Speech and Language Processing - Jurafsky and Martin 12

(S (NP (Pro I))

 (VP (Verb prefer)

 (NP (Det a)

 � ��(Nom (Nom (Noun morning))

 (Noun flight)))))

1/11/2014 Speech and Language Processing - Jurafsky and Martin 13

Penn Treebank

 Penn TreeBank is a widely used treebank.

Most well known part is
the Wall Street Journal
section of the Penn
TreeBank.

1 M words from the
1987-1989 Wall
Street Journal.

1/11/2014 Speech and Language Processing - Jurafsky and Martin 14

Treebank Grammars

 Treebanks implicitly define a grammar for
the language covered in the treebank.

 Simply take the local rules that make up
the sub-trees in all the trees in the
collection and you have a grammar

 The WSJ section gives us about 12k rules if
you do this

 Not complete, but if you have decent size
corpus, you will have a grammar with
decent coverage.

1/11/2014 Speech and Language Processing - Jurafsky and Martin 15

Treebank Grammars

 Such grammars tend to be very flat due to
the fact that they tend to avoid recursion.

 To ease annotator’s burden, among things

 For example, the Penn Treebank has
~4500 different rules for VPs. Among
them...

1/11/2014 Speech and Language Processing - Jurafsky and Martin 16

Treebank Uses

 Treebanks (and head-finding) are
particularly critical to the development of
statistical parsers
 Chapter 14

 We will get there

 Also valuable to Corpus Linguistics
 Investigating the empirical details of various

constructions in a given language
 How often do people use various constructions and

in what contexts...

 Do people ever say X ...

1/11/2014 Speech and Language Processing - Jurafsky and Martin 17

Head Finding

 Finding heads in treebank trees is a task
that arises frequently in many
applications.

 As we’ll see it is particularly important in
statistical parsing

 We can visualize this task by annotating
the nodes of a parse tree with the heads
of each corresponding node.

1/11/2014 Speech and Language Processing - Jurafsky and Martin 18

Lexically Decorated Tree

1/11/2014 Speech and Language Processing - Jurafsky and Martin 19

Head Finding

 Given a tree, the standard way to do head
finding is to use a simple set of tree
traversal rules specific to each non-
terminal in the grammar.

1/11/2014 Speech and Language Processing - Jurafsky and Martin 20

Noun Phrases

1/11/2014 Speech and Language Processing - Jurafsky and Martin 21

Treebank Uses

 Treebanks (and head-finding) are
particularly critical to the development of
statistical parsers

 Chapter 14

 Also valuable to Corpus Linguistics

 Investigating the empirical details of various
constructions in a given language

1/11/2014 Speech and Language Processing - Jurafsky and Martin 22

Dependency Grammars

 In CFG-style phrase-structure grammars
the main focus is on constituents and
ordering.

 But it turns out you can get a lot done
with just labeled relations among the
words in an utterance.

 In a dependency grammar framework, a
parse is a tree where
 The nodes stand for the words in an utterance

 The links between the words represent dependency
relations between pairs of words.
 Relations may be typed (labeled), or not.

1/11/2014 Speech and Language Processing - Jurafsky and Martin 23

Dependency Relations

1/11/2014 Speech and Language Processing - Jurafsky and Martin 24

Dependency Parse

1/11/2014 Speech and Language Processing - Jurafsky and Martin 25

Dependency Parsing

 The dependency approach has a number of
advantages over full phrase-structure
parsing.
 It deals well with free word order languages

where the constituent structure is quite fluid

 Parsing is much faster than with CFG-based
parsers

 Dependency structure often captures the
syntactic relations needed by later applications
 CFG-based approaches often extract this same

information from trees anyway

1/11/2014 Speech and Language Processing - Jurafsky and Martin 26

Summary

 Context-free grammars can be used to model
various facts about the syntax of a language.

 When paired with parsers, such grammars
consititute a critical component in many
applications.

 Constituency is a key phenomena easily
captured with CFG rules.
 But agreement and subcategorization do pose

significant problems

 Treebanks pair sentences in corpus with their
corresponding trees.

