263-5354-00L Large Language Models

Adapted for CSI 5386 at the University of Ottawa, 2024

Prompting and Zero-shot or Few shot learning inference

Mrinmaya Sachan msachan@ethz.ch

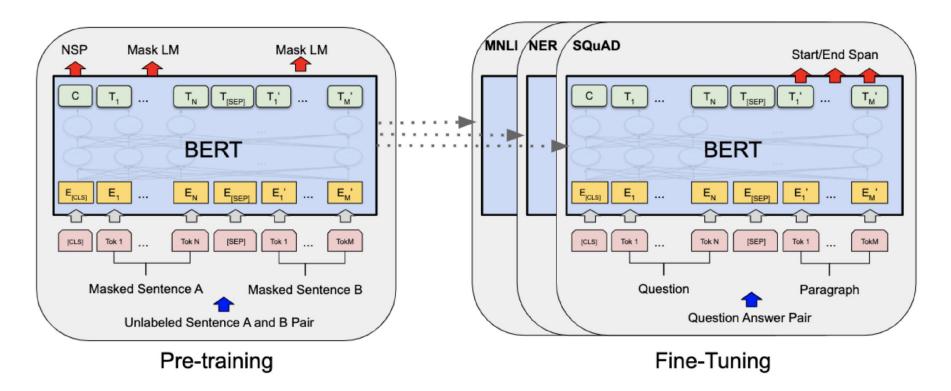
Lecture Outline

- 1. What is Prompting? How do we prompt language models?
- 2. Prompt Engineering
 - Manual prompts
 - Automated prompts
 - Discrete vs continuous prompts
- 3. Chain of thought prompting
- 4. In-context learning

A Short History of Language Modelling

- Language models date way back to Shannon, etc. in the 50s-60s
- Until 10-15 years ago: Language models used a database of word counts from a corpus of text to estimate probabilities
 - Improved speech recognition and machine translation systems
 - NLP systems for other tasks ignored language models and required **millions of examples** to learn tasks
- **10 years ago:** Deep Learning coupled with **Transfer learning** made language models effective
 - NLP systems began to use language models as a starting point to learn tasks, but still need thousands of examples to do so
- Last 3 years: Scale up (data & model) and prompting
 - GPT series of models
 - Simply prompt or instruct these models to do the task

Earlier in this class: Supervised Finetuning



Typically need **tens of thousands** of examples!!!

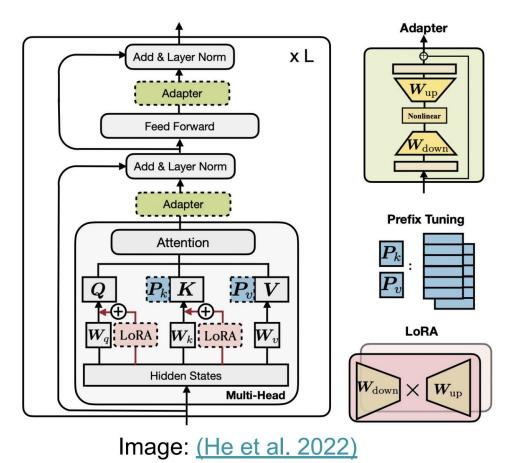
Does not work well if we no not have finetuning data ...

• The model might not be able to adapt to the finetuning data based on just a small dataset and might forget everything it has learner during pretraining.

Parameter efficient finetuning

A partial solution to this problem:

Just finetune a subset of the parameters for each task



Still need thousands of examples!!!

Prompting: Why even finetune?

For many tasks, supervised finetuning data may not be available

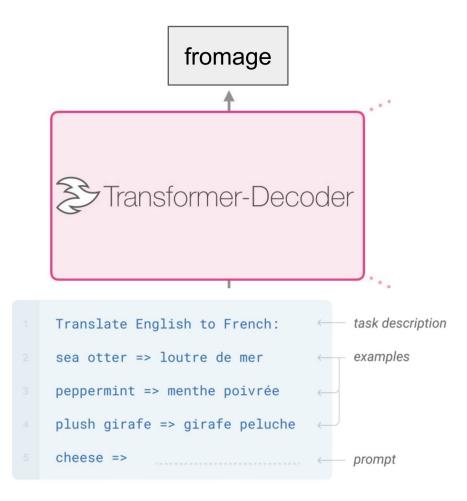
Key idea: Prompting enables models to circumvent this by learning a LM that models the probability $P(x; \theta)$ of the input text x, and using this probability to predict y, reducing or obviating the need for large supervised datasets.

