Statistical Inference:
n-gram Models over Sparse Data
(M&S Ch 6)



Overview

» Statistical Inference consists of taking some data
(generated In accordance with some unknown

probability distribution) and then making some
Inferences about this distribution.

« There are three issues to consider:

— Dividing the training data into equivalence classes

— Finding a good statistical estimator for each
equivalence class

— Combining multiple estimators



Forming Equivalence Classes |

 Classification Problem: try to predict the target
feature based on various classificatory features. ==>
Reliability versus discrimination

« Markov Assumption: Only the prior local context
affects the next entry: (n-1)th Markov Model or n-
gram

* Size of the n-gram models versus number of
parameters: we would like n to be large, but the
number of parameters increases exponentially with n.

» There exist other ways to form equivalence classes of
the history, but they require more complicated
methods ==> will use n-grams here.




Statistical Estimators |I; Overview

« Goal: To derive a good probability estimate for the
target feature based on observed data

« Running Example: From n-gram data
P(Wli"’wn) prEdiCt I:)(Wn+1|W11"1VVn)
 Solutions we will look at:
— Maximum Likelihood Estimation
— Laplace’s, Lidstone’s and Jeffreys-Perks’ Laws
— Held Out Estimation
— Cross-Validation
— Good-Turing Estimation




Statistical Estimators II:
Maximum Likelihood Estimation

Py e(Wy,.., W )=C(Wy,..,.w.)/N, where C(wj,..,w,) is the
frequency of n-gram wy,..,w,

PmLe(Wn Wy,.. W)= C(Wy,..,W,)/C(Wy,..,. W)

This estimate is called Maximum Likelihood Estimate
(MLE) because it is the choice of parameters that
gives the highest probability to the training corpus.

MLE is usually unsuitable for NLP because of the
sparseness of the data ==> Use a Discounting or
Smoothing technique.
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Table 4: A fragment of an ARPA-format bigram language model produced by the SLM
Toalkit

hdata, =4.T31E <> zinc
ngram 1=35770 =q.7315 <> Zondervan
ngram J=344E05 =5.324T <> Zorinsky
=4 3076 <> ZzzE

\l=grams: =3.8860 a <fs>»
=§. 1177 <UNK>» 0. 0003 =2.7180 a a
=39 0000 < 5> =4  THEE =3.73E8 a acra
=30 0000 <s5> =0.8303 =4 4540 a advance
=] EBEE a =0.52%3 =5.0472 a afqutinE
=5 . 6405 aa =0.14E8 =4 0302 a affiliata
=§. 1177 aart =0.1528 =5.0472 a aftar
=&. 1177 aase =0.1524 =4 4540 a agraad
=4 EBE3 ab =0.373E =4.0302 a2 agraament
=6.1177 aba =0.15%8 e
=5.B1668 aback =0.15%1 =2.8283 win becalsa
=5 11768 abalocne =0.2733 =2 82B3 win hig
=§. 1177 abalonas =0.143T =1.TEE2 win bhut

FLEE =2 8283 win cars
=5.1634¢ Zumwalt =0.1309 =2.0351 win concessions
=5.6405 zuniga =0.1463 =3 8783 win confirmation
=4 . B415 zurich =0.2013 =2.8Z83 win congressional

=5.6405 zurkuhlan =0.1280 e

=.3438 =zurich

=8 1177 ZEwantendorf =0.1528 LY

=6. 1177 Zwhalan =0.1509 =0.5840 Furich and

=G, 1177 zydeco =0.1417 =1.7040 zurich based

=§. 1177 == =0.1526 =1.700 zurich raisad

=5. 4187 ZZ== =0.8812 =1.7040 zurich said
=0.8438 Furich switZarland

WE=grans: =1.7040 zurich to

=0.0000 <fs5> 5>

=1 ,.0080 zurkuhlen and

=2.B091 <5> «fg» =1.0080 zurkuhlen of

=] G152 <5> a =0 5770 zwantandorf austria
=5_524T <5> aaron =.5278 zwhalan an

=5.3247 <s> ab =0.5379 zydace a

=4 QB34 <5 abo =0.5270 22 tap

=5.3247 <s5> abdallah =0. 1060 zzzz bast

=5_ 5247 5> ZerD yandh,

=5. 3247 €3> Zaros



Statistical Estimators 111:

Smoothing Technigues: Laglace

o PLap(Wy,.., W )=(C(Wy,..,w,)+1)/(N+B), where
C(wy,..,w,) Is the frequency of n-gram w,,..,w, and B
IS the number of bins training instances are divided
Into. ==> Adding One Process

» The idea Is to give a little bit of the probability space
to unseen events.

» However, in NLP applications that are very sparse,
Laplace’s Law actually gives far too much of the

probability space to unseen events.
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Statistical Estimators 1V: Smoothing
Technigues:Lidstone and Jeffrex-Perks

* Since the adding one process may be adding too
much, we can add a smaller value A.