1/11/2014 Speech and Language Processing - Jurafsky and Martin 27

Parsing

 Parsing with CFGs refers to the task of
assigning proper trees to input strings

 Proper here means a tree that covers all
and only the elements of the input and
has an S at the top

 It doesn’t actually mean that the system
can select the correct tree from among all
the possible trees

Automatic Syntactic Parse

1/11/2014 Speech and Language Processing - Jurafsky and Martin 29

For Now

 Assume…

 You have all the words already in some buffer

 The input is not POS tagged prior to parsing

 We won’t worry about morphological analysis

 All the words are known

 These are all problematic in various ways,
and would have to be addressed in real
applications.

1/11/2014 Speech and Language Processing - Jurafsky and Martin 30

Top-Down Search

 Since we’re trying to find trees rooted
with an S (Sentences), why not start with
the rules that give us an S.

 Then we can work our way down from
there to the words.

1/11/2014 Speech and Language Processing - Jurafsky and Martin 31

Top Down Space

1/11/2014 Speech and Language Processing - Jurafsky and Martin 32

Bottom-Up Parsing

 Of course, we also want trees that cover
the input words. So we might also start
with trees that link up with the words in
the right way.

 Then work your way up from there to
larger and larger trees.

1/11/2014 Speech and Language Processing - Jurafsky and Martin 33

Bottom-Up Search

1/11/2014 Speech and Language Processing - Jurafsky and Martin 34

Bottom-Up Search

1/11/2014 Speech and Language Processing - Jurafsky and Martin 35

Bottom-Up Search

1/11/2014 Speech and Language Processing - Jurafsky and Martin 36

Bottom-Up Search

1/11/2014 Speech and Language Processing - Jurafsky and Martin 37

Bottom-Up Search

1/11/2014 Speech and Language Processing - Jurafsky and Martin 38

Top-Down and Bottom-Up

 Top-down

 Only searches for trees that can be answers
(i.e. S’s)

 But also suggests trees that are not consistent
with any of the words

 Bottom-up

 Only forms trees consistent with the words

 But suggests trees that make no sense
globally

1/11/2014 Speech and Language Processing - Jurafsky and Martin 39

Control

 Of course, in both cases we left out how
to keep track of the search space and how
to make choices

 Which node to try to expand next

 Which grammar rule to use to expand a node

 One approach is called backtracking.

 Make a choice, if it works out then fine

 If not then back up and make a different
choice

 Same as with ND-Recognize

1/11/2014 Speech and Language Processing - Jurafsky and Martin 40

Problems

 Even with the best filtering, backtracking
methods are doomed because of two
inter-related problems

 Ambiguity and search control (choice)

 Shared subproblems

1/11/2014 Speech and Language Processing - Jurafsky and Martin 41

Ambiguity

1/11/2014 Speech and Language Processing - Jurafsky and Martin 42

Shared Sub-Problems

 No matter what kind of search (top-down
or bottom-up or mixed) that we choose...

 We can’t afford to redo work we’ve already
done.

 Without some help naïve backtracking will
lead to such duplicated work.

1/11/2014 Speech and Language Processing - Jurafsky and Martin 43

Shared Sub-Problems

 Consider

 A flight from
Indianapolis to
Houston on TWA

1/11/2014 Speech and Language Processing - Jurafsky and Martin 44

Sample L1 Grammar

1/11/2014 Speech and Language Processing - Jurafsky and Martin 45

Shared Sub-Problems

 Assume a top-down parse that has already
expanded the NP rule (dealing with the
Det)

 Now its making choices among the various
Nominal rules

 In particular, between these two

 Nominal -> Noun

 Nominal -> Nominal PP

 Statically choosing the rules in this order
leads to the following bad behavior...