Prompting is **non-invasive**:

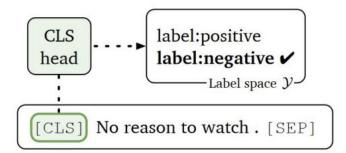
• It does not introduce any additional parameters or require direct inspection of a model's representations.

It can be thought of as a **lower bound on what the model "knows" about the new task (x** \square **y)** and this information is simply extract from the LM via prompting. **Key idea: We manually design a "prompt" that demonstrates how to formulate a task as a generation task.**

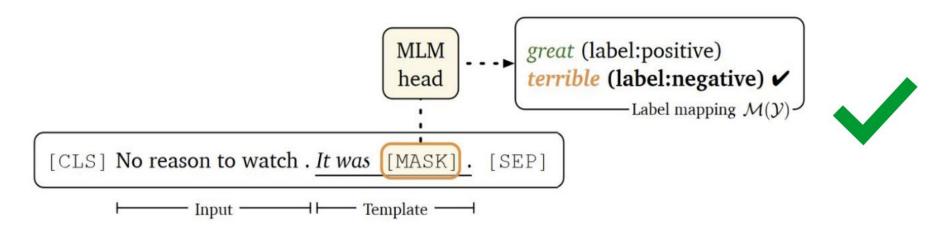
No need to update the model weights at all!



Head-based fine-tuning



Prompting:



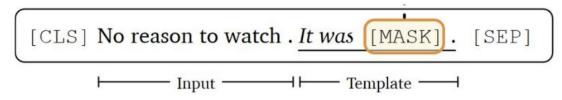
We can also do prompt-based fine-tuning if we have supervised data.

Prompting a bit more formally

Lets say we have a **classification** task, e.g. sentiment classification

Input: x_1 = No reason to watch.

Step 1. Formulate the downstream task into a (Masked) LM problem using a *template:*



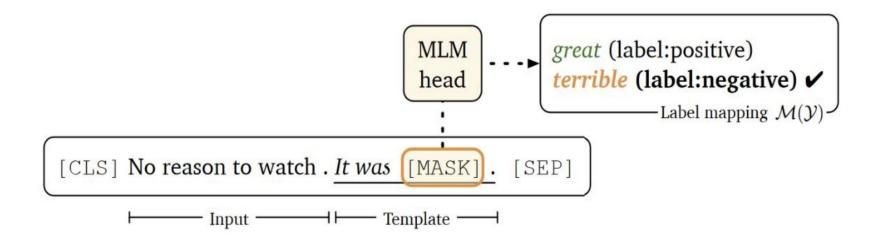
Step 2. Choose a label word mapping \mathcal{M} , which maps task labels to individual words.

Prompting a bit more formally

Directly use

Step 3. Fine tune the LM to fill in the correct label word.

$$p(y \mid x_{\text{in}}) = p\left([\text{MASK}] = \mathcal{M}(y) \mid x_{\text{prompt}} \right) \\ = \frac{\exp\left(\mathbf{w}_{\mathcal{M}(y)} \cdot \mathbf{h}_{[\text{MASK}]}\right)}{\sum_{y' \in \mathcal{Y}} \exp\left(\mathbf{w}_{\mathcal{M}(y')} \cdot \mathbf{h}_{[\text{MASK}]}\right)},$$



What makes a good prompt? for an NLP task,

GPT3: "a good prompt is one that is specific and **provides enough context for the model** to be able to generate a response that is relevant to the task."

The Dark Art of Prompt Engineering

Question Answering:

BoolQ: given a passage q and question p, design a prompt for question answering

Word sense:

WiC: given two sentences S1 and S2, and a word W, design a prompt to determine whether W was used in the same sense in both sentences. For **BoolQ**, given a passage *p* and question *q*:

p. Question: q? Answer: <MASK>.

p. Based on the previous passage, q? <MASK>.

Based on the following passage, q? <MASK>. p

For WiC, given two sentences s_1 and s_2 and a word w, we classify whether w was used in the same sense.

" s_1 " / " s_2 ". Similar sense of "w"? <MASK>.