* PLip(Wy,..,W)=(C(Wy,..,w,)+L)/(N+BA), where
C(wy,..,w,) Is the frequency of n-gram w,,..,w, and
B Is the number of bins training instances are
divided into, and A>0. ==> Lidstone’s Law

* |f A=1/2, Lidstone’s Law corresponds to the
expectation of the likelihood and is called the
Expected Likelihood Estimation (ELE) or the
Jeffreys-Perks Law.




Statistical Estimators V, Robust Techniques:
Held Out Estimation

For each n-gram, wy,..,w, , we compute C,(wy,..,w,)
and C,(wy,..,w,), the frequencies of wy,..,w, In
training and held out data, respectively.

Let N, be the number of bigrams with frequency r in
the training text.

Let T, be the total number of times that all n-grams
that appeared r times In the training text appeared in
the held out data.

An estimate for the probability of one of these n-
gram is: P (Wy,..,.w,)= T/(N,N)

where C(wy,..,w,)=T.




Statistical Estimators VI: Robust Techniques:
Cross-Validation

» Held Out estimation is useful if there is a lot of data
avallable. If not, it Is useful to use each part of the
data both as training data and held out data.

» Deleted Estimation [Jelinek & Mercer, 1985]: Let
N.2 be the number of n-grams occurring r times in
the a" part of the training data and T2 be the total
occurrences of those bigrams from part a in part b.
Pdel(wy,..,w,)= (T 2+T 22)/N(N2+ N.P) where
C(wy,..,.w,) =T.

» Leave-One-Out [Ney et al., 1997]




Statistical Estimators VI: Related
Approach: Good-Turing Estimator

If C(wy,..,.w,)) =r>0, Per(wy,..,w,) = r*/N where
r*=(r+1)N/r

If C(wy,..,w,) =0, Pgr(wy,..,w,) = Ni/(NyN)
Simple Good-Turing [Gale & Sampson, 1995]:
Use a smoothed estimate of the expectation of N..

As a smoothing curve, use N =ar? (with b < -1) and
estimate a and b by simple linear regression on the
logarithmic form of this equation:

log N,=1loga+Dblogr, if ris large.
For low values of r, use the measured N, directly.




Good-Turing Smoothing (example)

* In the Brown Corpus, suppose for n =2,
N,=4000 N;=2400.

e Then 2* =3 (2400/4000) = 1.8

* Psr(Jungle|green) = 3*/207 = 2.2/207 = 0.01062



Good-Turing Smoothing (example)

B Probability mass left over for unseen events

L=

= 1-F N(r*/N)

r=1

= 1-1/N¥ (r+1)Ns1
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Combining Estimators I: Overview

* |f we have several models of how the history
predicts what comes next, then we might wish to
combine them in the hope of producing an even
better model.

« Combination Methods Considered:
— Simple Linear Interpolation
— Katz’s Backing Off
— General Linear Interpolation



Combining Estimators II:
Simple Linear Interpolation

* One way of solving the sparseness In a trigram model
IS to mix that model with bigram and unigram models
that suffer less from data sparseness.

 This can be done by linear interpolation (also called
finite mixture models). When the functions being
Interpolated all use a subset of the conditioning
Information of the most discriminating function, this
method Is referred to as deleted interpolation.

: Pli(Wnlwn-Z’Wn-l):klpl(Wn)'l' 7\“2P2(Wn|Wn-1)+
APs(W, w1, W, ) where 0<A, <1 and Z; A; =1

» The welights can be set automatically using the
Expectation-Maximization (EM) algorithm.




Combining Estimators II:
Katz’s Backing Off Model

* In back-off models, different models are consulted In
order depending on their specificity.

* |f the n-gram of concern has appeared more than k
times, then an n-gram estimate Is used but an amount
of the MLE estimate gets discounted (it Is reserved
for unseen n-grams).

» |f the n-gram occurred k times or less, then we will
use an estimate from a shorter n-gram (back-off
probability), normalized by the amount of probability
remaining and the amount of data covered by this
estimate.

» The process continues recursively.




Katz’s Backing Off Model (3-grams)

]

Unseen bigrams /

Unseen trigrams
Unseen unigrams

o, S

Seen bigrams Seen unigrams

..- "'I'

e S
Smoothed probability space Smoothed probability space Smoothed probability space
for trigrams ww, for bigrams w,__ for umigrams
¢ !
Pg(ws3 | wynn) ifC(W3) >k

Pgo(ws|wiwa) = o(wywy)Ps(ws|wa) ifC(W3) <kand C(Wh3) >k

| 0(w2)Ps(w3) otherwise




Katz’s Backing Off Model (2-grams)

m For bigrams:
Pg(wy|wy) 18 C(wpwa) >k

ol(wq)Ps(w2) otherwise

Ppo(wy|wy) = {

1— > Ps(wa|wy)
wr:Clwiwy ) =0
o(wy) =
(1) 1— Z Ps(wr)

wa Clwywn ) =0



Combining Estimators II:

General Linear Intergolation

* In simple linear interpolation, the weights
were just a single number, but one can define
a more general and powerful model where the
weights are a function of the history.

 For k probability functions Pk, the general
form for a linear interpolation model is:
Pi(w|h)= =X A;(h) P;(wjh) where 0<i;(h)<1 and
> Ai(h) =1