1/11/2014 Speech and Language Processing - Jurafsky and Martin 46

Shared Sub-Problems

1/11/2014 Speech and Language Processing - Jurafsky and Martin 47

Shared Sub-Problems

1/11/2014 Speech and Language Processing - Jurafsky and Martin 48

Shared Sub-Problems

1/11/2014 Speech and Language Processing - Jurafsky and Martin 49

Shared Sub-Problems

1/11/2014 Speech and Language Processing - Jurafsky and Martin 50

Dynamic Programming

 DP search methods fill tables with partial results
and thereby
 Avoid doing avoidable repeated work

 Solve exponential problems in polynomial time (well not
really)

 Efficiently store ambiguous structures with shared sub-
parts.

 We’ll cover two approaches that roughly
correspond to top-down and bottom-up
approaches.
 CKY

 Earley

1/11/2014 Speech and Language Processing - Jurafsky and Martin 51

CKY Parsing

 First we’ll limit our grammar to epsilon-
free, binary rules (more on this later)

 Consider the rule A BC
 If there is an A somewhere in the input

generated by this rule then there must be
a B followed by a C in the input.

 If the A spans from i to j in the input then
there must be some k st. i<k<j
 In other words, the B splits from the C

someplace after the i and before the j.

1/11/2014 Speech and Language Processing - Jurafsky and Martin 52

CKY

 Let’s build a table so that an A spanning
from i to j in the input is placed in cell [i,j]
in the table.
 So a non-terminal spanning an entire string

will sit in cell [0, n]
 Hopefully it will be an S

 Now we know that the parts of the A must
go from i to k and from k to j, for some k

1/11/2014 Speech and Language Processing - Jurafsky and Martin 53

CKY

 Meaning that for a rule like A B C we
should look for a B in [i,k] and a C in [k,j].

 In other words, if we think there might be
an A spanning i,j in the input… AND

 A B C is a rule in the grammar THEN

 There must be a B in [i,k] and a C in [k,j]
for some k such that i<k<j

What about the B and the C?

1/11/2014 Speech and Language Processing - Jurafsky and Martin 54

CKY

 So to fill the table loop over the cells [i,j]
values in some systematic way

 Then for each cell, loop over the appropriate
k values to search for things to add.

 Add all the derivations that are possible for
each [i,j] for each k

1/11/2014 Speech and Language Processing - Jurafsky and Martin 55

CKY Table

1/11/2014 Speech and Language Processing - Jurafsky and Martin 56

CKY Algorithm

What’s the complexity of this?

1/11/2014 Speech and Language Processing - Jurafsky and Martin 57

Example

1/11/2014 Speech and Language Processing - Jurafsky and Martin 58

Example

Filling column 5

Example

1/11/2014 Speech and Language Processing - Jurafsky and Martin 59

 Filling column 5 corresponds to processing
word 5, which is Houston.

 So j is 5.

 So i goes from 3 to 0 (3,2,1,0)

1/11/2014 Speech and Language Processing - Jurafsky and Martin 60

Example

1/11/2014 Speech and Language Processing - Jurafsky and Martin 61

Example

1/11/2014 Speech and Language Processing - Jurafsky and Martin 62

Example

1/11/2014 Speech and Language Processing - Jurafsky and Martin 63

Example

Example

 Since there’s an S in [0,5] we have a valid
parse.

 Are we done? We we sort of left
something out of the algorithm

1/11/2014 Speech and Language Processing - Jurafsky and Martin 64

1/11/2014 Speech and Language Processing - Jurafsky and Martin 65

CKY Notes

 Since it’s bottom up, CKY hallucinates a lot
of silly constituents.

 Segments that by themselves are constituents
but cannot really occur in the context in which
they are being suggested.

 To avoid this we can switch to a top-down
control strategy

 Or we can add some kind of filtering that
blocks constituents where they can not
happen in a final analysis.

1/11/2014 Speech and Language Processing - Jurafsky and Martin 66

CKY Notes

 We arranged the loops to fill the table a
column at a time, from left to right,
bottom to top.

 This assures us that whenever we’re filling a
cell, the parts needed to fill it are already in
the table (to the left and below)

 It’s somewhat natural in that it processes the
input a left to right a word at a time

 Known as online

 Can you think of an alternative strategy?