 $s_1 s_2$ Does w have the same meaning in both sentences? <MASK>.

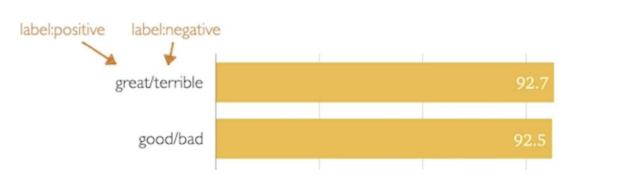
The Dark Art of Prompt Engineering

In general, prompting is a dark art

• Requires domain expertise and trial and error

The challenge is to find a template T and label words M(y) that work in conjunction

• Slight variations in prompts can lead to differences!



SST-2 Template: <Input> It was [MASK] .

Can we Automate Prompt Design?

Some initial work on automating discrete prompt design with moderate success:

1. Mine prompt candidates from a large corpus (Jiang et al. 2020)

- Search for strings in a large text corpus, e.g. Wikipedia, that contain both training inputs x and outputs y
- Identify the middle words or dependency paths between them
- Use the middle words/paths as templates in the form of "[X] middle words [Z]"

2. Paraphrase approach

- Translating the prompt into another language and back (Jiang et al., 2020)
- Use a thesaurus to replace words (Yuan et al., 2021)
- Train a neural prompt rewriter designed/trained with the objective of improving the accuracy of systems that use the prompt (Haviv et al., 2021)
- 3. Training a text generation model for generating prompts
 - Pre-train a T5 model for the template search

Generate multiple prompts from all the training examples, or a few well-chosen examples.

Automating Prompt Design Somewhat Works

Recall the LAMA probe.

Manually designed prompts in LAMA probe

	Prompts	Top1	Тор3	Top5	Opti.	
	1	BERT-b	ase (M	an= 31	<u>l.1)</u>	LAnguage Model Analysis (LAMA): A set of knowledge
Mined prompts	Mine	31.4	34.2	34.7	38.9	sources (set of facts) for analyzing the factual and
Mined+Manual	Mine+Man	31.6	35.9	35.1	39.6	commonsense knowledge contained in LLMs
Mined Paraphrased	Mine+Para	32.7	34.0	34.5	36.2	(Perrori et al., 2019)
Manual Paraphrased	Man+Para	34.1	35.8	36.6	37.3	

BERT-large (Man=32.3)							
Mine	37.0	37.0	36.4	43.7			
Mine+Man	39.4	40.6	38.4	43.9			
Mine+Para	37.8	38.6	38.6	40.1			
Man+Para	35.9	37.3	38.0	38.8			

(Jiang et al. 2020)

Opti. Prompt outputs are ensembled (i.e predictions are weighted and combined) 15

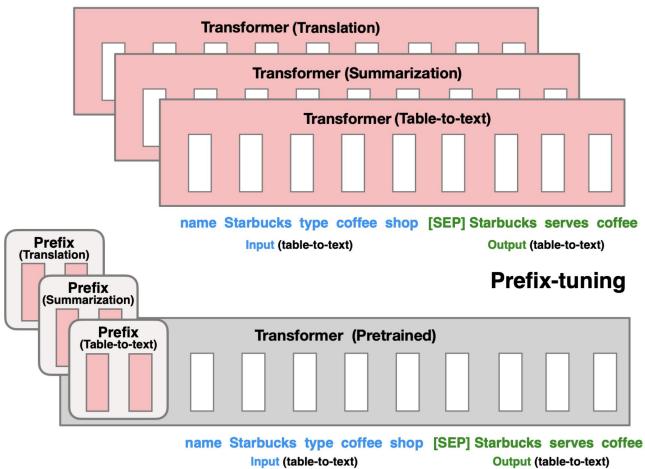
Continuous Prompts

Recent approaches have explored continuous prompts (also sometimes known as soft prompts) that prompt the model directly in its embedding space.

One approach (we have already seen) is **prefix tuning**.

Prefix Tuning (Li et al. 2021)

Fine-tuning



Prefix-tuning freezes Transformer parameters and **only optimizes the prefix** (red prefix blocks).

Advanced Prompting

- 1. Prompting with demonstrations
- 2. Chain of Thought Prompting

Prompting with Demonstrations

Lets assume we have a few shots:

- We have a small collection of input-out exemplars.
- These exemplars serve as demonstrations of the behavior that one would like the LM to emulate.

