
Statistical Inference:  

n-gram Models over Sparse Data 

(M&S Ch 6) 



Overview 

• Statistical Inference consists of taking some data 

(generated in accordance with some unknown 

probability distribution) and then making some 

inferences about this distribution. 

• There are three issues to consider: 

– Dividing the training data into equivalence classes 

– Finding a good statistical estimator for each 
equivalence class 

– Combining multiple estimators 



Forming Equivalence Classes I 

• Classification Problem: try to predict the target      
feature based on various classificatory features. ==>      
Reliability versus discrimination 

• Markov Assumption: Only the prior local context   
affects the next entry: (n-1)th Markov Model or n-    
gram 

• Size of the n-gram models versus number of     
parameters: we would like n to be large, but the 
number of parameters increases exponentially with n. 

• There exist other ways to form equivalence classes of 
the history, but they require more complicated 
methods ==> will use n-grams here. 

 



Statistical Estimators I: Overview 

• Goal: To derive a good probability estimate for the 
target feature based on observed data 

• Running Example: From n-gram data  

   P(w1,..,wn) predict P(wn+1|w1,..,wn) 

• Solutions we will look at: 

– Maximum Likelihood Estimation 

– Laplace’s, Lidstone’s and Jeffreys-Perks’ Laws 

– Held Out Estimation 

– Cross-Validation 

– Good-Turing Estimation 

 



Statistical Estimators II:  

Maximum Likelihood Estimation  

• PMLE(w1,..,wn)=C(w1,..,wn)/N, where C(w1,..,wn) is the 
frequency of n-gram w1,..,wn 

• PMLE(wn|w1,..,wn-1)= C(w1,..,wn)/C(w1,..,wn-1) 

 

• This estimate is called Maximum Likelihood Estimate 
(MLE) because it is the choice of  parameters that 
gives the highest probability to the training corpus. 

• MLE is usually unsuitable for NLP because of the 
sparseness of the data ==> Use a Discounting or 
Smoothing technique. 



Example 





Statistical Estimators III:  

Smoothing Techniques: Laplace 

• PLAP(w1,..,wn)=(C(w1,..,wn)+1)/(N+B), where        
C(w1,..,wn) is the frequency of n-gram w1,..,wn  and B  
is the number of bins training instances   are divided 
into. ==> Adding One Process 

• The idea is to give a little bit of the probability space 
to unseen events. 

• However, in NLP applications that are very sparse, 
Laplace’s Law actually gives far too much of the 
probability space to unseen events. 

 



Example 



Example 



Statistical Estimators IV: Smoothing 

Techniques:Lidstone and Jeffrey-Perks 

• Since the adding one process may be adding too 

much, we can add a smaller value . 

• PLID(w1,..,wn)=(C(w1,..,wn)+)/(N+B), where      

C(w1,..,wn) is the frequency of n-gram w1,..,wn  and 

B  is the number of bins training instances   are 

divided into, and >0. ==> Lidstone’s Law 

• If =1/2, Lidstone’s Law corresponds to the 

expectation of the likelihood and is called the 

Expected Likelihood Estimation (ELE) or the 

Jeffreys-Perks Law.  



Statistical Estimators V, Robust Techniques: 

Held Out Estimation 

• For each n-gram, w1,..,wn , we compute C1(w1,..,wn) 
and C2(w1,..,wn), the frequencies of w1,..,wn in 
training and held out data, respectively. 

• Let Nr be the number of bigrams with frequency r in 
the training text. 

• Let Tr be the total number of times that all n-grams 
that appeared r times in the training text appeared in 
the held out data. 

• An estimate for the probability of one of these n-
gram is: Pho(w1,..,wn)= Tr/(NrN)   

    where C(w1,..,wn)= r. 



Statistical Estimators VI: Robust Techniques: 

Cross-Validation 

• Held Out estimation is useful if there is a lot of data 
available. If not, it is useful to use each part of the 
data both as training data and held out data. 

• Deleted Estimation [Jelinek & Mercer, 1985]: Let 
Nr

a be the number of n-grams occurring r times in 
the ath part of the training data and Tr

ab be the total 
occurrences of those bigrams from part a in part b. 
Pdel(w1,..,wn)= (Tr

ab+Tr
ba)/N(Nr

a+ Nr
b) where 

C(w1,..,wn) = r. 

• Leave-One-Out [Ney et al., 1997] 



Statistical Estimators VI: Related 

Approach: Good-Turing Estimator 

• If C(w1,..,wn) = r > 0, PGT(w1,..,wn) = r*/N where 
r*=(r+1)Nr/r   

• If C(w1,..,wn) = 0, PGT(w1,..,wn)  N1/(N0N) 

• Simple Good-Turing [Gale & Sampson, 1995]:  

• Use a smoothed estimate of the expectation of Nr. 

• As a smoothing curve, use Nr=arb (with b < -1) and 
estimate a and b by simple linear regression on the 
logarithmic form of this equation:             

    log Nr= log a + b log r, if r is large.  

• For low values of r, use the measured Nr directly. 



Good-Turing Smoothing (example) 

• In the Brown Corpus, suppose for n =2,  

    N2=4000 N3=2400. 

• Then 2* = 3 (2400/4000) = 1.8 

• PGT (jungle|green) = 3*/207 = 2.2/207 = 0.01062 

 



Good-Turing Smoothing (example) 



Combining Estimators I: Overview 

• If we have several models of how the history 

predicts what comes next, then we might wish to 

combine them in the hope of producing an even 

better model. 

• Combination Methods Considered: 

– Simple Linear Interpolation 

– Katz’s Backing Off 

– General Linear Interpolation 



Combining Estimators II:  

Simple Linear Interpolation 

• One way of solving the sparseness in a trigram model 
is to mix that model with bigram and unigram models 
that suffer less from data sparseness. 

• This can be done by linear interpolation (also called 
finite mixture models). When the functions being 
interpolated all use a subset of the conditioning 
information of the most discriminating function, this 
method is referred to as deleted interpolation. 

• Pli(wn|wn-2,wn-1)=1P1(wn)+ 2P2(wn|wn-1)+ 
3P3(wn|wn-1,wn-2) where 0i 1 and i i =1 

• The weights can be set automatically using the 
Expectation-Maximization (EM) algorithm. 



Combining Estimators II: 

Katz’s Backing Off Model 

• In back-off models, different models are consulted in 
order depending on their specificity. 

• If the n-gram of concern has appeared more than k 
times, then an n-gram estimate is used but an amount 
of the MLE estimate gets discounted (it is reserved 
for unseen n-grams). 

• If the n-gram occurred k times or less, then we will 
use an estimate from a shorter n-gram (back-off 
probability), normalized by the amount of probability 
remaining and the amount of data covered by this 
estimate. 

• The process continues recursively. 



Katz’s Backing Off Model (3-grams) 



Katz’s Backing Off Model (2-grams) 



Combining Estimators II:  

General Linear Interpolation 

• In simple linear interpolation, the weights 

were just a single number, but one can define 

a more general and powerful model where the 

weights are a function of the history. 

• For k probability functions Pk, the general 

form for a linear interpolation model is: 

Pli(w|h)= i
k i(h) Pi(w|h)   where 0i(h)1 and   

i i(h) =1 