We can use prompting in this case:

Key idea: Augment the standard prompt "France's capital is [X]" by **prepending the examples**:

"Great Britain's capital is London . Germany's capital is Berlin . France's capital is [X]".

No parameter updates to the model as before!

Challenges in Prompting with Demonstrations

Prompting with demonstrations for few-shot learning is very popular. It works!

However, as in prompt design, we have **several questions**:

- 1. What examples to include in the prompt to make the demonstration effective?
- 2. How to order the examples in the prompt. Different demonstration orders can result in very different performance (Lu et al., 2021).

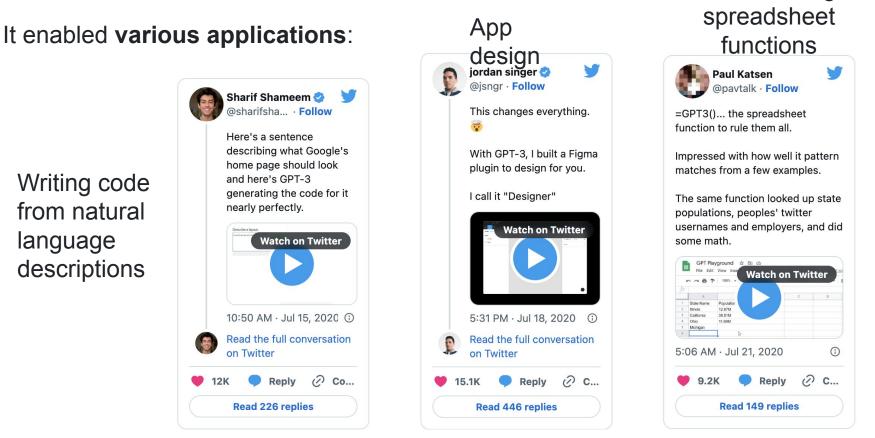
We can partially tackle this issue, e.g, by:

- using sentence embeddings to sample examples that are close to the input in the embedding space (Liu et al., 2021a; Drori et al., 2022).
- 2. As for the order of the labeled examples, we can also learn a model to **score different candidate permutations** (Lu et al., 2021).

In-context Learning

This idea of prompting with demonstrations was called **In-context learning** in the original GPT-3 paper.

On many NLP benchmarks, in-context learning is **competitive with models trained with much more labeled data** and is SOTA on LAMBADA (commonsense sentence completion) and TriviaQA. Generalizing



An approach to solve **multi-step reasoning** problems via prompting.

Key idea: Eliciting the model to produce a step-by-step solution of a problem can lead to a more accurate final answer (Wei et al. 2022)

So, if we prompt the model to reason step-by step, it might do well at multi-step reasoning problems.

• A solution: Simply by adding "Let's think step-by-step" to the prompt before the model's answer

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: The answer (arabic numerals) is

(Output) 8 X

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

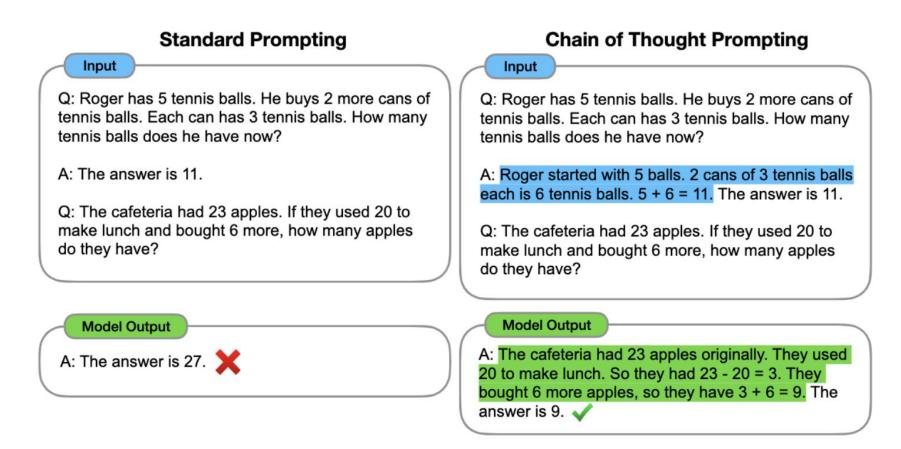
A: Let's think step by step.

(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls. ✓

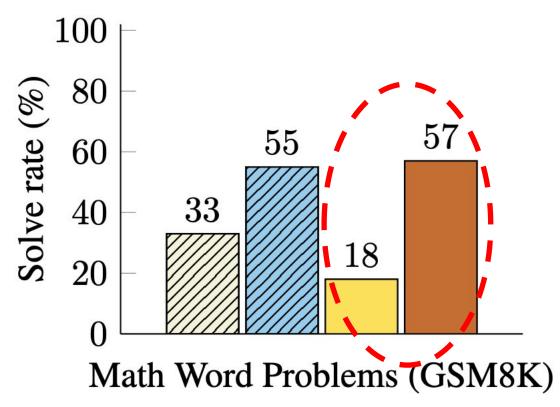
Thinking step-by-step works

		Arithmetic							
	SingleEq	AddSub	MultiArith	GSM8K	AQUA	SVAMP			
zero-shot	74.6/ 78.7	72.2/77.0	17.7/22.7	10.4/12.5	22.4/22.4	58.8/58.7			
step-by-step	78.0/78.7	69.6/74.7	78.7/79.3	40.7/40.5	33.5/31.9	62.1/63.7			
	Comm	Common Sense		Other Reasoning Tasks		Symbolic Reasoning			
	Common SenseQA	Strategy QA	Date Understand	Shuffled Objects	Last Letter (4 words)	Coin Flip (4 times)			
zero-shot	68.8/72.6	12.7/ 54.3	49.3/33.6	31.3/29.7	0.2/-	12.8/53.8			
step-by-step	64.6/64.0	54.8 /52.3	67.5/61.8	52.4/52.9	57.6/-	91.4/87.8			

This idea can be combined with the idea of including demonstrations in the prompt (Wei et al. 2022). This is called **Chain of Thought (CoT) prompting**.



- Finetuned GPT-3 175B
- Prior best
 - PaLM 540B: standard prompting
 - PaLM 540B: chain-of-thought prompting



Math Word Problems (free response)

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

StrategyQA

Q: Yes or no: Would a pear sink in water?

A: The density of a pear is about 0.6 g/cm^3, which is less than water. Thus, a pear would float. So the answer is no.

SayCan (Instructing a robot)

Human: How would you bring me something that isn't a fruit?

Explanation: the user wants something to eat that isn't a fruit. An energy bar is not a fruit, so I will bring the user an energy bar. Plan: 1. find(energy bar) 2. pick(energy bar) 3. find(user) 4. put(energy bar) 5. done(). Math Word Problems (multiple choice)

Q: How many keystrokes are needed to type the numbers from 1 to 500? Answer Choices: (a) 1156 (b) 1392 (c) 1480 (d) 1562 (e) 1788

A: There are 9 one-digit numbers from 1 to 9. There are 90 two-digit numbers from 10 to 99. There are 401 three-digit numbers from 100 to 500. 9 + 90(2) + 401(3) = 1392. The answer is (b).

Date Understanding

Q: The concert was scheduled to be on 06/01/1943, but was delayed by one day to today. What is the date 10 days ago in MM/DD/YYYY?

A: One day after 06/01/1943 is 06/02/1943, so today is 06/02/1943. 10 days before today is 05/23/1943. So the answer is 05/23/1943.

Last Letter Concatenation

Q: Take the last letters of the words in "Lady Gaga" and concatenate them.

A: The last letter of "Lady" is "y". The last letter of "Gaga" is "a". Concatenating them is "ya". So the answer is ya.

CSQA (commonsense)

Q: Sammy wanted to go to where the people were. Where might he go? Options: (a) race track (b) populated areas (c) desert (d) apartment (e) roadblock

A: The answer must be a place with a lot of people. Race tracks, desert, apartments, and roadblocks don't have a lot of people, but populated areas do. So the answer is (b).

Sports Understanding

Q: Is the following sentence plausible? "Joao Moutinho caught the screen pass in the NFC championship."

A: Joao Moutinho is a soccer player. The NFC championship is part of American football, not soccer. So the answer is no.

Coin Flip (state tracking)

Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the coin still heads up?

A: The coin was flipped by Maybelle. So the coin was flipped 1 time, which is an odd number. The coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Thanks!